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Electrocorticographic Gamma Band Power Encodes the 

Velocity of Upper Extremity Movements 
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Abstract: Subjects undergoing subdural electrode placement for epilepsy evaluation performed a series of six 

elementary upper extremity movements. Depending on grid location, the electrocorticographic (ECoG) signals in the 

high gamma band were found to encode the velocity of these movements. To the best of our knowledge, this 

represents the first comprehensive study of elementary upper extremity movements and their relationship to ECoG 

signals. This information can potentially enable brain-computer interface control of six degrees-of-freedom 

prostheses. 
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1. Introduction 

Electrocorticogram (ECoG) has been explored as an alternative signal acquisition platform to intracortical 

microelectrodes in brain-computer interface (BCI) control of upper extremity prostheses. Unlike their intracortical 

counterparts [Hochberg, 2012], ECoG electrodes do not penetrate the cortex, and may have a long-term signal 

stability advantage. However, how well arm, hand, and finger kinematic parameters can be decoded from ECoG 

remains unclear. 

2. Materials and Methods 

Subjects were recruited from an epilepsy patient population undergoing subdural electrode grid implantation 

involving the primary motor cortex. Up to 64 channels of ECoG data were recorded with two Nexus-32 amplifiers 

(Mind Media, The Netherlands). Signals were acquired at 2048 Hz in a common average reference mode. 

Subjects were asked to perform a series of 6 elementary movements, as tolerated and as permitted by time: (1) 

pincer grasp/release; (2) wrist flexion (F) and extension (E); (3) forearm pronation and supination; (4) elbow flexion 

and extension; (5) shoulder forward flexion (FF) and extension; (6) shoulder internal rotation (IR) and external 

rotation (ER). Subjects first performed 4 sets of 25 continuous repetitions of each movement type (1-6), with each 

set intervened by a 20-30 second rest period. An electronic goniometer (movements 1-2) or gyroscope (movements 

3-6) was used to measure the trajectory, (position,  ( ), and velocity,  ̇( )), and their signals were acquired by an 

integrated microcontroller (Arduino, Smart Projects, Turin, Italy). 

To determine if ECoG signals encoded the above movements, they were bandpass filtered (80-160 Hz), and 

their instantaneous power,   ( ) , was calculated.  ( )  was visually inspected, and those movements whose 

 ( ) were deemed highly correlated with either  ( ) or  ̇( )  were further analyzed by an automated decoding 

system. This system performed classification to determine idling and movement epochs from ECoG signals, 

followed by trajectory decoding during those epochs that were classified as movement.  

Half of the ECoG data was used to train the decoding system while the other half was used for testing. 

Subsequently, the roles of these data segments were reversed and the above procedure was repeated. To classify 

ECoG into idling and movement states, a linear regression model was first generated between  ̇( ) and  ( ). A pair 

of thresholds was then applied to the estimate  ̂̇( ) to determinate the transitions from idling to movement states, 

and vice versa. The threshold values were found by minimizing the mismatch between the estimated state transitions 

and the ground truth, as determined by the measured trajectory. Subsequently, from  ̇( ) and  ( ) corresponding to 

movement epochs, a second linear regression model (trajectory decoder) was generated to estimate  ̂̇( ). 

Offline estimates  ̂̇( ) were determined by first classifying the test ECoG data into either idling or movement 

classes. For each ECoG epoch classified as idling,  ̂̇( ) was set to 0. Conversely, for epochs classified as movement, 
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 ̂̇( ) was estimated by the trajectory decoder. The correlation coefficient between  ̇( ) and  ̂̇( ) for each movement 

type was calculated. 

3. Results 

Three subjects were recruited for this study. During visual inspection,  ( ) was found to be visually correlated 

with trajectory for several movements. The classification and trajectory decoding results for each of these 

movements are summarized in Table 1. A representative velocity decoding is shown in Fig. 1. 

Table 1. Summary of results, showing study subjects, subdural electrode placement description, movements represented by 

visual inspection of signal, and results of classification and trajectory decoding system. Note that results are reported in 

pairs, corresponding to the two validation sets (see Section 2). 
Subject Movements Represented 

(Visual Inspection) 

Idle/Movement Accuracy 

(Ratio Correctly Decoded) 

Trajectory Decoding Accuracy (X-

Correlation) 

S1 (20 yo F, Left 8x8 temporal-

frontal grid, 1x6 posterior frontal 

strip) 

Grasp, Wrist Grasp: 0.85, 0.81 

Wrist: 0.89, 0.83 

 

Grasp: 0.68, 0.66  

Wrist: 0.46, 0.52 

 

S2 (27 yo F, Right frontal-parietal 

6x8 grid)  

Grasp, Elbow, Shoulder Grasp: 0.73, 0.89 

Elbow: 0.80, 0.80 

Shoulder IR/ER: 0.68, 0.80 

Shoulder FF/E: 0.82, 0.87 

Grasp: 0.54, 0.62 

Elbow: 0.44, 0.53 

Shoulder IR/ER: 0.62, 0.53 

Shoulder FF/E: 0.53, 0.69 

S3 (35 yo F, Right frontal-parietal 

2x6 strip) 

Grasp Grasp: 0.89, 0.88 Grasp: 0.62, 0.64 

 

 
Figure 1. ECoG-decoded (thin line) and measured (thick line) velocities during shoulder FF/E for Subject S2. 

4. Discussion 

The results here indicate that velocities of elementary upper extremity movements are encoded within the power 

of ECoG signals in the high gamma band. The ability to decode these movements can eventually translate to the full 

BCI control of a 6-degrees-of-freedom upper extremity prosthesis. Such level of control may be necessary to adapt 

to the many unique situations presented in everyday life and may be a requisite to restoring independence to those 

with upper extremity paralysis. There have not been previous comprehensive efforts to elucidate the decoding of 

these movements from ECoG signals, and the results presented here bolster the potential of using ECoG signals for 

BCI-controlled upper extremity prostheses.  

A combination of classification and regression was used to decode movement trajectories from ECoG signals. 

The most salient features encoding for movement kinematics were found in the high gamma band (80-160 Hz). 

These findings are consistent with prior studies [Miller, 2007]. The gamma band likely represents cortical activity of 

the neuronal generators controlling each of these movement types. Given the anatomical proximity of these 

generators in the motor cortex, future work will focus on investigating the discriminability of these movements.  
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