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Abstract. Using neuroprosthetics during daily living presents new challenges that affect design choices in neural 

decoders. New classes of architectures for neural decoding that are based on reinforcement learning (RL) are being 

investigated. RL decoders use experience to help shape and adapt the decoder such that the benefits of tasks are 

maximized for the user. Since RL is based on reward feedback, reward signals are a critical part of the functionality. 

In this work, we investigate and compare 4 sources of reward related signals that can provide feedback for RL based 

decoders: the external environment, error-related potentials (ErrP) in EEG and LFPs, and single neuron activity in 

the Nucleus Accumbens (NAcc). 
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1. Introduction 

The use of neuroprosthetics in activities of daily living present new challenges that affect the design choices 

used in neural decoding. These include the dynamics of working in multiple environments, effects of rehabilitation 

on neuroplasticity, effects of user learning on performance, dependence on a caregiver to help calibrate the system, 

and the overall stability of neural signals acquired from the neural interface itself. Our laboratory has been 

investigating a new class of architectures for neural decoding that are based on reinforcement learning (RL) 

[Mahmoudi and Sanchez, 2011]. RL decoders are inspired by physiological, computational, and behavioral 

principles involved in the process of using experience to help shape and adapt performance such that the benefits of 

tasks are maximized for the user. In simple terms, RL decoders work in the following way. When users generate 

neural activity that leads to successful use of the neuroprosthetic, the functionality of the decoder is reinforced. 

Conversely, when users generate neural activity and the neuroprosthetic is unsuccessful, the interface is adapted. 

This framework leads to continuous interaction between user and neuroprosthetic based on success or failure. 

Since RL decoding is based on reward feedback, acquisition and access to these signals is a critical part of the 

functionality. Typically in he development of living organisms, the signals used to reinforce behaviors during 

learning come from a wide variety of sources. These include the external environment, other individuals, and the 

organism’s own brain [Holroyd and Coles, 2002]. All could be good candidates for adapting a BCI decoder. 

In this work, we investigate 4 sources of reward related signals that can be used to provide feedback for RL 

based decoders.  

2. Material and Methods 

Our adaptive neural interface uses actor-critic based RL decoders. As shown in 

Fig. 1, the actor maps motor related brain activity to intended actions of a prosthetic or 

assistive device. The actor’s weights are initialized randomly and then adjusted after each 

trial based on feedback from the critic. The critic provides feedback by decoding the 

user’s brain activity or environmental cues to determine if the decoded behavior should 

be reinforced. 

Multiple sources of reward related feedback can be extracted from the environment 

and the brain. The differences among them are related to: frequency of expression, 

robustness of their representation, and modality of acquisition. Our lab has been 

evaluating several common feedback sources, including environmental cues and 

several types of neural recordings. 

Figure 1. Reinforcement 

Learning BCI. 
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When reward is from a source other than neural signals from the user's brain, the source is considered part of the 

external environment. The external environment can include a system with prior knowledge of available actions, 

another person providing feedback, or the user themselves through feedback such as a button press or eye blink. 

However, such signals are not always available in the severely paralyzed. 

Reward can also come from the electroencephalogram (EEG) in the form of error-related potentials (ErrP). This 

is typically detected in the 5-10 Hz band from electrode Cz when the user thought an error was committed [Ferrez 

and Millan, 2008]. By targeting reward centers in the brain such as the Nucleus Accumbens (NAcc), single unit 

activity (SUA) can also be used to extract reward information. However, a significant challenge is to construct a 

single reward signal from the distributed representation of the neural population, which may encode many aspects of 

reward as it is linked to behavior. Local field potentials (LFP) from the NAcc can also produce event related 

potentials associated with reward. 

Our lab is investigating all four signal types as possible sources of reward feedback. To illustrate the use of this 

class of signals, a support vector machine (SVM) [Muller, Smola et al., 1999] was used to classify human EEG, and 

LFP and SUA signals from nonhuman primate NAcc. All tested behaviors were a two choice target selection task (33 

trials). To preprocess features for classification, the power of the 5-10 Hz band, 1 s window, from Cz EEG was used. 

Likewise, the power of broadband (1-500 Hz) LFP was used from four electrodes. The vector firing rate of 22 

neurons (from 16 electrodes) was used as a feature for the SVM in the case of SUA. 

3. Results 

Table 1 shows average classification results across two subjects. The classification accuracy of the different 

sources of reward is comparable: SUA (82%), LFP (75%), and EEG (69%). 

Table 1. Classification Accuracy of Reward Sources. 

 Environment EEG-ERN LFP SUA 

Reward  100% 69% 75% 82% 

No-Reward 100% 63% 71% 69% 

4. Discussion 

Overall, the three neural signals provided similar average classification rates. SUA can provide higher spatial 

resolution, but determining how they relate to global processing such as reward or no-reward can be a challenge. 

Since LFP is believed to detect the synaptic activity of many neurons and since reward processing is an integrative 

procedure less preprocessing of LFP was required to extract reward for similar performance. EEG’s major advantage 

is non-invasiveness. However, EEG has a lower signal to noise than other sources and ErrPs might not be detectable 

during rapidly paced tasks. LFP appear to have a similar limitation, while SUA may not. The external environment 

can give feedback that is completely accurate. However, incorporating it into a system may limit its usability in daily 

life, since additional inputs from the user, such as muscle movements, would be required. 
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