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Abstract. In this work, we classified movement-related cortical potentials (MRCPs) associated with two levels of 

task force and speed with a linear and an optimized support vector machine (SVM). Features were extracted using 

Approximate Entropy (ApEn), Sample Entropy (SaEn) and Permutation Entropy (PeEn) calculated from the initial 

negative phase of the MRCP. Classification accuracies for the optimized SVM reached 68 ± 7% and 71 ± 10% 

(force and speed, respectively); with the linear SVM they reached 59 ± 8% and 64 ± 13%.  
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1. Introduction 

Brain-computer interfaces (BCIs) have been used as means for paralyzed patients to communicate or control an 

external device using brain signals. The combination of BCIs with sensory stimulation, such as electrical stimulation, 

could be used for neuromodulation in a rehabilitation setting for stroke patients. For this purpose, a protocol was 

proposed by Mrachacz-Kersting et al. [2012], where plasticity was induced when pairing the peak of maximum 

negativity of the MRCP from motor imagination with peripheral electrical stimulation. The protocol was 

implemented as an asynchronous BCI system by Niazi et al. [2012], where the movement intention (initial negative 

phase of the MRCP) was detected online with limited latency and triggered an electrical stimulator. To improve this 

intervention, afferent feedback from the electrical stimulation should match the movement intention and in this way 

close the motor control loop. In this scenario, it would also be possible to introduce task variability, which is 

important when relearning a motor skill [Krakauer, 2006]. To replicate various types of movements, it is necessary to 

decode the information about speed and force from the brain signals. Speed and force is encoded in the MRCPs 

[Nascimento et al., 2006] and different levels have been classified from single-trial EEG using optimized wavelets as 

features [Farina et al., 2007]. To improve the classification accuracies, the non-linear dynamic methods ApEn 

[Pincus, 1991], SaEn [Richman and Moorman, 2000] and PeEn [Bandt and Pompe, 2002] could potentially be 

applied as features. Entropy has previously been used as features in other BCI applications (e.g. [Wang et al., 2012]). 

In this work the possibility of using ApEn, SaEn and PeEn to discriminate between two levels of force and speed 

from the movement intention was explored. 

2. Material and Methods 

Six healthy subjects (two women and four men: 30 ± 6 years old) performed three types of cued isometric dorsi-

flexions of the right ankle, which was fixed to a pedal with a force transducer. The maximum voluntary contraction 

(MVC) was determined at the start of each session followed by 50 repetitions of each cued movement type. The 

tasks were I) 0.5 s to reach 20% MVC, II) 0.5 s to reach 60% MVC and III) 3 s to reach 60% MVC. These were 

performed in three blocks. To assist the subjects in performing the movements with the correct speed and force, they 

were cued by a custom made program. Force was used as input to the system so the subjects were continuously 

provided with visual feedback on how well they matched their movements to the desired force profile. Ten channels 

of continuous monopolar EEG (sampled at 500 Hz) were recorded from FP1, F3, F4, Fz, C3, C4, Cz, P3, P4 and Pz, 

with the reference electrode on the right earlobe and ground electrode at nasion. The recordings were divided into 

epochs so data from the movement onset (determined from the force), and 3 s prior, was kept for further analysis. 

Epochs containing eye activity (125 µV in FP1) were rejected from further analysis (≈ 6 per task). The data was 

bandpass (0.05-10 Hz) and spatially (Large Laplacian) filtered. For discriminating between force (task I vs. task II) 

and speed (task II vs. task III) the ApEn, SaEn and PeEn were calculated for each epoch and used as features. The 
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false-nearest neighbors’ algorithm was used for determining the optimal embedding dimension (m = 2). The 

tolerance was 0.2x standard deviation and the time lag was 1. Each combination of features was classified using an 

SVM with a linear or with a non-linear decision boundary. A Gaussian kernel with an optimized kernel width and 

regularization parameter was used. The two optimization processes allowed maximization of the classification 

accuracy when applied to the training set. The optimized parameters were applied to the test set for evaluation of the 

classification accuracy. Classification accuracies [%] were obtained using 3-fold cross-validation.  

3. Results 

The results are presented in Table 1. The best performance for the linear SVM was obtained using SaEn as a 

feature when discriminating between the two levels of force (59 ± 8%) and ApEn for discriminating between the two 

levels of speed (64 ± 13%). For the optimized SVM the best performance was obtained when combining ApEn with 

PeEn for discriminating between the two levels of force (68 ± 7%) and ApEn with SaEn when discriminating 

between the two levels of speed (71 ± 10%). The highest classification accuracies were obtained with the optimized 

SVM.  

 
Table 1. Classification accuracies (mean ± standard deviation across all subjects) for each task pair using a linear and an 

optimized SVM for each set of features (left column). Fast 20 (% MVC) = Task I, Fast 60 = Task II and Slow 60 = Task III. 

Features Fast 20 vs. Fast 60 

Linear SVM [%] 

Fast 20 vs. Fast 60 

Non-linear SVM [%] 

Fast 60 vs. Slow 60 

Linear SVM [%] 

Fast 60 vs. Slow 60 

Non-linear SVM [%] 

ApEn 59 ± 12 66 ± 8 64 ± 13 69 ± 11 

PeEn 54 ± 9 64 ± 7 54 ± 11 65 ± 6 

SaEn 59 ± 8 66 ± 9 59 ± 15 69 ± 11 

ApEn+PeEn 57 ± 11 68 ± 7 62 ± 13 71 ± 11 

ApEn+SaEn 55 ± 10 67 ± 9 61 ± 15 71 ± 10 

PeEn+SaEn 56 ± 12 68 ± 8 59 ± 16 70 ± 11 

ApEn+PeEn+SaEn 58 ±11 68 ± 8 62 ± 13 71 ± 11 

4. Discussion 

The classification accuracies that were found when using the different types of entropy indicate that entropy can 
be used for discriminating between the two levels of force and speed. However, the classification accuracies that 
were obtained are in general lower compared to preliminary results using four temporal features (76 ± 9% and 
82 ± 10% for force and speed, respectively) and what has been found previously using optimized wavelets [Farina et 
al., 2007]. Therefore, it should be investigated further if the features, extracted from the non-linear dynamics 
methods could complement the four temporal features and optimized wavelets to improve the classification 
accuracies further.  
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