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Preface

The OAGM and ARW Joint Workshop on Computer Vision and Robotics provides a platform bring-
ing together researchers, students, professionals and practitioners from both research directions to
discuss new and emerging technologies in the field of machine driven perception and automated ma-
nipulation/autonomous movement. Even though there is a long tradition for OAGM workshops (we
are celebrating the 40th workshop since 1980) and the ARW workshops (since 2011), which have
their roots in the early days of the Austrian RoboCup workshops (2006), this is the first time that both
communities are organizing a joint event.

Computer Vision tries to perceive the physical world from image or video data resulting in applica-
tions such as scene understanding, object detection and tracking and 3D reconstruction. Thus, the
main problems are to find suitable representations and to design and implement efficient (learning)
algorithms. In contrast, Robotics aims at dealing with moving arms, graspers, and eventually moving
vehicles. There are one or more actuators which have to be controlled accordingly in a planned matter
for fulfilling given jobs. Some of them consist of additional sensors, e.g., graspers get some feedback
for they can correctly catch and hold object without losing or destroying it; or the mobile device stops
in front of an obstacle. These examples clearly demonstrate the relations between both fields. The
outer world/the actual scenery is perceived by cameras; a consistent set of knowledge is modeled for
the actuator for operating successfully either in a planned or even in an unplanned – standalone –
strategy. Thus, there is a considerable interest in describing approaching features and possibilities
and how the combination of different technologies could be beneficial.

The aim of the joint workshop is to discuss latest academic and industrial approaches and to demon-
strate the recent progress. The call for papers resulted in 28 full paper submissions and additional 9
papers submitted to the industrial/featured talk and poster track, where finally according to the reviews
of an international programme committee 34 contributions (26 talks, 8 posters) have been selected for
presentation at the workshop. The goal of the workshop is also supported by inviting five internation-
ally established researchers, i.e., Oliver Bimber (JKU Linz), Ales Leonardis (BHAM, UK), Laurent
Resquet (TIMA, FR), Andreas Müller (JKU Linz), Andreas Nüchter (JMU, DE), representing both
areas.

Kurt Niel (General chair of the workshop)
Peter M. Roth (Chairman OAGM)
Markus Vincze (Chairman ARW)

Wels, May 1, 2016
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Doris Antensteiner, Svorad Štolc and Reinhold Huber-Mörk . . . . . . . . . . . . . 71

Guided Sparse Camera Pose Estimation
Fabian Schenk, Ludwig Mohr, Matthias Rüther, Friedrich Fraundorfer and Horst
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A Holonomic Robot for Rescue Applications 

Oliver Bimber

 JKU Linz, Institute of Computer Graphics, Austria
oliver.bimber@jku.at

Abstract
This talk summarizes our progress towards a fully transparent, flexible, and scaelable thinfilm
image sensor. In contrast to conventional image sensors, it does not capture pixels in image space
on the sensor surface, but makes integral measurements in Radon space along the sensor‘s edges.
Image   reconstruction   is  achieved  by   inverse  Radon   transform.  By   stacking  multiple   layers,   it
enables a variety of information, such as color, dynamic range, spatial resolution, and defocus, to
be sampled simultaneously. Multifocal imaging allows reconstructing an entire focal stack after
only one recording. The focal stack can then be applied to estimate depth from defocus. Measuring
and classifying directly in Radon space yields robust and high classification rates. Dimensionality
reduction results in taskoptimized classification sensors that record a minimal number of samples.
This enables simple devices with low power consumption and fast readout times. Combining our
sensing approach with lensless coded aperture imaging has the potential to enable entire thinfilm
camera systems that make the capturing of images, light fields, and depth information possible.
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Hierarchical Compositional Representations of Structure for
Computer Vision and Robotics

Ales Leonardis

 University of Birmingham, School of Computer Science, United Kingdom
a.leonardis@cs.bham.ac.uk

Abstract
Modelling, learning, recognising, and categorising visual entities has been an area of intensive re
search   in   the   vision   and   robotics   communities   for   several   decades.   While   successful   partial
solutions tailored for particular tasks and specific scenarios have appeared in recent years, more
general solutions are yet to be developed. Ultimately, the goal is to design and implement proper
structures and mechanisms that would enable efficient learning, inference, and, when necessary,
augmentation and modifications of the acquired visual knowledge in general scenarios. Recently, it
has   become   increasingly   clear   that   possible   solutions   should   be   sought   in   the   framework   of
hierarchical architectures.  Among various design choices related  to hierarchies,  compositional
hierarchies   show   a   great   promise   in   terms   of   scalability,   realtime   performance,   efficient
structured online learning, shareability, and knowledge transfer. In this talk I will first present our
work on compositional hierarchies related to visual representations of 2D and 3D object shapes
for   recognition   and   grasping   and   then   conclude   with   some   ideas   towards   generalising   the
proposed approach to other visual entities and modalities.
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Eventbased Design for Mitigating Energy in Electronic
Systems

Laurent Fresquet

 Laboratoire TIMA, France
laurent.fresquet@imag.fr

Abstract
Today, our digital society exchanges data flows that are incredibly large and the future promises
us a data explosion due to the communications between our technological equipment, robots, etc.
Indeed, we are close to widely open the door of the Internet of Things (IoT). This data orgy will
waste a lot of energy and will contribute to a nonecological approach of our digital life. Indeed,
the Internet and the new technologies consume about 10% of the electrical power produced in the
world.  Considering   that  we are  only  at   the  beginning of   the   IoT,   it   is  urgent   to  enhance  the
energetic  performances  of   the  electronic  circuits  and systems.  The design  paradigm based on
synchronizing  digital   circuit   communication  with  a   clock   is   source  of   useless   activity   and  of
complicated design techniques. The digital circuit design based on local synchronizations, also
called asynchronous circuits, is a way to mitigate the power consumption in electronics by only
activating the circuitry when an event appears. In addition, another way to reduce energy is to
rethink   the   sampling   techniques  and  digital  processing  chains.   Indeed,  by  using   the  Shannon
theory, we produce more data than necessary. Indeed, useless data produce more computation,
more  storage,  more  communications  and also  more  power  consumption.   If  we go beyond   the
Shannon theory, we can discover new sampling schemes and new processing techniques able to
take advantage of eventbased design. Drastically reducing the useless data and activity is maybe
the Grail of lowpower computing.

7





ModelBased Control of Industrial Robots – From Theory to
Practice 

Andreas Müller

 JKU Linz, Institute of Robotics, AT, Austria
a.mueller@jku.at

Abstract
Industrial robotics has seen a major overhaul in terms of improved designs, novel kinematics, and
actuation  concepts.  Redundancy,   for   instance,   is  becoming  an  important   factor   for   increasing
flexibility   and   robustness.   As   such,   kinematic   redundancy   of   serial   manipulators   (mimicking
anthropomorphicarms)   and   actuation   redundancy   of   parallel   manipulators   are   prevailing
concepts. Aiming at reducing energy consumption and increasing agility, lightweight robotics is
another example of innovation in robotics. While these may not be at the core interest of a majority
of robot end users, reducing production and cycle times was and still is an important issue. The
solution   concept   applicable   to   all   these   problems   is   the   modelbased   control.   In   contrast   to
classical decentralized control schemes, which are commonly used in industrial robots,  model
based control schemes make use of a dynamical model. Standard control systems do not account
for such models. This will be vital, however. In this presentation the basic concept of modelbased
control will be discussed. Particular attention will be given to efficient formulations of the dynamic
model accounting for rigid as well as elastic manipulators. Strategies for the geometric calibration
and the identification of dynamic parameters will be presented. It will be shown how these concepts
can seamlessly integrated in industrial controller hardware.

9





SLAM goes Industry 4.0 –  Mobile Laser Scanning for
Flexible Production

Andreas Nüchter

 JuliusMaximilansUniversity Würzburg, Informatics VII: Robotics and Telematics, 
Germany

nuechter@informatik.uniwurzburg.de

Abstract
The terrestrial acquisition of 3D point clouds by laser range finders has recently moved to mobile
platforms. Mobile laser scanning puts high requirements on the accuracy of the positioning systems
and the calibration of the measurement system. We present a novel algorithmic approach to the
problem of calibration with the goal of improving the measurement accuracy of mobile laser scan
ners. We developed a general framework for calibrating mobile sensor platforms that estimates all
configuration  parameters   for   any   configuration  of   positioning   sensors   including  odometry.   In
addition, we present a novel semirigid SLAM algorithm that corrects the vehicle position at every
point in time along its trajectory, while simultaneously improving the quality and precision of the
entire   acquired   point   cloud.   Using   this   algorithm   the   temporary   failure   of   accurate   external
positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of
our two newly proposed algorithms on a wide variety of data sets. Applications for the developed
suite  of  algorithms  range  from 3D mapping  for  autonomous  driving   to  precise  digitization  of
production lines in the automotive context. We end the talk with a description of an innovative
startup in the area of robotic SLAM.
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OneShot Learning of Scene Categories via Feature
Trajectory Transfer
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Abstract
The appearance of (outdoor) scenes changes considerably with the strength of certain transient
attributes, such as ``rainy'', ``dark'' or ``sunny''. Obviously, this also affects the representation of
an image in feature space, e.g., as activations at a certain CNN layer, and consequently impacts
scene   recognition  performance.   In   this  work,  we   investigate   the   variability   in   these   transient
attributes as a rich source of information for studying how image representations change as a
function of attribute strength. In particular, we leverage a recently introduced dataset with fine
grain annotations to estimate feature trajectories for a collection of transient attributes and then
show how these trajectories can be transferred to new image representations. This enables us to
synthesize new data along the transferred trajectories with respect to the dimensions of the space
spanned by the transient attributes. Applicability of this concept is demonstrated on the problem of
oneshot   scene   recognition.   We   show   that   data   synthesized   via   feature   trajectory   transfer
considerably boosts recognition performance, (1) with respect to baselines and (2) in combination
with stateoftheart approaches in oneshot learning.
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Directional Wavelet based Features for Colonic Polyp
Classification
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Abstract
In this  work,  various  wavelet  based methods  like  the discrete wavelet   transform,  the dualtree
complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are
applied   for   the  automated  classification  of   colonic  polyps.  The methods  are   tested  on  8  HD
endoscopic image databases, where each database is acquired using different imaging modalities
(Pentax's   iScan   technology   combined   with   or   without   staining   the   mucosa),   2   NBI   high
magnification   databases   and   one   database   with   chromoscopy   highmagnification   images.   To
evaluate the suitability of the wavelet based methods with respect to the classification of colonic
polyps,   the classification performances of 3 wavelet  transforms and the more recent curvelets,
contourlets  and shearlets  are compared using a common framework.  Wavelet   transforms were
already often and successfully applied to the classification of colonic polyps, whereas curvelets,
contourlets and shearlets have not been used for this purpose so far. We apply different feature
extraction techniques to extract the information of the subbands of the wavelet based methods.
Most   of   the   in   total   20  approaches  were  already  published   in  different   texture   classification
contexts. Thus,  the aim is also to assess and compare their classification performance using a
common framework.  Three of   the 20 approaches  are original.  These  three approaches extract
Weibull features from the subbands of curvelets, contourlets and shearlets. Additionally, 5 stateof
theart non wavelet based methods are applied to our databases so that we can compare their
results with those of the wavelet based methods. It turned out that extracting Weibull distribution
parameters from the subband coefficients generally leads to high classification results, especially
for   the   dualtree   complex   wavelet   transform,   the   Gabor   wavelet   transform   and   the   Shearlet
transform.   These   three   wavelet   based   transforms   in   combination   with   Weibull   features   even
outperform the  stateoftheart  methods  on  most  of   the  databases.  We will  also show  that   the
Weibull   distribution   is   better   suited   to   model   the   subband   coefficient   distribution   than   other
commonly   used   probability   distributions   like   the   Gaussian   distribution   and   the   generalized
Gaussian distribution.
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DeVisOR - Detection and Visualization of Unexploded
Ordnance Risks∗

Sebastian Zambanini, Fabian Hollaus, and Robert Sablatnig

Computer Vision Lab, Institute of Computer-Aided Automation, TU Wien, Austria
{zamba,holl,sab}@caa.tuwien.ac.at

The project ’Detection and Visualization of Unexploded Ordnance Risks’ (DeVisOR) is devoted to
the analysis of historical aerial images. These images are currently investigated by experts in order
to detect UneXploded Ordnances (UXO) [3]. For this purpose, the aerial images have to be geo-
referenced first which is accomplished by a manual registration of the images onto modern satellite
images by means of a professional GIS software tool. Afterwards, the experts detect suspicious im-
age regions by looking for characteristic shapes or patterns. Additionally, images captured at different
time instances are compared in order to detect changes of the scene, which might stem from bombs
or other events related to military operations.
A problem of this current practice is that its manual steps are tedious and taxing. Thus, analysis takes
a long time and intense reviewing is necessary. An automated analysis could obviously solve the tasks
faster and less tiresome. The DeVisOR project aims at developing tools that support the work of the
experts by making use of methods originated from the fields of computer vision and visual analytics.
The main computer vision tasks can be grouped into two categories: automated image registration
and object detection.

Image Registration

This task is concerned with the automatic georeferencing of the historical aerial images. By taking
modern satellite image as reference, this task can be approached as a classical image registration
problem [5], as illustrated in Figure 1. The main challenge are the strong changes in image content
caused by the age differences of around 70 years between the old and new images that hinder the
reliable identification of correspondences, especially in non-urban areas. Additionally, the historical
images are partially in a poor condition, meaning they are affected by over- or underexposure, un-
even illumination, low spatial resolution, blurring, sensor noise or cloud coverage. Consequently, a
straightforward solution based on standard algorithms using keypoint matching [4] and robust trans-
formation estimators [2] does not exist.

Object Detection

The second task is dedicated to the automated detection of military objects (e.g. bomb craters or
trenches) and assignment of prediction probabilities to the objects found. The task is hindered by the
low quality of the images investigated and their high variety. Due to the absence of large amounts
of training data, we are planning to implement and evaluate semi-supervised and active learning
procedures [1], which will also make use of techniques stemming from the field of visual analytics.

∗This work is supported by Austrian Research Promotion Agency (FFG) under project grant 850695.
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Reference satellite image (Ötztal re-
gion).

Historical aerial photo from May
1945.

Result of manual georeferencing.

Reference satellite image (Vienna, 21st
district).

Historical aerial photo from
November 1943.

Result of manual georeferencing.

Figure 1: Two examples illustrating the process of manually georeferencing historical aerial photos by
image registration.1
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Abstract
Nanoparticle Tracking Analysis (NTA) is an emerging technology for the quantification of particle
size, concentration and zeta potential for particles in the size regime of 10 to 1000 nm. The technique
allows the visualization of the Brownian motion of particles in liquid suspensions. It is frequently used
in commercial and academic applications for the analysis of the physical and chemical properties of
dispersions such as solubility, rheology and reactivity which are strongly influenced by the size of the
respective particles. Hence, measuring the size of micro- or even nano- sized particles in dispersions
plays a central role in chemical and biomedical industries.

With the NTA technique, particles dispersed in liquids are illuminated with an intensive light beam,
e.g. from a laser. An image series of the light scattered by the particles is recorded with a sensitive
digital camera with a magnification microscope attached to it. From the image series the Brownian
motion of the particles is analyzed by first localizing the particle in each video frame, second tracking
of the particles from frame to frame, and third computing the Mean Squared Displacement (MSD)
along the track of each individual particle. Having the MSD one can estimate the particles diffusion
coefficient and apply the Stoke-Einstein relationship to estimate the hydrodynamic size of individual
particle. Current NTA systems use background segmentation method to differentiate the particles
from background, mostly with fixed threshold approach. Fixed threshold works well for mono-modal
dispersion since the brightness of the particles is evenly distributed. Poly-disperse particle solutions
on the other hand show a high variation in the particle intensity because the reflected light intensity
depends on the particle size and thus it is difficult to find a fixed threshold value.

We propose a new method for NTA which utilizes a multi-scale Laplacian of a Gaussian (LoG) de-
tector on top of the background-subtraction model to localize the particles. Our approach uses an
optimized thresholding method for each blob individually to compute a super-resolution position es-
timate. We show that our method finds more particles in the video with higher precision over the
full size-range of tested solutions (20nm-500nm) in comparison to the fixed threshold approach. We
further show that the increased efficiency in particle tracking and the higher precision in the localiza-
tion of the particle center leads to particle size distributions that are narrower (having less variance).
Thus, our method is in particular better suited for the analysis of mixtures of poly-disperse particle
solutions if the size of the particles in the mixture solution is not too far apart.

∗The research reported in this article has been partly supported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of
the COMET center SCCH.
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Abstract
In this talk, we showcase our outcome of the ambitious 3D-PITOTI project, which involves a multi-
disciplinary team of over 30 scientists from across Europe. The project focuses on the 3D aspect of
recording, storing, processing and visualizing prehistoric rock art in the UNESCO World Heritage
site in Valcamonica, Italy. The rock art was pecked into open-air rock formations thousands of years
ago and has an inherent 3D nature.
After a project overview, we present the results of the Graz University of Technology’s contributions
in 3D acquisition and processing with a focus on our novel autonomous UAV system. We elaborate
the challenges of 3D reconstruction across vastly different scales, from a valley wide reconstruction
down to individual peckings on the rock surface [1]. Within this context, we first present a novel 3D
scanning device with sub-millimeter accuracy [2]. Aside from correctly scaled 3D information, the
scanning device also provides the surface radiometry without the need for artificial shrouding [3].
Additionally, we point out one application for which this highly accurate 3D data has shown to be
crucial: The interactive segmentation of the individually pecked figures [7, 8].
Finally, we present a novel autonomous UAV system for acquiring high-resolution images at a few me-
ters distance [6, 5, 4]. The system optimizes scene coverage, ground resolution and 3D uncertainty,
while ensuring that the acquired images are suitable for a specific dense offline 3D reconstruction
algorithm. There are three main aspects that set this system apart from others. First, the system
operates completely on-site without the need for a prior 3D model of the scene. Second, the system
iteratively refines a surface mesh, predicts the fulfillment of requirements and can thus correct for
initially wrong geometry estimates and imperfect plan execution. Third, the system uses the already
acquired 2D images to predict the chances of a successful reconstruction with a specific offline 3D
densification algorithm depending on the observed scene and potential camera constellations. We
demonstrate the capabilities of our system in the challenging environment of the prehistoric rock art
sites and then register the individual reconstructions of all scales in one consistent coordinate frame.

∗The research leading to these results has received funding from the EC FP7 project 3D-PITOTI (ICT-2011-600545).
We would like to thank all colleagues and the consortium of the 3D-PITOTI project for the fruitful collaboration.
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Abstract
Our observed visual world exhibits a structure, which implies that scene objects and their surround-
ings are not randomly arranged relative to each other but typically appear in a spatially correlated
manner. Thus, the structural correlation can be exploited to make the visual recognition task pre-
dictable to a certain extent. Modeling relations between categories is, however, non-trivial, since
categories are often represented at different granularities across distinct datasets. In this paper, we
merge fine-level semantic descriptions into basic semantic classes which allows the generation of
spatial contextual priors from a wide range of datasets. In this way, a contextual model is derived
with the objective to employ the learned contextual prior to enhance visual recognition via improved
semantic labeling. The prior is captured explicitly by computing occurrence and co-occurrence prob-
abilities of specific semantic classes and class pairs from a diverse set of annotated datasets. We show
improved semantic labeling accuracy by incorporating the contextual priors into the label inference
process, which is evaluated and discussed on the Daimler Urban Segmentation 2014 dataset.

1. Introduction

Semantic segmentation of digital images links two core computer vision challenges: visual object
recognition and segmentation. In recent years, great improvement in accuracies to both task domains
has been demonstrated, mainly due to a transition from learned hand-crafted representations towards
representations distributed within hierarchies and embedded into compositional schemes, enabling a
rich generalization for a large number of object classes.

Figure 1. Semantic Labeling enhanced by a Spatial Context Prior and Conditional Random Field.
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As representations and learning schemes have grown capable of accommodating the sheer variability
in the data, this progress is also imposing new requirements on the employed datasets. Current learned
models are often optimized for specific datasets they have been trained on, and their capture modalities
are restricted by their implicit design. Real world scenarios are highly diverse, therefore, a single
dataset solely represents a small fraction of all possible visual appearances. Although datasets have
become more elaborate and diverse lately [17], class coverage, balancing and variability are still
relevant issues to be tackled. Motivated by the diversity in the characteristics of prevailing datasets, in
terms of number and granularity of annotated classes and scene-specific view attributes, we propose to
capture the spatial relationship between various semantically labeled regions across several datasets.
We demonstrate that the modeled spatial prior can enhance recognition accuracies leading to state-of-
the-art results, as illustrated in Figure 1.

2. Related Work

Spatial context is an important type of information in the human cognitive process [12] when recog-
nizing objects, especially in the presence of a cluttered background. Certain objects predominantly
co-occur in the real world. Thus analyzing vast amounts of visual data can result in meaningful
contextual statistics which can be used to robustify visual object recognition [5].

Pixel-wise semantic labeling is a relatively novel domain since large-scale object recognition with
shared informative representations is a prerequisite for this task. Starting with manually selected low-
level features, discriminatively trained Random Forests or Boosting have been used to perform classi-
fication patch-wise [16] or to additionally incorporate local structural information within the analysis
patch [7]. Based on recent advances in deep learning, several frameworks [13, 18] have demonstrated
significant improvements in the accuracy of per-pixel class estimates. Recently, multi-scale deep ar-
chitectures have been proposed in order to represent local and global context by employing multiple
input images at different resolutions [2], or combining feature maps from different layers of the con-
volutional architecture [6]. Both techniques aim to combine fine detail representations with relational
information established at a coarse resolution level in order to generate accurate segment bound-
aries between labeled regions. The immense representational power of deep convolutional architec-
tures captures rich details of the object classes to be represented and yields segmentation frameworks
which surpass learned hand-crafted representations. Capturing spatial context within convolutional
architectures, however, is linked with complexities in terms of training (augmented parameter space)
and increased computational expense due to the computation of multiple scale-specific features.

Our proposed approach employs a previously learned spatial prior model as an additional step to
switch class labels at locations where per-pixel estimates are ambiguous. We term our model as
the Explicit Priors model. Per-pixel ambiguity is quantified from class posterior probabilities at the
given pixel by examining the distance between first and second rank probabilities. Our method, while
limited in representing spatial context at a wide range of spatial scales and orientations, yields a
remarkable improvement at a negligible increase of computational complexity.

3. Methodology and Experimental Setup

The proposed approach for combining learned information from multiple datasets and thereby en-
hancing existing classifiers is based on the concept of Explicit Priors. By aggregating statistical data
on the level of individual pixels and capturing spatial context, we generate additional cues for training
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and classification, while remaining independent of the underlying machine learning algorithm. The
method and its integration throughout the entire processing pipeline is described in this chapter and
demonstrated on the Daimler Urban Segmentation 2014 dataset [14].

The dataset consists of image sequences captured by a camera mounted on a moving car. The images
are provided without color information at a resolution of 1024x440 px, with every 10th frame of the
sequences being annotated with pixel-wise segmentations. For a reasonable comparison, only the
test sequences, as specified by the evaluation protocol, are considered. The dataset is supplemented
with precomputed disparity maps and additional information, like time-stamps, vehicle speed and
yaw rate. The ground truth distinguishes between two foreground (Vehicle and Pedestrian) and three
background classes (Ground, Sky and Building). Within the test data 36.3% of all pixels are defined
as Void. The frequency of occurrence of the labeled pixels is 54.1% for Ground, 14.8% for Vehicle,
4.6% for Pedestrian, 2.4% for Sky and 24.0% for Building, resulting in a background ratio of 80.6%.

3.1. Training

Dataset Analysis As a preliminary step for the training and classification process, an appropriate
choice of input data with regard to the intended application scenario is a decisive aspect. For this
purpose, a statistical analysis of multiple datasets was conducted according to the concept of Explicit
Priors. The resulting data ranges from basic statistics, such as label frequency and the ratio of back-
ground to foreground classes, to more sophisticated aspects concerning occurrence distribution and
spatial context. For each application scenario, this dataset analysis can be used to select a subset of
additional cues for identifying appropriate datasets. For the demonstrated task, for instance, the most
useful information was provided by the concept of Location Bins. By dividing the image dimensions
into a coarse grid and capturing the spatial distribution of each class across the resulting cells over
the entire dataset, probabilities for the occurrence of certain labels with regard to their location can
be derived. The resulting representation provides clearly arranged patterns closely related to certain
characteristics of the dataset, such as the method of image acquisition. In the case of Vehicles, for in-
stance, the analysis clearly showed that images taken with a hand-held camera are mostly centered on
the these objects, while for the datasets using a camera mounted on a car they are most often found in
the lower half of the image. Comparing these statistics for candidate training datasets to the intended
application scenario facilitates the evaluation of their compatibility.

Other available statistical measures proved to add less distinct cues for the given task, such as the
analysis of co-occurrence, which provides a measure of probability for each combination of labels to
appear in the same image. Since the application scenario only includes five labels arranged within a
consecutive image sequence, the resulting correlation matrix did not show significant peaks. However,
an adapted version in the form of Local Label Neighborhood (LLN), which limits the co-occurance
measure to label transitions, was successfully applied, as described in detail in Section 3.2.

Based on the aggregated information of class frequency and Location Bins, the CamVid dataset [1]
could be identified as an appropriate choice for training background classes, since it offers a back-
ground ratio of 80.9%, as well as a fitting spatial arrangement of class probabilities. The foreground
classes, on the other hand, are trained on the PascalContext dataset [11], in particular the version
including 33 categories, which contains 46% foreground pixels.

Classifier Setup Based on the selected datasets, two classifiers are applied to cover the background
and foreground classes separately. The former classifier uses the pre-trained model pascal-fcn8s-tvg-
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dag provided by Zheng et al. [18], which is evaluated on the foreground classes of the PascalCon-
text33 dataset. The background classifier was trained using TextonBoost [8] on randomly sampled
images of the CamVid dataset. For this purpose, feature descriptors based on filter banks, location and
gradient orientations were applied for training a total of 950 Textons, which represents a compromise
between computational complexity and accuracy. Since the test dataset consists of gray-scale images,
the learning input is restricted to the intensity channel.

Label Aggregation and Mapping The main obstacle in aggregating multiple datasets during the
training stage results from variations in the denomination of object classes. Furthermore, since in
many cases not all labels of the training datasets are required for classifying the test images, and
multiple labels of one dataset can relate to a single label of another, a generalized mapping strategy
is a prerequisite for combining label information. For this purpose, an automatic method for label
clustering was developed based on version 3.0 of the Wordnet database [10]. This knowledge rep-
resentation was trained exclusively on lexical data and is capable of providing a similarity measure
among semantic descriptions. Based on this, labels of the training dataset can be assigned to the final
denominations by applying a threshold and giving preference to classes with higher similarity.

Figure 2. Label Mapping of CamVid (Columns) to Daimler (Rows) dataset based on Wordnet similiarity (selected
labels are marked in yellow color).

In the case of the CamVid dataset this process resulted in a selection of eleven labels, as visualized in
Figure 2, while the remaining ones are not required for the application task and therefore suppressed.
The selected labels were assigned to the background classes Building, Sky and Ground of the final
dataset based on the corresponding similarity. Analogously, the two foreground objects Pedestrian
and Vehicle are assigned the PascalContext labels of Pedestrian, Bicyclist, Child and Moving Object,
as well as Car, Motorbike, SUV Pickup and Truck, respectively.

3.2. Classification

The foreground and background classifiers are applied to each input image of the test set resulting in
two complementary segmentations, which are further refined by applying the label mapping method
described in Section 3.1. This step results in both images being segmented into the labels required by
the test dataset. In order to further improve the segmentation quality of background classes, the two
highest ranked labels of each pixel are retained, as well as the probability distance between them. This
information is required for enhancing the results with Local Label Neighborhood priors and further
refinement by inference based on a Conditional Random Field (CRF).

Local Label Neighborhood The concept of Local Label Neighborhood is based on statistically
learning conditional probabilities of transitions between specific labels in vertical and horizontal di-
rection. Each annotated pixel within the selected training images is evaluated to capture this prior
based on spatial context. For the given task, this results in a measure of probability for each back-
ground class to be found on a specific side of either of the two foreground classes. The probabilities
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extracted from the CamVid dataset using this method are weighted by the frequency of occurrence
for each background class and aggregated into the final labels, as visualized in Table 1. The learned
a-priori knowledge is used to resolve ambiguous classifications.

Ground Sky Building
LLN Vehicle ↑ 0.026 0.005 0.195
LLN Pedestrian ↑ 0.025 0.002 0.222
LLN Vehicle ↓ 0.383 0.000 0.004
LLN Pedestrian ↓ 0.086 0.001 0.081

Table 1. Local Label Neighborhood learned on CamVid dataset.

The resulting statistics show the probability of encountering each background class above or below a
label transition from each foreground class. For instance, the Vehicle prior in upward direction indi-
cates a significant chance of detecting Buildings above the class and the prior in downward direction
increases the probability of detecting Ground below it. Using this information, areas between fore-
ground classes and image borders in vertical direction are marked as candidates for the corresponding
background label based on the probability indicated by the prior. If the candidate labels correspond
to the second-ranked label for a pixel and the probability distance to the current class is sufficiently
low, the second rank is recovered and replaces the first.

Conditional Random Field In order to further increase segmentation accuracy, especially in areas
of label transitions, a framework [8] for inference based on CRF is applied with empirically deter-
mined parameters. As an input, the existing intermediate background segmentation is integrated in
the form of a unary potential with a globally defined confidence of 80%. Additionally, two pairwise
potentials, based on label compatibility and intensity information within a defined radius, are added,
the latter weighted four times higher than the former. After conducting the inference process in five
iterations, the eventual segmentation is combined with the foreground classes.

4. Experiments and Discussion

Semantic Labeling was performed on the test sequences of the Daimler Urban Segmentation 2014
dataset with and without the learned spatial context prior. In order to compare the results to previously
published methods, the Intersection-over-Union (IoU) metric is used according to the official Pascal
VOC definition [3],

IoUli =
TPi

TPi + FPi + FNi

, (1)

where L = {l1, ..., lk} is a set of labels and TPi, FPi and FNi are the true positive, false positive
and false negative detections corresponding to label li, is used. The detailed results are shown in
Table 2. Additionally, we show the average IoU over all classes, as well as a separate average value
for the dynamic classes Vehicle and Pedestrian. The global per-pixel accuracy (PPA) represents the
ratio of correctly classified pixels to the total number of annotated pixels in the test dataset. Each
column shows the results for the baseline method and its enhancement with the proposed LLN and
CRF, which are compared to state-of-the-art methods. The best-performing results are displayed in
bold numbers.
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Ground Vehicle Pedestrian Sky Building Avg Avgdyn PPA
Stixmantics [14] 93.8 78.8 66.0 75.4 89.2 80.6 72.4 92.8
ALE [14] 94.9 76.0 73.1 95.5 90.6 86.0 74.5 94.5
Darwin pw. [4] 95.7 68.7 21.2 94.2 87.6 73.5 44.9 -
PN-RCPN [15] 96.7 79.4 68.4 91.4 86.3 84.5 73.8 94.5
Layered Ip. [9] 96.4 83.3 71.1 89.5 91.2 86.3 77.2 -
BL 92.9 54.2 80.1 77.6 92.8
BL | LLN 92.9 85.5 75.4 54.2 81.3 77.9 80.5 93.0
BL | LLN | CRF 94.8 74.1 85.1 83.0 94.5

Table 2. Intersection-over-Union measures and Per-Pixel Accuracy (BL: baseline method, LLN: Local Label
Neighborhood, CRF: Conditional Random Field).

Compared to recently published approaches, the proposed method leads to an improved segmentation
of dynamic classes by 3.3%. The concept of Label Aggregation applied to a pre-trained model proves
to be an appropriate choice for both labels. The classification of background classes, on the other
hand, is quite competitive for the Ground class with a distance of 1.9% to the leading method, while
being slightly inferior to the others concerning Building and Sky. However, these results are still
promising, considering several influencing factors. Firstly, the proposed method is presently based
exclusively on intensity information, while the other algorithms, except [15], incorporate additional
cues such as depth and motion data. However, this limitation can still be partially compensated by the
application of LLN and CRF. While LLN leads to an increase 0.3% concerning the average IoU, CRF
contributes an additional 5.1%. For the PPA, improvements of 0.2% and an additional 1.5% can be
achieved. An example of the overall results is provided in Figure 3.

Figure 3. Improvement of segmentation quality of background classes (BL: baseline method, LLN: Local Label
Neighborhood, CRF: Conditional Random Field).

Please note that the lowest accuracy corresponds to the Sky class, which has a frequency of occurrence
of solely 2.4% in the testing dataset. Therefore, its influence on the PPA is almost negligible, which
leads to an accuracy equal to the currently best results.

More detailed insights can be retrieved by analyzing precision and recall measures for each class,
as displayed in Table 3. Both values present highly promising results for the Ground class, which
is the most frequent background class. The remaining two background classes show higher inter-
dependency. While Building offers a high recall but lower precision value, Sky shows the opposite
characteristics, which indicates that the Building class tends to inaccurate over-segmentation into Sky
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Ground Vehicle Pedestrian Sky Building Avg
BL 97.8 | 95.0 72.9 | 67.9 82.0 | 97.1 89.6 | 84.8
BL | LLN 97.2 | 95.5 98.5 | 86.7 97.1 | 77.2 72.9 | 67.9 83.5 | 96.9 89.8 | 84.8
BL | LLN | CRF 97.7 | 96.9 89.1 | 81.5 86.3 | 98.4 93.7 | 88.1

Table 3. Precision (left) and recall (right) of each label class.

regions. Concerning the influence of LLN, the Building class reaches an increase in precision of
1.5% combined with an insignificant decrease of recall. Simultaneously, the optimization leads to a
decrease in precision for the Ground class, while increasing its recall. It can be concluded that the
method successfully recovers misclassified Ground pixels originally labeled as Building. CRF further
increases the average precision and recall by an additional 3.9% and 3.3%, respectively.

5. Conclusions

This paper introduces a concept to capture spatial context between labeled regions for diverse datasets
annotated at different semantic granularity, referred to as Explicit Priors, which was successfully ap-
plied to enhance the entire training and classification process of semantic segmentation demonstrated
on the Daimler Urban Segmentation 2014 dataset. The approach provides a generalized way to se-
lect an appropriate subset of multiple training datasets and to efficiently combine their labels to fit a
given application scenario. The segmentation quality of foreground classes is comparable to, and in
terms of certain measures even surpasses, state-of-the-art methods. The results for the background
classes proved to be competitive as well. Their relatively high precision, combined with lower recall
correspond to a classification accuracy of certain labels slightly inferior to currently leading methods.
Further improvements concerning background labeling were achieved by applying priors based on
Local Label Neighborhood as well as inference using CRF. In order to exploit additional potentials,
the next step would be to integrate complimentary modalities, such as depth and motion cues.
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1 Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia

{tomislav.hrkac, karla.brkic, zoran.kalafatic}@fer.hr

Abstract

Nowadays, video surveillance is ubiquitous, posing a potential privacy risk to law-abiding individu-
als. Consequently, there is an increased interest in developing methods for de-identification, i.e. re-
moving personally identifying features from publicly available or stored data. While most of related
work focuses on de-identifying hard biometric identifiers such as faces, we address the problem of
de-identification of soft biometric identifiers – tattoos. We propose a method for tattoo detection
in unconstrained images, intended to serve as a first step for soft biometric de-identification. The
method, based on a deep convolutional neural network, discriminates between tattoo and non-tattoo
image patches, and it can be used to produce a mask of tattoo candidate regions. We contribute a
dataset of manually labeled tattoos. Experimental evaluation on the contributed dataset indicates
competitive performance of our method and proves its usefulness in a de-identification scenario.

1. Introduction

In the last decade, video surveillance has spread to almost all aspects of daily life. Storing the recorded
surveillance data in its unprocessed form poses a privacy risk to law-abiding individuals, as their
whereabouts and activities can be exposed without their consent. Privacy concerns are aggravated by
the development of various video retrieval techniques [17, 26, 16] that enable searching for content in
large volumes of video data, as well as by the development of techniques for person re-identification
across different video sequences [1, 8]. In order to minimize privacy risks, many jurisdictions imple-
ment strict regulations for the protection of personal data (see e.g. the Data Protection Directive of the
European Union1). For video sequences, protection of personal data entails obfuscating or removing
personally identifying features of the recorded individuals, usually in a reversible fashion so that law
enforcement can access them if necessary.

The process of removing personally identifying features from data is called de-identification. One of
the most commonly used de-identification techniques, used in commercial systems such as Google
Street View, involves detecting and blurring the faces of recorded individuals. However, this approach
ignores soft biometric and non-biometric features like clothing, hair color, birthmarks or tattoos, that
can be used as cues to identify the person [6, 20]. In this paper, we propose a method for detecting

∗This work has been supported by the Croatian Science Foundation, within the project ”De-identification Methods for
Soft and Non-Biometric Identifiers” (DeMSI, UIP-11-2013-1544). This support is gratefully acknowledged.

1http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
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tattooed skin regions that can be used in an advanced de-identification pipeline to obfuscate or remove
tattoos. We train a convolutional neural network that acts as a patch classifier, labeling each patch of
an input image as either belonging to a tattoo or not.

2. Related work

Current research in de-identification is mainly concerned with de-identifying hard biometric features,
especially the face [9]. Considerably less volume of research is devoted to soft and non-biometric fea-
tures [20]. Tattoo detection is typically studied not in the context of de-identification, but in forensic
applications. There the goal is to build a content-based image retrieval system for tattoos that would
help law enforcement in finding suspects and other persons of interest, e.g. persons associated with a
particular gang etc. [6, 12, 10]. For instance, Jain et al. [12] propose a content-based image retrieval
system intended to be used by law enforcement agencies. The query image is a cropped tattoo, which
is then segmented, represented using color, shape and texture features and matched to the database.
Han and Jain [10] take the concept further by proposing a content-based image retrieval system for
sketch-to-image-matching, where a sketch of the tattoo is matched to real tattoo images. Their system
uses SIFT descriptors to model shape and appearance patterns in both the sketch and the image, and
matches the descriptors using a local feature-based sparse representation classification scheme. Kim
et al. [13] propose combining local shape context, SIFT descriptors and global tattoo shape for tattoo
image retrieval. Their descriptor is robust to partial shape distortions and invariant to translation, scale
and rotation.

The methods used in content-based image retrieval systems often assume that tattoo images are
cropped, which limits their potential use in other scenarios. Heflin et al. [11] consider detecting
scars, marks and tattoos “in the wild”, i.e. in uncropped images, where a tattoo can appear anywhere
in the image (or not appear at all) and be of arbitrary size. They propose a method for tattoo detection
where tattoo candidate regions are detected using graph-based visual saliency. Further processing of
the candidate regions utilizes the GrabCut algorithm [21], image filtering and the quasi-connected
components technique [4] to obtain the final estimate of the tattoo location.

Wilber et al. [25] propose a mid-level image representation called Exemplar Codes and apply it to
the problem of tattoo classification. Exemplar codes are feature vectors that consist of normalized
outputs of simple linear classifiers. Each linear classifier measures the similarity between the input
image and an exemplar, i.e. a training image that best captures some property of the tattoo. Decision
score outputs from individual linear classifiers are used to estimate probabilities using extreme value
theory [23], thus forming exemplar code feature vectors. A random forest classifier is trained on
exemplar codes, enabling multi-class tattoo recognition.

Because of great variability of tattoo designs, individual skin color and lighting conditions in real-
world tattoo images, as well as the fact that the tattoos resemble many different real world objects,
it is very difficult to devise good hand-crafted features suited for differentiating between tattoos and
background [19]. In recent times, however, convolutional neural networks (CNNs) were shown to
be able to automatically learn good features for many classification tasks [15]. We therefore propose
to apply a deep convolutional neural network to the difficult problem of tattoo detection. In seminal
work by Krizhevsky et al. [14], convolutional neural networks were proven to be extremely success-
ful on the ImageNet dataset. According to LeCun et al. [15], this success can be attributed to several
factors: efficient use of GPUs for network training, use of rectified linear units, use of dropout reg-
ularization and augmenting the training set with deformations of the existing images. Convolutional
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networks have already been successfully applied to the problem of scene labelling [7] and semantic
segmentation [18].

In contrast to related work, in this paper we take a bottom-up approach. Our CNN-based model
operates at the level of small image patches and enables classifying each patch as either belonging
to a tattoo or not. Our approach can be used on arbitrary images to obtain a low-level estimate of
candidate tattooed regions.

We propose this approach with our target application of de-identification in mind. In a de-identification
pipeline, the detected candidate tattoo regions can be removed or averaged to remove personally iden-
tifying information. We place much greater importance on correctly detecting all tattooed regions than
on eliminating false positive detections, as false positives can be eliminated in subsequent stages,
e.g. by combining our method with a person detector (e.g. [5]).

3. Our method

Our proposed method for tattoo detection is based on image patch labeling using a convolutional
neural network. We do not detect a tattoo as a global entity. Rather, we use the sliding window
approach and at each window position we extract a patch of the size N × N . The patch is then
classified as either tattoo or background. The output of our method consists of masked image regions
that are tattoo candidates.

Convolutional neural networks typically consist of several convolutional layers, followed by one or
more fully connected layers. Convolutional layers are in charge of learning good features and they are
characterized by (i) local receptive fields (i.e. the neuron in the convolutional layer is not connected to
the outputs of all the neurons from the previous layer, but only to the ones in its local neighborhood),
and (ii) shared weights, reflecting the intuition that the features are computed in the same way at
different image locations. After the convolutional layers, the so-called pooling layers are typically
inserted in order to reduce the dimensionality of feature space for subsequent steps. Fully connected
layers perform the task of classification and contain the majority of learned weights.

The architecture of our network is broadly inspired by the successful VGGNet model, proposed in
2014 by Simonyan and Zisserman [24]. The VGGNet is characterized by a very homogeneous ar-
chitecture that only performs 3 × 3 convolutions and 2 × 2 pooling from the beginning to the end.
However, our model modifies it to accommodate smaller input images and smaller number of output
classes. The simplified network, with fewer and smaller layers is faster to train and it proved adequate
for our purposes. The proposed network architecture is shown in Fig. 1.

The input to the network is an N × N color image (we assumed the RGB color model). The image
has to be classified either as belonging to the tattoo or not, depending on whether its center lies inside
the polygon that demarcates the tattoo.

The network consists of eight layers (not counting the input layer, i.e. the image itself). The first two
layers are convolutional layers with 32 feature maps with 3× 3 filters and ReLU activation units. The
third layer is a max-pooling layer that reduces the feature map dimensions by 2 × 2. The fourth and
the fifth layers are again convolutional layers with ReLU activation units, but with 64 feature maps
(again with 3× 3 filters). The sixth layer is another max-pooling layer, once more reducing the input
dimension by 2× 2. The seventh layer is a fully connected layer consisting of 256 neurons. The final,
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Figure 1: The architecture of the proposed ConvNet model.

Figure 2: Examples of annotated tattoo images.

eighth layer consists of two neurons with the Softmax activation function, corresponding to the two
output classes. Dropout, with the dropout ratio set to 0.5, is applied to the fully connected layer.

We implemented the described network in Python, using Theano [2, 3] and Keras 2 libraries.

4. Experiments

Given the relatively modest volume of work on tattoo detection, there are no readily available tattoo
detection datasets. Recently, a dataset called Tatt-C has been published [19], but it cannot be freely
downloaded. Hence, to facilitate the development and testing of our method we have assembled our
own dataset3 by collecting and manually labeling 890 tattoo images from the ImageNet database [22].

Each of the collected images contains one or more tattoos. We annotated each tattoo using a series
of connected line segments. Example annotated images from our dataset are shown in Fig. 2. We
attempted to closely capture the outline of each tattoo, which can be a challenging task, as tattoos can
have highly irregular edges.

2https://github.com/fchollet/keras, accessed March 2016.
3The dataset is available at http://www.fer.unizg.hr/demsi/databases and code/tattoo dataset.
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(a) tattoo patches (b) background patches

Figure 3: Example extracted patches from our dataset (patch size 32× 32).

4.1. Training the network

For training, we constructed a training set by randomly sampling a number of image patches of
predefined size from each annotated tattoo image in our dataset. This procedure was done both
for positive and negative samples, i.e. for patches that do and do not contain tattoos. Examples of
extracted patches can be seen in Fig. 3.

The training of the network was carried out by optimizing the mean squared error loss function,
using stochastic gradient descent with momentum. We used the mini-batch of 32 samples and the
momentum was set to 0.9. The learning rate was set to 0.1. The training was performed for maximaly
40 epochs, with early stopping based on validation loss. The duration of the training varied greatly
with the size of the patches, in our case from 10 minutes for smallest patches to 13 hours for the
largest.

4.2. Performance evaluation

The set of all extracted patches totalled 22700 images (11359 positive and 11341 negative samples).
This set was divided into sets for training (containing 15134 samples, out of which 7573 positive and
7560 negative), and validation and testing (both of the same size of 3783 samples, out of which 1893
positive and 1890 negative). We have ensured that all patches extracted from the same image end up
in only one of the sets (either training, validation or testing), in order to avoid mixing training and
testing data.

We trained and evaluated the network for different patch sizes (8 × 8, 12 × 12, 16 × 16, 24 × 24,
32 × 32 and 48 × 48) to determine the optimal patch size. The larger patches presumably provide
more information about context, but the network that utilizes them is slower to train and test.

The test set was used for evaluation. The results are summarized in Table 1. The accuracy was
calculated as a total number of misclassifications (false positives and false negatives) divided by the
test set size. As we can see, the results improve in terms of accuracy with the increase in image patch
size, up to the largest considered size (48×48) that gives slightly worse results than most of the smaller
patch sizes. The difference in accuracy is not very pronounced; i.e. we can say that results for all the
patch sizes are similar. The other thing that can be noticed is that the improvement in performance
with the increase in patch size comes mainly from reducing the number of false positives, while at the
same time the number of false negatives rises.

We have done a preliminary qualitative evaluation of the performance of the network in a sliding
window setting. Some results are shown in Fig. 4. These examples are relatively simple, with homo-
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Patch size 8× 8 12× 12 16× 16 24× 24 32× 32 48× 48
False negatives 152 (8.03%) 229 (12.10%) 187 (9.88%) 213 (11.25%) 248 (13.10%) 290 (15.32%)
False positives 593 (31.37%) 418 (22.12%) 444 (23.49%) 436 (23.07%) 337 (17.83%) 408 (21.59%)

Accuracy 0.8031 0.8290 0.8332 0.8283 0.8454 0.8155

Table 1: Evaluation of the network performance on different patch sizes

geneous skin around the tattoo and simple background. We see that many tattoo patches are correctly
detected, but there are also some misclassifications. In more difficult examples with more background
containing textured objects, the number of false positives rises. In the context of de-identification,
this problem could be addressed by combining this detector with other stages of a de-identification
pipeline, e.g. by eliminating detections outside of candidate person locations.

(a) the original images

(b) labeled tattoo patches

Figure 4: The output of the network on full images.

5. Conclusion and outlook

We addressed the challenging problem of tattoo detection for soft biometric de-identification. Instead
of hand-crafting image features, we applied deep learning. We trained and evaluated a deep convo-
lutional neural network using the dataset of positive and negative patches generated from a subset of
ImageNet tattoo images annotated by hand. Our findings indicate that using a convolutional neural
network to classify small image patches can be a reliable way to detect candidate tattoo regions in an
image. Patch sizes should be kept small, up to 32× 32 patches, in order to obtain best accuracy, good
foreground-background segmentation and minimize false negatives.

In our future work, we plan to combine this method with other stages of a de-identification pipeline
in order to solve the problem of false positives. As our qualitative analysis shows that the majority of
false positives are in the surroundings rather than on the person, one possibility is to run the method
only on the outputs of a person detector. We also plan to quantitatively evaluate the performance of
our network on full tattoo images (as opposed to patches), and investigate whether this performance
could be improved by merging the detections into blobs.
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Abstract

Recovering the 3-D shape of the left heart chamber from bi-planar 2-D x-ray projection images is a
challenging task since only sparse and noisy data is available for reconstruction. In this work, a 3-D
statistical shape model (SSM) of the left ventricular (LV) anatomy is learned from high-resolution
CT data and utilized as a-priori information to solve the under-determined and ambiguous recon-
struction problem. A 2-D/3-D registration method fits the SSM to the x-ray images of the patient by
calculating simulated projections of the SSM and minimizing the difference between simulated and
given projections. The presented approach is evaluated using simulated and real patient data. For
patients where both projection images and CT data are available, the reconstructed LV is compared
to the true shape known from CT. Our results show a good correspondence between recovered and
true shapes. Using a SSM as anatomical a-priori information for reconstruction helps in limiting the
space of possible solutions and allows to generate statistically plausible shapes.

1. Introduction

Cardiac diseases are one of the most common causes of death in the industrialized world today. In
the case of acute myocardial infarction, for instance, interventional x-ray angiography is state-of-
the-art for both treatment and diagnosis. To evaluate the viability of myocardium after infarction, a
catheter is advanced into the left heart chamber (ventricle) and contrast agent is injected to opacify
the ventricular cavity during radiation. Bi-planar cine-angiographic equipment is used to acquire two
x-ray image sequences simultaneously from standard right anterior oblique (RAO) and left anterior
oblique (LAO) views, see Fig. 1.
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Figure 1. Biplane cine-angiographic x-ray equipment used in the catheter lab to acquire images for quantitative
left ventricle analysis.

The gold standard for quantitative left ventricle analysis in the catheter lab is based on the evaluation
of end-diastolic (ED) and end-systolic (ES) endocardial contour information gathered from these 2-
D projection images. The ED and the ES volume are calculated (by applying e.g. the Area-Length
method) and used to determine ejection fraction (EF), i.e. the volume that is squeezed out during
contraction. Contour information is further utilized by wall motion analysis methods (like e.g. the
Centerline method) to quantify myocardial viability. However, since 3-D information is lost due to
projection, volumetric diagnostic parameters, like EF, can only be approximated and wall motion
is only evaluable for LV surface areas with the boundary visible in the projection image. Novel
approaches aim at reconstructing the spatio-temporal shape of the LV to perform analysis in 3-D [10].

2. Related Work

In classical computed tomography (CT), hundreds of projections are acquired by a fast rotating x-ray
gantry. Analytical and algebraic reconstruction techniques exploit this dense information to yield
voxel values that vary within a continuous range. However, these techniques typically fail if merely
two (noisy) projections are available. C-arm CT is a relatively young and hybrid type of imaging
modality, where the C-arm is rotated during acquisition to increase the number of projections. Tech-
niques known from CT can then be utilized to address the reconstruction problem [8]. In the catheter
lab, however, the application of C-arm CT is challenged by the higher amount of x-ray dose and
bolus compared with conventional x-ray angiography (XA), and the slower rotational speed of the
C-arm compared with classical CT when imaging the rapidly moving heart. Whether C-arm CT will
substitute XA as a routine method in future remains to be seen [9].

Unlike classical (continuous) CT, discrete tomography focuses on reconstruction problems where
only a small number of projections – as small as two – are available and the object’s intensity levels
are limited, i.e. discrete, and known a-priori [3]. Using additional a-priori information is crucial
when trying to solve such under-determined and ambiguous problems, since this can reduce the space
of possible solutions and improve the ability to deal with noisy projection data. Some of the early
approaches published in the field of 3-D LV shape recovery from XA rely on the assumption that
ventricular cross-sections follow certain geometric priors (like connectedness, convexity, symmetry,
roundness, etc.), however, this is usually too restrictive in practice. In the work of Prause and Onnasch
[7], digitized post-mortem human LV casts are used as a-priori information. Other approaches often
do not incorporate anatomical a-priori information at all [5], [6].
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The novelty of our approach is that anatomical a-priori information is learned from high-resolution
CT data and modeled as a SSM, which is then fit to the angiograms by a 2-D/3-D registration method.
The application of SSMs for recovering shape from angiography has been successfully demonstrated
by other authors for hard-tissue objects like the pelvis [4] or the vertebrae [1], but not yet for non-rigid
contrast-enhanced soft-tissue objects like the LV. This paper is a refinement of our previous work [12].
For the sake of comprehensibility, parts of Sec. 3 and 4 are based thereon.

3. Methods

3.1. Statistical Shape Models

In order to build a 3-D SSM [2], a set of segmentations of the target shape is required. The contour
of each shape Si is described by n landmarks, i.e. points of correspondence that match between
shapes, and represented as a vector of coordinates: xi = (x1, ..., xn, y1, ..., yn, z1, ..., zn)i

T . All ns
shape vectors form a distribution in a 3n-dimensional space. This distribution is approximated by
x = x̄ + Φb, with x̄ = 1

ns

∑ns

i=1 xi being the mean shape vector and b being the shape parameter
vector. By varying b, new instances of the shape class are generated. Φ is obtained by performing
a principal component analysis (PCA) on the covariance matrix C = 1

ns−1
∑ns

i=1 (xi − x̄)(xi − x̄)T .
PCA yields the principal axes of this distribution; the eigenvalues give the variances of the data in the
direction of the axes (= eigenvectors). To reduce noise and dimensionality only those eigenvectors
with the largest t eigenvalues are used. t denotes the number of the most significant modes of variation
(MOV) and is chosen so that a fraction f of the total variation is retained,

∑t
j=1 λj ≥ f

∑
λj . Prior

to statistical analysis, location, scale and rotational effects must be removed from the training shapes
to obtain a compact model. Commonly, Procrustes analysis is applied to minimize D =

∑ |xi − x̄|2,
the sum of squared distances (SSD) of each shape to the mean.

3.2. Modeling of Anatomical A-Priori Information

A Siemens Somatom Sensation Cardiac 64 multi-slice CT is used to acquire 20 data sets at 65% of the
heart phase (R-R peaks) with an effective slice thickness of 0.5 mm and an average in-plane resolution
of 0.33 mm. The size of the image mask in the transversal plane is 512 × 512 pixels; the number of
slices varies between 220 and 310. The endocardial LV surface is manually segmented by experts
in cardiology. Contours are specified in each fifth axial slice by interactively setting control points
of a cardinal spline; intermediate contours are interpolated. The surface of an LV is represented as a
stack of contours. Details like the atrial concavity, the apex and the aortic valve region are retained
during segmentation to obtain an accurate model of the anatomy. Point correspondence among the
training shapes is established based on back-propagation of the landmarks on a mean shape [11].
After segmentation, landmark extraction and removing location, scale and rotational effects, the SSM
is built as outlined in Sec. 3.1. The first three MOV of the final model are illustrated in Fig. 2.

3.3. Left Ventricular Shape Recovery

In discrete tomography, a common strategy for solving the under-determined and ambiguous recon-
struction problem is to use numeric optimization [3]. As an exact solution will usually not be avail-
able, the projections of the recovered object need only be approximately equal to the given projection
data. In this work, a 2-D/3-D registration approach is followed to minimize the difference between the
given projections and the simulated projections derived from the SSM. To transform the SSM from
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Figure 2. First three modes of variation of the LV SSM.

model space to image space the following equation is used: y = R ((x̄+ Φb) s+ T ). Both shape
parameter vector b and the parameters for pose p = {R, s, T}, i.e. rotation matrix R, scale factor s
and translation vector T , have to be found so that the registration error is minimized. Unlike [4] and
[1], we derive R from Euler angles to reduce the dimensionality of the registration problem. Orienta-
tion in 3-D space is thus described using 3 angles, i.e. Rα,β,γ , instead of a 3 × 3 matrix. To generate
statistically plausible shapes [2], b is constrained by ±2

√
λi. In contrast to [4] and [1], we exploit

the training data to derive constraints for p. The training instances in model space are transformed
to image space and the range of the pose vector components is analyzed. Note that this can be re-
garded as additional a-priori information. To minimize our cost function, the Nelder-Mead algorithm
is applied. Experiments showed that optimizing pose and shape sequentially is more efficient than
optimizing both simultaneously.

3.3.1. Cost Function

Our cost function depends on the shape and the pose parameter vector and incorporates both contour
and densitometric information derived from the given projections Pi and the simulated projections
P ′i (b, p): ε(b, p) =

∑nP

i=1 (ωCεC(Pi, P
′
i (b, p)) + ωDεD(Pi, P

′
i (b, p))). Contour-related error εC is ob-

tained by equiangular sampling of the given and the simulated contour and by calculating the SSD for
the sampled points. As density-related error εD, the sum of squared difference metric is used. Total
error ε is defined as the weighted sum of εC and εD over all nP = 2 projections.
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3.3.2. Extraction of Contour and Densitometric Information

In the case of in-vivo angiograms, the endocardial contour is segmented by experts in cardiology prior
to reconstruction. Densitometric information is derived by means of digital subtraction angiography.
From the initial frames of an angiographic sequence showing no contrast agent, a mask is deduced.
Logarithmic subtraction of mask and current frame is performed due to the exponential attenuation of
x-rays. To reduce noise and the inhomogeneous saturation of contrast agent within the ventricle, two
frames before and after a frame are used for averaging. In the case of simulated angiograms, contour
information is extracted by border detection, whereas densitometric information is measured directly.

3.4. Simulation of Angiographic Projections

Both the presented reconstruction approach and the following evaluation strategy require the simula-
tion of projections. Our model of the bi-planar angiographic device calculates the exact position of
the x-ray sources and the image intensifier planes for the projections. For a given viewing direction,
shape and pose parameter vector, a simulated projection of the SSM in image space is obtained in
two steps. First, the polygonal model is converted into a 3-D binary image, V , whose values denote
the presence/absence of contrast agent. Then, a projection is derived using ray-casting. Since densit-
ometric information is expected to be linear for reconstruction, an exponential attenuation of x-rays
has not been incorporated into the simulation process.

4. Results

The presented methods are implemented and evaluated using Matlab and the Image Segmentation and
Registration Toolkit (ITK) C++ library. To quantify the difference between original and recovered
shape, two geometric and three volumetric similarity metrics are defined for comparing the polygonal
models and the binary image representations, respectively. An exemplary reconstruction result of the
performed leave-one-out experiments is illustrated in Fig. 3.

Figure 3. Reconstruction example showing original shape (bright) and recovered shape (dark).

4.1. Similarity Metrics

Similarity of two polygonal models S1 and S2 is measured based on a given distance metric d:
simd(S1, S2) = 1

2
( 1
n

∑n
i=1 d(pi, S2)+ 1

m

∑m
j=1 d(qj, S1)), pi=1,...,n ∈ S1, qj=1,...,m ∈ S2. Distance met-

ric dmin is defined as the Euclidean distance between point pi and its closest point on S2: dmin(pi, S2) =
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minqj∈S2 |pi− qj|. Distance metric dortho denotes the Euclidean distance between pi and the point ob-
tained by intersecting S2 with the surface normal at pi: dortho(pi, S2) = |pi − surfn(pi) ∩ S2|.

Let |V | denote the volume of a 3-D binary image V . Volume conformity is measured by calculating
the difference of volumes (DOV): simDOV = 1−abs(|Vorig|−|Vrec|)/|Vorig|. To assess shape confor-
mity, the volume of differences (VOD) metric is used: simV OD = 1 − | xor(Vorig, Vrec)|/|Vorig|. An
alternative metric for shape conformity, derived from kappa statistic, quantifies the overlap between
two binary masks: simκ = 2|V1 ∪ V2|/(|V1|+ |V2|).

4.2. Evaluation based on Simulated Data

Evaluation with simulated data is performed based on leave-one-out experiments. From the 20 seg-
mented CT data sets, all but one are used to learn a SSM. Simulated angiograms from RAO and LAO
view are calculated for the left-out data set as described in Sec. 3.4, and from these angiograms shape
is recovered by fitting the learned SSM. The recovered shape is compared with the segmented shape
of the left-out data set using the defined similarity metrics. This procedure is repeated for each data
set. The DOV metric in Tab. 1 shows that the original volume is approximated at high accuracy. This
is essential for assessing volume-based diagnostic parameters, like EF. Concerning shape conformity
we can see that a high overlap between the two shapes is achieved, although the V OD is still im-
provable. The distance metrics dmin and dortho are near the mean reconstruction error of 2.3 mm
[11].

Sim. Metric Mean Std. Min. Max.
dmin (mm) 2.61 0.65 1.65 3.53
dortho (mm) 2.49 0.77 1.38 3.72
DOV (%) 94.56 3.55 87.35 98.73
VOD (%) 78.17 5.30 68.88 84.91
κ (%) 87.12 2.53 82.54 90.18

Table 1. Evaluation of LV shape recovery from simulated angiograms.

4.3. Evaluation based on Real Patient Data

For three patients, a corresponding CT image is available for the RAO/LAO in-vivo angiograms.
Note that this allows an accurate evaluation of our approach since the true 3-D LV shape is exactly
known from CT. Evaluation based on the three in-vivo angiograms is performed as follows: 1) a SSM
is learned from 19 of the 20 data sets, with the CT data set corresponding to the angiograms being
excluded, 2) the model is fit to interpolated angiographic RAO/LAO frames of a single cardiac cycle
showing the LV at 65% of the heart phase, and 3) the recovered shape is compared with the true 3-D
shape of the excluded CT data set using the defined similarity metrics. The angiograms are acquired
using a Siemens Bicor and a Siemens AXIOM Artis dBC system, capturing images of 512 × 512
pixels and 8-bit gray level depth at a frame-rate of 25 fps. For temporal registration with CT data in
step 2, the ECG information accompanying the angiograms is utilized. The results for three in-vivo
angiograms are given in Tab. 2. Our experiments indicate that values similar to the evaluation with
simulated data are achieved, although the number of data sets is relatively small. The best shape
conformity is achieved for example #2. For example #3, the reconstruction yields suboptimal results.
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Sim. Metric #1 #2 #3 Mean Std.
dmin (mm) 2.43 2.32 2.95 2.57 0.34
dortho (mm) 2.36 2.05 3.36 2.59 0.68
DOV (%) 98.01 92.87 82.11 91.00 8.11
VOD (%) 74.72 80.13 68.12 74.32 6.01
κ (%) 87.49 90.41 79.75 85.88 5.51

Table 2. Evaluation of LV shape recovery from three in-vivo angiograms.

5. Discussion and Conclusion

In this work, a new method for recovering the LV from contrast-enhanced bi-planar cine-angiographic
x-ray images has been proposed. The novelty of our approach is that a-priori information about the
LV anatomy is learned from high-resolution CT images, modeled as a SSM and utilized for recon-
struction. A 2-D/3-D registration technique is applied to fit the SSM to angiographic projections.

When only two (noisy) projections are available, the reconstruction problem usually becomes under-
determined and ambiguous. In such cases, the incorporation of a-priori information plays an important
role, since this can limit the space of possible solutions and improve the ability to deal with noisy
data. In contrast to [7], anatomical a-priori information is derived from data of in-vivo instead of
post-mortem subjects; other approaches often do not utilize this kind of information at all. Although
only one bi-planar acquisition is used for reconstruction, our approach is generally not limited by the
number of projections. However, since additional acquisitions increase the amount of radiation and
bolus, this number is usually kept to a minimum.

Using a SSM for reconstruction allows to generate statistically plausible and patient specific shapes.
Unlike other 3-D LV SSMs often found in literature, anatomical areas like the apex, the atrial con-
cavity and the aortic valve region are preserved in our model. This is necessary to generate complete
contour and densitometric information; otherwise, additional errors are introduced in the reconstruc-
tion process. Further note that these areas typically overlap with the ventricular cavity in projection
images and are therefore hard to recover without prior knowledge.

Evaluation with both simulated data and real patient data shows promising results. The LV volume
is recovered at high accuracy. This is important for assessing volumetric diagnosis parameters, like
EF. Concerning shape conformity, the overlap between original and recovered volume is high, though
there is still place for minor improvements. Future work will focus on improving the model fitting
process and on evaluating our approach with more in-vivo angiograms.
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Abstract
We present a method for blind image deconvolution that acts by alternating optimisation of image
and point-spread function. The approach modifies a variational model recently published by Liu et
al. which combines a quadratic data term with a total variation regulariser for the image and a regu-
lariser for the point-spread function that is constructed from convolution eigenvalues and eigenvectors
of the blurred input image. We replace the image estimation component with a robust modification
of Richardson-Lucy deconvolution, and introduce a robust data term into the point-spread function
estimation. We present experiments on images with synthetic and real-world blur that indicate that
the modified method has advantages in the reconstruction of fine image details.

1. Introduction

Blur is, second to noise, one of the major sources of degradations in digital images. Its removal has
therefore been a subject of intense investigation since the beginnings of digital image processing.
If for each location the intensity is smeared across a neighbourhood in the same way, this spatially
invariant blur is mathematically modelled by a convolution with a kernel, called point-spread function
(PSF). Describing the observed blurred image f , the unobservable sharp image u and the PSF h as
functions from suitable function spaces, and assuming additive noise n, one has

f = u ∗ h+ n . (1)

Spatially variant blur can be modelled similarly using Fredholm integral operators. The mathematical
problem of approximate inversion of these blur operations is termed deconvolution.

In this paper, we focus on the spatially invariant case. In non-blind deconvolution problems, both
the blurred image f and the PSF h are available as input; in contrast, blind deconvolution aims at
recovering the PSF h along with the sharp image u from the input image f . Both kinds of problems
are severely ill-posed; in particular, deconvolution algorithms are highly sensitive to noise.

Non-blind deconvolution can nowadays be performed efficiently with favourable quality, with meth-
ods ranging from the time-proven Wiener filter [15] and Richardson-Lucy deconvolution [6, 10] up
to the performant iterative algorithm by Krishnan and Fergus [4], to name a few representatives.
Recently also neural network techniques have been used, see [12, 17].

For blind deconvolution, a straightforward approach proceeds in two steps: first, estimating the PSF,
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and second, performing non-blind deconvolution with that PSF, see e.g. [3, 16]. Merging both steps,
u and h can be estimated simultaneously by minimising a joint energy functional such as

E[u, h] :=

∫

Ω

(f − u ∗ h)2 dx+ αRu[u] + βRh[h] , (2)

see e.g. [2, 11, 18], which combines the data term that integrates the squared model error (f − u ∗
h)2 over the image domain Ω with regularisation functionals Ru and Rh for the image and PSF,
respectively, using regularisation weights α, β. Note that there is a formal symmetry between u and
h in the data term, coming from the blur model (1); however, this symmetry usually does not extend
to Ru and Rh – regularisers that work well for images do generally not perform favourably in PSF
estimation, and vice versa. This is because the regularisers express model requirements for sharp
images and for PSFs, respectively, and these model requirements differ substantially. For example,
sharp edges are important for u which makes total variation regularisers a good candidate, whereas
for h rather locality and sparse support may be meaningful requirements.

Motivated by the separation of regularisers in (2), one often separates u and h again in the minimi-
sation, by using iterative methods that alternatingly update u and h. Each cycle then comprises an
image estimation step, which is a non-blind deconvolution, and a PSF estimation step. Whereas the
latter can formally be considered as non-blind deconvolution of the blurred image with respect to
the sharpened image as convolution kernel, the dissimilarity of regularisers in fact often implies that
substantially different algorithms have to be used for image and PSF estimation.

A refinement of (2) results from applying to the squared model error (f − u ∗ h)2 a function Φ with
less-than-linear growth, yielding a sub-quadratic data term

∫
Ω
Φ((f − u ∗ h)2) dx. Data terms of

this kind have been proven useful in various image processing tasks in order to reduce sensitivity to
(particularly, heavy-tailed) noise and measurement errors as well as to minor deviations from the data
model, and are therefore known as robust data terms, see e.g. [1, 19] in the deconvolution context.
A similar modification of the objective function underlying the Richardson-Lucy deconvolution (the
information divergence) has been introduced in [13], leading to a non-blind deconvolution method
called robust and regularised Richardson-Lucy deconvolution (RRRL).

Our contribution. In this paper, important parts of which are based on the thesis [7], we review a
recent blind deconvolution approach from [5] that is based on alternating minimisation of an energy
in the sense of (2) with a PSF regulariser constructed from so-called convolution eigenvalues and
eigenvectors. We then modify both the PSF and image estimation components of this approach by
using robust data terms. To this end, we adopt in the image estimation component the RRRL method
from [13]; regarding the PSF estimation component, we introduce a subquadratic data term. The so
modified PSF estimation component has to the best of our knowledge not been studied before. We
present experiments on a proof-of-concept level that support the conclusion that our modified method
achieves higher reconstruction quality than its predecessor.

2. PSF Estimation Using Spectra of Convolution Operators

In this section, we review the approach from [5] which forms the basis for our further work in this
paper. As the construction of the regulariserRh from [5] relies on spectral decompositions formulated
in matrix language, we switch our notations to use discrete images from here on.
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Given a unsharp discrete grey-value image f = (fi,j)i,j , the sharp image u and the PSF h are sought
as minimisers of the function (a discrete version of the functional (2))

E(u,h) :=
∑

i,j

(fi,j − [u ∗ h]i,j)2 + αRu(u) + βRh(h) (3)

where in the discretised data term [u ∗ h]i,j denotes the sampling value of the discrete convolution
u ∗ h at location (i, j), and the regularisers Ru, Rh are still to be specified.

For the image, [5] use a total variation regulariser, which is common in literature, and known to
produce favourable results in non-blind deconvolution. In discretised form it reads as Ru(u) =∑

i,j‖[∇u]i,j‖ where [∇u]i,j denotes a discretisation of∇u at location (i, j). The central innovation
of [5] lies in the PSF regulariser Rh which is built from convolution eigenvalues and eigenvectors, i.e.
singular values and singular vectors of a linear operator associated with the image f .

Note first that any discrete imagew, acting by convolutionw ∗h on the PSF, yields a linear operator
on h. In the discrete setting, we assume that the support of h = (hi,j)i,j has size mx ×my, which is
embedded in a larger area sx × sy ([5] suggests sx,y ≈ 1.5mx,y), and the discrete image w is of size
nx × ny. By discrete convolution with zero-padding, one has a linear operator Aw

sx,sy : h 7→ w ∗ h
mapping Rsx×sy to R(sx+nx−1)×(sy+ny−1) which has sxsy (right) singular values σk(w) with singular
vectors vk(w) ∈ Rsx×sy , which are called the convolution eigenvalues and eigenvectors of w.

Theoretical analysis in [5] has brought out that, for meaningful convolution kernels h, the convolution
eigenvalues of w ∗ h are significantly smaller than those of w; moreover, it is shown in [5] that
particularly the convolution eigenvectors with smallest convolution eigenvalues of w ∗ h are almost
convolution-orthogonal to h, i.e. ‖vk(w ∗h) ∗h‖ is almost zero for those k for which σk(w) is small
enough. This motivates that for a given blurred image f the underlying PSF h can be sought as a
minimiser of

∑mxmy

k=1 ‖vk(f) ∗ h‖2/σk(f)2 where placing the squared convolution eigenvalues in the
denominator ensures the higher influence of the convolution eigenvectors with smallest eigenvalues,
and avoids introducing a threshold parameter to single out the “small” convolution eigenvalues.

An additional degree of freedom in the procedure is that the image f can be preprocessed by some
linear filter L. Since convolution itself is a linear filter, and therefore commutes with any linear filter
L, the above reasoning about singular values remains valid in this case; at the same time, a suitable
choice of L allows to reweight the influence of different parts of f on the PSF estimation. Based
on the well-known fact from literature, see e.g. [16], that edge regions are particularly well-suited to
estimate blur, [5] suggest the use of a Laplacean-of-Gaussian (LoG) filter, thus leading to the final
formulation of the objective function

Rh(h) :=

sxsy∑

k=1

‖vk(L(f)) ∗ h‖2
σk(L(f))2

(4)

where L is a LoG operator. Whereas the extended support size sx × sy for h is used in Rh, its
minimisation is constrained to PSF h of the actual support size mx ×my.

Using Rh alone as objective function would already allow to estimate the PSF fairly accurate. How-
ever, as discussed in [5] such a proceeding tends toward some over-sharpening of the image with
visible artifacts. In order to achieve a good joint reconstruction of the sharp image and PSF that also
takes into account regularity constraints on the image expressed by Ru, and improves the treatment
of images with moderate noise, [5] insert Rh instead as PSF regulariser into (3).
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This joint energy functional is then minimised by an alternating minimisation. In the PSF estimation
step,Rh(h) is represented as a quadratic form,Rh(h) =

∑
i,j,i′,j′ Hi,j;i′,j′hi,jhi′,j′ , with the coefficient

matrix (Hessian)H = (Hi,j;i′,j′)i,j,i′,j′ given by

H =

sxsy∑

k=1

A
vk(L(f))
mx,my

TA
vk(L(f))
mx,my

σk(L(f))2
, (5)

and this is combined with the data term from (3) to establish a quadratic minimisation problem for h.

In our re-implementation of the PSF estimation from [5], this quadratic minimisation problem is
solved via the corresponding linear equation system and an LU decomposition [9, pp. 52p.], followed
by a projection step that eliminates negative entries in h and normalises h to unit total weight. As
a refinement of the projection step, it turned out useful to cut off even small positive entries in h by
a threshold, thus additionally enforces sparsity of the PSF. Experiments indicate that the threshold is
best adapted as a multiple of some quantile, e.g. 0.1 times the 95%-quantile of the entries of h.

The image estimation step that alternates with PSF estimation comes down to a TV-regularised non-
blind deconvolution problem for which several approaches exist. In [5] the method from [4] is used.

3. Robust Image and PSF Estimation

As demonstrated in e.g. [1, 8, 14, 13], robust data terms allow to achieve favourable deconvolution
results even with imprecise estimates of the PSF or slight deviations from the spatial invariant blur
model. While the latter is generally relevant in deconvolution of real-world images, robustness to
imprecise PSF estimates is particularly useful in blind deconvolution. This makes it attractive to
incorporate robust data terms into the framework of [5], which is our goal in this section.

Due to the alternating minimisation structure of the method, we consider the two steps separately. We
start with the image estimation, which is tantamount to non-blind deconvolution. Thus, we simply
have to replace the TV deconvolution model with a suitable robust approach. In this work, we choose
RRRL [13] for this purpose, which is a fixed point iteration associated to the energy function

E(u) =
∑

i,j

Φ

(
[u ∗ h]i,j − fi,j − fi,j ln

[u ∗ h]i,j
fi,j

)
dx+ αRu(u) . (6)

We prefer this method for efficiency reasons; note that the non-blind deconvolution step is needed in
each iteration of the alternating minimisation. RRRL is known to evolve fast toward a good solution
during the first few iterations, see also [14], whereas methods based on approaches as in [1] tend to
require more iterations. Following [13], the data term penaliser in the RRRL method is chosen as
Φ(z) = 2

√
z, whereas the image regulariser Ru is chosen as total variation as in Section 2.

For the PSF estimation, we insert a penaliser function Φ as mentioned above into the discretised data
term from (3), which is then combined with the unaltered regulariser Rh from (4) to yield a (partial)
discrete energy function for the estimation of h:

E(h) =
∑

i,j

Φ
(
(fi,j − [u ∗ h]i,j)2

)
dx+ αRh(h) . (7)

Unlike its counterpart in Section 2., this energy function is no longer quadratic. Equating the gradient
(i.e. the derivatives w.r.t. hi,j) to zero now yields a system of nonlinear equations for the PSF entries.
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a b c d

Figure 1. Blind deconvolution of a synthetically blurred image. (a) Input image, 289× 289 pixels, blurred with
the PSF, 13× 13 pixels, shown as insert. From [5], adapted. – (b) Reconstructed image and PSF (inserted) by the
method from [5], mx = my = 13, β = 5050, K = 200. – (c) Same as (b) but with RRRL used in the image
estimation step, α = 0.0018,Ku = 30. – (d) Same as (b) but with RRRL for image estimation, and the nonlinear
PSF estimation method from Section 3., α = 0.0018, β = 5050, Ku = 30, Kh = 20. – For τ , the quantile
criterion (see Section 2.) was used in (c, d) and yielded values in the range 0.11 . . .0.12. (b)–(d) from [7], adapted.

By a standard procedure of lagged weights (analogous to the lagged diffusivity method or Kačanov
method) we transform the nonlinear equation system into a sequence of linear ones. Note that the
nonlinearities result from the terms ∂hp,qΦ

(
(fi,j − [u ∗ h]i,j)2

)
= −2Φ′

(
(fi,j − [u ∗ h]i,j)2

)
(fi,j −

[u ∗ h]i,j)ui−p,j−q. Starting with some initial approximation h0 for h, we proceed therefore for
l = 0, 1, 2, . . . as follows: Compute the weights ϕli,j := Φ′

(
(fi,j − [u ∗ hl]i,j)2

)
and replace Φ′( · )

in the equation system with the fixed ϕi,j . This gives a linear equation system for h. Applying LU
decomposition as in Section 2. one computes the solution hl+1 of this system, which is the starting
point for the next iteration. A more spelled-out derivation of the sequence of linear equation systems
is found in [7]. Experimental evidence in [7], see also Section 4., confirms the quick convergence of
the sequence (hl); in practical cases, often 10 . . . 20 iterations are sufficient.

To end the description of our robust blind deconvolution method, we summarise its parameters which
will also be referred to in Section 4. The original method from [5] and the version with RRRL and
linear PSF estimation use obvious subsets of these parameters. We start by the model parameters.
First, there are the PSF sizes mx, my that need to be chosen somewhat larger than the actual PSF. For
the sample sizes sx, sy we adopt the heuristic choice sx,y ≈ 1.5mx,y from [5]. Regarding the image
regularisation weight α in (6), a continuation strategy that starts with a larger α in the first iterations
of the alternating minimisation and reduces α during the alternating minimisation process helps to
speed up convergence; the final values of α lie in the range α ≈ 0.001 . . . 0.002 proposed in [13].
The PSF regularisation weight β is set manually; if it is too small, the blur will be underestimated
(with a point kernel as extreme); too large β leads to oversharpening, compare [5]. Finally, there is
the threshold τ for the PSF entries. The essential numerical parameters are three iteration counts: K
for the alternating minimisation, Ku for RRRL, and Kh for the iterated linearisation of the nonlinear
equation system in the PSF estimation.

4. Experiments

As a proof of concept, we present two experiments here; further experiments can be found in [7]. Our
first experiment is based on a synthetically blurred image, Fig. 1(a), that was already used in [5] to
exemplify the method reviewed in Section 2. The result of this method is shown in Figure 1(b). Frame
(c) has been obtained by replacing the image estimation component with RRRL, whereas in frame
(d) also the robust PSF estimation from Section 3. has been employed. Comparing (b) and (c), it is
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a b c d

Figure 2. Blind deconvolution of the synthetically blurred image from Fig. 1(a) using RRRL for image estimation,
and the nonlinear PSF estimation method from Section 3. with different numbers of linearisation iterations. (a) 1
iteration. – (b) 2 iterations. – (c) 5 iterations. – (d) 8 iterations. – From [7], adapted.

a b c d

Figure 3. Blind deconvolution of an image blurred during acquisition. (a) Clipping from a photograph (Paris from
Eiffel tower at dusk) blurred by camera shake, 200×200 pixels. – (b) Reconstructed image and PSF, 13×13 pixels
(inserted), using RRRL for image estimation and PSF estimation according to [5], mx = my = 13, α = 0.002,
β = 260, τ = 0.1, K = 300, Ku = 20. – (c) Same as (b) but with nonlinear PSF estimation Section 3.,
mx = my = 13, α = 0.0105, β = 255, τ = 0.1, K = 300, Ku = 20, Kh = 8. – (d) Non-blind RRRL
deconvolution result with the manually tuned PSF (shown as insert) from [13], α = 0.002, Ku = 30. The PSF,
14× 11 pixels, has been generated from an impulse response.

evident that introducing robust image estimation brings about a slight gain in reconstruction of small
detail, but also an amplification of artifacts is observed which may be attributable to the mismatch
between the data terms underlying the PSF estimation (non-robust) and non-blind deconvolution (ro-
bust). Using robust estimation methods for both (d) leads to a result with visible gain in sharpness
and fewer artifacts. In particular, fine details of the columns between the windows are reconstructed
sharper in (d) than in (b). Regarding the visible translation by approx. 2 pixels between (d) and the
two other results, it should be noted that shifting the PSF and image in opposing directions is an
inherent degree of freedom of the convolution model (1). Note that this also poses a difficulty for
quantitative evaluation of blind deconvolution methods: quantitative error measurements cannot be
done without a registration step whose influence on the error values needs additional analysis. Since
this is not feasible within the present paper, we restrict ourselves to a visual assessment at this point.

As discussed in Section 3. the non-linear system of equations arising in the PSF estimation is solved
iteratively by linearisation. In Fig. 2 we demonstrate the evolution of estimated PSF and image with
increasing number of linearisation iterations. With a single iteration, frame (a), the result is almost
identically to the linear PSF estimation from Fig. 1(c). Additional iterations first lead to some artifacts,
frame (b), which are apparently caused by the fact that the non-linear method places the PSF in this
example at a translated position. With more iterations, the reconstruction quickly stabilises at the
refined result, frame (d), which is numerically converged and corresponds to Fig. 1(d).
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In our last experiment, Fig. 3, we consider an image blurred by camera shake. The test image, Fig. 3
(a), is clipped from a test image used in [13] to demonstrate the non-blind RRRL method. In [13] it
was used in conjunction with a PSF manually generated from an impulse response (the image of a
street light); we reproduce this experiment from [13] in frame (d) for reference. In frames (b) and (c)
we show blind deconvolution results: frame (b) again combines RRRL for image estimation with the
linear PSF estimation from [5], whereas (c) employs also the robust PSF estimation from Section 3. It
is evident that in (c) the estimated PSF has become sharper, and artifacts in the deblurred image have
been reduced, although the reconstruction quality is still not quite on par with the non-blind result (d).

5. Summary and Outlook

In this paper we have shown how a recent blind image deconvolution approach by alternating min-
imisation of a joint energy functional [5] can be improved by introducing robust methods for PSF and
image estimation. For image estimation we used RRRL [13], whereas for PSF estimation a modifica-
tion of the method from [5] has been used that is, to best of our knowledge, new. The viability of the
approach has been demonstrated on synthetic and real-world blurred images.

A weakness of this combination of methods is that the robust data terms used in the image and
PSF estimation differ, compare (6), (7), and cannot be cast into a joint energy functional. This is
a pragmatic decision justified by the efficiency of RRRL and the fact that, as demonstrated in [13],
its results in non-blind deconvolution are largely comparable with those of a method in the sense
of [1] whose data term is compatible with (7). Notwithstanding, it will be a goal of future work
to reformulate the robust model such that PSF and image estimation can be expressed in a unified
functional. It is expected that an exact match of data terms will also further reduce artifacts in the
blind deconvolution results.

The present paper is restricted to grey-value images; an extension to multi-channel (colour) images
will be detailed in a forthcoming publication. Future work might also address strategies for the choice
of parameters as well as efficiency improvements of the algorithm. In order to further study the
practical applicability of the method, experimental validation using larger sets of images will be
important, including quantitative comparisons. Moreover, we have focussed in this work on the ability
of robust data terms to cope with imprecise PSF estimation and model violations, but largely ignored
their potential in treating strong noise. Experiments on noisy blurred images will deepen insight into
this aspect.
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Graph-Laplacian minimisation for surface smoothing
in 3D finite element tetrahedral meshes

Richard Huber, Martin Holler and Kristian Bredies∗
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Abstract
We propose a new method to improve surface regularity of 3D tetrahedral meshes associated with
finite element simulations of the heart. Our approach is to minimise the graph-Laplacian subject to
suitable point constraints. These constraints are computed from the whole triangulation and prevent a
worsening of mesh quality that would otherwise be caused by the smoothing. The resulting minimisa-
tion problem is solved via a primal-dual algorithm, leading to a method that globally updates vertex
coordinates in each iteration. Experiments confirm that our method reduces surface oscillations of
the mesh while preventing degeneration of the triangulation as indicated by mesh quality metrics.

1. Introduction

In biomedical engineering, the development of a realistic 3D simulation framework for the human
heart is currently an active research topic. Such a framework would allow, for example, patient-
specific models and more individualised treatment [6]. In order to carry out such simulations, 3D
meshes are typically created from segmented magnetic resonance (MR) images, using mesh-genera-
tion software such as described in [12]. In view of the subsequent simulations, these procedures ensure
a sufficient quality of the triangulation, as indicated by quality metrics, and prevent the creation of
degenerate elements. However, due to physical limitations in the image acquisition and, consequently,
a low resolution of the image data, such meshes often suffer from artifacts. Those appear in particular
in form of oscillations on the otherwise smooth surface (see Section 5.).

It is the goal of this work to provide a method that reduces these oscillations, but maintains high mesh
quality. To this aim, we minimise the graph-Laplacian under suitable constraints and adapt the mesh
coordinates accordingly. The constraints are computed from the whole initial triangulation and ensure
non-degeneracy of the resulting triangulation and maintenance of a high mesh quality, the latter being
indicated by quality metrics.

As the computation of meshes from segmented image data and a subsequent reduction of mesh arti-
facts is a challenge that commonly appears in mesh generation for finite element simulations in many
different contexts, a lot of research has already been carried out in that direction. Different to classical
mesh improvement dedicated to enhancing the quality of the triangluation, that often focus on a local
adaption of nodes [8, 9, 11], our method aims at reducing mesh artifacts and hence is more related
to mesh denoising approaches. For the latter, we exemplary refer to [10, 13, 14] and the references
therein for recent methods. For a general overview on mesh related topics see [2, 3].

∗University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, A-8010
Graz, Austria. Email: richard.huber@edu.uni-graz.at, martin.holler@uni-graz.at,
kristian.bredies@uni-graz.at
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2. Model problem

The initial setting is as follows: The 3D tetrahedral finite element mesh is given in form of a trian-
gulation. In particular, the coordinates of points of the triangulation, together with edge information,
and a masking of surface points is given. The triangulation is assumed to be regular, in particular, all
tetrahedra are non-degenerate and disjoint except for their boundaries.

Since the above-described oscillatory artifacts appear on the surface of the mesh, we will only adapt
surface points and use the position of interior points only to determine suitable point constraints. This
also reduces the computational cost and memory requirements, however, will have some drawbacks
as discussed in Section 6.

The triangulation of the surface induces a graph G = (V,E) with vertices V = {v1, . . . , vN}, where
N is the number of vertices, and edge set E such that there is an edge between vi and vj in G
if, and only if, {vi, vj} ∈ E. We define U := R3×N to be the space of point-coordinates of the
triangulation, where for u ∈ U , the jth coordinate of the vertex vi is denoted by uji ∈ R. Further, we
will use the notation uj ∈ RN for the vector containing all jth coordinates of u and ui ∈ R3 for the
coordinates of vi. With this notation, we define the graph-Laplacian operator as the componentwise
matrix-multiplication operator according to

∆u :=




∆̂u1

∆̂u2

∆̂u3


 ,with the matrix ∆̂ ∈ RN×N , given as

(
∆̂
)
i,j

:=





Deg(vi) if i = j,

−1 if {vi, vj} ∈ E,
0 else,

(1)

where ∆̂uj is a matrix-vector multiplication and Deg(vi) denotes the degree of vi, i.e., the number of
neighbours of vi in G.

In order to smooth the surface, new coordinates of the surface points are computed by minimising
the graph-Laplacian under constraints designed to maintain the original mesh structure and to ensure
non-degeneracy of the mesh. The minimisation problem is

u+ ∈ argmin
u∈U

1

2
‖∆u‖2

2, subject to u ∈ Ω, (2)

where the feasible set has the form Ω = {u ∈ U : ui ∈ Ωi for i = 1, . . . , N}, with pointwise feasible
sets Ωi as defined in the next section. A solution u+ corresponds to the coordinates of the nodes of
the smoothed surface. Note that the topology of the mesh, and in particular the set of edges E, does
not change and ∆ is linear. A minimisation of ‖∆u‖2

2 results in the node coordinates adapting to the
means of the surrounding ones, and thus, reduces the curvature of the surface. Hence, minimising the
graph-Laplacian operator is expected to imply a smoothing of the surface mesh.

Well-posedness. As we will see in the next section, it is reasonable to choose Ω to be non-empty,
bounded and closed. Hence, existence of a solution to (2) follows directly from continuity of u 7→
‖∆u‖2

2 and finite dimensionality of U .

3. Suitable constraints

Naturally, the solution of (2) should be close to the original data. Further, the choice of Ω is driven by
two requirements, the convexity of Ω and the maintenance of mesh quality:
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Mesh quality. An important aim is to keep mesh quality high, since this is needed for the finite
element simulation to work. A high mesh quality means that the tedrahedra are non-degenerate,
disjoint, and that there is only a small number of very flat tetrahedra. The latter is important since
many flat tetrahedra would cause numerical problems in the simulations. Our assumption is that
the quality of the original mesh is sufficiently high, therefore we design the constraints such that the
movement of the nodes does not significantly worsen mesh quality. In particular, we want to guarantee
that no self-intersection of the surfaces of the tetrahedra occurs.

Convexity of Ω. Convexity yields several advantages in optimisation, such as allowing to apply a
large range of optimisation methods and ensuring that indeed global optima are approximated. Thus,
we aim to define constraints which can be represented as a family of point constraints given in a way
that the set of admissible point-coordinates is convex.

In summary, to achieve the best results with our method, we look for a convex set of constraints which
allows sufficient movement of the nodes while maintaining a high mesh quality.

Adaptive constraints. We define Ω by fixing an individual radius ri for each node vi, and allowing
the node only to move within a ball of this radius centered at its original location. Our approach to
choose ri is as follows: Let us fix a surface vertex v in a tetrahedron T . Since the goal is to avoid
degenerate tetrahedra, one must in particular prevent self-intersection. Geometrically interpreted, this
means that each of the nodes must not pass to the opposite side of T . This motivates the incorporation
of the heights on the nodes in T . Indeed, if the other nodes did not change, the distance of v to the
opposite side of T would be determined by the corresponding height h of the tetrahedron and one
could use h as a limitation on how far the vertex is allowed to move. But since the movement of
the other points of the tetrahedron also affects this consideration, and since the node v is not only a
node of T , but of several neighbouring tetrahedra, we use all heights h of all tetrahedra containing
v to define the constraints. Indeed, for a fixed node vi, we denote by hT the minimum of the four
heights of a tetrahedron T and ĥi = min{hT : vi contained in T}. We limit the movements of vi by
αĥi with a parameter 0 < α < 1/2, which is expected to ensure that, even though all nodes move
simultaneously, no self-intersections occur. Let u0i denote the original coordinates of the vertex vi.
Thus, the corresponding radii and the resulting feasible sets are given by

ri = αĥi with ĥi = min{hT : vi ∈ T} and hT = min{h : h height of T}, (3)
Ω = {u ∈ U : ‖ui − u0i‖ ≤ ri for i = 1, . . . , N}. (4)

This ensures that no self-intersection occurs and mesh quality is maintained. Figure 1 illustrates such
constraints for the case of 2D triangles. In the three-dimensional setting, also the interior vertices
adjacent to the surface of the mesh will be incorporated in the computation of constraints.

4. Numerical solution

The aim in this section is to describe an algorithmic framework for the solution of (2) with Ω as in
(4). For this purpose, we will use the primal-dual algorithm described in [5], which is an iterative
method that allows to solve convex-concave saddle-point problems with non-smooth structure. A
non-smooth optimisation method is required to incorporate the proposed point constraint, however,
due to differentiability of the graph-Laplacian regularisation and simplicity of the feasible set, also
other methods, such as FISTA [1], could be used.
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Bold lines: edges of the triangles

Dashed lines: minimal heights

Large circles: limitation induced by ABC

Small circles: limitation induced by BCD
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Figure 1: Triangle T1 = (A,B,C) with minimal height hT1 on C and triangle T2 = (C,D,B) with
minimal height hT2 on D. Limiting the movement of all nodes in a triangle by α times the minimum of
the heights induces circles for each node, of which the smallest one is chosen as constraints.

In order to apply the primal-dual algorithm, Problem (2) is reformulated as a saddle-point problem
according to

min
u∈Ω

F (∆u) ⇐⇒ min
u∈U

F (∆u) + IΩ(u) ⇐⇒ min
u∈U

sup
w∈U
〈w,∆u〉 − F ∗(w) + IΩ(u), (5)

where F (u) = 1
2
‖u‖2

2, the indicator function of Ω, i.e., IΩ(u) = 0 for u ∈ Ω and∞ otherwise, and
F ∗ is the convex conjugate of F , defined as F ∗(w) := supu∈U〈w, u〉 − F (u). Explicitly, we get

F ∗(w) = sup
u∈U
〈w, u〉 − 1

2
‖u‖2

2 = 〈w,w〉 − 1

2
‖w‖2

2 =
1

2
‖w‖2

2, (6)

where the second equality is due to u = w being the unique critical point of u 7→ 〈w, u〉 − 1
2
‖u‖2

2,
which can be confirmed by differentiation, and hence, u = w being the unique global maximiser.
Thus, (2) is reformulated as the following saddle point problem

min
u∈U

max
w∈U

L(u,w), where L(u,w) = 〈w,∆u〉 − 1

2
‖w‖2

2 + IΩ(u). (7)

The following proposition shows that by solving (7), we indeed obtain a solution of the original
problem (2).

Proposition. The saddle point problem (7) with feasible set Ω defined as in (4) admits at least one
solution and for any saddle point (u+, w+) of (7), u+ is a solution of the original minimisation
problem (2).
Proof. Due to [7, VI Prop 2.4, p. 176], it is sufficient to show that for L : U × U → R defined as in
(7), for u ∈ U fixed, w 7→ L(u,w) is concave and upper semi-continuous on U , and for w ∈ U fixed,
u 7→ L(u,w) is convex and lower semi-continuous on U . Further, we need to show that u 7→ L(u,w)
is coercive for fixed w and that

lim
‖w‖→∞
w∈U

inf
u∈U

L(u,w) = −∞. (8)

The convexity/concavity and l.s.c./u.s.c. assumptions are satisfied, in particular due to Ω being convex
and closed, and u 7→ L(u,w) is coercive due to Ω being bounded. Further, for fixed u ∈ Ω,

lim
‖w‖→∞

〈w,∆u〉 − ‖w‖2
2 ≤ lim

‖w‖→∞
‖w‖‖∆u‖ − 1

2
‖w‖2

2 = lim
‖w‖→∞

‖w‖
(
‖∆u‖ − 1

2
‖w‖

)
= −∞

and hence, (8) holds, yielding the existence of a saddle point (u+, w+). Due to [7, III Prop 3.1, p. 57],
the optimality of u+ for (2) is a direct consequence of (5).
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The primal-dual algorithm for the solution of (7) will also require knowledge of the operator norm
‖∆‖. An estimate can be found via power iteration [4], which computes λmax, the eigenvalue of ∆
with the greatest modulus if it is well separated from other eigenvalues. Note that this eigenvalue
λmax equals ‖∆‖ due to ∆ being symmetric and positive semidefinite.

The iteration steps of the primal-dual algorithm are given, in the abstract form, as



wk+1 = (id +σ∂F ∗)−1(wk + σ∆ūk)

uk+1 = (id +τ∂IΩ)−1(uk − τ∆wk+1)

ūk+1 = 2uk+1 − uk
(9)

for suitable parameter τ, σ ∈ (0,∞) such that ‖∆‖2τσ < 1. Since F ∗(u) = 1
2
‖u‖2

2 is differentiable, a
simple computation shows that ∂F ∗(u) = u, thus

z = (id +σ∂F ∗)−1(u)⇐⇒ z + σz = u⇐⇒ z =
u

1 + σ
.

Further,
z = (id +τ∂IΩ)−1(u)⇐⇒ z + τ∂IΩ(z) 3 u ⇐⇒ 0 ∈ ∂

(1

2
‖u− ·‖2

2 + τIΩ(·)
)

(z)

⇐⇒ z ∈ argmin
v∈U

‖u− v‖2
2 + τIΩ(v) ⇐⇒ z ∈ argmin

v∈Ω
‖v − u‖2

2 (10)

⇐⇒ z = PΩ(u),

where PΩ(u) denotes the projection of u onto Ω, i.e., onto the element in Ω with minimal distance
to u. Hence, (10) can be solved by projecting onto the closest feasible point. We can compute this
projection for each node individually since only point constraints are considered, i.e., whether or not
‖ui−u0i‖ ≤ ri does not depend on the other nodes’ locations. The projection for each node is simply
the projection on the ball of radius ri centered at the original location u0i, i.e.,

PΩ(u)i = p(ui, u0i, ri), with p(x, y, r) =

{
x if ‖x− y‖ ≤ r,
r(x−y)
‖x−y‖ + y else.

(11)

Note that Ω, and hence, u0i and ri, do not change during the iteration and ri is determined according
to (3) and (4). By inserting (10) and (11) into (9), the iterations can be computed by simple arithmetic
operations resulting in Algorithm 1.

Algorithm 1 Primal-Dual algorithm for minimising graph-Laplacian with adaptive constraints
Input: Original point-coordinates ũ0 of mesh, edge information E , masking of surface points S.

1: u0 ← extract surf coo(ũ0), r ← get radii(ũ0, E , S), Ω← get Ω(r, u0) . constraints
2: ∆← get ∆(E , S), ‖∆‖ ← powiter(∆) . inititialisation of Laplacian
3: u← u0, ū← u0, w ← 0 ∈ R3×N , τ ← ‖∆‖−1, σ ← ‖∆‖−1

4: repeat
5: w ← (w+σ∆ū)

(1+σ)
. update of the dual variable

6: ū← PΩ(u− τ∆w) . update of the primal variable
7: u← 2ū− u . update of the extragradient
8: (u, ū)← (ū, u) . interchange of u and ū
9: until maximal number of iterations is reached

10: return u
Output: u+ = u surface point-coordinates of smoothed mesh.
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Note that this is a global method, i.e., it updates the positions of all surface vertices in each iteration,
unlike many other surface smoothing algorithms which operate pointwise.

Reiteration. In some situations, the proposed constraints are too restrictive, and hence, the smooth-
ing results are not satisfactory. To overcome that, the point-constraints for each single point would
need to be updated iteratively with the position of all other points. This would, however, result in a
non-convex problem, preventing the computation of global optima.

A heuristic approach to still achieve some improvement, without re-designing the overall method, is to
restart Algorithm 1 after convergence. To this aim, new constraints are computed from the output u+

and the graph-Laplacian is optimised again subject to these updated constraints. This can be repeated
a few times, e.g., 4 times, to allow some more flexibility in the constraint set. In practice, it can be
reasonable to reduce the number of iterations performed in Algorithm 1, and do a few outer iterations
in order to allow for more movement, while still guaranteeing that no self-intersection occurs and the
mesh quality remains high.

Independent of such heuristics, the point-constraints of our method always ensure a non-degenerate
triangulation. Also, the inner points of the mesh are not moved by our methods and hence limit the
effect of the re-iteration. This, together with the point-constraints, in particular prevents a strong
decrease of the volume of the shape, as frequently observed with unconstrained Laplacian smoothing.

5. Experimental results

The proposed method, although rather simple, is quite effective. It allows to smooth the surface and to
reduce artifacts significantly while maintaining the original level of mesh quality. Figure 2 illustrates
the effects of smoothing, with the original model on the left side, and the smoothed version on the
right. The figure shows a mesh of a human heart, where the smoothed version was computed with 3
outer and 1000 inner iterations and with the constraint parameter α = 2/5.

The effect of the proposed method on mesh quality can be evaluated quantitatively by measuring
ρ, the skewness of a tetrahedron, i.e., the ratio of a tetrahedron’s volume to its circumscribed ball’s
volume. Additionally, we quantify the change of the volume of each tetrahedron and identify changed
orientations. This is done for each tetrahedron in the mesh by measuring the ratio of det(A) in
the original and the smoothed mesh, denoted by θ, where A is a parallelepiped induced by a the
tetrahedron.

Furthermore, one can observe maximal and minimal angles in the tetrahedra in order to find very flat
tetrahedra. Table 1 depicts a quantitative evaluation of the effect of our method on mesh quality by
comparing ρ for the original and the smoothed mesh and computing θ. As one can see, the number
of flat structures does not increase significantly due to smoothing and for only 1% of the tetrahedra
the volume reduced by more than one half. Further, we observed that no sign-flips of the determinant
occurred, hence there are no self-intersections.

Percentiles of P 1% 5% 10%
Original mesh 0.0900 0.2350 0.3348
Smoothed mesh 0.0934 0.2047 0.2812

Percentiles of Θ 1% 5%
0.5473 0.6648

Table 1: Mesh quality corresponding to mesh considered in Figure 2. Percentiles of P and Θ, where P is
a vector of ρ for all tetrahedra and Θ is a vector of θ for all tetrahedra.
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Figure 2: 3D triangulation of a human heart. The left figure shows the surface of the original mesh with
artifacts, while the right shows the corresponding smoothed version where the artifacts are reduced.

6. Discussion and outlook
The proposed method allows for improvement of the visual surface quality in 3D tetrahedral meshes.
However, the procedure does not always succeed in removing all artifacts as can be observed par-
ticularly when there is an area lying dominantly above its surrounding surface like a plateau. The
reason for this might be that only the surface, and thus, the outermost tetrahedra are changed, while
the layer below remains unchanged. The constraints that avoid the loss of mesh quality are disadvan-
tageous in this regard, since the second layer prevents the outer layer from sinking. Therefore, the
plateau might remain dominant above its surrounding. A possible solution is not only to change the
outermost layer, but also a few layers inside as well. However, this would, of course, increase com-
putational costs. Another possibility would be to modify the constraints to avoid such a problem, in
particular, also consider non-convex bounds. Indeed, this would allow for more flexibility in choosing
the constraints, however, at the cost of losing the advantageous properties gained due to convexity.
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and Francis, 2010.
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Abstract
In this paper we deal with a combination of two state-of-the-art computational imaging approaches -
(i) light fields and (ii) photometric stereo - in order to improve the quality of 3D reconstructions within
a multi-line-scan framework. Computational imaging uses a redundant description of an image scene
to reveal information which would not have been available via conventional imaging techniques. In
the case of light fields the redundancy is achieved by observing the scene from many different angles,
which allows capturing 3D shapes in areas with a prominent surface structure using stereo vision
techniques. Contrarily, photometry makes use of multiple illuminations in order to capture local sur-
face deviations without the necessity of any surface structure. As photometric surface reconstruction
is very sensitive to fine surface details and light fields excel in capturing global shapes, naturally a
more complete description can be achieved through a combination of both techniques. We present a
compact hybrid photometric light field setup with relatively low costs and improved accuracy, which
is therefore well suited for industrial inspection. A multi-line-scan camera is statically coupled with
an illumination source to obtain light field data which is also comprised of photometric information.
Novel algorithms have been developed to use this data for an improved 3D reconstruction, which
exhibits large-scale accuracy as well as sensitivity to fine surface details.

1. Introduction

Traditional film cameras as well as digital cameras capture light rays and project images of the envi-
ronment onto a 2D plane. Non-traditional approaches such as multi-camera arrays, plenoptic cameras
or coded apertures capture a portion of the so called 4D light field and further subdivide this ray
space with respect to position and orientation. Photometric stereo makes explicit use of directional
variation of illumination. The presence of different lighting conditions, in cases where the light field
is dynamically constructed over time, introduces a photometric variation into the data structure. The
combination of light fields, describing the variation of image content over observational directions,
and photometric approaches, describing the variation of image content depending on lighting direc-
tions, is a promising research direction.

In general, the combination of methods which are (i) locally precise but globally inaccurate with (ii)
globally accurate methods, which are lacking local structure, was approached from different perspec-
tives, e.g. combining shading with RGB-D [12], improving a depth map from time-of-flight with
polarization cues [3], or using stereo vision with photometric stereo [5]. Methods used for the com-
bination are either based on the fusion of normal vectors provided by different approaches, the fusion
of depth measurements, or employing variational methods.
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Figure 1: Multi-line-scan setup with directional lighting: a) multi-line sensor, views constructed over
time, imaging the object area divided in uppercase letters: b) view 1, c) reference and top-down view,
d) view n, e) EPI stack holding views denoting object lines by uppercase letters the disparity slope α.

The depth reconstruction from light field data is usually estimated through the epipolar plane image
(EPI) data structure. EPIs were originally introduced for the estimation of structure from motion [1],
but they also became a popular tool in light field processing [10],[4]. Kim et al. [4] use an easy
criterion for ranking depth hypotheses, namely the best hypothesis is the one, for which as many
radiance values as possible along the hypothesized slope in an EPI are similar enough to the radiance
in the reference view. Venkataraman et al. [8] use pattern matching between different views, i.e. for a
discrete number of hypothesized depths the sum of absolute differences (SAD) of radiances between
different views is calculated. Wanner and Goldlücke [10] suggest a statistical approach to estimate
the principal orientation of linear structures in EPIs via analysis of the structure tensor constructed
locally in small EPI neighborhoods.

This paper is organized as follows. We describe the proposed setup in Sec. 2. In Sec. 3. we describe
the fusion framework for light fields and photometric stereo. First results describing the work in
progress is given in Sec. 4. In Sec. 5. we draw first conclusions and discuss further work.

2. Multi-Line-Scan Setup

Light fields provide 4-D information, consisting of two spatial and two directional dimensions. They
can be captured e.g. by a multiple camera array [11], where each camera has a different viewing
perspective of the scene, or by plenoptic cameras [6], which usually make use of a microlens array
placed in front of the sensor plane to acquire angular reflectance information.

Our multi-line-scan framework [9] is a light field acquisition setup, where we use an area-scan sensor
to observe the object under varying angles, while the object is transported in a defined direction over
time. This setup works in real-time and in-line for industrial inspection setups. Fig. 1 illustrates how
the light field data is obtained through multiple viewing angles on the moving object over time. Each
sensor line observes the conveyor belt in a different viewing angle and captures a certain region. As
the object moves under the observed sensor lines, see Fig. 1a, each sensor line captures every object
region at distinct time instances, see Figs. 1b,c, and d. We represent the thereby captured light fields
as light field image stacks, see Fig. 1e, in which each image is acquired from a slightly different
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viewpoint along one direction.

Figure 2: Dragon Stanford [13] scene image (a), zoomed in at the red dotted line (b), where EPI stacks
with 9 different viewpoints are shown, each stack formed with a certain light direction (c).

We analyse the captured light fields in the EPI domain [1]. A cut through the light field stack shows
linear slope structures, where the angle of the slope corresponds to the disparity and thereby the depth
of the scene, as shown in Fig. 2. Each angle of a slope in the EPI stack corresponds to a defined
distance between the camera and the object point. Photometric information is obtained by a static
light source w.r.t. the sensor while the object is moving. As an object moves on the conveyor belt,
the relationship between the illumination and the observation angle changes in a systematic way, so
that the surface inclination in the transport direction can be estimated. This photometric information
is used to estimate the surface normals of the object.

3. Combination of Light Fields and Photometric Stereo

Photometric stereo describes the surface variation w.r.t. the lighting direction. Reflections of the light
on the objects’ surface under different lighting orientations provide information about the surface
normals at each object point. We combine the depth from light fields with fine surface structures as
observed by photometric stereo, to gain an improved depth map of the scene. Figure 3 shows the
depth estimation achieved using both light field and photometric stereo independently in a virtual test
setup, where we simulated 81 camera viewpoints and 25 illumination angles.

3.1. Light Field Depth Estimation

Depth information of a scene can be retrieved by analyzing the slope angles in EPI stacks. An EPI
slice of this stack is shown in Fig. 2, where each angle in the slice refers to a defined depth of a
corresponding point in the scene. Using this data we gain a rough absolute depth estimation of the
scene.

Analyzing the depth from EPI stacks can be seen as finding such an angle α∗ for each point (x, y),
where the difference between values at the sheared coordinates (x(α), y(β)) in the light field L and
the reference view I0 is minimal [7].

α∗(x, y) = argmin
α,β

i=n∑

i=1

|Ii(x(α), y(β))− I0(x, y)|

The use of a block-matching approach creates a higher robustness to both noise and non-Lambertian
lighting conditions. As shown in Fig. 3b, light field data provides quite robust absolute depth estima-
tion, but lacks precision in fine surface details.
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(a) dragon (b) LF (c) PS

Figure 3: Light field (LF) and photometric stereo (PS) depth information.

3.2. Photometric Stereo Surface Normals

The surface appearance depends on the shape, reflectance, and illumination of the object. In our
virtual test setup we arranged 25 light sources on a sphere around the object in order to capture
several images from the same viewpoint under different illumination angles. Contrarily, in our real
world setup different illumination angles are achieved by the movement of the object under the light
source. We assume a Lambertian reflection model to describe the radiance. The pixel intensity vector
Iv = [i1, ..., i25] for each light source and pixel depends on the illumination vector L = [L1, ..., L25],
as well as on the estimated surface normal unit vector N to the surface and the surface albedo ρ.

Iv = ρ · L ·N

Thereby, we solve the albedo and normal vectors with ρ · N = L−1 · Iv. The depth map is then
integrated using the algorithm of Frankot and Chelappa [2].

As shown in Fig. 3c, this photometric stereo approach results in fine depth measurements and a strong
relative depth accuracy, while the absolute depth accuracy suffers from an accumulative offset. We
use the benefits of both the photometric stereo and light field depth estimation to achieve an improved
depth estimation result.

3.3. Combination

We refine the light field depth map, as shown in Fig. 3b, using high frequency photometric stereo
depth information, as shown in Fig. 3c. Depth from light field yields reliable absolute depth measures,
but suffers both from inaccurately estimated details in the structure and high frequency noise. Low
frequencies in the light field depth map Dl are extracted using a bilateral smoothing filter fl. High
frequency components are taken from the photometric stereo depth map Dp, using a high-pass image
filter fh. Depth refinement is obtained by replacing high frequency information from the light field
depth map by the according high frequencies in the photometric stereo depth map. Our final depth
map D is thereby constructed as the linear combination of the low frequency components from the
light field depth map and the high frequency components from the photometric stereo depth map,
weighted by the factors λl and λp respectively.

D = λl ·Dl ∗ fl(u, v) + λp ·Dp ∗ fh(u, v)

Results are shown in Fig. 4, where 4a and 4d hold the depth data from light field images from both
the head and the tail of the dragon object. The second column, see Figs. 4b and 4e, shows the
photometrically refined depth map, using our combinational approach.
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(a) LF Depth Tail (b) Combined Depth Tail (c) GT

(d) LF Depth Head (e) Combined Depth Head (f) GT

Figure 4: Combination of light field and photometric stereo in order to improve fine structures in the
light field depth estimation. Both rows show a part of the tested object: (a),(d) original light field
depth, (b),(e) improved depth by photometric stereo, (c),(f) ground truth depth map.

4. Experimental Results

We performed experiments on several coins, using the multi-line-scan setup, an example is shown
in Fig. 5. Transporting the coin, shown in Fig. 5a, along the conveyor belt, we acquired light field
and photometric stereo data. The depth information gained from light field data is shown in Fig. 5b.
Surface normals are estimated from the same photometric light field data through the detection of a
specular lobe in each image location. The specular lobe position corresponds with the local orientation
of the surface. The image depth is calculated using the surface normals as described in Subsection 3.2.
In Fig. 5c we obtained a refined solution by the combination of photometric stereo depth and light
field depth, as described in Sec. 3.

5. Conclusion and Discussion

We discussed the pros and cons of passive (light field) and active (photometric) stereo approaches for
depth estimation on virtually generated data. A way to combine both approaches in order to achieve
a more precise depth estimation was presented. We also showed initial results on our multi-line-
scan setup, which is acquiring light field data and photometrically varying data at the same time,
i.e. while observing the object under relative motion. Relative motion between the object and the
acquisition device is a typical configuration in industrial vision systems, thus this setup fits well for
such applications. Initial results were given and the suggested combination scheme was demonstrated.
Further work will cover a more complete evaluation, as well as an improvement of the combination
scheme.
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(a) Coin image (b) LF depth (c) Combined LF and PS

Figure 5: Coin image (a), acquired with our Multi-Line-Scan Setup, with an estimated depth both from
light field and our improved result through combination with photometric stereo data.
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[8] K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis,
and S. Nayar. PiCam: an ultra-thin high performance monolithic camera array. ACM Trans.
Graph., 32(5), 2013.
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Abstract
In this paper, we present an idea for a sparse approach to calculate camera poses from RGB images
and laser distance measurements to perform subsequent facade reconstruction. The core idea is
to guide the image recording process by choosing distinctive features with the laser range finder,
e.g. building or window corners. From these distinctive features, we can establish correspondences
between views to compute metrically accurate camera poses from just a few precise measurements. In
our experiments, we achieve reasonable results in building facade reconstruction with only a fraction
of features compared to standard structure from motion.

1. Introduction

Structure from motion (SfM) has been an active research area in computer vision for decades as it is
of interest in a wide range of practical applications such as robotic navigation and augmented reality.
Common SfM approaches exploit a huge number of feature correspondences and finding suitable
starting views poses a challenge, which is not necessarily simplified by the abundance of features.
Often, this is tackled by assuming a set of ordered images or incorporating additional measurements
for camera pose initialization. In a subsequent step, all the views are merged into a common global
coordinate system, where the whole scene structure in 3D is calculated and refined together with the
camera poses. The optimization of the final scene structure is computationally demanding due to the
large amount of correspondences over multiple camera views.

Figure 1: Our proposed sparse SfM approach, where we take RGB images and laser distance measures
to estimate camera poses and a sparse point cloud.
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In this work, we present an idea to estimate metrically correct camera poses with just a small number
of features (see Fig. 1). Our hardware setup consists of an RGB camera and a laser range finder (LRF)
(see Fig. 2 (a)). The LRF allows us to select highly distinctive features for pose estimation while at the
same time obtaining their accurate distance. We focus on the reconstruction of facades, enabling us
to utilize homographies instead of fundamental matrices for correspondence computation. For pose
estimation, we use laser points with known distance from the camera and their respective matches in
other views.

Finally, we compare our approach to the freely available SfM framework OpenMVG [10] and show
that we achieve reasonable results for the camera poses with just a fraction of correspondences. This
is of special interest for metric reconstruction on devices with constraints on computational power,
e.g. mobile devices or UAVs.

2. Related Work

Most of the work related to the task of calibrating the extrinsic relationship of an LRF to a projective
camera consider a setup with either a 2D [18, 7] or 3D LRF [14, 2]. Further, they rely on user input
to establish correspondences between the laser measurements and the images taken by the camera.

We on the other hand want to solve the task of extrinsic calibration of a 1D LRF to a camera without
user interaction. We require the 3D world position of the plane whose distance is measured to be
inferable from the images as well as the laser point produced by the LRF to be visible within the
image. In contrast to [13], where they jointly perform geometric camera and LRF calibration, we do
not refine the intrinsic calibration of the camera using the LRF measurements but expect the intrinsic
calibration to be done beforehand and to be of sufficient quality.

SfM algorithms for 3D reconstruction and camera pose estimation from unstructured data usually only
capture the scene up to scale. In [1, 15] the authors perform large scale 3D scene reconstruction from
Internet photos. Their work examines 3D modeling from unstructured data, yet the reconstruction
can be only performed up to scale due to inherent lack of metric information. In [3], the authors first
solve the relative motion on a local scale among just a few images, and then use these local relations
as initialization for the global solution.

Methods solving the metric reconstruction problem with the SfM paradigm often rely on either an
underlying structure of data (sequential image capturing, constant acquisition frame rate) in connec-
tion with registered motion estimations using GPS or inertial measurements as in [16, 3] or rely on
direct geometry measurements with 3D LRFs and subsequent registration of the resulting point clouds
[6, 7].

The approach presented in [12] is the one most similar to ours. However, in addition to 1D laser mea-
surements corresponding to images of the scene, they leverage motion estimations between images
through IMU data as well as interactive gestures for semantic cues aiding in reconstruction.

We propose an approach for metric camera pose estimation from unstructured images. Instead of
searching for dense point correspondences among all images, we restrict ourselves to a sparse wire-
frame model with each image contributing just a single point (the location of the laser distance mea-
surement). This allows us to ensure robust reconstruction by choosing distinct and easily matchable
locations on the facade during data acquisition.
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Figure 2: Left: The setup of the DSLR and laser range finder on the carbon panel. Right: The schemat-
ics of the camera and laser range finder setup and the idea behind calibration.

3. Camera Setup and Calibration

Our hardware setup consists of a standard DSLR mounted onto a rigid carbon panel next to a 1D
LRF (see Fig. 2), which we control remotly via USB and Bluetooth for easy acquisition of images
and distance measurements. We perform intrinsic calibration with a modified version of the Bouguet
toolbox and a custom target as proposed in [4]. In the remaining part of the paper we expect the
camera to be calibrated and the geometric distortions introduced by the camera and lens assembly to
be removed from the images. This enables us to infer the real world line of sight llos with respect to
the center of projection of the camera of any given pixel in an image Ii as:

llos,i = K−1 · l2D,i,i, (1)

where K denotes the camera matrix and l2D,i,i = [x, y, 1]T is the 2D position of the laser point i in Ii
in homogeneous coordinates.

In theory, provided an intrinsic camera calibration K and a known plane in 3D, the rotation RLRF

and translation tLRF of the laser range finder relative to the camera can be estimated using two mea-
surements only. Yet, in order to obtain a more robust estimation, we take several measurements
M = {di, Ii}N1 of distances di with corresponding images Ii. Since the application is 3D facade
reconstruction and we expect the facade measurements to be taken nearly fronto-parallel to the image
sensor, we restrict the extrinsic calibration sequence to a fronto-parallel movement of the target rela-
tive to the camera, ensuring that the position at which the LRF takes its measurement is well within
the calibration target.

In a first step, we detect the target position and orientation in 3D relative to the camera’s center of
projection, as well as the target position in 2D within the image. We detect the laser point as brightest
object on the calibration target using adaptive thresholding and then take its center of mass as the 2D
position l2D,i,i = [xi, yi, 1]T of the laser point i in Ii. We then calculate the position l3D,i in 3D of a
laser point by intersecting the line of sight llos,i, on which the laser point lies, with the target plane.

When holding the camera positions fixed and moving the calibration target plane relative to it, all
points l3D,i, i ∈ {1, . . . , N} lie on a straight line. This line corresponds to the viewing direction
lLRF of the LRF, which we calculate by fitting a line to the measurements using singular value de-
composition on the 3D points stacked to a matrix L3D = [l3D,1, · · · , l3D,N ]. The right-singular vectors
obtained by SVD correspond to the orthogonal directions of maximum variance within the data. Thus,
the right-singular vector corresponding to the largest singular value of L3D coincides with the viewing
direction of the LRF, provided that the uncertainty of the estimation of the LRF’s origin is sufficiently
smaller than the relative movement of the calibration target.
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We obtain several noisy estimates for the position tLRF of the LRF through the correspondence

tLRF,i = l3D,i − di · lLRF , (2)

where lLRF has been normalized to unit length. We obtain the final estimate for the position tLRF of
the LRF by taking the median of all noisy estimates. The rotation RLRF is given by the angle between
the viewing direction lLRF of the laser range finder and the cameras optical axis in the plane spanned
by the optical axis of the camera and lLRF .

4. Sparse Pose Estimation and 3D Scene Reconstruction

The proposed approach is structured in steps typical to SfM pipelines: image recording, preprocess-
ing, relative pose and motion estimation between views and ultimately 3D reconstruction. Since it is
aimed at the reconstruction of building facades, which can to a large extent be modeled as a set of
flat surfaces, it is sufficient to reconstruct the building as a wire-frame model using surface vertices
together with a few supporting points on the walls. We compute SIFT matches to estimate homo-
graphies between image pairs (Ii, Ij), which can be used to establish correspondences based on the
known laser point l3D,i in Ii and its respective 2D position l2D,i,j in Ij .

Using an initial set of 4 images with full correspondences and the laser measurements, we are able
to initialize and calculate an early estimate for our model and the relative camera poses. Then we
iteratively add the remaining cameras and distance measurements and finally refine the poses with a
global bundle adjustment. Since we know the respective distance information to each camera pose,
this estimation is accurate in its scale.

4.1. Image Recording

Since we perform sparse camera pose estimation and reconstruction, the accuracy of the solution
depends upon a few, yet highly significant features which are easily found in images taken from
different perspectives. For a good reconstruction, the significant features should be chosen in a way
such that they lie on the facade and are well-distributed over its surface including the corner points,
e.g. vertices of walls and corners of windows. Figure 1 depicts the data recording process, where
we take RGB images from various view points while measuring the distance of a single point in the
respective image with the LRF.

4.2. Preprocessing and Feature Extraction

To keep our approach as flexible as possible and to reduce the complexity during manual data ac-
quisition, we assume no particular order of the images. Initially all possible image pairs are added
to a working set. We extract SIFT features [9] from gray-scale versions of the images and establish
point correspondences using a FLANN-based matcher [11] followed by Lowe’s ratio test to filter out-
liers. With these correspondences, we robustly estimate a homography between each image pair using
RANSAC [5] with a threshold of 1 px. We only want to keep image pairs with a certain overlap in the
working set, thus we filter out all with less than n = 10 inliers according to the RANSAC estimate
and a ratio of inliers to number of matches of < 50%. As a measure for the quality of the remain-
ing image correspondences, we define an error Ei,j for an image pair (Ii, Ij) using the 2D positions
PSIFT,i and PSIFT,j of their matched features as follows:

Ei,j = mean(||PSIFT,i − PSIFT,j||2),∀i, j ∈ N, i 6= j. (3)
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The idea is that the Euclidean distance between SIFT matches of an image pair taken spatially closer
together is lower than when taken from positions farther apart. E is used to find the images to initialize
the algorithm and to find subsequent images to iteratively extend the model.

4.3. Laser Point Correspondence Computation

With the image pairs (Ii, Ij) remaining in the working set (see Sec 4.2.), we establish correspondences
for the measurements of the LRF. We then compute the 2D laser point l2D,i,i by projecting l3D,i into
its respective image using the extrinsic calibration (see Sec. 3.). As we typically deal with planar
structures like facades, we estimate a homography and transform l2D,i,i into image Ij to get l2D,i,j .
This approach proves to be fairly robust in our experiments, however due to the highly repetitive
nature of many facades, false positives still pose challenge.

4.4. Structure from Motion (SfM)

Our structure from motion (SfM) approach consists of three successive steps: finding an initial set
for model initialization (i), iteratively adding one image at a time (ii) and one final bundle adjustment
over all pairs (iii).

Model Initialization
As for all iterative SfM systems, finding a good set of starting images is challenging. Due to the
many available features in common approaches, only one image pair is necessary to initialize camera
pose estimations. In contrast, our approach needs a larger initial set to account for its sparse nature.
Each camera has 6 degrees of freedom (3 for rotation, 3 for translation), hence we need at least 6
equations to estimate its pose. In the previous step we obtained for each image pair (Ii, Ij) two 3D-
2D correspondences l3D,i ⇔ l2D,i,j and l3D,j ⇔ l2D,j,i, i.e. 4 equations for each given image pair.
For a set of at least 4 images, the resulting equation system is solvable with 6 different image pairs
resulting in 4 equations each. The initial set Iinit is chosen as the set of 4 images with the smallest
sum of mutual errors Ei,j .

We solve the task of finding relative rotations Ri and translations ti in 3D for each camera by min-
imizing the reprojection error C(·) of a laser measurement l3D,i and its 2D correspondences l2D,i,j·
with bundle adjustment. The reprojection error is defined as:

C(Iinit) = min||π(Rj(R
−1
i l3D,i − ti) + tj)− l2D,i,j||22,∀i, j ∈ Iinit, i 6= j, (4)

with R and t the rotation and translation of each respective view and π(·) the projection. This for-
mulation first projects a laser measurement l3D,i in 3D from its respective camera coordinate system
i into a common world coordinate system and subsequently reprojects it to the camera coordinate
system j. We solve the minimization problem of bundle adjustment with a Levenberg-Marquardt [17]
least-squares solver. We denote the resulting set of rotations and translations of all camera views
currently involved as our current model Mcurr.

Iterative Bundle Adjustment
In the next step, we extend our model Mcurr by adding a new image Ik from the pool of candidates.
We find Ik by summing up the error Ecurr,k of all possible image pairs (Icurr, Ik) and take the one
with the most correspondences and the lowest overall error. We also set the initial rotation Rk and
translation tk of the newly added camera equal to the parameters of the closest camera, i.e. the one
with the lowest Ei,k, i ∈ Mcurr. For each image pair, i. e. 3D-2D correspondence, we get two
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independent equations for the x- and y-position, thus we need at least 3 correspondences to solve the
6 degrees of freedom given by Rk and tk. As mentioned in Section 4.3., outliers (wrong matches) are
possible, thus in practice we use at least 4 correspondences.

In a first step, we compute the reprojection error of all correspondences C (4) using the initialized
camera pose and the mean reprojection error C̄. Then we take all correspondences with an error
smaller than 1.5C̄ or a threshold εC . We then optimize with the same cost function (4) as for the
initial bundle adjustment with the major difference that only the pose of the newly added camera
k is optimized, while the rest of the system Mcurr is fixed. After optimization, we again filter bad
correspondences with the same approach as described above and perform a second optimization,
which is usually very fast due to the already good estimation. We iterate through all images until no
more can be added, i.e. do not fulfill any of the conditions.

Global Bundle Adjustment
While keeping the camera system Mcurr fixed and only optimizing the new camera k is very fast
and gives an estimate of the model structure, it does not replace a global optimization approach. We
perform a final global bundle adjustment step, where all the camera poses are optimized. In this
case, we take all the correspondences used during the iterative bundle adjustment step and initialize
the camera poses with the previously computed rotation and translation. Here, we also use the cost
function presented in (4). Similar to the iterative bundle adjustment, we again filter outliers with the
reprojection error after optimization, but instead impose that the error must be smaller than < 1.2C̄.
After this final filtering step, we perform one last global bundle adjustment.

5. Results and Discussion

In this section, we present early results of our guided sparse camera pose estimation. We evaluate
our approach on two datasets from different buildings, one with a well-textured facade and one with
redundant structures. As reference, we use the open-source SfM framework OpenMVG, which can
achieve an accuracy of around 1 cm in ideal cases [10]. It utilizes SIFT features and many correspon-
dences to estimate camera poses and a point cloud. OpenMVG chooses the starting views randomly
and in our evaluation we had to start SfM multiple times to get a reconstruction. We evaluate the
distance between the camera centers generated by the two approaches. OpenMVG estimates the re-
construction up to scale, thus to metrically measure the distance between cameras, we transform its
world coordinate system to ours using a robust similarity transform.

Figure 3 shows a histogram, where the bins show the number of distances between camera centers in
the respective range in cm. Cameras in the first few bins are closer to OpenMVG, while the cameras in
the last bin are farther away. Especially in the first experiment we achieve reasonable results and that
with only 90 correspondences compared to OpenMVG’s 2969, which is a reduction by a factor of 30.
In the second experiment, we only use 56 correspondences compared to 1880 in the reference. The
histograms show that we are centimeters away from OpenMVGs reconstruction even though we still
achieve visually appealing results when reprojecting the laser points into the images (see Fig. 4). Due
to the sparse correspondences, even one unfiltered outlier can decrease the final result significantly.

82



Figure 3: The two experiments and the distances between our camera positions and OpenMVG’s. The
bins of the histogram show the number of distances between camera centers in the respective range
[cm].

Figure 4: The reprojected laser point from the computed camera poses.

6. Conclusion and Outlook

In this paper, we presented a first evaluation of our idea to utilize a combination of RGB camera and
LRF for sparse camera pose estimation, where we can select significant features during the image
recording process with the LRF. We showed that metrically accurate camera pose estimation with
just a few correspondences is possible. In future work, we plan a more sophisticated way to redetect
significant features in the other views without the use of SIFT matches and homography estimation,
which would also enable the reconstruction of more complex 3D structures. Additionally, we plan to
improve the accuracy by robustifying our approach against outliers during bundle adjustment.

An interesting direction for future work is inspired by Li et al. [8], where they address the SfM
problem by estimating up-to-scale edge lengths of a rigid graph constructed from 3D features and
their respective image rays. We would like to investigate whether the laser range measurements can
be directly used as edge lengths for this approach.
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Abstract
Segmenting the signal of a 3D-sensor represents a core problem in computer vision. Describing
segments at the object level is a common requirement for higher-level tasks like action recognition.
Non-parametric techniques can provide segmentation without prior model information. However,
they are also prone to over- and under-segmentation, especially in case of high occluded scenes.
In this paper we propose an approach to segmenting a 3D scene based on a set of known object
models. Six-degree-of-freedom (6DOF) model poses result from recognition and pose estimation by
exploiting distinct object shapes acquired from a non-parametric segmentation stream. The aligned
object models are used in order to resolve over- and under-segmentation by following a bottom-
up strategy. Segmentation refinement results from contracting and subdividing input segments in
accordance to aligned object models. The proposed algorithm is compared to a trivial model-based
segmentation approach that neglects the segmentation stream. Both approaches are evaluated on a
set of 24 scenes which are divided into four different complexity categories. The complexity of the
scenes ranges from simple to advanced, objects are placed in sparse configurations as well as highly
occluded compositions.

1. Introduction

Describing point cloud segments at the object level is of significant importance in the area of computer
vision. Having a mechanism that allows to discriminate between individual objects in a captured scene
can be useful for higher-level tasks like action recognition, planning and execution [2, 18]. Depth
information can provide valuable cues for tasks like segmentation, recognition, pose estimation and
tracking [1, 3, 6, 16]. A major challenge is to apply recognition and pose estimation in occluded
environments, where scenes are captured by low-resolution RGBD-sensors. This work concentrates
on recognition, pose estimation and segmentation of known objects which are part of an assembling
task. The objects are placed in table-top scenes that are captured by a Kinect sensor.

The main contribution of this paper can be summarized as follows. Starting from a given model-free1

segmentation input stream, we propose to execute segment-based object recognition and pose esti-
mation by following a bottom-up strategy. We present a combined recognition, pose estimation and
segmentation workflow that exploits geometrical cues delivered by the segments that are computed

1In the context of this paper the term model-free means that the underlying process does not rely on object models that
have to be specified by a supervisor.
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by a model-free segmentation process. The complexity of the recognition task is reduced stepwise
by handling large segments before small segments. The input segmentation is refined iteratively by
exploiting collected 6DOF model pose information. Recognition and pose estimation rely on object
models that are specified by 3D meshes as shown in figure 1. Object recognition is bound to certain
time constraints, therefore the proposed algorithm does not execute in real-time. The utilized segmen-
tation stream uses color information as its main cue. In contrast to object recognition, which has been
restricted to geometrical information. Omitting color information in the latter case has been motivated
by the surface characteristics of the evaluated object dataset. The proposed algorithm does not nec-
essarily rely on color cues. In general, it can be applied with any adequate point cloud segmentation
input.

faceplate separator pendulum shaft bolt angular bolt sensor pendulum head

Figure 1: The set of object models that are used for recognition and pose estimation.

2. Related Work

Exploiting low-level processing outcomes in higher-level tasks is a fundamental paradigm in com-
puter vision [4, 8, 19]. At present, there exist many segmentation methods that apply to RGBD data
[1, 7, 13, 9]. Global surface descriptors are commonly applied to pre-segmented scenes [4]. In this
paper we concentrate on local descriptors [5]. The latter type is more suitable for our dataset, since it
is more robust against clutter and occlusion. Model information is frequently used for object tracking
in videos. The method proposed in [14] uses model information to track 6DOF poses. A RGBD-
based segmentation and tracking approach that uses adaptive surface models is proposed in [10]. Our
approach concentrates on a combination of object recognition, pose estimation and segmentation in
RGBD-images.

3. Background

The following sections provide information about the methods that have been utilized in this paper.
Recognition and pose estimation is addressed in the subsequent section 3.1.. Section 3.2. introduces
a method that delivers model-free segmentation. The model-based point cloud segmentation that is
described in section 3.3. acts as a baseline for the bottom-up segmentation approach proposed in
section 4.2..

3.1. Point-based Object Recognition and Pose Estimation

At present, there exists a large variety of different object recognition and pose estimation approaches.
An appropriate method should be robust against noise which is introduced by the sensor and it should
provide reliable results even in the case of occluded scenes. Scenes are captured by a depth-sensor
and object models are represented as point clouds that are sampled from 3D meshes. The method used
in this paper estimates 6DOF poses by applying a point-based recognition pipeline [3]. The pipeline
is publicly available as part of the Point Cloud Library (PCL) [16]. Figure 2 shows the single steps
that are executed in order to recognize the objects in the scene. The first stage extracts keypoints from
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model and scene point clouds. In general, keypoints are defined by detecting characteristic surface
points. A simple and efficient alternative is to sample keypoints uniformly from the surface. The
local geometry of each keypoint is described by the Signature of Histograms of Orientation (SHOT)
descriptor [17], which delivers favorable results for the evaluated dataset. PCL provides a variety of
different descriptor implementations. A comprehensive comparison can be found in [5]. Correspon-
dences are generated by matching scene descriptors against a database of offline computed model
descriptors. The next step clusters geometrically consistent correspondences into groups. Starting
from a seed correspondence ci = {pmi , psi} (pmi and psi denote corresponding key points of model and
scene), geometrical consistency follows from the following relation

|||pmi − pmj ||2 − ||psi − psj||2| < ε (1)

where ε defines a distance threshold between the keypoints. A minimum of three correspondences
is required to estimate a 6DOF pose. The absolute orientation step eliminates correspondences that
are not consistent with a unique 6DOF pose. The utilized recognition pipeline provides an optional
iterative closest point (ICP) refinement step, which can be applied on the recognized hypotheses. The
number of ICP iterations has been set to a low value. Running more than 5 ICP iterations on the given
dataset does not result in significant recognition improvements. The final hypothesis verification step
determines a set of non-conflicting model hypothesis that are in accordance with the scene point cloud.
Hypothesis that result from unexpected objects within the scene have to withstand the following
quality measurement. An acceptance function evaluates the number of supported model points that
are close to scene points, as well as the number of unsupported model points (visible model points
that have no counterpart in the scene). A detailed description of the hypothesis verification algorithm
that has been utilized in this paper is given in [12].

Figure 2: Recognition pipeline used in this paper.

3.2. Model-Free Point Cloud Segmentation

Segmentation results from summarizing interesting and distinguishable image properties. Higher-
level visual tasks like object recognition and pose estimation can benefit from such condensed image
representations. A method that segments the signal of a RGBD-sensor, without explicit object model
information has been presented in [1]. Homogeneous regions (segments) are generated by using color
information. In addition, the method exploits depth information in order to support the segmentation
and tracking process. Figure 3 shows two example scenes that have been segmented by this method.
The segmentation result depends on several factors like scene density, degree of occlusion, object
geometry, light conditions, etc.

Figure 3: Point cloud segmentation generated by a color-based model-free method.
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3.3. Model-based Point Cloud Segmentation

A trivial model-based point cloud segmentation results from evaluating the point vicinity of recog-
nized object models. Object models are aligned with the scene point cloud by applying point-based
methods, as described in section 3.1.. It is reasonable to assume that a model point that is close to
a scene point indicates a model-explained segment membership of this point. Spatial decomposition
techniques such as kd-trees provide an efficient structure to determine the k closest points of a query
point [15]. The set of scene points that are explained by an aligned object model results as follows.
Each point that has been sampled from the model point cloud defines k nearest neighbors (kNN) in the
scene point cloud. The nearest neighbor search is carried out in a kd-tree, which represents the scene
point cloud. Choosing the value for k results in a trade-off between segment density and sharpness of
the segment edges.

4. Segment-based Object Recognition and Pose Estimation

Rising the degree of occlusion in a scene inevitably complicates the segmentation process. Never-
theless, the set of regions that result from the model-free segmentation method described in section
3.2. can preserve a certain amount of object characteristics, even in the occluded case. This motivates
a segment-based recognition and pose estimation approach where the model-free segmentation acts
as main input. Single segments like the one shown in figure 3 are often not expressive enough to
apply recognition and pose estimation on them. Many of them show less variation in surface-normal
orientation. We propose to generate larger surface patches in order to increase the recognition output.
Surface patches are created by clustering a set of adjacent segments together. Figure 4 provides an
overview of how segment-based model poses are generated iteratively in order to refine model-free
segmentation in a bottom-up way. In the rest of this paper, the terms surface patch and segment are
interchangeable, since single segments can also act as simple surface patches.

Figure 4: Iterative application of segment-based object recognition and pose estimation.

4.1. Adaptive Correspondence Grouping

The correspondence-based recognition and pose estimation method that has been introduced in sec-
tion 3.1. searches for a set of non-conflicting hypotheses that describe the whole scene at once. In
contrast, we propose a segment-based bottom-up strategy. This approach is motivated by two consid-
erations. Firstly, restricting recognition and pose estimation to a surface patch, that preserves certain
object characteristics, could reduce the number of wrong hypotheses. Secondly, following a bottom-
up strategy that handles large surface patches early, reduces the complexity of the recognition task
for smaller segments. The latter consideration is gaining relevance if the scene is a composition of
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large and small objects. The proposed approach utilizes the recognition pipeline shown in figure
2. Model hypothesis are computed from consistent correspondence groups, as described in section
3.1.. However, in this case the proposed algorithm adapts the number of correspondences that are re-
quired to form a consistent group. According to [3] the correspondence grouping threshold trade-offs
the number of correct recognition for the number of wrong recognitions. In general the size of the
group can range between three (the minimum required to compute a 6DOF pose) and the number of
correspondences that are found in total. A high threshold generates few hypotheses whereas a low
threshold leads to many hypotheses. An optimal threshold is influenced by many factors like sur-
face patch size, level of over- and under-segmentation, object similarity, object geometry and also the
noise-level of the 3D-sensor. We propose to adapt the correspondence grouping threshold in accor-
dance to the hypothesis verification process which is the last stage in the recognition pipeline shown
in figure 2. Starting from a large value the correspondence grouping threshold is reduced stepwise
until at least one hypothesis survives the verification process. If the threshold falls below the absolute
minimum of three, recognition fails. The acceptance function of the hypothesis verification process
also offers opportunities for a segment-based parameter tuning. The thresholds for the number of sup-
ported and unsupported scene points, as described in section 3.1., can be weaken if the surface patch
size exceeds a certain threshold. This adjustment is justifiable since large surface patches commonly
generate fewer hypothesis that are more discriminable.

4.2. Bottom-up Segmentation

The basis for the bottom-up segmentation process is a 6DOF model pose that results from segment-
based object recognition and pose estimation. In contrast to the trivial model-based segmentation
process that has been described in section 3.3., we propose a recycling of the model-free segmen-
tation stream. According to figure 4, model-free (unexplained) segments are merged and splitted in
accordance to the recognized object model that has been placed at the estimated pose. The segmen-
tation process can be described as follows: If recognition fails surface patch creation restarts with the
next largest segment. In case of successful recognition, the initial surface patch is extended with parts
of unexplained segments that are covered by the aligned object model. Covered segment parts are
determined by applying a segment-based radius search in a kd-tree, similar to the approach described
in section 3.3.. The search radius is set to a fraction of the object model size. Surface patch parts that
are not covered by the recognized object model are separated from the current surface patch and fed
back into the recognition process. The process restarts until each unexplained segment becomes part
of a model-explained segment or gets labeled as unrecognizable. The single steps of the segmentation
process are shown in figure 5. Figure 5a shows the recognized object model that has been aligned with
the initial surface patch. Figure 5b shows the extension of the initial surface patch. The separation
of non-covered segment parts is shown in 5c. The final result of the model-explained segment can be
seen in figure 5d.

(a) (b) (c) (d)

Figure 5: Bottom-up segmentation. (a) Object model aligned with surface patch. (b) Merging of
covered segments. (c) Splitting of non-covered (unexplained) segments. (d) Final segmentation result.
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5. Results

The proposed algorithms have been evaluated on 24 different scenes which are divided into four
complexity categories. The first category contains simple object compositions where objects are
widely spread over the field of view. Category two consists of dense scenes that are commonly under-
segmented. The third category contains disordered scenes, showing a high degree of clutter. The
last and most challenging category contains objects that are assembled together, which results in a
high degree of occlusion. Figure 7 shows an instance of each category. The proposed segment-based
bottom-up approach is compared to the point-based method that has been described in section 3.3..
The algorithms have been tested on an Intel(R) core(TM) i5 2.53GHz CPU (multiple cores) with
7.7GB RAM. The average scene execution time2 of the segment-based approach is 154.38 seconds.
The point-based approach executes in 129.37 seconds.

5.1. Recognition Rate

Table 1 summarizes the recognition results of the object models shown in figure 1. As shown in the
table, segment-based adaptive correspondence grouping (CG) outperforms the point-based method
for almost all models. Figure 6 shows a more detailed comparison between all four evaluated com-
plexity categories. The low bolt sensor rating is caused by the segment-based parameter tuning of the
hypothesis verification process that has been discussed in section 4.1.. In this case, the verification
process eliminates too many reasonable hypotheses, which finally leads to confusion with similar
looking bolt angular and shaft objects.

model
method point-based

CG
segment-based

CG
faceplate 91.67 97.92
separator 83.33 100.00
pendulum 75.00 87.50

shaft 95.83 100.00
bolt angular 79.17 85.42
bolt sensor 75.00 60.42

pendulum head 83.33 95.83
average 82.92 87.08

Table 1: Recognition rate comparison of the point-
based baseline method and the proposed segment-
based method. CG - Correspondence Grouping
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Figure 6: Recognition rate comparison between
four evaluted scene complexities.

5.2. Segmentation

Figure 7 shows a segmentation comparison of four selected scenes. As shown in the image, the
segmentation quality strongly depends on the accuracy of the estimated model poses. Object con-
fusion impairs the segmentation result. The bottom-up segmentation benefits from the recycling of
model-free segments. The segment recycling results in sharper edges when compared to the trivial
model-based segmentation method. The destructive characteristic of the model-based segmentation
results from an inherently trade-off between sharp segment margins and segment density.

2The real-time model-free segmentation process, which is not part of this evaluation, relies on a GPU-based system.
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6. Conclusion

We have presented a segment-based object recognition and pose estimation approach. The proposed
bottom-up segmentation strategy reduces the complexity of the recognition task in an iterative way.
The geometrical cues of the model-free input segmentation can successfully be exploited in order
to improve recognition rates in occluded scenes. The proposed segment-based recognition and pose
estimation approach relies on correspondence-based recognition. False hypothesis are suppressed
by adapting the cardinality of consistent correspondence groups. The estimated 6DOF pose infor-
mation can effectively be used in order to resolve over- and under-segmentation of the model-free
input stream. The suitability of our approach was demonstrated on 24 scenes. The complexity of
the evaluated dataset reaches its maximum in assembled object compositions. The efficiency of the
segment-based object recognition and pose estimation is bound to the amount of under-segmentation
in the surface patch.

(a) (b) (c) (d)

Figure 7: Segmentation comparison. (a) RGB input. (b) Model-free segmentation. (c) Model-based
segmentation (baseline). Unrecognizable objects are colored black. (d) Bottom-up segmentation.
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Abstract 
In this paper, a robust, real-time object tracking approach is presented. The approach relies only 

on depth data to track objects in a dynamic environment and uses random-forest based learning to 

deal with problems like object occlusion and clutter. We show that the relation between object 

motion and the corresponding change in its 3D point cloud data can be learned using only 6 

random forests. A framework that unites object pose estimation and object pose tracking to 

efficiently track objects in 3D space is presented. The approach is robust against occlusions in 

tracking objects and is capable of real-time performance with 1.7ms per frame. The experimental 

evaluations demonstrate the performance of the approach against robustness, accuracy and speed 

and compare the approach quantitatively with the state of the art.  

 

1. Introduction 
 

Object tracking has been widely researched in the vision community over the recent past and many 

methods are proposed in literature to track objects [6]. Until the last decade the methods mainly 

considered 2D image data as input and in some cases stereo vision and served applications like 

surveillance, military use, security and industrial automation. However, 2D image data only 

captures the 3D projection into two dimensions and is sensitive to illumination changes. With 

recent development of RGB-D devices like Kinect, researchers all over the world are exploiting 

depth data for object recognition and tracking [7]. Tracking can be defined as the problem of 

estimating the trajectory (6 DOF – 3 translations, 3 rotation parameters) of an object in the 3D 

image plane as it moves around a scene. Though there has been a lot of work in tracking humans 

using RGB-D devices [8], not much work is done in the field of tracking objects that could be used 

in industrial settings which often have real-time requirements.  

Object tracking in general is a challenging problem. Tracking objects becomes difficult due to 

abrupt object motions, object to object occlusions, clutter, camera motion and noisy sensor data. 

When considering its application in industrial settings the problem of designing a successful 

tracking algorithm becomes even more difficult. This is due to the requirement of higher levels of 

robustness, accuracy and speed. Also, industrial objects tend to have little texture. In this paper, we 

describe an approach for real-time tracking of objects [12] that aims to answer these challenges. 

The main contribution of this paper is the extended evaluation of the work in [12] and its 

comparison with the state of the art approaches. 
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Inspired by [5] we describe a fast and accurate 3D object tracking algorithm for rigid objects. The 

proposed approach is model-based, uses only depth data and achieves very good accuracy utilizing 

a framework that combines object localization and object tracking. 

 

2. State of the Art 
 
With the introduction of RGB-D sensors like Kinect, various approaches for object tracking in 3D 

were proposed, which ranged from tracking humans [10], hand tracking [8], and tracking rigid and 

non-rigid objects. For a better comparison of our approach with the state of the art, the scope of this 

section is limited to approaches that focus on frame-to-frame tracking of rigid objects using RGB-D 

data. The proposed approaches can be broadly classified into two categories: a) approaches that are 

based on 3D models and b) approaches that do not assume pre-defined object models.  

For example, an approach that does not rely on prior knowledge of the target object representation 

is described in [14]. The approach uses adaptive Gaussian Mixture Models (GMM) to represent 

multiple objects that move independently. The object model is updated incrementally at each time 

instant with the help of the feedback results from the robust tracking process. To correct falsely 

detected objects in presence of occlusions and various types of interactions among multiple objects, 

an approach that exploits component-level spatiotemporal association is proposed in [10]. 

However, the approaches of “individuation-by-feature” [14] and “individuation-by-location” [10] 

require high computation time to learn each object model at every time instant and would 

exponentially increase with the number of objects and their spatial relations. Moreover, in an 

industrial environment which involves human actions, situations keep changing every time instant. 

To achieve robustness and computational efficiency in such scenarios, applying one individuation 

method is not sufficient. To alleviate this problem, an approach that determines individuation 

strategy (by location and/or by feature) depending on the object situation is proposed in [15]. The 

main assumption of the approach is that falsely segmented objects can be detected and rectified 

using both location and position information. It also assumes that objects do not change 

substantially in terms of shape or position from one frame to the other. A probabilistic framework 

for simultaneous tracking and reconstruction of rigid 3D objects using RGB-D sensor is proposed 

by [7], where the probabilistic method is used to statistically determine occlusions. Intensity images 

are used to model appearance of an object while modeling occlusions.  

With the availability of reliable, fast and simple object reconstruction solutions like 

ReconstructMe1, 3D object models can be obtained in real-time. A popular approach for model-

based object tracking is based on the particle filters [10][18]. For example, the authors in [4] 

propose a 3D model-based visual tracking approach using edge and keypoint features in a particle 

filtering framework.  This approach does not assume the initial pose of the object. It uses given 2D-

3D keypoint correspondences to calculate a set of possible pose hypothesis of the object. Once the 

intial pose is estimated, edge points are used to track movement of the object from frame-to-frame. 

This approach is extended by [5] where an RGB-D object tracking method using a particle filter on 

GPU is proposed.  

Another popular method for 3D object tracking is the Iterative Closest Point (ICP) approach which 

has many variants [16]. The algorithm uses a set of initial parameters and refines them iteratively to 

reach a set of optimal parameters by minimizing the object function. This approach has problems in 

dealing with occlusions and object clutter, which result in a local-minimum. To overcome this 

problem, a model-based learning approach is proposed in [18]. This approach learns the relation 

between the parameters that induce object’ motion and the change they induce on the 3D point 

cloud using random forests. In order to track the object in motion, the change in the 3D depth data 

                                                 
1 ReconstructMe http://reconstructme.net  

98



is used to predict the parameters of this motion. The advantage of using random forests is that it is a 

collection of trees that learn and predict independently, even when some input data is affected due 

to occlusions, other trees can still provide good predictions. In order to track objects in different 

views, [18] trains a random forest for multiple views of the object that leads to a high 

computational effort. Moreover, the approach is not suitable for tracking symmetrical objects as the 

multiple-pose hypotheses are averaged and this leads to erroneous tracking of symmetrical objects. 

An offline learning based approach with known 3D object models based on particle filters is 

proposed in [9]. In [20], the authors propose a learning based approach inspired by [18] with 

reduced computational cost and improved occlusion handling capability.  

In the proposed approach, we make the following contributions: a) we argue that it is sufficient to 

train only 6 random forests, to learn the relation between object motion and its corresponding 

change in 3D point cloud data, which in turn reduces the computational complexity b) dealing with 

symmetrical and non-symmetrical objects and c) a framework that is capable of tracking objects in 

presence of partial occlusions. A quantitative comparison is also carried out in this paper that uses 

synthetic data (that includes ground truth) provided by [5] to compare our approach against the 

state of the art.  

 

3. Method 

 
This section illustrates the proposed approach for localizing and tracking 3D objects with high 

performance and accuracy. First we describe the global localization algorithm RANGO, followed by 

the local tracking algorithm. Then, we illustrate how both components are combined into the full 

tracking framework 

 
3.1. RANGO – RANdomized Global Object localization 

 
RANGO is an algorithm for 3D object localization. It is based on a random sampling algorithm 

(RANSAC) described in [1][3] with several performance and robustness improvements, allowing a 

very fast detection rate when compared to the registration approach proposed in [7]. Its main 

contribution is the replacement of K-nearest neighborhood search for inlier detection with a 

probabilistic grid based approach. Thus the time complexity for the evaluation of a hypothesis 

(acceptance function) is reduced from 𝑂(𝑛 ∗  𝑙𝑜𝑔(𝑚)) where 𝑛 is the number of model points, 𝑚 

denotes the number of points in the scene, to 𝑂(𝑛). Additionally, the evaluation of the number of 

model points that fit the hypothesis is stopped early when the probability of finding a good match is 

too low. 

Sparse 3D Voxel Grid.  Each 3D point of a scene is approximated into a sparse axis aligned 3D 

grid. Each voxel of this grid is defined by a (𝑥, 𝑦, 𝑧) tuple where 𝑥, 𝑦, 𝑧 are (integer) coordinates for 

the voxel location. In RANGO this (𝑥, 𝑦, 𝑧) position is hashed into a single 32bit number which is 

used as an index in a hash table. Due to hashing collisions it is possible that two different points hash 

to the same voxel even though their position is unrelated, but the probability is low enough that it is 

not a problem for our use case. This 3D voxel grid is then used for fast verification of candidate 

transformations.  

To evaluate a transform matrix, we iterate over a set of sample points of the model and transform 

them into the scene. Each sample point is hashed into the 3D voxel grid containing scene points. If 

the hashed voxel is filled with a point and has a similar normal vector orientation as the model point, 

we count that as an inlier. This verification method has a complexity of 𝑂(𝑚) where 𝑚  is the 

number of sample points. This verification is only approximate as it is possible to miss a neighboring 

sampling point because we only lookup the voxel the sample point hashes to, ignoring neighboring 
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voxels. A kd-tree would allow for exact nearest neighbor queries, but would have 𝑂(𝑚 ∗  𝑙𝑜𝑔(𝑛)) 

complexity. The speedup achieved by the 𝑂(𝑚) verification allows us to evaluate more candidate 

transformations at the same time to boost accuracy. 

Filtering Candidate Solutions.  After the random sampling and matching process is over, the 

candidate solutions are filtered, since it is likely that multiple similar solutions have been found. In 

[3] a pose clustering approach is used. The pose clustering combines multiple similar poses to find 

an average position from these candidate solutions. This approach falls short for symmetric objects. 

E.g. a sphere where the reference frame is off center will result in many different potential poses, 

but each pose will have a completely different translation and rotation. In RANGO, we have 

replaced the clustering approach with a filtering approach. All candidate solutions are sorted by the 

number of inliers, highest number first. Iteratively, each solution is re-checked if it meets a given 

inlier threshold, and if it does, all scene voxels that were used in this inlier check are removed from 

the 3D voxel grid. This way only the best fitting candidate solution for a potential pose is used, 

while it is still possible to find multiple instances of the same object in the scene data. This 

approach works well for both complex and symmetrical objects. 

 

3.2. Multi-Forest Tracking 

 

Our multi-forest tracking approach is a variation of the multi-forest tracking algorithm described in 

[18]. Our modification to this algorithms retains the performance characteristic of [18] while having 

a significantly lower memory and training overhead, which allows the use of this algorithm on 

devices with limited computational power such as a tablet pc. It is noteworthy that we only use 

depth data for both tracking and object localization. The reason is that our main goal is to be able to 

robustly track industrial parts, and these usually do not carry much color information. 

Single-view-Tracking.  The multi-forest tracker described in [18] uses 6 ∗  𝑛𝑐  ∗  𝑛𝑡  random 

forests, where the number of dimensions to represent a pose is 6, 𝑛𝑐  is the number of camera 

positions and 𝑛𝑡 the number of trees in each forest. For each camera position sample points of the 

objects are extracted and used to train 6 random regression forests for tracking of this camera view.  

An algorithm switches between the camera views that are currently best visible. They parameterize 

this as 𝑛𝑐 = 42 and 𝑛𝑡 = 100 resulting in 25200 random trees. Each tree is generated from a test 

set of 50000 samples, resulting in a significant training effort. In our approach we have reduced 

this effort significantly to only 6 ∗  𝑛𝑡  trees. After the samples have been generated, each random 

forest is trained with all samples for a single dimension of the pose vector. That is, random forests 1 

to 3 are trained for changes in translation (x, y, and z), and random forest 4 to 6 are trained on the 

changes in rotation (roll, pitch and yaw) parameters respectively. During tracking, the depth 

changes are used to predict the changes in pose vector by simply combining the predictions of each 

random forest.  

In practice, we set 𝑛𝑡 = 70, resulting in only 420 random trees which in turn leads to a 60 times 

faster training time and 60 times less memory requirements. It typically takes about 3 minutes on 

an Intel(R) Core(TM) i5-3570 CPU (the proposed approach is implemented and tested on such a 

workstation) to train a new object for tracking. This low memory requirement also allows the 

tracking to run in real time.  

We initially sample a set of approximately 400 points from the surface of the object. Sampling is 

done by raytracing points onto the objects surface, creating a 3D grid around that object and then 

sampling a single point per grid. This sampling approach leads to evenly spaced sample points all 

over the visible surface of the object. The depth distance of these sample points to the visible depth 

map is then used in the training data. Since we have sampled points from all around the objects, 

many points will not lie on the visible surface but will be behind it. We rely on the random 
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regression forest to figure out what this means in term of object movement. In our experiments, the 

use of these single set of points has proven to lead to a highly stable tracking performance. 

Pose Forecast.  Tracking is performed on a frame by frame basis, by checking how depth values 

from sample points of the current positions vary when compared to the depth values of the current 

depth map. This means when an object is moving fast between two frames so that no or only few 

sample points of the previous position overlaps with the new position, the object cannot be tracked. 

In our algorithm we use the previously estimated movement prediction as a starting guess for the 

new movement prediction. This allows for objects to move further between two frames, and also 

provides a more accurate initial guess for the pose estimation. Initially when performing object 

localization, a movement of zero is assumed. 

 

3.3. Combined Object Localization with Tracking 
 

The full object tracking framework as shown in Fig. 1 combines both global object localization and 

tracking. The goal of this framework is to produce a continuous, low latency stream of the current 

object position. Whenever possible the system uses the fast tracking described above, and if 

tracking was not successful it switches back to the slower but global object localization. To track 

multiple objects simultaneously this tracking framework is run in parallel for each object. 

From Object Localization to Tracking.  Depending on the configuration of the object 

localization, it is possible to find multiple instances of the same object in a single frame. For our 

use case we assume that only a single instance is the correct one. To determine which of these 

instances the correct one is, we perform two checks. First, the instances are ranked by the number 

of inliers (r), and only if it passes a certain threshold it is considered as a potential correct pose. For 

each pose the multi forest tracker is evaluated and tracking is performed. When running the 

tracking algorithm on a correct pose, the estimated tracking transformation should be a minimal 

movement (m). When the tracking algorithm would estimate a large movement, this means that 

either this current position is wrong or cannot be tracked successfully. We use this tracking 

movement as an additional filtering criterion. In practice, we use both parameters to form a single 

sorting criterion quality (q) in (1): 

𝑞 =  
𝑟 

𝑚2 

We rank all candidate poses by this criterion, which leads to more accurate results than the use of 

either one of the criterion separately. 

 

 

Figure 1. Object tracking framework. The framework first performs global object localization on the input 

depth data. After the detection results are filtered they are passed to the Object Tracking module. If tracking 

was successful, the framework will directly use the tracking module to track objects for the next sensor input. If 

not, it will revert back to global object localization for the next sensor input frame.  The tracking results are 

published to a higher level system. 

 

Tracking Verification.  After tracking has been performed, we calculate the movement of the 

object with respect to the camera position. To determine if tracking was successful, we calculate if 

the current movement is reasonably realistic. We do this by calculating the acceleration of the 

object within the last 3 frames. If the acceleration is above a threshold, we consider the tracking as 

101



not successful. This happens when the tracking has “lost” the object and consecutive tracking 

iteration move the object around in the sensor data. In practice we have set this velocity to 80mm 

per frame. With 30 fps this means a velocity of about 2.4m per second. This is enough to accurately 

track quickly moving objects, while being robust to detect the random movements that typically 

occur when tracking of the object fails. 

 

4. Experiments and Evaluation 
 

In order to compare the performance of our approach against the state of the art we use the 

synthetic dataset provided by Choi and Christensen [5]. The approach is also evaluated on real-

world objects and the results are presented in [12]. Interested readers can find more information 

here2. The dataset in [5] consists of four object models and a synthetic test sequence (1000 RGB-D 

frames) for each object. The test sequence is obtained by placing each object in a virtual kitchen 

model and moving a virtual camera around the model. The object trajectories w.r.t the virtual 

camera coordinate frame serves as the ground truth pose (error free since it is generated via 

rendering) of the object. Fig. 2 shows one such frame of each object sequence. The performance of 

the proposed tracking approach on the synthetic data set is as shown in Figure 3.  

 
Figure 2. Example images from the synthetic test data set provided by [5], a) Milk b) Orange Juice c) Tide d) 

Kinect Box 

 
Figure 3: Results of the tracking approach on the synthetic data set a) Milk b) Orange Juice c) Tide and d) Kinect box 

 

                                                 
2 http://tracking.profactor.at  
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Evaluation. The evaluation aims at comparing our approach against the particle filter based 

approaches [5][18][9] and online learning based approach [20] in estimating the translation (in x, y, 

and z axis) and rotation (roll, pitch and yaw) parameters. We compute the root mean square (RMS) 

errors (translation, rotation) and average time per frame.   Table I shows our approach outperforms 

[5] and [18] over all sequences. Unlike [5] our approach only uses depth data for 3D tracking. It 

also performs better than [9] on average of about 0.31 mm and 1.16 deg in estimating the 

translation and rotation parameters respectively. Our approach requires much less computational 

time (1.7 ms per frame) when compared with [9] (131 ms). Though our approach performs on par 

with [20] in terms of run-time, it performs better in estimating the translation (by 0.31 mm) and 

rotation parameters (by 0.15 deg) on average. 

TABLE I.  COMPARISION OF OUR APPROACH WITH THE STATE OF ART AGAINST THE RMS ERRORS IN 

TRANSLATION (IN MM),  ROTATION (DEGREES) AND THE RUNTIME (MS) 

  PCL [18]1 Choi [5]2 Krull [9]3 Tan [20]4 Ours5 

a
) 

M
il

k
 

  
 R

M
S

 E
rr

o
r 

Transl. (x) 13.38 0.93 0.51 1.23 0.63 

Transl. (y) 31.45 1.94 1.27 0.74 1.19 

Transl. (z) 26.09 1.09 0.62 0.24 0.48 
Roll 59.37 3.83 2.19 0.50 0.19 

Pitch 19.58 1.41 1.44 0.28 0.28 
Yaw 75.03 3.26 1.90 0.46 0.27 

        Time 2205 134 135 1.5 1.7 

b
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Transl. (x) 2.53 0.96 0.52 1.10 0.39 
Transl. (y) 2.20 1.44 0.74 0.94 0.37 

Transl. (z) 1.91 1.17 0.63 0.18 0.37 
Roll 85.81 1.32 1.28 0.35 0.12 

Pitch 42.12 0.75 1.08 0.24 0.17 
Yaw 46.37 1.39 1.20 0.37 0.15 

 Time 1637 117 129 1.5 1.69 

c)
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Transl. (x) 1.46 0.83 0.69 0.73 0.42 
Transl. (y) 2.25 1.37 0.81 0.56 0.51 

Transl. (z) 0.92 1.20 0.81 0.24 0.64 
Roll 5.15 1.78 2.10 0.31 0.22 

Pitch 2.13 1.09 1.38 0.25 0.29 

Yaw 2.98 1.13 1.27 0.34 0.30 
 Time 2762 111 116 1.5 1.7 

d
) 

K
in

ec
t 

B
o

x
 

  
  

R
M

S
 E

rr
o

r 

Transl. (x) 43.99 1.84 0.83 1.54 0.30 
Transl. (y) 42.51 2.23 1.67 1.90 0.49 

Transl. (z) 55.89 1.36 0.79 0.34 0.31 
Roll 7.62 6.41 1.11 0.42 0.21 

Pitch 1.87 0.76 0.55 0.22 0.27 

Yaw 8.31 6.32 1.04 0.68 0.23 
 Time 4539 166 143 1.5 1.71 

  
M

ea
n

 

 

Transl. 18.72 1.36 0.82 0.81 0.50 

Rot. 29.70 2.45 1.38 0.37 0.22 

Time 2786 132 131 1.5 1.7 

1,2 Intel Core2 Quad CPU Q9300, 8G RAM with Nvidia GTX 590 GPU; 3 Intel(R) Core(TM) i7 CPU with a Nvidia GTX 550 TI GPU; 

4  Intel(R) Core(TM) i7 CPU; 5 Intel(R) Core(TM) i5 CPU 

 

6. Conclusion 
 
We have presented a framework for combining object tracking and object localization to provide 

robust tracking performance in a challenging scenario. A quantitative analysis of the evaluation on 

popular test data set is also presented. The evaluation shows that our approach performs better than 

the state of art in terms of estimating the translation and rotation parameters. The approach is 
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capable of real-time computation at 1.7 ms per frame on average. The next steps would be to 

combine the real-time object tracking approach with human tracking and extend the framework 

towards human activity recognition in industrial settings. 
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Abstract
Applying the concept of Hermann Weyl’s discrepancy as image similarity measure leads to outstand-
ing robustness properties for template matching. However, in comparison with standard measures this
approach is computationally more involving. This paper analyzes this measure from the point of view
of efficient implementation for embedded vision settings. A fast implementation is proposed based
on vectorization of summed-area tables, resulting in a speed-up factor 16 compared to a standard
integral image based computation.

1. Introduction

In this paper we take up a novel concept of similarity measure due to [1] and investigate its applica-
bility for the requirements of embedded vision. The core idea of this measure is its design principle
based on a family of subsets rather than evaluating the aggregation of point-wise comparisons on a
pixel-by-pixel level. In contrast to pixel-by-pixel based approaches with subsequent commutative ag-
gregation such as mutual information of normalized cross correlation the subset-based approach also
takes spatial arrangements into account which makes this approach interesting for pattern analysis
and matching purposes [2].

This measure goes back to H. Weyl already 100 years ago and was studied in the context of evaluating
the quality of pseudo-random numbers and measuring irregularities of probability distributions [3].
For one-dimensional signals (vectors) it is defined as

‖(x1, . . . , xn)‖D = max
1≤a,b≤n

|
b∑

i=a

xi| = max
r
{0,

r∑

i=1

xi} −min
s
{0,

s∑

i=1

xi}

Interestingly, this measure not only plays a central role in discrepancy theory which is related to low
complexity algorithmic design by means of low discrepancy sequences [4], but as found out recently,
also in other fields of applications, e.g. in event-based signal processing [5, 6], random walk analysis
[7] and image and volumetric data analysis by extending it to higher dimensions by means of integral
images [1]. As pointed out in [1] the extension is not unique. A possible extension is given by
Equation (1).
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(a) test image (b) test image with Gaussian noise
(SNR = 3)

(c) test image with Gaussian noise
(SNR = 1.5)

(d) reference (e) hit map (SNR = 3) (f) hit map (SNR = 1.5)

Figure 1. Illustration of a pattern matching problem: find reference image in the test image. The images are
taken from frame 697 and frame 705 of the EC Funded CAVIAR project/IST 2001 37540 (”Shopping Center in
Portugal”, ”OneLeaveShop2cor”). The hit map is computed using the measure (1)

‖f‖D := max

{
max

0≤k≤N,0≤l≤M
{

k∑

i=0

l∑

j=0

I(i,j)} − min
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(i,j)} ,

max
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(N−i,j)} − min
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(N−i,j)},

max
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(i,M−j)} − min
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(i,M−j)},

max
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(N−i,M−j)} − min
0≤k≤N,0≤l≤M

{
k∑

i=0

l∑

j=0

I(N−i,M−j)}
}

(1)

For registration and template matching purposes the discrepancy measure is applied on the difference
of the corresponding images. To be more precise, the images are considered as two-dimensional
functions on the lattice of integers with with default values 0 outside the proper frame of the images.

This measure satisfies the following desirable registration properties (see also [8, 9]):

[R1] a vanishing distance entails a vanishing extent of misalignment and vice versa,
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[R2] the distance measure behaves continuously at least with respect to arbitrary small misalign-
ments,

[R3] an increasing extent of misalignment implies an increasing distance measure and vice versa
(monotonicity).

It is interesting that it can be shown that these natural properties are not satisfied simultaneously by
commonly used matching and registration techniques [1]. Figure 1 illustrates its robustness by apply-
ing this measure as fitness function for finding the best match between a reference and a test image.
In this demonstration the discrepancy measure is directly applied without any image preprocessing or
denoising. As this measure relies only on the evaluation of integral images and max/min operations,
it is well-suited for parallelization. An efficient implementation can be tackled by means of of the
concept of a summed-area table [10] which is a matrix generated from an input image in which each
entry in the matrix stores the sum of all pixel values between the entry location and the lower-left
corner of the input image. For applications of summed-area table see also [11] and related concepts
based on integral images e.g. [12]. The power of the summed-area table comes from the fact that it
can be used to perform filters of different widths at every pixel in the image in constant time per pixel.
This makes SAT very useful for embedded vision purposes.

The paper is organized as follows: Section 2. introduces a two-dimensional definition of the discrep-
ancy norm and makes algorithmic optimizations to reduce computation effort. Section 3. presents
a vectorization concept for the previously optimized algorithm. Section 4. presents the speedup
achieved by the optimizations.

2. Algorithmic Analysis for Implementation

While in the 1-dimensional case partial sums over intervals are evaluated in the 2-dimensional case
rectangles are taken instead of intervals. As shown in [1] is suffices to restrict on the rectangles with
one corner being coincident with a corner of the image. This suggests to use integral images spread-
ing of each of the four corners of the image. However, a single integral image already contains the
information of the remaining integral images from the other corners. This leads to the first optimiza-
tion step by deducing the values for the four integral images from the original integral image with the
top left corner as the starting point. Assume point P1 is our current index. The value at this position
naturally corresponds with the first integral image in the definition of discrepancy norm. The second
integral image in the definition has the top right corner as a reference. This corresponds to area II2
in the figure, which can be computed by subtracting sums P2 − P1. The third and fourth integral im-
ages are very similar. Equations (2) to (3) provide a mathematical formulation of the integral image
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transformations as explained above:

Π1(x, y) = Π(x, y) (2)

Π2(x, y) =

{
Π(W, y)− Π(x, y) if x 6= W,

Π(W, y) if x = W.

Π3(x, y) =

{
Π(x,H)− Π(x, y) if y 6= H,

Π(x,H) if y = H.

Π4(x, y) =





A(x, y) if x 6= W, y 6= H,

Π(x,H)− Π(x, y) if x = W, y 6= H,

Π(W, y)− Π(x, y) if x 6= W, y = H,

Π(x, y) if x = W, y = H.

A(x, y) = Π(W,H) + Π(x, y)− Π(W, y)2− Π(x,H) (3)

W indicates the last valid x index of a row and H the last valid y index of a column. Care has to be
taken, if any index lies on the edge: Here, some components simply refer to the same area and are
equal.

Now, we make use of transformations which the summation terms are invariant to: we are interested in
the difference between maximum and minimum of the summation. Thus, adding a constant factor to
all elements within the integral image will not affect the difference between maximum and minimum.
When it comes to (3), the term Π(W,H) clearly is constant, neither depending on index variable x
nor on y. As a result, it can be omitted for the discrepancy norm calculation. Note that this needs
to be compensated in the others cases of Π4, too. Taking the constraint for the indexes into account,
Equations (4) and (5) are obtained:

Π̃4(x, y) =





Ã(x, y) if x 6= W, y 6= H,

−Π(W, y) if x = W, y 6= H,

−Π(x,H) if x 6= W, y = H,

0 if x = W, y = H.

, (4)

Ã(x, y) = Π(x, y)− Π(W, y)− Π(x,H). (5)

2.1. Reducing the compare operations

So far, the discrepancy norm in 2D has been reduced to computing a single integral image and ex-
pressing the other forms based on this single one. It still requires 8 compare operations per pixel:
one for the minimum, one for the maximum and this has to be done four times for the different com-
ponents. Some of these operations are redundant if we concentrate on a specific row, meaning y is
constant. Applying this method to Π2 of Equation (2), we obtain equations (6) and (7) which differ
only by a constant and a sign. The negative sign will swap minimum and maximum. As a result, the
second component can be deduced with simple operations that are only necessary at the end of each
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row:

Πp1(x) = Πp(x) (6)

Πp2(x) =

{
Πp(W )− Πp(x) if x 6= W,

Πp(W ) if x = W.
(7)

Equations (8) and (9) provide a mathematical formulation of this, in both cases c corresponds to the
constant Πp(W ) per row. In other words, we only need to compute a single integral image, and
compute the minimum and maximum per row, by which we have half of the computation done to get
the discrepancy norm according to (1):

max{Πp2(x)} = max{c, c−min{Πp1(x)}}, (8)
min{Πp2(x)} = min{c, c−max{Πp1(x)}}. (9)

The third component behaves similar to the second one — the only difference is that the constant now
is per column and we need the maximum and minimum for each column. Unfortunately, the fourth
and last component is more complex. Here, each value is based both on the last value per column
and the last value per row. The problem is that for normal maximum or minimum we only take care
of numbers that are larger or smaller but not the equal ones. Yet, for the problem mentioned above,
we would need all maximized subexpressions with the same value and their corresponding position
consisting of the x and y index pair. Further research is necessary to check whether the minimum and
maximum of the fourth component could be determined in a more convenient and less complex way.
However, a subexpression refers to the third component and only one addition is necessary to get the
fourth component.

2.2. Proposed algorithm

Based on the previous findings, we will now consider the complete algorithm and compare it to the
base implementation in terms of runtime complexity. The base algorithm consists of four passes over
the data; each will compute one integral image component and, simultaneously, yield minimum and
maximum by compare operations. The optimized version consists of only two passes. The first pass
will calculate one integral image and get the first and the second component at the same time. Here,
the second component needs a small overhead at the end of each row. The second pass will deduce
the third and fourth component based on the previously computed integral image.

Basically, both versions have O(n · m) complexity, where n is the image width and m the image
height. If we take a closer look at it, the proposed version has O(2n · m), compared to the initial
O(4n · m). The optimized version will show further improvements if we consider the number of
operations more precisely. Additions and subtractions will be considered as the same operation from
the view of complexity. The base version has four very similar passes, consisting of integral image
computation and comparisons. Computing an integral image point takes three additions, though,
there is an optimized version needing only two which requires extra storage for cumulative row sums
[13]. The reference version from [14] is implemented with three operations and will be used for real
performance comparison.

Table 1 compares both version in terms of the overall operation count. Additions are reduced heavily
down to less than a half. Comparisons are brought down by a fourth approximately. As each pass
consists of a double-nested loop that produces overhead, the column Passes is very important. Another
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Passes Additions Comparisons

Ref 4 12n ·m 8n ·m
Opt 2 5n ·m + 2m 6n ·m + 4m

Table 1. Comparing the number of operations for the reference and the optimized version.

factor is storage, given the fact that both versions require additional storage of n · m. But the base
version writes four times to this area, whereas the optimized version only once. If this storage area
is accessible to the user, calculating the discrepancy norm in 2D always yields the according integral
image for free.

3. Parallelization

The proposed algorithm seems to be well-suited for parallelization methods. Computing and com-
paring the other components of the discrepancy norm is highly independent. When it comes to paral-
lelization, modern computers offer various options. A common classification in this area comes from
[15]. The classification is based on the number of parallel instruction and data streams. A traditional
processor belongs to SISD, whereas multi core or multi processor systems are MIMD. Instruction set
extensions like SSE and AVX, also referred to as vector units, belong to SIMD.

A similarity measure like the discrepancy norm will normally be applied many times. Pattern match-
ing requires evaluating the discrepancy norm at many different positions of a patch. Therefore, SIMD
is a promising approach. It is especially suitable for applying the same kind of operation to several
data values at once. Furthermore, SIMD means choosing certain special instructions. At runtime,
they do not have any overhead, compared to normal SISD instructions. On the other hand, making
use of multiprocessing would lead to an overhead due to the fact that it involves spanning threads,
distributing data and synchronizing at the end. As shown by [16], using multi core processors is
complex. On the one hand, the work succeeded in using multiple cores to improve performance. On
the other, hand the processor topology has an impact. The authors had to bind the threads to cores
sharing the same L2 cache in order to improve performance. Not fulfilling this requirement results in
a significant performance penalty.

SIMD instructions operate on a dataset or a so called vector. For example, a traditional add would
perform a := a + b. The SIMD version of this instruction would perform the same operation, but
a would be a vector. Typical vector sizes of SIMD units range from 2 to 8 elements. Normally,
vector units have registers of a fixed size. Depending on the size of the data type, they can process
a certain amount of elements in one step. Vector units are not designed to operate horizontally,
which would mean combining elements within a vector register. We will concentrate on the common
SIMD extensions for the x86/x64 architecture. There are two extensions in this area: SSE and AVX
- both exist in different versions, with each new version extending the previous one by adding new
computing capabilities [17].

AVX doubled the vector size comparesd to SSE. Yet, in terms of data shuffling, the situation became
much more complex: with vector registers and operations split into lanes, one AVX register consists
of two 128-bit lanes which simplified implementing the architecture for the designers. It does not
make any difference for vector operations like additions. Nevertheless, for instance, the SSE shuffle
operation takes an immediate value that allows indexing of up to four elements. The according AVX
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input v3 v2 v1 v0
shuffle v2 v3 v0 v1

max max32 max32 max10 max10

shuffle max10 max10 max32 max32

max max3210 max3210 max3210 max3210

Table 2. Getting minimum / maximum of a vector register holding 4 elements.

PL

O

P2 P3 P4

X1 X2 X3 X4

P1

Figure 2. Dependencies for computing new values for an integral images with vector units.

instruction has the same indexing capabilities but operates on a doubled data amount. The AVX
instruction simply takes the immediate value and applies the shuffle for each lane. Only a small
number of special instructions allow crosslane data exchange in some restricted ways [17, Volume 1
Chapter 14].

3.1. Vectorization

Taking into account the points mentioned above, we will now develop a vectorization scheme. Using
vector units for the comparisons is straight forward. Vector units will help us to compare n elements
at once. Finally, we have to get the maximum and minimum of the vector itself, which results in over-
head because of operating horizontally. To be precise, additional comparisons of log n are necessary
and the same amount of data permutations. The basic idea is to compare pairs of values and then
use the result again for pairwise comparisons but with half the number of pairs. Vector units permit
comparing several pairs with a single instruction at the same time. Data shuffling assures we are
comparing different pairs in the next step. Table 2 illustrates the procedure for a vector unit holding 4
elements.

More complicated is the vectorization of computing the integral image, which can be interpreted
as a 2D version of the prefix sum. [18] provides a good summary of prefix sums in general, their
applications and a parallel version. The proposed parallelization model is well suited for using GPU
acceleration. This was proven by [19]. On the other hand, the GPU version turned out to be only
useful for large dataset. Moreover, this was tested for traditional prefix sums and not for 2D versions
suitable for integral images which would consist of two passes: one prefix sum over the rows, a
second one over the columns, taking the result of the first pass as the input. A similar two-pass
algorithm for integral images using GPU was developed and tested by [20]. A notable speedup was
not gained for images with a pixel count less than 0.5 million. Furthermore, the data transfer to
and from the GPU was not included in the time measurement. Using SIMD extension for integral
image computation is a quite new approach, leading to the fact that there are few literature reference
that use SIMD extensions. [16] applies SSE for a part of the computation algorithm. Nonetheless,
finally, this version is slower than a sequential algorithm presented in the same work. We will show
an implementation consisting of a single pass instead of two traditional prefix sum passes. Figure 2
shows the dependencies for computing the new pixels X1 .. X4 in the integral image. All new pixels
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have the same row offset (O) and the same compensation factor PL, which is optimal for a vector
unit. The same is true for adding the different previous values P1 .. P4. Using PL and O for all vector
elements requires one additional instruction to broadcast the single value to all vector elements. We
will refer to the summing of X1 to X4 as partial prefix sum. The approach is similar to horizontal
minimum / maximum within a vector register. The difference is that a shuffle would not help, but
shifting solves the problem. Table 3 lists the single steps. Two additions and two shifts are necessary.
This definitely is an improvement over [16] as their scheme required three additions and the same
amount of shifts. It might be the reason that their SSE version was slower than an enhanced serial
algorithm.

Unfortunately, as AVX does not have shift operations, they are considered to be only useful for integer
data. So the shift has to be emulated by combining a shuffle and a blend. The shuffle rearranges
data and the blend masks the first element with zero, which is not supported by the shuffle or other
operations. AVX2 added integer support and shift operations at the same time. Due to the lane
concept, a special cross-lane operation is necessary. The idea is to do the partial sum for each lane.
In the last step, the overall sum of the lower lane is broadcasted to all elements in the higher lane
of a register and added. What is helpful is that the partial prefix sum in the first step is independent
from the other values. Without any doubt, O − PL + Px does not depend on the sum at first. In the
final step, both temporal results have to be merged with a vector addition. In the first place, we have
two independent data streams, which helps exploring instruction level parallelism. This is especially
important due to the fact that — as stated before — summing within the vector is not ideal for vector
units. The data preparation is another step optimal for vector units. If pattern matching is done using
a norm without an inner product, the similarity measure is applied to the difference between pattern
and test candidate.

We can estimate the expected speedup. For the regular version, we require 3 additions (or subtrac-
tions). The vectorized version has an overhead of 2 · log n, where n is the number of vector elements.
Then, there are three additions and one broadcast, but this already computes n pixels at once. Note,
that this is a very rough estimation. We have not taken into account instruction level parallelism. This
means instructions differ in latency and throughput. Moreover, the processor might have more oper-
ational units for some instructions than for others [21]. Another fact we did not consider is moving
data around. SSE and AVX are — like the whole x86 instruction set — based on load and store. The
normal version requires a load for each single element, however, the corresponding instructions for
vector units load data chunks as large as the vector unit in a single step at the same time. Making the
process faster, the bandwidth is also exceeded faster.

The complexity of the analysis above should make it clear that it is nearly impossible to give an
estimated speedup for the whole discrepancy norm calculation. Thus, we will use practical tests to
evaluate the performance impact.

input v3 v2 v1 v0
shift 0 v3 v2 v1

add v3 v3+2 v2+1 v1+0

shift 0 0 v3 v3+2

add v3 v3+2 v3+2+1 v3+2+1+0

Table 3. Computing partial prefix sum for a vector register holding 4 elements.
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Figure 3. Results of performance evaluation tests

4. Performance Analysis and Evaluation

Coding is done with C++, whereas Visual Studio 2013 from Microsoft severs as the compiler. The
only adjustment is the setting Enable Enhanced Instruction Set in the group of Code Generation. The
selected target architecture is 64-bit. The test system is based on an Intel i5-4460. The computer runs
Windows 7 Professional Service Pack 1 64-bit. The test algorithm applies the discrepancy norm in a
sliding window approach, that the implementation is executed many times. Furthermore, the whole
test setup is run several times to eliminate random influences. As we measure similarity compared
to a pattern, reference subtraction has to be applied for each window. We include this step in time
measurement as it is vital for this task and can not be omitted.

Figure 3a summarizes the speedup with the test setup. The direct difference approach outperforms the
other implementations by far. With the AVX vectorization leading to a speedup of 16 and SSE vec-
torization to a speedup of 12. The algorithmic optimized serial version already doubled performance.
The average execution time of the AVX version is 0.612 seconds matching a 64×64 data patch within
a 512 × 512 image. AVX can process eight 32-bit integer values at the same time, which is exactly
the speedup gained by the vectorization compared with the serial version. On the other hand, SSE
produces super linear speedup exceeding theoretical maximum. The data indicates that reference sub-
traction has a big impact on the runtime. Embedding the difference building in the algorithm itself
improved the performance about 50% for SSE and 65% for AVX.

Another comparison concentrates on the vectorization of the integral image algorithm alone. Many
common algorithms like SURF are based on this intermediate representation [22]. The OpenCV
implementation for integral image is compared to the vectorized implementation of the authors and
a straight forward serial version. Figure 3b shows the results. The OpenCV algorithm serves as the
reference and is twice as fast as a simple serial implementation. This suggests that OpenCV uses the
approach from [13] that requires extra storage but reduces the necessary additions. Nonetheless, the
vectorized version outperforms OpenCV at any image size, gaining a speedup of 2.5 to 4, depending
on the image size.

For embedded applications it is interesting whether the vectorization scheme is applicable to other ar-
chitectures, too. In embedded computing the ARM architecture plays a crucial role. Here, the ARM
Cortex-A series offers SIMD capabilities with NEON technology offering a data width equal to SSE.
[23]. All in all, the whole vectorization can be coded with the NEON instructions. Unfortunately,
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both SIMD architectures have totally different instructions when it comes to data reordering. The
most powerful data rearrange instructions of NEON are VTBL and VTBX. One the one hand, they are
expensive in terms of execution cycles. On the other hand, several cases can be replaced by faster
instructions. For example, the vector shift can be achieved using the NEON instruction VEXT and a
register containing zero; broadcasting a single element can be done with VDUP. The newest ARM
instruction set named ARMv8 should allow further performance optimizations by adding cross-lane
instructions providing functionality exactly needed by discrepancy norm calculation like horizontal
summation and taking minimum or maximum [24]. Though, it is impossible to estimate the achiev-
able speedup without practical tests.

5. Conclusion

We analyzed a variant of an image similarity measure based on Hermann Weyl’s discrepancy from the
point of view of efficient implementation by exploiting redundancies in computing multiple integral
images. Finally, we proposed an implementation based on vectorization of prefix sums and summed-
area tables which results in a speed-up factor 16 compared to a standard integral image based compu-
tation. Future research is left for checking parallelization and implementation optimizations also of
other variants of Weyl’s discrepancy.
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[3] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins,” Mathematische Annalen, vol. 77,
pp. 313–352, Sept 1916.

[4] B. Chazelle, The discrepancy method: randomness and complexity. Cambridge University Press,
2000.

[5] B. A. Moser and T. Natschlager, “On stability of distance measures for event sequences induced
by level-crossing sampling,” Signal Processing, IEEE Transactions on, vol. 62, no. 8, pp. 1987–
1999, 2014.

[6] B. A. Moser, “Stability of threshold-based sampling as metric problem,” in Event-based Control,
Communication, and Signal Processing (EBCCSP), 2015 International Conference on, pp. 1–8,
IEEE, 2015.

[7] B. A. Moser, “The range of a simple random walk on Z: An elementary combinatorial ap-
proach,” The Electronic Journal of Combinatorics, vol. 21, no. 4, pp. P4–10, 2014.
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Abstract
In big scale agricultural farming complex machines with advanced technology shape already the
daily routine. In opposite, the field of organic farming is still characterized by multiple manual tasks
that include heavy labor. Our vision is that the fields of automation and robotics offer the necessary
technology to lift the burden of back-breaking work off the worker’s shoulders. Hence, we propose a
scalable and modular agricultural robotic concept that advances farming to the next higher technol-
ogy level. We provide a low-cost and flexible design in order to realize different autonomous applica-
tions, specialized for light weight agricultural work. As proof of concept the proposed configuration
is integrated and validated as the experimental platform FRANC. All experiments are performed in
real-life outdoor scenarios as vegetable fields that are sowed or planted in row structures. Therefore,
we utilize a local navigation system based on a self-parameterizing crop row detection, that enables a
local, adaptable, and GPS-independent navigation. The tests show that the hardware and software of
the designed system is able to handle rough terrain, offers a high maneuverability, and is adaptable
to different row-structures.

1. Introduction

Within the last decades new automation technologies, industrial robots and sophisticated automa-
tion machineries entered the food production chain and led to a higher efficiency and increased the
productivity of the harvesting process.

Sensors and software that transform classic agricultural machineries into semi-autonomous systems
are already available on the market [11]. We belief that robotics has the ability to advance this semi-
autonomous systems to the next higher technological level and promises to answer the question how
the production chain can be fully automated in each single step of the food production, starting already
at the cultivation of the crops. Therefore we developed a scalable, and modular agricultural robotic
systems suitable to better support light-weight agricultural work.

As stated by [17], one way to increase the economic efficiency in future crop production may be done
better and cheaper with a swarm of small machines than with a few large ones. By the means of our
modular concept re-designing existing solutions can be avoided and it becomes possible to enhance
existing solutions with robotic modules, for instance a conventional finger cultivator can be turned
into a robot by attaching the respective robot module.

∗This work was funded by Sparkling Science a programme of the Federal Ministry of Science and Research of Austria
(SPA 04/84 - FRANC).
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Figure 1: Experimental platform and proof of concept FRANC.

In this article we present our modular system design and concepts for more flexible agricultural robots
as well as its realization with the platform FRANC (cf. Fig. 1) as proof of concept. Our contributions
are (i) a modular robotic system concept that (ii) can be use for the robotizing of existing farm facilities
and (iii) a generic row detection algorithm that does not need any a-priori information. Moreover, we
present field trial results of its performance on vegetable fields.

2. Related Work

Most of the state-of-the-art agricultural automation systems are either focused on the (semi-) automa-
tion of big land machines or support the farmer during different field manipulation procedures with
additional sensor information [11].

Research groups robotized already “standard platforms” as golf carts or other small scale vehicles to
focus on algorithms and sensor technologies without the need of the re-development of the grounding
vehicle [16, 10, 5]. Contrary there are also completely designed robotic systems such as BoniRob
which are suitable for highly specialized solutions as occur in the area of precision farming [3]. As
described in [3] BoniRob Apps are comparable to the classical implements. These Apps can be di-
rectly integrated on the robot. Existing agricultural machineries have to be redesigned if they have to
be used be used with the robot. However, we aim to develop a solution which can be used in combi-
nation with existing implements and farm facilities, with little or no additional product development
needed.

The contribution presented in this article is a system design concept that sets out to close the gap of
existing agricultural robotic systems: rather than focusing on one large multi-purpose autonomous
machine, we offer a flexible solution for cheaper crop row production which might be even more
acceptable for smaller farms as it allows robotizing existing machines. We present our contribution
in the form of a detailed system description and the results of preliminary field trials. Our results
should help other researchers and engineers to solve the existing challenges in agricultural robotics
with respect to development of robotic systems for light-weight agricultural work.

3. Approach

We approach a robotic system, including a row guidance an autonomy module that adapts by itself to
any kind of row organized fields. Our concept includes individually replaceable subsystems that will
be presented here.
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3.1. Mechanical Realization of the Powertrains and n-Wheeled Drive Kinematics

As each car-like vehicle, the robot needs at least three degrees of freedom (DoF). The classic kine-
matic realization of service robots are differential drives, in opposite we decided to implement a
n-wheeled steering to combine tractive power, maneuverability, and scalability of the robot. Hence,
we propose a kinematic encapsulated powertrain that can be equipped with or without a motor for the
steering or tractive power. The wheel can be realized as free running wheel without any motor, can
be equipped with a single motor for pure tractive power, or as fully powered, independent steerable
wheel (cf. Fig. 2).

Most of the already realized systems use wheel hub motors [2, 3]. Wheel hub motors need a wired
connection from the static part to the rotary part. That connection constrains the number of possible
wheel turns respectively the maximum steering angle and makes the inverse kinematic complex, be-
cause the algorithms have to consider the prior steering motions. We approach a cable free rotary part
that allows infinite wheel turns in order to remove these constraints for the trajectory planing.

Vehicles that are equipped with more than one steerable wheel, need a interconnected steering that
fulfills the Ackerman-constraint [4]. Summarized, the perpendicular line of each wheel has to inter-
sect at one point. However, pure mechanical realizations of steering systems go hand in hand with
comparable complicated mechanical constructions. Hence, we replace the mechanical connection by
a electronic connection and an intelligent control that is able to handle the steering maneuverer inde-
pendent from the amount of steerable wheels, based on their position in the kinematic constellation.
Based on the Ackerman-constraint and the “instantaneous center of curvature” PICC, the necessary
steering angle θn and different velocities vn of the single wheels can be calculated with (1)-(4c).
The approached equations result automatically in valid trajectories and steering angle configuration
if PICC is linearly interpolated. Figure 3 depicts an exemplary kinematic configuration and depicts
the nomenclature used for the equations. Different drive behaviors for different in field use cases as a
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pure back or front steering can be realized dependent on the position of PICC. The virtual coordinate
system [xV,yV] is used to shift the zero position and the privileged direction.
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Figure 3: Exemplary kinematic configuration with four independently steerable wheels.

θFD = atan2 (PICC,x + PV,x,−PICC,y − PV,y) (1)

Pα = (PICC,x + P1,x)
2 + (PICC,y + P1,y)

2 (2)

Pn,a = (PICC,x + PV,x) · Pn,y − (PICC,y + PV,y) · Pn,x (3a)

Pn,b = (PICC,x + PV,x) · Pn,x + (PICC,y + PV,y) · Pn,y − Pα (3b)

θn = atan2 (Pn,a,Pn,b) + θFD , (3c)

With θFD as the forward direction, PICC as the instantaneous center of curvature, Pv as the origin
of the virtual coordinate system, Pn as the position of the wheel in the kinematic configuration, and
Pα,Pn,a,Pn,b as auxiliary variables. The speed of the single wheels can be calculated based on the
distance of the origin of the wheels Pn to PICC with (4a)-(4c).

rn = |PICC −Pn| (4a)

rmax = max(rn) (4b)

vn = vm ·
rn
rmax

(4c)

with vn as the speed of the nth wheel and vm as the intended maximum speed of the fastest wheel.
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Figure 4: Electrical platform system and the adjacent systems.

3.2. Electronics and Control System

The vehicle electronics is the bridge between the robot kinematic, including the motors, and the
autonomy and row guidance software. Figure 4 shows an overview of the system parts. The necessary
sensors system is closely connected to the implemented row guidance system. Based on the review
of the prior work [13, 11] we consider that vision systems provide the information for an adaptable
navigation and in field task execution. Hence, we approach a vision system that observes light within
different ranges of the electromagnetic spectra and is mounted on the robot front. The sensor system
consists of two stereo cameras and a NIR camera. A NIR pass filter and the sensitivity of the built in
chip form in combination a band pass filter that enables a detection of light from 850nm to 1000nm.

3.3. Row Guidance and Autonomy Software

The row guidance system consists of a segmentation step, followed by a detection of the rows and
a parameter extraction. The images are segmented based on NIR and depth data that are provided
by the camera system [7]. The extraction of the height information is realised with an online plane
calibration that allows determining the camera pose relative to the estimated ground plane.

Several machine vision based row guidance approaches [1, 8, 12] consider pure RGB or NIR infor-
mation for the segmentation of the plants and soil, while 3D information is omitted and the other
way round [9, 14]. Pure RGB-data-based segmentations often fail to segment crops from the soil if
they stopped already the production of chlorophyll and lose their green color, while NIR light is still
reflected by the cell structure of the leaf (cf. Fig. 5 (b) and (c)). Otherwise, a pure height-based
segmentation fails e.g. in early growing stages of the plants, the spectral information can be used as
soon as small plants are visible. We approach in [7] a segmentation that fuses both, NIR and depth
information together and utilizes the advantages of the one method to compensate the shortcomings
of the other. The height information improves the results especially for fields where plants are sowed
on dams and allows to filter out small plants and weeds that would add noise to the segmented im-
age (cf. Fig. 5 (d)). Further, the available 3D information enables a projection of the segmentation
result to the online estimated ground plane and enables a height-bias-free crop row detection. The
row guidance system detects the rows based on a geometric row model and a particle-filter-based row
parameter estimation as approached in [7]. The row model describes with three parameters a parallel
pattern of lines in the 2D space. The first two parameters α and p represent the 2D normal vector p
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(a) (b) (c) (d)

Figure 5: Comparison of different segmentation methods. (a) RGB image, (b) 2G-R-B segmentation
[15] , (c) NIR segmentation, (d) NIRD segmentation. (a), (b), (c), and (d) show the same scene under
different field of views.

of the closest line and points to the origin of the coordinate system. The third parameter is the scalar
d which describes the distance between the lines of the repetitive pattern. The filter samples a 3D
parameter space with N hypotheses. Each hypothesis is weighted based on the segmented image. In
opposite to other methods the approached crop row detection does not need any prior information on
the row structure. Moreover, the particle-filter-inherent properties in combination with the selected
geometric row model enable a tracking of the crop rows and improve the results even and especially
if natural row irregularities occur. Finally, the negotiable track is extracted out of the row information
and is further filtered and processed for the steering information. To achieve the modularity of the
whole system, the row guidance is wrapped in the robot operating system (ROS) and can be replaced
by another guidance system if necessary. In our recent work we have investigated in [6] how the
fusion of odometry and row guidance information can improve the detection results.

4. Tests and Results

As proof of concept we built with the developed subsystems the robotic platform FRANC (cf. Fig.
6). It consists of a frame that carries the electronic and sensor system and is powered with four
independent steerable wheels. The algorithms, controller, and the security concept including the
remote control with the emergency stop function were implemented to form a whole system with
minimal effort.

As stated by [13] the integration task can be a significant effort on its own. The modular concept
reduced the integration of the single modules into an overall system to a few mechanical engineering
steps as the preparation of the frame including the mounting points and an one-time parametrization
of the electrical system and the control algorithms. The parameterizable and adaptable algorithms and
interface design simplifies the integration of the subsystems into a working solution and overcomes
several integration problems that have to be faced in traditionally designed systems.

FRANC was successfully tested in rough terrain and recorded in-field data for the evaluation of the
row guidance algorithm that is used by the autonomy software. The tests proved the feasibility,
maneuverability, and rigidity of our modular concept for real-life applications.

The crop row detection algorithm and row guidance software is tested with data recorded during
in-field tests of the robot. The robot was maneuvered within row organized fields, parallel to the
rows. With this information, parameter windows for p and α can be defined to evaluate the crop
row detection algorithm. Correct row structure estimations have to end in a parameter configura-
tion that describe rows within the given windows. Since the row distance has to be constant during
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the whole procedure, the error of the row distance estimation ed is directly determined based on
manually measured ground truth data. The particle filter is initialized with N = 1000 randomly gen-
erated hypotheses that represent parameter configurations with α =

[
−π

2
, π
2

]
, p = [−0.75m, 0.75m],

and d = [0.2m, 1.5m].

Figure 6: FRANC during in-field trials.
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Figure 7: Crop rows and parameter windows.

The parameter windows are defined with pw = [0.2m,−0.2m], αw = [+0.2rad,−0.2rad], and the
manually measured ground truth data for the row distance dGT = 0.45m. The experiments show that
the particle filter based crop row detection ends in average after five cycles in correct estimations for
all three parameters (cf. Fig. 8). The steps within the row offset can be ascribed to the normalization
algorithm that searches for the closest line of the pattern to the origin of the coordinate system that
was slightly shifted to the right side during the recordings. Hence, the orientation and the offset of
the row pattern is either described with line 2© or 3© (cf. Fig. 7).
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Figure 8: Results of the row detection algorithm with data recorded during in field trials. Offset and
orientation has to be within the windows as stated in the text. Average error of the row distance
parameter refered to the ground truth.

5. Conclusion

In this article we presented a design concept for a modular agricultural robot and its realisation in the
FRANC prototype including results on preliminary field trials.

Testing FRANC in the field proved its maneuverability on rough terrain. The recorded in-field data for
the evaluation of the row guidance algorithm revealed that the particle-filter-based crop row detection
ends in average after five cycles in correct estimations.

We believe that the conceptual design, its prototypical realization, and the preliminary field trial
results presented in this article constitute valuable knowledge for fellow researchers in the field of
agricultural robotics and serve as a stepping stone towards developing robotic modules for more
flexible agricultural automation.
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Abstract
Human-robot collaboration is a novel, hot topic in the field of industrial and service robotics with con-
siderable potential. It offers the possibility to combine human cognitive abilities with the strengths
of robot technology in terms of precision and performance, thus opening up a wide range of possi-
bilities beyond the traditional application of robots. The research project ”Collaborative Robotics”
(CollRob) is an initiative focusing on the conceptualization, research, development, and evaluation
of novel methods and tools for collaborative and cooperative robots. This article aims at giving an
overview about this project in terms of its backgrounds, objectives, and the current status of research
covering topics such as machine perception, sensitive redundant kinematic manipulation, dynamic
adaptive planning, human-robot interaction and information exchange, human factors, and safety.

1. Introduction

Since the introduction of robots to factories, approximately 50 years ago, their strength has been to
perform well specified and repetitive tasks in constrained environments. Due to the high configura-
tion and programming efforts in addition to significant investment costs, such an approach can only
be profitable at large scales. However, current developments in modern production show a trend to-
wards individualized manufacturing and thus small series in robot exploitation. Accordingly, novel
innovative strategies and methods are necessary to allow for more flexibility in the production envi-
ronment. In this context, one highly promising approach is human-robot collaboration [9]. According
to this concept, humans and robots shall be enabled to jointly work together in the production pro-
cess in order to combine human cognitive abilities with the strengths of robot technology in terms of
precision and performance [2]. To make such a collaboration efficient and safe, a large range of chal-
lenges has to be addressed including topics like machine perception, sensitive redundant kinematic
manipulation, dynamic adaptive task planning, human-robot interaction and information exchange,

∗This work has been supported by the Austrian Ministry for Transport, Innovation and Technology (bmvit) within the
project framework Collaborative Robotics.
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human state evaluation, and safety standards. These challenges are addressed in the 4-year research
project ”Collaborative Robotics” (CollRob), launched in 20151. In this article, an overview about the
backgrounds, objectives and current status of this project is given, which shall serve as a reference for
proceeding publications and research initiatives. Chapter 2. describes the elaborated hardware and
software architecture of the overall CollRob system. Chapter 3. presents different specified levels of
complexity for human-robot collaboration as well as envisioned use cases to test developed concepts
and methods. Chapter 4. outlines concrete research challenges addressed within CollRob. Finally,
Chapter 5. gives a conclusion.

2. Robot System Hardware and Software Architecture

To enable collaboration between a human and a robot, a variety of sensors is required. Figure 1(a)
shows an overview of the CollRob hardware setup. Besides the robot itself, which is equipped with
torque sensors, we use dedicated visual and proximity sensors for i) monitoring of the workspace and
ii) detection and tracking of the human. In addition, we use wearable bio-sensors and eye tracking
glasses to monitor the behavior and state of the human. A tablet, augmented reality (AR) glasses,
microphones, speakers, and gesture bracelets are used as human-robot interaction devices.

The broad range of different sensors and devices results in complex data-flows, which in turn cause
strong dependencies and couplings between the individual application parts. A software architecture
for an application like this needs to relax the strong dependencies in order to enable re-usability,
scalability and easy exchange of individual modules. Publish/subscribe has proven to be a well suited
architectural pattern to accomplish this decoupling. An application is composed of modules which
provide data (publish) and consume data (subscribe) from others. However, the transport of this data
is handled by a dedicated infrastructure such that the modules need not know providers and consumers
of their data. Figure 2 shows the modules which compose the CollRob system. In our architecture,
each module is modelled as publisher and/or subscriber. We realize the publish/subscribe system
using the Robot Operating System (ROS).

3. Levels of Complexity of Human-Robot Collaboration and Use Cases

Within the CollRob project, different levels of complexity of collaboration have been specified (see
Table 1). The category A is in fact non-collaborative. However, taking it into account can be useful
for setting up the general CollRob system architecture before going into collaboration details. The
categories B to D consider human-robot interaction with gradually increasing complexity. Category
E describes the case of two collaborating robots (or one robot with two arms) and category F the
interaction between two robots and one or more humans.

category A B C D E F
umbrella term encapsulation H-R co-existence static H-R collabora-

tion
dynamic H-R collabo-
ration

static/ dynamic R-R
collaboration

static/ dynamic H-R-R
collaboration

interaction level interaction-free opera-
tion

safety stop static collaboration dynamic collaboration static/ dynamic R-R
collaboration

static/ dynamic H-R-R
collaboration

actors robot human+ robot human + robot human + robot 2 robots 2 robots + human(s)
temporal dependence independent interrupt sequential simultaneous sequential/simultaneous sequential/simultaneous
spatial dependence separated separated shared shared shared shared
human-robot contact none rudimentary pronounced comprehensive n.a. pronounced/comprehensive

Table 1. Overview of interaction categories

Concerning the described categories, different application domains will be addressed in CollRob

1http://www.joanneum.at/en/robotics/reference-projects/collrob.html
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(a) Overview of hardware setup (b) Human-robot collaboration to build a Tangram puzzle

Figure 1. Overview of hardware setup for puzzle solving

(e.g., industrial applications, entertainment applications, service applications, assistive technology
applications). Concerning the applications of choice, it was decided that at least one ”set of use
cases” should be chosen for which it was possible to carry them throughout all possible categories
(A to D plus optionally E and F) by continuously extending and adding ”human-robot collaboration
features”. The use case set of choice for this purpose is to solve a Tangram puzzle while the robot and
the human are cooperating toward the goal (see Figure 1(b)). Further use cases, in collaboration with
industrial partners, address industrial applications such as human-robot joint assembly and inspection
tasks.

4. Addressed Research Challenges

4.1. Dynamic Working Environment Monitoring and Safety

In order to perform a safe and reliable collaborative task in complex and dynamic environments, a
robust monitoring system, which provides a real-time status of the target area, is required. Methods
from 2D [14] and 3D [24] quality inspection (and combined [29]) can be applied to robotic scenarios
as long as sensors are lightweight and compact enough to be used on moving parts of the robot. 2D
inspection is sufficient in case of close-to-planar objects. 3D shape comparison e.g., by Iterative Clos-
est Point (ICP) [23], is a robust method in industrial inspection for irregular objects. Texture-based
methods are complementary in case of smooth 3D surfaces that do not allow a precise 3D alignment
due to shape ambiguities [5]. One major current application for such techniques is the inspection of
correct 3D shape, the automatic planning of grasping is still a very rare application under real pro-
duction conditions. Within CollRob, we use various optical sensors for localization, detection, 3D
reconstruction, and depth estimation. The overall system has to cope with challenges such as sub-
millimeter position accuracy for robot grasping, occlusion, surface reflections and complex shapes.
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Figure 2. Structure of application modules

The system design fuses the information acquired from the various sensors: (1) Laser scanning (sta-
tionary) is used for large-scale mapping of workspace environment. (2) A 3D-Time-of-Flight (TOF)
sensor is used for rough dynamic characterization of the scene. Alternatively, an additional stereo
camera system with wider FoV can be used. (3) For high-resolution localization & inspection within
the workspace of the robot (in order to achieve the required 0.05 mm resolution at specific parts of
the scene), an active stereo system with an additional pattern projection unit is used. (4) On one of
the Pan-Tilt Units (PTUs) used for sensor pointing, in addition a laser speckle projector is mounted
to enhance texture-less regions for high-resolution stereo analysis. (5) All components of the sen-
sor system will be integrated in one unit which allows quick installation and setup in the production
environment.

We can benefit from such a system along with other sensory data for safety assurance [16]. Safety
is one of the most important factors when considering human-robot collaboration in industrial ap-
plications. Various safety features such as vision, proximity sensors [33], laser detectors, touch and
collision sensors, force torque sensors, and emergency stops could be exploited to achieve this goal.
At the same time, many standards and guidelines throughout the design, robot manufacturing, instal-
lation, and final implementation are issued to increase the safety in the system [15, 1]. To provide
safety, we need to cope with the sensor failures and their occlusion and also dynamic environments.
To achieve this goal, we plan to build a hybrid safety system, which combines multiple safety features
and sensors together in multiple layers in a both serial and parallel manner. This way, failure of one
sensor will not necessarily compromise the safety as long as other components continue to function.
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4.2. Analysis of Human Behaviors, Emotions and Actions

Humans generally interact with robots in the same way they might interact with other people, es-
tablishing social relationships and emotional ties with them [4, 8]. As industrial robots are enabling
human and robot workers to work side by side as collaborators in manufacturing tasks, a fundamental
issue regards the development of methods to assess the user’s experience with a robot, while under-
standing how humans feel during their interaction with it [27]. Furthermore, human-related variables
are essential for the evaluation of human-interaction metrics [26]. To work seamlessly and efficiently
with their human counterparts, robots must similarly rely on predictions of the human worker’s be-
havior, his/her emotions, task specific actions and intent to plan their actions. In [12] for instance
an anticipatory control method using a human-in-the-loop architecture was implemented that enables
robots to proactively perform task actions based on observed gaze patterns to anticipate actions of
their human partners according to its predictions.

In the project CollRob, there is a focus on advancing models of human-related variables that directly
refer to the evaluation of levels of autonomy in human-robot interaction, such as situation awareness,
trust and workload, which have a long history in the automation literature [3, 6, 31]. CollRob un-
dertakes to elaborate situation awareness in the manufacturing domain of human-robot interaction
(HRI) on the basis of human attention measures. It specifically considers the dynamic estimation
of current and predicted gaze in the context of collaboration affordances. Affordances have already
been thoroughly studied in robot control [22]. However, from the human worker’s viewpoint in the
manufacturing domain, affordances refer to relations between the human and the manufacturing en-
vironment that, through a collection of stimuli, afford the opportunity for the worker to perform an
interaction. CollRob intends to estimate various levels of human attention in the 3D environment [20]
– in the context of collaboration affordances – and from this become capable to derive parameters
for decision making: as low levels of situation awareness would decrease speed in safety-critical task
processing, high levels would need to increase the throughput or to increasingly consider production
quality related processing. As a first step, CollRob developed methodologies for the efficient, robust
and low-cost method for the continuous localization of human gaze in industrial work cells. One
application is to estimate gaze directly from eye tracking glasses based on the visual recognition of
artificial random dot markers [28]. Additionally, a spatiotemporal model of attention was developed
that estimates human gaze solely from egocentric vision [21]. Further activities in the frame of human
behavior measurements will focus on the worker’s context being estimated from psychophysiologi-
cal measurements [27] and developing a metric for HRI situation awareness in the manufacturing
domain.

4.3. Resource Managing including Dynamic Task Optimization and Decision Making

Human-robot collaboration requires robust and time-aware dynamic planning and scheduling strate-
gies for robot-human teams. In the last few years, key contributions to make robot-human team
collaboration more fluent stem from [25, 18]. Within the CollRob project, we will focus on the de-
velopment of algorithms to deal with geometric issues, consider time based planning strategies and
provide a robust implementation. Currently, our focus is to find a robot model for geometric and time-
aware scheduling strategies by building a puzzle together. Our long term research goal is to deeply
integrate the social interaction models (e.g., the fair distribution of team members, conflict solution
strategies etc. for individual team members). A key issue will now be how we model such aspects.
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4.4. Human-Robot Interaction and Information Exchange

Current research on HRI investigates different ways how robots and humans interact, the main ones
being voice control [13], interaction primitive [7], motion recognition [10], force adaptation [17] and
shared presence [30]. However none of these methods is well established in commercial applications.
In this project, we focus on new paradigms of HRI in the context of collaborative industrial robotics
and emphasize the distinction between collaboration and other forms of human-robot interaction,
which usually view the problem as robot control or human-robot communication via tele-operation
[11]. We include natural interaction mechanisms (acoustic and gestural interface), human factors
[32] and a visualization component supported by augmented reality functionalities in an intelligent,
context-sensitive control system. While human collaborators primarily interact using speech and ges-
tural input, they receive situation-dependent information about current and future tasks, the robot’s
movement path and possible dangers. Here we explore the use of a head-worn AR system to ensure
unobtrusive, hands-free collaboration and explore the optimal information flow to avoid cognitive
load and distraction from the task. Moreover, the physical state of the human affects both the robot
behavior and the feedback channel. This all strengthens the collaborative aspect of the interaction
by increasing communication quality, trust, security awareness, and work efficiency. Recently, a first
implementation of the interaction system was set up including the speech interface, a basic dialogue
manager and a tablet application, serving as basic sensor interface. The human collaborator is thus
able to interact with the robot using speech input, including basic robot task queue manipulation com-
mands, while monitoring the sensory data. As a next step, the acoustic interface will be extended to
include natural language understanding together with a more advanced dialogue manager. Moreover,
a tablet application and wearable sensors will be used to analyse behaviors, emotions and actions
of human collaborators. We will use the results of this analysis to implement the context-sensitive
visualization and control system.

4.5. Redundant Sensitive Robotic Manipulation

Whenever a physical human-robot interaction is supposed to take place to fulfill a shared task, hu-
man ergonomic operation and safety are important aspects which must be observed. Robot safety
is provided by the electromechanical system in different ways and often in a redundant fashion. In
practical terms, the main options to reduce the risk of human injuries are safety-related monitored
stops, speed and separation monitoring, and power and force limitations, as manifested in [ISO/TS
15066:2016]. The implementation of these options is done (i) by measuring the direct energy transfer
between the robot and an object or (ii) by monitoring the environment using electromagnetic or sound
based sensors. More specifically, a physical contact can be recognized by measuring the force, torque
or current at the end effector, the robot’s base, or at each joint. In addition, a sensitive skin applied on
the manipulator can measure a contact force as well. If a direct contact is not desired, the environment
can be perceived by different sensors operating at distance (see Section 4.1.). All sensor data can be
fused to expand the knowledge of the environment, thus being used to control the robot’s movement
in a human-safe manner. That means that the dynamic movement of the robot must be planned and
executed in an adaptive and reactive way.

If a kinematically redundant system has to perform a given task, the additional freedom can be used
to enhance safety (by increasing the distance of the manipulator’s parts to a human or reducing the
velocity of the robot’s arm segments) and ergonomics for a human operator (by configuring the robot
joints in a way that the robot does not disturb ergonomic human motion). Such systems allow a
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change of the manipulator configuration without influencing the end effector’s trajectory.

Although the method of redundancy resolution is well understood for local optimization using the
Jacobian matrix (see, e.g., [19]), we try to expand the knowledge of redundant robot systems onto
a global view on redundancy. Based on this goal, cost functions for any type of manipulators (e.g.,
mobile, serial) can be formulated and computed for the entire system. Moreover, a compliance control
scheme should be developed which uses this extensive description of the kinematic behavior. In case
of a higher number of freedoms in the system (more than one) a multi-priority control can be used in
a meaningful way. Thus, the aim of this work package is to realize the computation of a primary task
(given trajectory of the end effector), a compliance control of the whole robot system and a desired
optimization (e.g., energy minimization) based on one mathematical concept.

5. Conclusion

In this article, the research project CollRob was presented proposing novel methods for human-robot
collaboration. Research covers machine perception, sensitive redundant kinematic manipulation, dy-
namic adaptive planning, human-robot interaction and information exchange, human state evaluation,
and safety. To integrate different methods and system components into one working setup, a soft-
ware architecture has been developed based on a publish-subscribe principle implemented in ROS.
Different use cases have been identified and will be addressed for evaluation purposes of the devel-
oped methods including a demo use case of joint human-robot Tangram puzzle building and various
industrial applications in collaboration with company partners.
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Abstract
Automated storing, retrieving, and delivering items is an important part of Industry 4.0 application.
For low-volume this task is done usually manual. In this paper we present an architecture and a
proof-of-concept implementation for order picking using the robot Baxter from Rethink Robotics. The
main contribution besides providing full functioning prototype is a dependable control architecture.

1. Introduction

Industry 4.0 is one of the keywords, when we talk about the next level of production. Industry 4.0
represents the 4th industrial revolution and promises improvement of productivity through automated,
self-organizing and self-optimizing processes. It addresses the needs of high-quality products which
are also highly customized but still ready for mass production.
This work contributes to the field of Industry 4.0 by developing an assistant robot for order picking.
Such robots share the environments with humans. In a typical warehouse system items can be stored
in larger transport boxes. The transport boxes again can be stored in shelves to save space. If a specific
item needs to be picked the transport box first needs to be pulled out of the shelf and then the item can
be picked and delivered. This procedure is called order picking. For items with a moderate frequency
this type of picking is usually done by hand which is a monotonic and time consuming task. In our
scenario we tend to automatize that task.
The system we propose is based on a 3-TIER architecture. The planning layer uses an artificial
intelligence (AI) planner to generate a list of skills the robot has to execute. The planner outputs a list
of skills, the robot needs to execute in order to achieve its goal. Skills are composed of skill primitives.
These primitives can perform perception, manipulation, grasping tasks or any combination of those.
Failures are already detected at the level of the primitives where local recoveries can be performed.
If these recoveries fail too, these errors are reported to the executive layer. This architecture ensures
the detection and recognition of failures. Together with appropriate steps for recovery dependable
execution is achieved. The proposed architecture was realized as a proof-of-concept implementation
using the two arm robot Baxter from Rethink Robotics. For details about the realized system we refer
the interested reader to [10].
The reminder of this paper is organized as follows. In the next sections we briefly discuss related
research and the target environment. In Section 4. the proposed system architecture is presented.
Due to the space constraints we focus on skill primitives. In the next section we briefly present an
evaluation focused on the skill primitives. In section 6. we draw some conclusions.

∗This work was supported by incubed IT GmbH.
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2. Related Work

Numerous works exist about high-level planning for robot systems solving complex tasks using sets
of simpler system capabilities. This system capabilities are called skills. Dividing a complex task in
such skills has multiple benefits like flexibility, reuse of skills and good software portability.
Pederson et al. shows in [13] the division of a complex task a sequence of multiple subtasks (= skills).
Skills are described being the fundamental building blocks or the system capabilities. If a new com-
plex task should be executed, the system needs not being reprogrammed. It is sufficient to simply
reorder the skills. Similar to our approach, an execution monitor surveys the outcome of the skills.
In [12] skills are ported to different robotic platforms. Skills get further decomposed into skill prim-
itives. With this detailed decomposition the hardware level is abstracted from the skills itself. The
advantage of modularity and the abstraction of tasks is pointed out.
The authors in [14] introduce a 4-TIER architecture, with the same idea of abstraction for skills and
skill primitives as in the previous papers. The lowest layer ensures the hardware abstraction and so
the re-usability on different platforms. The next layer contains action and perception primitives. The
top layers handles the planning task. As the previous addressed work, this abstraction is used for
easing the human robot-interaction. All these papers show a clear distinction between tasks, skills
and primitives and focus on portability and easy execution of complex new tasks. But their focus is
on human-robot interaction. The human in the loop defines a new task through reordering skills. The
next works present a successful task planning utilizing artificial intelligence (AI) planner instead of
humans in the loop ordering skills. In [6] Huckaby defined skills with preconditions and effects in the
model space of the problem. The initial state and goal are stated in the process space. They proposed
PDDL [7] as planning language.
In [6] the focus lies on the high-level. It is assumed that skills and their primitives always succeed. In
[11] a system is proposed which transfers the high-level description from the AI planner to a behav-
ioral state machine. Failures in the primitive execution are detected by a vision system and recoveries
are performed.
Finally some works addressing the order picking problem are discussed. The authors in [9] present
a mobile bin picking system. Items are picked from a box standing on the ground and placed at a
delivery station. The high-level of this system is a finite state machine (FSM).
In [3] a software architecture and their implementation for grasping objects is presented. Some of
these concepts are used in our work too. The collision environment is a 3D occupancy grid excluding
robot parts. Known and recognized objects are represented as geometric primitives or as mesh mod-
els of the objects. In [1] the authors present a pick and place approach where they have to deal with
known and unknown objects, cluttered workspace and noisy sensor data.

3. Target Environment and System

For the a proof-of-concept implementation of the proposed order picking system we use the robot
Baxter from Rethink Robotics (see Fig. 1a). It is a two-arm robot with internal sensors such as
cameras and proximity sensors in the wrists. In order to get a global overview of the environment
we added a RGBD camera on top. The environment Baxter operates in is shown in Figure 5b. It is a
mock-up of a typical manual storage.
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(a) Baxter with its inbuilt and additional mounted sen-
sor.

(b) Environment in which Baxter performs the order
picking task.

Figure 1: Robot Baxter and the environment it operates in.

4. Architecture

In Figure 2 the conceptional overview of the proposed 3-TIER architecture is shown. The 3 layers
for planning, executive and behavioral control are separated. The communication is clearly defined.
The top layer represents the planning layer. The planner uses the information of the domain and the
problem to generate a plan. The plan is a sequence of skills that have to be executed to reach a given
goal. The plan is forwarded to the next layer. The executive layer takes care of the execution of
each skill. It knows about the composition of the skill primitives. The primitives are located in the
behavioral layer. The advantage of this abstraction is its clear structure and its modularity. For further
reading about the 3-TIER architecture please see [8, p. 244–277].

Figure 2: Overview of proposed system’s architecture.

4.1. Planning Layer

The top layer of the 3-TIER architecture is the planning layer. The planning layer uses a domain and
problem description of the given environment and task. It is based on the Planning Domain Definition
Language (PDDL) modeling the system capabilities (further on called skills), the current state of the
environment and the goal state. The authors of [6] showed that PDDL is an appropriate choice for
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robotic tasks. The domain contains information about all the objects which can appear in the envi-
ronment. Further it knows about the skills the robot is able to perform. A skill is defined through its
name and the its parameters. A skill has a precondition and an effect. The precondition is the state the
environment needs to be in before the action can be performed. The effect of a skill is the description
of the environment after the skill is performed.
The problem describes the initial state s0 and the goal g, which are a set of propositions [4]. The goal
state sg is a state, that satisfies g. First object instances are defined, which occur in the environment
and their initial properties are stored. The planner takes the domain and the problem description and
generates a list of skills, which need to be performed to solve the given problem. We use the planner
SGPlan6 [5]. This list of skills is forwarded to the executive layer of the 3-TIER architecture.
For solving the order picking task, the following skills are required: moveBoxFromLevelToTray,
movBoxFromTrayToLevel and graspItem. Lets assume an environment containing transport boxes
BOX A, BOX C and a shelf with levels LEVEL 1, LEVEL 2 and the goal of picking one item from
BOX C placing it at the delivery box DBOX C and picking two items from BOX A placing it at deliv-
ery box DBOX A. The planner comes up with the following plan (see Listing 1).The name of the skill
is the first parameter, followed by the parameters the skill requires. So the first skill, which has to be
performed is moveBoxFromLevelToTray. The BOX C is moved from LEVEL 2 to the TRAY.

Listing 1: Output of planner for example domain and problem.
0 (MOVEBOXFROMLEVELTOTRAY BOX C LEVEL 2 TRAY)
1 (GRASPITEM BOX C DBOX C TRAY)
2 (MOVEBOXFROMTRAYTOLEVEL BOX C LEVEL 2 TRAY)
3 (MOVEBOXFROMLEVELTOTRAY BOX A LEVEL 1 TRAY)
4 (GRASPITEM BOX A DBOX A TRAY)
5 (GRASPITEM BOX A DBOX A TRAY)
6 (MOVEBOXFROMTRAYTOLEVEL BOX A LEVEL 1 TRAY)

4.2. Executive Layer

The executive layer receives a list of skills from the planner. The executive layer handles the execu-
tion of single skills. Each skill is composed of skill primitives, which are the fundamental building
blocks of each skill. The executive layer knows about this decomposition and ensures that primi-
tives are executed in right order to guarantee a successful skill execution. This decomposition of the
skills moveBoxFromLevelToTray, moveBoxFromTrayToLevel and graspItem is shown in Table 1. The
composition of skill primitives for each skill is intrinsic knowledge of this layer. Further it monitors
the outcome of each primitive. This layer has also the opportunity to perform recovery behaviors, if
primitives fail. If no recovery can be performed or the recovery fails, this failure is reported to the
planning layer. The decomposition of the moveBoxFromLevelToTray and its execution is shown in
Figure 3.

skills moveBoxToRack graspItem moveBoxToLevel

skill
primi-
tives

detectHandle detectItem detectHandle
graspHandle graspItem graspHandle
moveArmToSupportPose deliverItem moveArmToSupportPose
pullBox pullBox
moveBox moveBox
deliverBoxOnTray deliverBoxOnLevel

Table 1: Within this table the skill primitive composition of all skills are listed.
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Figure 3: Decomposition of skill moveBoxFromLevelToTray into its primitives and how executive layer
handles the execution.

4.3. Behavioral Control Layer

This layer holds all skill primitives. The primitives are platform-dependent and have to be re-
programmed for specific robot platforms. The upper layers are immediately portable to other plat-
forms. The primitives have a defined interface but their implementation is different for different
platforms. Skill primitives can perform perception, manipulation, grasping tasks or any combination
of those. Local recoveries are performed in this layer. If a recovery is impossible skill primitives
report their error. A skill primitive can be used by different skills.
Figure 4 depict for instance the primitive of looking for items once the box is on the tray. For the
box detection the point cloud of the top RGBD camera and the PCL implementation [16] of FPFH
features [15] (initial detection) and ICP (fine alignment) are used. The control of the arms are realized
using the MoveIt! framework [2]. Items are detected using the RGB cameras in the wrist. Figure 5a
shows the inspection of a box while Figure 5a depict the internal representation of the situation.

5.4 Behavioral control

Shelf
Tray

Box

Baxter

movement

Figure 5.22: After the box is turned the box’s handle is released and the grasping arm
moves away from the handle.

Figure 5.23: In this figure the different blocks of the detect item skill primitive are shown.
First it detects the transport box, then it moves the arm over the box and
detects the item using the hand camera. If the skill succeeds the item pose PPG
and the box pose BPG ares returned.
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Figure 4: Detect Item primitive. PPG represents the global item pose. BPG represents the global box
pose.

5. Results

The major result of this work is a working prototype implementation of the proposed order picking
system based on the robot Baxter and standard software packages such as ROS or MoveIt!. But we
are interested in particular in the dependability of the system. Therefore, we performed a detailed
evaluation of the individual skill primitives.
For the evaluation we executed individual skill primitives multiple times (around 50 trials each) in
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5 System Overview

IP1

IPend
IPn

desired
orientation

Figure 5.25: This figure shows the inspection points in more detail.

(a)Baxter inspecting the box with it’s
endeffector camera.

(b)Baxter inspecting the Box visualized in
RViz. The white point cloud indicates
the detected box. The orange voxels vi-
sualize the collision scene.

Figure 5.26: This figure shows Baxter inspecting the box in reality as well as visualized in
RViz.
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(a) Baxter inspecting the box with it’s end-effector
camera.
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Figure 5.25: This figure shows the inspection points in more detail.

(a)Baxter inspecting the box with it’s
endeffector camera.

(b)Baxter inspecting the Box visualized in
RViz. The white point cloud indicates
the detected box. The orange voxels vi-
sualize the collision scene.

Figure 5.26: This figure shows Baxter inspecting the box in reality as well as visualized in
RViz.
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(b) Baxter inspecting the box visualized in RViz. White points
indicate the detected box. Orange voxels represents the colli-
sion scene.

Figure 5: Realization of the primitive Item Detection.

given setups. Details about the evaluations can be found in [10]. In Figure 6 the results of the
individual skill primitives are shown. The green bar indicates the successful execution rate, the gray
bar marks the failure executions which are detected by the system and the red bar shows the failures
which are not detected by the system. Even if the success rate of some primitive is not overwhelming,
the system detects the failure and reacts to it. The recognition of failures is one fundamental ability
of reliable systems. As soon as the errors are detected, the robot can react to it autonomously.
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6. Conclusion

In this paper an autonomous order picking system was presented. In order to keep the system modular
and portable a 3-TIER architecture was developed. The planning layer utilized an AI planner, which
uses a PDDL description of the planning problem. The planner received the description of system
skills, as well as start and goal state and provided a list of planned skills. Each skill is composed
of skill primitives. These skill primitives are needed to address manipulation of the box, grasping
items and perceptual tasks. The decomposition of skills into primitives enriched with monitoring
and recovering capabilities contribute to the dependability of the system. The proposed system was
implemented as a prototype using the robot Baxter and standard robotics software libraries.
Using this prototype implementation the concept of the skill primitives was evaluated. Although
most primitives worked quite well, the evaluation pointed out some problems of this proof-of-concept
system. Within most primitives, the major problem was that the execution of planned trajectories
was aborted because Baxter was not able to execute them precisely enough. However these errors
were detected by our system and reported to the high-level controller. For future work a more reliable
execution of arm motions by Baxter needs to be addressed.
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Abstract 
In this paper we present the first results of the AssistMe project which aims at enabling close human-

robot cooperation in production processes. AssistMe develops and evaluates different means of 

interaction for programming and using a robot-based assistive system through a multistage user-

centered design process. Together with two industrial companies human-robot cooperation 

scenarios are evaluated in two entirely different application areas. One field of application is the 

assembly of automotive combustion engines while the other one treats the machining (polishing) of 

casting moulds. In this paper we will describe the overall project methodology, followed by a 

description of the use cases and a detailed outline of the first robotic prototype set up. The paper 

closes with an overview on the results of the first user trials that show very similar findings for both 

use cases and gives an outlook on the next expansion stage of the human-robot cooperation scenario. 

 

1. Introduction 
The idea that industrial robots need to leave their working cells and pre-programmed routine tasks in 

order to become more flexible in use and also more applicable for SMEs with smaller lot sizes and 

often changing production processes is nothing new. Robots, such as the collaborative robots from 

Universal Robots1 and Baxter from Rethink Robotics2 are entering the market with exactly that aim 

to offer robotic solutions for a closer human-robot collaboration, in which the strengths of the humans 

(e.g. problem solving, decision making) can get combined with the strengths of the robot (e.g. 

efficient fulfilment of reoccurring tasks) [1]. Companies such as KUKA start investing more and 

more in user-centered development (UCD) and usability standards such as ISO/TR16982:2002 were 

developed to support safe and close cooperation. Nevertheless, little user-oriented research has been 

performed so far outside the laboratory in the industrial context to understand what makes operators 

                                                 
1 http://www.universal-robots.com/de/ 
2 http://www.rethinkrobotics.com/ 
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accept or reject robotic assistance (e.g. [2]). Similarly, little is known about best practices of user-

centered development in the industrial context [3] [4]. 

Up to now, robot-based assistive systems are not widely spread in the manufacturing industry, as 

there is still research missing to uncover their full potential, and room for improvement in terms of 

usability, user experience, and subsequently user acceptance. Assigned purpose of the project 

AssistMe is the user-centered development and evaluation of innovative means of interaction for 

human-robot cooperation to improve usability and user experience of robot-based assistive systems 

in order to flexibly automatize selected production steps in an economically viable way. 

The aim of the AssistMe project is to develop innovative haptic and optic concepts for human-robot 

cooperation in two different applications contexts, namely the assembly of automotive combustion 

engines while the other one treats the machining (polishing) of casting moulds. These concepts can 

be used during set up and interaction with a robot-based assistive system.  

The project consists of three major development cycles. In a first iteration an assistive robot system, 

more or less out of the box is implemented for the use cases by application of process equipment. 

User studies regarding teaching and use of the systems are carried out. User-centred improvements 

in terms of usability and programmability are implemented as technical components in order to 

reduce programming complexity and programming duration as well as to improve system reliability 

and process quality. 

Therefore different technology options are foreseen by the project frame. Force feedback technology 

will support programming and the usage of robot programs in order to make better use of robot 

articulated machining tools supporting the navigation through the real world by position-based haptic 

force feedback. Optic interaction technology, 2D and 3D sensors (and the corresponding machine 

vision algorithms) integrated with projection devices will render spatial augmented interaction e.g. 

textual feedback – instructions and explanations, during use. Apart from visualization, spatial 

augmented reality concepts with position and object-based projected information will be developed 

in order to be able to define virtual light barriers and projected buttons. Tools will be automatically 

positioned relative to objects (due to object pose recognition technology). In combination with haptic 

interaction technology interaction concepts will be evaluated that prevent users from the violation of 

3D collision contours that have been captured and automatically interpreted as such by optical 

reconstruction technology beforehand. These interaction paradigms will be developed in a multi-

stage process, together with operators in the two different testbeds and subsequently they will be 

evaluated in different expansion stages of the interaction technologies.  

 

2. User-centered Design Approach  

 
The two-years project is based on the concept of iteratively evaluating the same robotic assistance in 

different stages of expansions for the two different use cases. Stage 1 is an off-the-shelf robotic arm 

from Universal Robotics . Stage 2 will be further enhanced with a 3D sensor and Stage 3 with force 

feedback. Every stage of expansion will be evaluated together with representative target users from 

our industrial partners with respect to usability, user experience, and acceptance. After every 

evaluation implications for improvement for the next expansion stage will be derived to keep the 

operators’ point of view in the development process. The AssistMe project thereby follows a very 

similar user-centered design approach as presented in [3] and the evaluation activities are 

methodologically grounded in the USUS evaluation framework [5]. The work presented in this paper 

are the general use cases for both application contexts, as well as the first expansion stage and its 

evaluation. Before we go on detail with our use case implementation, we will give a short overview 

on related state-of-the-art assistive robot systems. 
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3. Assistive Robotic System 
 

Robot-based production nowadays is essential for industrial manufacturing. Due to safety reasons 

industrial robots are placed in a cell behind spatially separating safety equipment such as fences. As 

precise playback machines for movements, industrial robots remain insensitive towards their 

environment and repeat predefined sequences of actions. Industrial robots cannot react to changes in 

their environment and require reprogramming. [6] differentiate automatic and manual robot 

programming systems. In industrial scenarios robot specialists do reprogramming and 

reconfiguration partly with text based, controller integrated, teach pendant based (online) tools as 

well as with CAD-based graphical robot simulation tools. Results are, apart from some sensor signal 

inputs, more or less inflexible robot programs. Recently, a new class of industrial robots hit the 

market namely, [7] [8] [9] to mention a few, which can be potentially used in the same environment 

as human co-workers if relevant norms (A,B level norms that define Safety Integrity levels, 

performance levels, application specific C level standards) are fulfilled. [10] [11] define four modes 

of human-robot coexistence and collaboration as relevant for robotic applications. [12] specifies 

safety requirements for collaborative industrial robot systems and the work environment, and 

supplements the requirements and guidance on collaborative industrial robot operation. Programming 

of collaborative robot systems is equivalent to standard industrial robots since trained robot 

programmers are target on the one hand. On the other hand programming is simplified using macros 

to support unexperienced users. [9] provides the possibility of hand guidance during system teach in. 

This input modality is evaluated in the project, but gear friction renders exact hand guided teach-in 

difficult. Industrial installations of collaborative robots remain (until the integration of the project 

results) inflexible and unintelligent playback machines for movements and process technology such 

as intelligent cameras etc. It remains complicated and almost impossible with commercially available 

systems to integrate that renders in adaptive behavior. The AssistMe projects wants to enable naïve 

operators to manually teach a robotic arm for their purposes with little pre-knowledge requested. 

Afterwards a safe and user-friendly cooperation with the robot in the production process should be 

possible.  

 

4. Use Cases 
 

4.1 Assembly of automotive combustion engines (use case A) 

 

The assembly of a combustion engine includes the installation of a cylinder head cover. The 

installation is carried out manually by stacking the cover with pre-inserted screws onto the motor 

block and tightening the screws with a manual power tool. The electronic screwdriver of the manual 

workplace is fitted with a push start mechanism, electronic control unit and a shut-off clutch and 

therefore starts rotating when pushed onto the screw and stops motion when retracted respectively 

when a predefined torque is reached. The working instruction of the workstation includes several 

additional process steps. An automatic screw tightening system is expected to provide assistance and 

to reduce the workload at the workstation for the human worker.  

A state-of-the-art collaborative robot system [10] [11] is equipped with the power tool (Figure 1) and 

programmed to perform screw tightening operations in the required order and accuracy to meet a 

defined process quality (screw-in depth, torque,…). In the first expansion stage, the project evaluated 

the effectivity and simplicity of the user interface as implemented by the robot manufacturer and 

proposed modifications, which will inform the implementation of expansion Stage 2 and 3. 
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Figure 1- collaborative screwdriver 

robot system 

 

Figure 2-manual polishing workplace 
 

4.2 Machining (polishing) of continuous casting moulds (use case B) 

Continuous casting of profile bars requires high precision moulds with excellent surface finish. 

Casting moulds are crafted from flat material by wire electro discharge machining that leaves eroded 

surfaces without the required surface finish quality. Manual polishing (Figure 2) by air pressure 

driven oscillating polishing machines is extraordinary labour intensive, unergonomic and harmful to 

health. Prolonged exposure to hand transmitted vibration from powered processes or tools is 

associated with an increased occurrence of symptoms and signs of disorders in the vascular, 

neurological and osteoarticular systems of the upper limbs [13]. Setup and programming time is 

crucial for the use case since continuous casting molds are usually one of a kind products, 

manufactured in lot size one, with polishing being by far the most labor intensive production step 

causing umpteen hours of labor per mold. Therefore an assistive system, easy to program and setup, 

is desirable that can reduce the amount of labor especially for ergonomic and health reasons. 

A state-of-the-art collaborative robot system [10] [11] is equipped with a polishing tool and 

programmed to perform polishing operations. In the first expansion stage, the project evaluated the 

effectivity and simplicity of the user interface as implemented by the robot manufacturer and 

proposed modifications, which will inform the implementation of expansion stages 2 and 3. 

 
 

5. Preliminary User Trials  

 
The first expansion stage of the two use cases was evaluated in the first year of the project. In total 

three user trials were conducted in order to get feedback from the workers who actually used the new 

robotic system. Participants were recruited by our industrial partners and we explored the teaching 

of the robotic arm in Trial 1 and 2 and the actual collaboration with the robot in Trial 3 (see Table 1 

for an overview). 

 

All participants in Trial 1 and 2 successfully completed both teaching tasks (only one participant did 

not finish the second task due to time constraints). The gathered data showed that the touch panel in 

its off-the-shelf version was experienced as not feasible and too complex to control the robot during 

the teaching task for participants of both use cases. There was a strong tendency to omit the panel as 

an intermediate device and to try to directly control the robot using kinesthetic teaching. However, 

this type of control was also limited in feasibility as the robot arm was experienced as too bulky and 
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unprecise for teaching positions that way. Overall, the teaching of expansion stage 1 was rated as low 

with respect to usability, user experience, and acceptance, which can be explained by the fact that the 

actual teaching was only a fraction of the whole process, which was experienced as too complicated 

due to the touch panel. Trial 3 revealed that in the actual collaboration with the robot its working pace 

was perceived as not flexible enough, which bears the risk to re-establish a rigid production line logic. 

More details on the studies can be found in [14]. 

 

 
User Trial 1 

Use case A 

User Trial 2 

Use case B 

User Trial 3 

Use case A 

  Environment Factory Laboratory Factory (assembly line) 

  Task Teaching of screw positions Teaching of polishing positions Cooperative screwing 

  Duration 1 day 2 days 3 weeks 

  No. of Participants 5 5 5 

  Research Methods Oberservation, Questionnaires Oberservation, Questionnaires Interviews 

Table 1. Overview of the three user trials. 

 

6. Inferred usability improvements 

6.1 Technical project outlook: Expansion stage 2  

Usability studies yielded requirements regarding robot hand guidance. Gear friction yields stacking 

and imprecise movement. Locking of certain degrees of freedom (e.g. rotation or translation,…) is 

asked for by users as well as semiautomatic tool alignment and expected to improve both 

programming time and process quality. A state of the art force torque sensor was integrated as well 

as buttons to call perpendicular realignment (Figure 4) or locking of rotational or translational degrees 

of freedom.  

6.2 Technical project outlook: Expansion stage 3  

Collaboration can be improved by adding visual feedback on the robot and the work piece during the 

teaching (to reduce the burden of switching attention between the robot and touch panel). [15] [16] 

introduce the notion Spatial Augmented Reality (SAR) and describe it as enhancement or aggregation 

of several Augmented Reality (AR) technologies. One formulation [17] might be a depth camera 

projector based system to project (correctly distorted) information on three dimensional objects 

instead of flat screens (Figure 3) and may be used for projection of buttons. 

 

(Applied) robotics does not make use of SAR methods extensively. [18] introduces a projection-

based safeguard system for robotic workspaces especially for collaboratively used workspace. [19] 

gives an overview on Tangible User Interfaces (TUI) which denote interfaces that can be manipulated 

physically, and which have an equivalent in the digital world and represent a mean for interactive 

control. The project proposes a combination of TUI and SAR methods. Hand guided positioning of 

the robot might be uncomfortable or time consuming due to inappropriate input modalities (friction 

afflicted robot drives, unintuitive touch screens,…). 
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Figure 3- Depth Camera based tracking for 

Spatial Augmented Reality [17] 
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Figure 4 - projected buttons 

Tightening order and poses of screws might be programmed by pointing to the screws with the finger 

[20]. Object and pose recognition introduces TUI to the world of AR. We propose a system that 

provides spatial detection functionality of teach-in devices (e.g. a spherical marble) that can be 

manipulated by the human. The system consists of one or more 3D sensors and a calibrated projector. 

Information on dynamic marble pose (resting marble may denote an underlying screw to be 

tightened) may be used for the programming of process points. A marble is placed on the 

cylinderhead cover. A projected interface element is pushed by the programmer who has to hold in 

order to avoid accidental acknowledgements. Once acknowledged, the 3D pose of the marble and 

thus the underlying screw is programmed to the system. 

 

Figure 5 - system setup 

 

Figure 6 - SAR-TUI based process point 

programming 

 
The system architecture (Figure 8) motivates advanced functionality in terms of robot hand guidance. 

Figure 7 shows first results of the environmental modelling system. An arbitrary placed object is 

recognized by the 3D camera and a virtual environmental model is updated (in realtime) with the 

model of the recognized object in its correct pose. 

 

Force feedback algorithms are planned to render intuitive feedback for the user according to elements 

of the environmental model. E.g. boundary surface of volumes containing obstacles should make it 

impossible for the user to move the robots to or through such areas. Therefore negative force (as far 

as movement direction is concerned) has to be exerted to the hand guiding user. Positive forces may 

attract the user to process points contained by the model.  

 

projector

projected button

3D sensors
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Virtual obstacles (attached to real world 2D – markers can therefore easily be integrated into the 

environmental model). 

 

 

Figure 7- Augmentation of Virtual Model 

by Real World Objects 

 

Figure 8 -system architecture 

 
The force feedback system may not only render force feedback for the user during teach-in. It also 

can control process forces as e.g. required by the polishing process. Force-Torque information is 

acquired from the FT-sensor. An external sensor (Figure 9) is used instead of built in robot [9] 

functionality since force values estimated from required motor currents are too inaccurate due to e.g. 

gear friction. Process forces can be controlled e.g. for a touch up operation to exact 5N which is well 

below the detection threshold of the robot (Figure 10). 

 

 

Figure 9- FT-sensor and polishing tool 
 

Figure 10- measured process forces 

 

7. Conclusion 

In this paper we presented the AssistMe project, which aims at enabling more flexible human-robot 

collaboration in the industrial context through a user-centred design approach. We outlined the overall 

approach of the project as well as its two use cases: (1) Assembly of automotive combustion engines 

and (2) Machining (polishing) of continuous casting moulds. We roughly described the main findings 

from the first end user evaluations which used a state-of-the-art robotic system. An outlook on 

expansion stages 2 and 3 were motivated and described. 
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Abstract
Autonomous robot navigation is an important and challenging component that is still missing in many
real applications. In particular, home environments present open challenges that differ notably from
one user apartment to another. Laser sensors cannot perceive objects at all heights commonly found
in homes, we investigated the feasibility and suitability of using RGBD sensors for 2D autonomous
navigation and a variety of tasks at real user homes. We use the concept of virtual laser scans to
integrate RGBD data into mapping and localization methods. For realistic user interaction in actual
homes we designed and improved ,over several pilot studies, the robot behavior for tasks such as
approaching the user. In this paper, we report the adaptations needed to cope with home-specific
challenges using RGBD sensors as a solution to perceive 3D environments.

1. Introduction

In many areas of application of service robots, mobility plays a role of great importance. Non-
industrial real environments present increased complexity and in general are very hard to handle
[18, 14].

In particular, autonomous navigation in user homes is a challenging aspect of care robotics projects.
The SRS (MultiRole Shadow Robotic System for Independent Living) project pointed this out and
focused on the development of remotely-controlled, semi-autonomous robotic solutions [11]. In other
projects, such as Giraf and Giraff++, the robots were also externally teleoperated [2] and there was no
autonomous navigation. This missing autonomous mobility has been identified as a key next aspect
that needs to be solved. In the Companionable project, autonomous navigation to fixed predefined
places was incorporated, but a controlled test home was used [17] instead of different real home
environments.

RGB-D navigation poses additional difficulties [7, 3, 10]. The reduced field of view, the blind detec-
tion area and the small maximum range of this kind of sensors provide very limited information about
the robot’s sorroundings. Noisier points, spurious measurements and scale issues in the depth data
also affect the perception capabilities.

This paper presents our developments, adopted solutions and identified issues to overcome the chal-
lenges of home environments using RGB-D sensors. We studied different navigation tasks and the
adaptive approach to the user and conducted trials in several homes of older adults. The contributions

∗This work was partially funded by the European Commission, project HOBBIT (FP7-288146).
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to resolve the different tasks are described and specific problems of homes are addressed.

The paper is organized as follows. Section 2. describes the robot platform and sensor setup config-
uration. Section 3. presents our system architecture and implementation overview focusing on the
navigation related tasks and components, which are explained in more detail in Section 4.. In Section
5., observed navigation problems are identified and addressed, while Section 6. provides an initial
overview of the different navigation functions usage during the trials. Finally, Section 7. includes
conclusions, final remarks and future challenges.

2. Robot platform and sensor setup

The PT2 mobile robot platform (prototype 2) was developed for the Hobbit project by partner Me-
tralabs [12]. Two symmetric drive units and one supportig castor wheel constitute the low level
locomotion system. A safety edge bumper protects the platform and blocks the motors while pressed,
preventing the robot from moving while it is hitting an obstacle.

The sensor setup is based on two main RGB-D sensors, keeping a configuration similar to the one
proposed for a previous prototype of the robot [5, 3]. The bottom camera -used for localization- is
placed at a height of 35 cm. The head camera -used for obstacle avoidance, user detection, object and
gestures detection and recognition- is mounted inside the robot’s head, and can be tilted. 2D virtual
lasers are created from each of the sensors, considering the largest measurements for localization
with the bottom sensor (since they correspond to obstacles further away, like walls) and the closest
measurements for obstacle avoidance with the top sensor. A height interval within the whole 3D point
clouds is considered for the generation of the virtual scans.

3. System architecture and implementation

The whole system architecture has high modularity. To facilitate development, code reuse, communi-
cations management and integration, the popular Robot Operating System (ROS) [16] framework was
used. Metralabs robots run the MIRA (Middleware for Robotic Applications) [4] framework, which
manages low level control aspects of the platforms and also provides autonomous navigation func-
tionalities and the Miracenter tool, which runs a complete instance of the framework with a graphical
user interface.

In order to integrate MIRA into our ROS based system, several interfaces were required. The basic
infrastructure of the new interfaces was based on existing interfaces from the STRANDS1 project,
modified and extended for our choices and needs. In our case, we decided to use MIRA navigation
instead of ROS navigation because it was already well tuned for the current prototype platform and
for reasons similar to the ones outlined by the Robot-ERA project team, such as enhanced support
and robustness [9]. The required interfaces are implemented in different classes and run as a single
ROS node.

In the first place, the virtual laser scans generated by ROS nodes had to be read, converted and adapted
to be used by MIRA for localization and obstacle avoidance. In the other direction, an interface to
provide the current localization pose as a ROS topic was required as well, and the corresponding
trasformations are also computed and broadcasted.

1STRANDS project, EC 7th Framework Programme. Grant agreement num. 600623
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Also, goal poses had to be sent from ROS nodes and SMACH to be processed by MIRA. This function
was implemented as a ROS action server from which a MIRA navigation task including position, final
orientation, and preferred driving direction subtasks -with their corresponding tolerances- is started.
This way, a navigation task to a given goal can be preempted from the behavior side and the necessary
feedback about the task status is provided by the actionlib server. The interface to start the action is
the same as when sending a goal to ROS MoveBase action server, and the provided feedback is also
translated to similar terms. Interfaces for discrete motion commands (distance to move, angle to turn)
were also created to run in a separated ROS thread based on the distance mode experimental feature
of MIRA.

Another action was created in order to start and interrupt docking on and off from the charging station.
These procedures were implemented internally within MIRA.

Fig. 1 shows a simplified overview of the system architecture, including the most important modules
and data flows with regard to navigation related tasks. More details about these tasks and methods are
included in Section 4..
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Figure 1. System components overview, focusing on navigation related tasks and modules (other details omitted
for the shake of clarity). ROS Smach behavior state machines can interact with MIRA through the interfaces node
directly or through other nodes.

The mapping process took place in advance, during the setup phase at each new trial site. For building
new maps, we used the ROS implementation of Gmapping [8] and converted the generated maps into
the MIRA corresponding format.
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4. Navigation-related functions

Several functions desired by the users required navigation capabilities. This section describes these
functions. More particular details of navigation between fixed places in real user homes are described
in Section 5..

4.1. Go to place

This is the most basic navigation function. When started by the user, the robot should move from the
current position to a given place, using predefinid positions and labels. The user can select the desired
place/room name from a list displayed on the user interface or can use a voice command.

4.2. Recharge

During the setup phase, the charging station must be placed in a suitable place, which is not always
easy to find in real apartments. Enough space for the station itself and its supporting plane that
prevents it from moving is needed. There should also be enough space in front of it, so that the robot
can detect the station with the bottom RGB-D sensor from a distance (the minimum recommended
distance is 50 cm). Obstacles at the sides of the station can also reduce manouverability, increase the
risk of false positives in the detection and result in a higher number of failures. Proper wall sockets
and satisfactory conditions in the room are required, and visibility should be good, with no direct light
coming from nearby windows. Last, but not least, it is very important that localization in front of the
station is good so that the template is within the field of view (but the error distance to it is not so
critical). Therefore, the station should not be placed along a featureless wall with few references in
the orthogonal direction. Places in front of doorways are preferred over positions with a lower degree
of geometrical variance in the alignment direction.

This task comprises several actions. In the first place, the robot has to reach a predefined position
in front of the charging station. From this position, a docking action is started. The docking action
starts the MIRA docking procedure, which first of all applies template matching between the bottom
virtual scan and the station shape template (recorded from that point during the setup phase). If the
template is found, template-based localization is activated and when the robot approaches the station
obstacle avoidance is disabled. This procedure was specifically adapted by Metralabs to work with
RGB-D sensors, since during the last part of the movement the robot is blind and open loop commands
are applied then. When the docking movement is completed, the state machine checks whether the
robot is indeed charging or not. If docking succeeded, the robot looks down and the user is notified,
otherwise the robot should dock off and try again. If the template is not found, the action is considered
aborted and then the state machine should apply a small rotation to one side and start the action again.
If the station template is not detected again, then a rotation towards the other side should be applied
and the action is started once more. If detecting the template is still not possible the whole docking
task is aborted and the user is notified.

Once the robot detects that it starts recharging (either after autonomous docking or when manually
placed into the station), localization is reset to the position of the station recorded and saved during
the setup phase. This recovery mechanism was very useful both for testing and during the trials.
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4.3. Find object

This function requires navigation to a set of predefined searching positions, usually located in front of
tables, chests of drawers and other horizontal surfaces at intermediate height intervals. The searching
positions were placed around 60-80 cm away from the surfaces border, trying to cover a large area of
the horizontal plane with the head sensor. For this function, the path to all the searching positions was
requested by setting a navigation task and muting the navigation until a path is received or a given
timeout is reached. This way, it was possible to obtain the path from MIRA, which does not allow
arbitrary path planning. If all paths are received, the searching positions are checked in increased
length order, otherwise goals to which a path is not provided are visited first.

4.4. Call robot

At first, a fixed predefined place was associated to each call button id, so that the robot would come
to that place when the call button was pressed. This simple method was not flexible enough, hence a
novel approach was developed for this function.

It was convenient for the users to call the robot while sitting on their favourite chairs, armchairs,
sofas, beds, etc. However, since the prototype platform was not able to rotate on the spot and the back
side of the robot could collide with the furniture when turning around to drive away, the predefined
positions could not be very close to the actual sitting place. It is also important to take into account
that there can be different localization errors, plus the allowed error to decide whether the goal has
been reached, so the real position is not always exactly the same (the uncertainty accumulates). A
compromise was often needed so that the user could reach the touch screen while allowing the robot to
detect the obstacle and drive away safely. Furthermore, a more significant limitation was the fact that
chairs and armchairs usually can move and the sitting position of the user along a sofa or a bed will
most likely vary from time to time. So the desired final position should not be fixed in an improved
method.

The new approach we present incorporates user detection and interaction, remembered obstacles and
discrete motion commands for coming closer to the user with better, adapted positioning. Discrete
motion commands towards the detected user were chosen over a planned path for three main reasons:
1) the movement is more direct and predictable; 2) with our sensor setup, obstacle avoidance while
following the path would require the head to look down whereas user detection and a nicer interaction
require the head to look straight forward; 3) existing navigation frameworks, to our knowledge, are
not directly suitable for planning a path to a goal out of the fov or blocked and inside an occupied
area, so defining a proper goal pose in free space would be challenging, depending on the environment
characteristics and requiring higher level knowledge about the specific furniture (orientation, feasible
approach directions and so forth). Discrete motion commands based solely on the user detection with
no obstacle avoidance whatsoever, on the other hand, can be risky.

Our solution works as follows. Predefined positions are defined further away from the sitting zone so
that the user’s skeleton should be inside or close to the head sensor fov. The maximum distance limit
is given by the defined range of the virtual scan for obstacle avoidance or by the maximum distance
for a discrete motion command. When a predefined position is reached, the navigation parameters are
changed so that occupied areas in the current local map are not degraded or overwritten by new sensor
data (user navigation mode). Then the head can move up for user detection[15], and ray-tracing on the
local map is performed. The local map’s origin is located at the odometry reference system and the
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origin for ray-tracing is defined at the robot hull front, based on the robot’s corrected pose. The local
map is used instead of the current measurements alone because it also contains obstacles remembered
from before, even if they are already inside the sensor’s blind zone. The robot turns to face the user
and moves towards the sitting position up to a distance given by the closest projected measurement
within an angle around the detected user, considering a safety margin. Fig. 2 illustrates this.

  

d

m

predefined
position

final
position

Figure 2. Obtaining the distance to move towards the user. Left: ray tracing on the local map. The current virtual
scan when the head is looking up is depicted in blue, while the scan obtained from ray tracing is shown in yellow.
The ray tracing scan is considered to be obtained from the frontal part of the robot (excluding the bumper, which is
taken into account separatedly). The obstacle in front of the robot is not detected by the head sensor but is present
in the remembered local map and therefore in the scan obtained by ray tracing. Right: simplified diagram of how
the distance to move is computed. The minimum distance from ray tracing is denoted d and m is the safety margin.

For enhanced flexibility, reliability and better adaptation to different users, after this process is exe-
cuted the robot asks whether to come even closer. When there is a positive answer the robot moves 15
cm more, completely blind now and trusting the user’s input, and then the question and subsequent
movement can be repeated up to three times. The user can reply by means of voice, gestures, or the
touch screen commands. The robot remembers if it moved closer and if so it moves backwards again
before starting a new navigation task.

The described method for approaching the user was developed for the call robot function, but it can
also be applied in other tasks and contexts. For instance, we also incorporated it at the end of a fitness
function scenario so that the robot comes closer to the user for further interaction after exercising.

4.5. Pick up object

For this function, in the first place, navigation to a goal obtained from the user’s pointing gesture
is needed. Using autonomous navigation in this way provides a much wider applicability and can
be useful for picking up objects not directly inside the robot’s field of view. The static map of the
environment is also used for checking whether a detected object is too close to walls or funiture, since
that means risk of collision and picking up the object is not possible then. Once the precomputed pose
is reached, fine positioning with respect to the detected object is performed, based on discrete motion
commands with sufficient accuracy. More details about the pick up algorithms can be found in [6].
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4.6. Locate user

This function requires navigation to a set of predefined searching positions which in this case were
usually located in the middle of the rooms or were the same as the call button places. Since detecting
the user while the robot is rotating is hard, several shorter rotations were performed, stopping to
call and detect the user in between. Using discrete motion rotations with our settings resulted in a
more abrupt movement that affected localization, so a navigation task including only an orientation
subtask was preferred. Still, the orientation estimate was sometimes not so good after the short
rotations and the uncertainty associated to the orientation measurement had to be adjusted. Also, it
was usually better to define this kind of positions in places where distinctive references were present
and in relatively open space so that localization could get better before reaching narrower areas that
require better accuracy.

5. RGB-D based navigation in home environments

One of the first things to check with the proposed sensor setup, depending on the environment, is
that the height interval to be considered for the bottom sensor virtual scan generation may need to
be changed. In general, we used a fixed width of 8 cm around the horizontal plane at the sensor’s
height. In the presence of low sofas and similar furniture, however, this interval had to be lowered
since otherwise the virtual scan generated with the largest measurements included irregular surfaces
such as cushions, etc. Fig. 3 illustrates this kind of problem.

Figure 3. If the height interval considered for the bottom virtual scan is too high in the presence of low sofas,
irregular borders and cushions will be present in the generated scan.

Regarding complete map building, the main limiting factors are the small field of view and the range
properties of the RGB-D sensors. Since home environments may have narrow areas and excessive
rotations during the mapping process can lead to less accurate results and even cause distortion, some
walls may be missing in the resulting maps. This fact, together with the possibility that current sensor
data overwrite the global map, can bring about problems in global path planning (see Fig. 4 for an
example).

One first thing that can be done to prevent this problem when the robot is not facing the obstacle
is carefully edit the map manually, to include the complete walls without risking the map building
process overall result. This, however, does not help when the current sensor data are used to overwrite
and clear the map. In that case, with this feature included within the MIRA based implementation, one
option is to add MIRA nogo areas in order to avoid undesired plans when the robot is too close to a
wall. The problem is that in very narrow areas some margin must be allowed for possible localization
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Figure 4. Global path planning in a narrow corridor in a home-like lab. One wall is missing in the map and is not
always observed by the obstacles virtual laser (yellow). The initial path may be too close to the wall (left) and only
be corrected if the robot gets to face the wall and is not already too close (right).

errors, so a compromise is needed. Fig 5 shows a couple of examples from real user homes. The
environment on the left presents more critical localization conditions when entering the corridors that
look horizontal in the image, since they are reached after traversing a long featureless corridor. Along
this corridor, however, lateral localization is more accurate because the robot should not accumulate
so much uncertainty before accessing it from these lateral, horizontal, shorter corridors.

Figure 5. MIRA nogo areas can be added in order to avoid undesired global paths when the static map is cleared.
In very narrow corridors, however, some margin must be left to account for posible localization errors.

Today’s laser based localization methods assume that features of the environment can be detected.
This is not true in long corridors where the robot could be anywhere along the parallel walls unless
an end is observed, which is sometimes not feasible if the corridor is long or when the corridor ends
in a room and hence a further opening. This problem can be avoided by using laser sensors, with
a significantly longer range. Another option is to combine geometric methods with visual methods
[13], but if the walls are uniform the same problem remains. A possible addition of a few external
references in difficult areas such as corridors, very wide or narrow spaces, and ambiguous places could
also help in the mapping and subsequent localization processes. In the previous case (Fig 5, left), we
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ended up adding a small extra piece of furniture in the long corridor as an additional reference. Visual
markers with a fixed pose could help completely correct localization in those areas.

When entering a room, it is important that the robot is correctly localized in the transversal direction
to the doorway and that the doorway is approached from the front, so doors located at one side of a
corridor may cause problems, while doors located at the beginning or end of a corridor are better. In
order to approach doors from the front, avoiding getting too close to the corner sides, a useful strategy
to try in wide enough places is adding nogo areas at sides of a doorway entrance or at sharp corners
(Fig. 6). This way, it is possible to have safer navigation behaviour in wide areas while keeping
the capability to go through narrower areas. This provides more flexibility than methods with fixed
security margins for the whole operational area.

Figure 6. MIRA nogo areas can be used to avoid getting too close to corners and door sides. Note that good enough
localization in the transversal direction is still very important.

Nogo areas were also useful to avoid difficult and not allowed areas and rooms in the environments.
A few examples are shown in Fig 7. Areas with cables and thin obstacles on the floor and very
narrow rooms (usually kitchens) where this non-omnidirectional robot could not manouver were also
avoided. It is worth noting, of course, that Nogo areas are only useful if localization is good enough.

Other challenging situations were caused by thresholds, bumps on the floor and carpets. In the case
of thresholds, we tested commercial and home made ramps when possible (Fig. 8). After testing
different configurations and finding proper steep limits, the robot was usually able to pass thresholds.
In a few cases problems were observed with standard planning methods if a new plan caused the robot
to turn while driving on a ramp. A direct behaviour control may actually improve over plan-based
approaches in narrow passages and in these particular cases, but it needs separate implementation and
specific, situation-dependent triggering. Regarding localization, it would be useful to switch between
2D and 3D localization methods, but again the complexity would be increased.

Another important thing to take into account is that dealing with the dynamic nature of real envi-
ronments is an open research issue to which new projects are dedicating big efforts [19, 1]. Our
experience with the previously described approaches showed that minor changes in the position of
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Figure 7. Examples of difficult areas in the environment to be avoided. Left: high outer shelves canot be observed
with this sensor setup. Middle: the robot should not go through the uneven ventilation area close to the window.
Right: areas with stairs are particluarly dangerous and should not be allowed.

Figure 8. Using ramps to go through thresholds.
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chairs and small items did not usually have a significant influence on the localization quality, as long
as discrepancies with respect to the static map were limited. Removing or changing furniture that
provided relevant geometrical references present in the map, however, led to serious differences, es-
pecially in narrow areas and corners with little space to recover while moving. Detecting when the
robot is actually lost and trying to apply autonomous recovery methods are very challenging problems
that require specific research.

6. Functions usage

Table 1 provides results on how often different functions were used in the user trials conducted in
Vienna. Preliminary results show that most of the users evaluated these functions overall as “Good”,
but there were also important failures and negative comments. Results in the lab were significantly
better and we think that likely reasons are related to the following facts: there was more time for setup,
preparation and improvements; the environment is easier and better known; we know the system better
than the real users; robot transportation and long term operation can degrade platform performance
and calibrations, etc.

Table 1. FUNCTIONS USAGE DURING THE TRIALS
User GoTo CallRobot Recharge

Used Cancelled Used Cancelled Used
V1 89 33 340 190 49
V2 29 8 172 81 186
V3 18 5 74 21 126
V4 46 26 97 75 16
V5 117 24 71 42 88
V6 386 85 146 60 312
V7 41 17 349 263 168

7. Conclusions and future work

This paper presented a summary of contributions and findings for navigation tasks of care robots
operating in real home environments, using an RGB-D based sensor setup. Increased flexibility and
adaptability over existing solutions were provided for the tasks execution, also addressing different
limitations of the sensors used.

Our experience indicates that autonomous RGB-D navigation in real home environments is usually
feasible and is much appreciated but presents drawbacks, open problems and further challenges. Di-
rections for future work were already highlighted in the paper.
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Abstract
Localization in a known environment is an essential topic in the field of robotics – consequently a
variety of methods (e.g. Visual Odometry or SLAM) are scientifically well established. Compared
to experimental robotics, the determination of position based on Machine Vision approaches is not
yet fully implemented in the domain of Automated Guided Vehicles (AGV). Thus, the aim of this
master’s thesis is to design, realize and test a localization system exclusively based on Machine
Vision   for   the   use   in   AGVs.   The   x   and   yaxis   positioning   as   well   as   the   determination   of
orientation of the vehicle in all three axes is carried out by a stereo camera based Visual Odometry
approach and a supporting detection of artificial landmarks placed on the ceiling. Both methods
complement each other perfectly:  while Visual  Odometry bridges distances without   landmarks,
drift caused by Visual Odometry is corrected by artificial landmarks.  Test series have shown that
the localization error falls below ±20mm if the distance between camera and landmark does not
exceed  4500mm.  Also   the   inclination  of   the  vehicle   is   equalized.  This   localization  system has
various advantages compared to well established methods: designing and installation efforts can
be   reduced,  while   the   flexibility   for   route   changes   can  be   increased   compared   to   traditional
magnetic guidance systems. The interference immunity is higher compared to contour matching
methods due to the use of absolute reference points placed on the ceiling. The proposed system is
not suitable for use in halls because the distance between camera and ceilinglandmarks should not
exceed   4500mm.   Nevertheless,   this   localization   system   is   an   interesting   alternative   to   well
established methods primarily for the use in the public sector, e.g. hospitals or libraries.

169





A Holonomic Robot for Rescue Applications 

R. Edlinger1, M. Zauner2, W. Rokitansky2

1 FH OÖ Forschungs & Entwicklungs GmbH, A4600 Wels, Stelzhamerstraße 23
2 FH OÖ Studienbetriebs GmbH, A4600 Wels, Stelzhamerstraße 23
{raimund.edlinger, michael.zauner, walter.rokitansky}@fhwels.at

Abstract
For autonomous mobile robots it is important to have the capability to plan and reach a defined
goal. In this article, we present a novel mobile robot for urban search and rescue, capable of
achieving a high level of locomotion. The preliminary aim is to build rescue robots which are able
to  drive   in  an  unstructured  environment  and  search   for  victims.  Mobile   robots  have  been  an
essential element in search and rescue scenarios and especially in space exploration to perform
science  on  lunar  and planetary  objects.  With  advancements   in  research and  technology many
mobile robots have been developed with different configurations, geometries, sizes and flexibility of
locomotion.   These   systems   share   different  performance   qualities   under   certain   operational
conditions. A new mechanism is developed to drive sideways which could be helpful especially in
difficult curved staircase or uneven terrain.
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Abstract
This poster presents a lowcost remote control for SAR applications. The use of multi robot systems
makes it difficult to control all robots from one operator base. The case described herein with a
maximum weight of <10 kg is easy to handle and transport and fits the requirements for cabin
baggage by airlines. To save space current lowcost embedded systems are used which are very
energy efficient and provide a long operation time. In order to build a flexible and modular system,
the communication and energy supply are able to work with different sources. The communication
between robot and operator base is possible with a LAN cable or via wireless LAN. The energy can
be delivered by a battery or an external energy grid. The batteries have enough power to run the
operator  station   for  2  hours  and enables  rescue operations   to  be   fulfilled  under   the  harshest
conditions. Because of the “Spacemouse” and the ergonomic control elements used, the unit is
userfriendly and can be operated with gloves and in dark environments. The elements are clearly
structured and make using the robots more intuitive. The control elements are focused in three
groups: the engine, the arm control and special functions. All components and joints are sealed
with rubber seals. Therefore, rain or dusts in harsh environment guess no problem for the remote
control unit. Experts from first responder organizations will test the control in the coming years
and contribute their experience to its further development.
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Abstract
This poster describes a new algorithm called B# which is needed to find the visibility graph of a
polygonal   region   with  obstacles   defined   by   simple  polygons.   It   focuses   on   finding   the   entire
visibility graph among polygonal obstacles which has been tuned in a variety of test cases. The
obstacles are restricted to simple cases, i.e. where no edge intersects any other edges. The visibility
graph problem itself has long been studied and has been applied to a variety of areas. A common
use   for   it   has   been   for   finding   the   shortest   path.   The   B#   algorithm   has   been   implemented
adjustments   made   and   experimental   comparisons   via   time   measurements   carried   out.   A
comparison  between  “Naïve  algorithm” and  “Naive  algorithm with  B#”  was  performed  with
different numbers of vertices. The B# algorithm by itself doesn’t calculate the visibility graph. It
selects the next best obstacle where the calculation should proceed.
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Abstract
Assyriology is the study of cultures related to cuneiform writing, which was used for more than three
millennia before Christ in the ancient Middle East. Drawing hundreds of thousands of documents
with cuneiform script manually is a tedious task and leads to a demand for automated tools assisting
the daily work of assyriologists. The cuneiform script is a handwriting using wedges (Latin: cunei)
imprinted into clay tablets. Therefore the digitization of cuneiform tablets is increasingly using 3D-
scanners that provide irregular triangular grids in R3. These grids i.e. meshes are discrete manifolds,
which are first filtered by using Multi-Scale Integral Invariants (MSIIs) for visualization. Secondly
the MSII filter results are used to extract points along the or ridges within the 3D-model leading
to a digital drawing of e.g. a cuneiform tablet. Therefore we choose the idea of the non-maximum
suppression as used by the Canny edge detector for raster images. In contrast to the Canny edge
detector we had to (i) to adapt to an arbitrary number of neighboring vertices, which have to be
reduced locally in case of flat areas; (ii) to implement an estimator for the gradient direction, which
cannot be provided by the MSII filter; and (iii) to provide a border treatment as real world meshes
have missing parts. All the work was embedded within our modular GigaMesh software framework.
Results are shown for synthetic and real data, demonstrating a computational complexity of O(n),
which requires only one parameter. Finally a summary and an outlook are given.

1. Introduction

Cuneiform script was used for more than three millennia before Christ and is one of the oldest known
writing systems. It is a handwriting in 3D, where imprints were made into clay tablets, using a
reed styli [13]. This results in groups of wedge shaped imprints forming the characters. The name
cuneiform, originates from the word cuneus for wedge. Drawing a replication of the cuneiform tablets
is an integral part of their decipherment. This drawing step is traditionally done by manually tracing
photographs of the tablets and can take hours or even days. This is an almost impossible task taking
into account the hundreds of thousands of unpublished tablets. These tablets are important for many
other disciplines as they provide insights into a wide variety of topics ranging from the economics of
ancient societies to the first great works of literature, e.g. the epic of Gilgamesh [10].
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This work is motivated by the task to extract cuneiform characters and other imprinted features out of
3D-models of tablets. The models are acquired using optical scanners based on the principle of struc-
tured light [12]. Having a robust filter using Multi-Scale Integral Invariants (MSIIs) [7] we extended,
the filtering using the principle of the non-maximum suppression as known from the Canny edge de-
tector [2]. Therefore we had to extend the algorithm for an arbitrary number of neighboring vertices
as there is no fixed number of neighboring pixels/vertices. As MSII filtering does not provide a gra-
dient direction we had to add an estimator using the normals of the triangles (faces) connecting the
vertices. To improve robustness we apply a local mesh simplification for flat areas. These processing
steps are described within the next sections and are embedded within our modular GigaMesh software
framework [8, 9], which provides the MSII – and other filter results – as precomputed function values
f(·) for irregular meshes. This work is used for further processing to gain high-level knowledge of
cuneiform tablets as known from the domain of Handwriting Text Recognition (HTR) [1].

2. Ridge Tracing on Irregular Grids

The acquired 3D-models consist of meshes described by lists of vertices pi = (xi, yi, zi)
T and faces

(triangles) ti := {pAi
,pBi

,pCi
} having an orientation. The mesh is a discrete two-dimensional

manifold M2 in R3 having orientated edges {eai
, ebi

, eci
}, which are implicitly given by the oriented

faces [7]. The orientated faces allow to determine the space enclosed by the mesh. The index i is used
to address all the elements of the mesh processed consecutively, while j addresses all elements next
to the element with index i. Note that computational expensive calculations – especially the MSII
filter – are parallelized within GigaMesh. The vertices of the 1-ring neighborhood are denoted as pj

around the central vertex pi. The 1-ring contains all faces sharing pi. Additionally each face t has
a normal vector denoted as denoted by n, which are normalized n̂ = n/|n| before e.g. computing
the dot product �n̂i, n̂j�. Furthermore we compute a normal vector ni for each vertex pi using the
normals nj of the adjacent faces tj . Experiments have shown that this approximation is sufficient for
our algorithm and more complex methods like normal vector voting [11] are not necessary.

2.1. Retrieval and simplification of ordered 1-rings

For the following steps of the non-maximum suppression the vertices next to each other are required
to be in the sequence given by the orientation of the edges. Our algorithm then uses the implicitly
given adjacencies of the mesh to fetch all faces ot the 1-ring of pi following the orientation of the
edges, adding the vertices pj to a sorted list without duplicates excluding pi. GigaMesh ensures that
non-manifold vertices and edges are removed [7, p. 121] before computing the sorted list. If pi is
a vertex on the border ∂M2 of the mesh, a second iteration using the opposite orientation of faces’
edges is necessary – otherwise an arbitrary number of vertices of the 1-ring will be missing.

As subsets of consecutive vertices pj can be on a plane the 1-ring has to be simplified to provide
a robust tracing of ridge points. For this reason each subset of consecutive vertices are reduced to
one representative vertex denoted as p� in the following example, which is shown in Figure 1. It
shows consecutive vertices {p5, ..,p9}, which are located together with pi in one plane, i.e. the faces
defined by those vertices have the same direction of their normals. Theoretically we can detect flat
parts within the 1-ring by pairwise computing the dot product of adjacent triangles’ normals. Such
sets of triangles could be replaced by one bigger triangle. As triangle normals can only provide
gradient directions within its 1-ring, we have chosen to use the vertex normals, which can store
arbitrary normals computed from a range of methods, e.g. a weighted average or computed using
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normal vector voting. Therefore the dot products of consecutive pairs of {n̂5, .., n̂9} is computed,
where values of≈ 1 indicate flat parts. The color map represents the distance to the xy-plane to show
the three-dimensional nature of the 1-ring. Figure 1b shows that the neighboring vertices p4 and p1

are added to the simplified mesh creating a slight artificial valley to generally avoid flat areas having
no gradient direction. The threshold determining if these dot products are ≈ 1 is called � and it is the
only parameter to be set by the user.

The first vertex is stored in the list Lgroup with label ID 0. For each �n̂i, n̂j� within the range �
to the previous entry then pj will be added to Lgroup with the same label ID. If not, the label ID
will be incremented before inserting the item. The algorithm continues until all vertices pj in the
1-ring are processed. When all items are processed, the dot product of the first and last entry of the
adjacent vertices list needs to be compared because they are contiguous. If the condition to group
the two vertices is met, the label ID of all elements with the current label is changed to 0. Now
all adjacent vertices are traversed and a new vertex is created for every label, which is assigned the
average function value, position vector and normal vector of the corresponding vertices. The grouping
process is equivalent to a run-length encoding. In Figure 1b, this results in the new vertex p� which is
the average of vertices p5 to p9. The reduced 1-ring has to contain at least 3 vertices to be a manifold
otherwise pi is not further considered to be a maximum. In case pi is a border vertex the minimum
amount of required vertices in the 1-ring is 2.

pi

p1

p2p3

p4

p5

p6

p7 p8

p9

(a)

pi

p�

p1

p2p3

p4

(b)

high

low

z-value

Figure 1: Example of the mesh simplification process. (a) The contiguous vertices p5 to p9 lie on a
plane. (b) The related faces between vertices have been grouped, resulting in the new vertex p�.

2.2. Principal direction of the gradient value f(·)

Analogously to the Canny algorithm, we have to compute the principal direction t of the gradient. As
we typically use the MSII-filter for f(pi), we have to use the normals to detect t and its orthogonal
secondary direction b. To achieve this, the dot product �n̂i, n̂j� is computed. The vertex pj with the
largest dot product is the principal direction t and is saved for later computations. This is illustrated
in Figure 2a with t = p� − pi. In Figure 2b ±b = ±t × n̂i is shown. The normal, the principal, and
the secondary direction span a Frenet-Serret frame (TNB frame) with the planes τnt and τnb.

According to Canny we need the gradient values p and q on the secondary directions ±b. These are
found on the intersections pjk := τbt ∩ ejk and plm := τbt ∩ elm. To compute f(pjk) we interpolate
linear between the two vertices pj and pk with the respective function values f(pj) and f(pk).
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Figure 2: (a) The vector t describes the principal direction outbound from pi. (b) The vertices on the
orthogonal secondary direction b are pjk = p12 and plm = p34.

2.3. Non-maximum suppression with border treatment

Finally we distinguish vertices being maxima from those being non-maxima:

• If either f(pjk) or f(plm) is larger than f(pi), then pi is suppressed by discarding this vertex.

• Otherwise pi is a maximum and added to the list Lmax.

In case pi is on the border ∂M2, we treat the vertex by checking the existance of the edges ejk and
elm intersecting the plane τnb. For existing edges we proceed as described above. Otherwise we have
to choose a function value of pj close to τnb: If there is an edge eij with �êij, b� > 0 we choose the
function value f(pj) of the edge having the dot product closest to 1. Having no positive value for the
dot product leads to suppression of the vertex. This procedure is repeated using −b for the second
secondary direction.

3. Results

The execution times for various real world and synthetic test cases behave linear, depending on the
number of vertices of the mesh. This heuristically determined computational complexity of O(n)
with n being the number of vertices is shown in Table 1. The resulting ridge points on a detail of
a three-dimensionally acquired cuneiform tablet is shown in Figure 3. These selected points can be
exported using the current view and its underlying OpenGL projection matrix within GigaMesh either
as perspective or as orthogonal projection. The latter is true to scale assuming a calibrated 3D-model.
While the surfaces are rendered as raster images, the ridge points are exported as overlays using
the Scalable Vector Graphics (SVG) [4] file format, which describes their exact location using the
eXtensible Markup Language (XML), commonly used within the Digital Humanities.

Results on a high resolution data set are shown in Figure 4a. Due to the high density of vertices, the
algorithm responds to small disturbances i.e. noise of the surface, leading to false positives. These
can be eliminated by smoothing the surface prior to the application of our algorithm. In Figure 4b
a combination of Taubin and TwoStep smoothing was applied using MeshLab [3]. This increase in
robustness behaves – as expected – like the Canny edge detector, which has a smoothing step as a
prerequisite.
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Data set Type Vertices Runtime
Chars4Testing measured 10,492 0.044s
cuneus ideal synthetic 15,521 0.071s
Half4Testing measured 282,428 0.789s
HOS G10 Preview measured 371,711 1.809s
VAT 10908 measured 3,034,899 12.269s
HOS G10 Full measured 6,596,964 33.319s

Table 1: Performance of the algorithm on multiple data sets. Dataset name, type, number of vertices
and the respective runtime are given.

Figure 3: Detected ridge points in the real world data set Chars4Testing. It can be seen that the
points follow the ridges of the mesh nicely.

(a) (b)

Figure 4: High resolution dataset HOS G10 Full (a) before and (b) after smoothing.

4. Outlook and Summary

Future enhancements of our algorithm are the implementation of a marching front to connect the ridge
points to lines, making them exportable as SVG. Following the Canny approach, hysteresis tracking is
a future extension providing an even more robust selection of feature points. Furthermore smoothing
of the function values instead of smoothing the mesh will improve the performance by reducing the
computational overhead of processing M2. The final vision is to have a completely autonomous
system, which begins transcribing the ancient tablets immediately after their acquisition, exporting
the digital drawings with automated annotations directly into a searchable database [6].

The algorithm implemented in this work succeeds in extracting ridge points from irregular grids,
using non-maximum suppression. Although the execution on an irregular surface mesh architecture
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contains various challenges, all of them could be resolved. The most important challenges were the
mesh simplification step and the determination of the maximum gradient direction. We could show the
adaptation of the Canny edge detector, used on regular grids to irregular triangular meshes in R3. The
necessary user input is kept to a minimum, namely only one parameter, which controls the strength of
the local and temporary mesh simplification. In general our algorithm delivers robust approximations
with high performance used for further processing with methods from machine learning [5].
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[6] B. Groneberg, F. Weiershäuser, T. Linnemann, and D. Ullrich. Digitale Keilschriftbiblio-
thek Lexikalischer Listen aus Assur. In Max-Planck-Gesellschaft – Jahrbuch. Max-Planck-
Gesellschaft, 2005.

[7] H. Mara. Multi-Scale Integral Invariants for Robust Character Extraction from Irregular Poly-
gon Mesh Data. PhD thesis, Ruprecht-Karls-Universität, Interdisciplinary Center for Scientific
Computing (IWR), Heidelberg, Germany, 2012.

[8] H. Mara and S. Krömker. Vectorization of 3D-Characters by Integral Invariant Filtering of High-
Resolution Triangular Meshes. In Proc. of the Int. Conf. on Document Analysis and Recognition
(ICDAR), pages 62–66. IEEE, 2013.

[9] H. Mara, S. Krömker, S. Jakob, and B. Breuckmann. GigaMesh and Gilgamesh - 3D Multi-
scale Integral Invariant Cuneiform Character Extraction. In A. Artusi et. al., editor, Proc. VAST
Int. Symposium on Virtual Reality, Archaeology and Cultural Heritage, pages 131–138, Paris,
France, 2010. Eurographics Association.

[10] S.M. Maul. Das Gilgamesch-Epos. Beck, 2005.

[11] D. L. Page, Y. Sun, A. F. Koschan, J. Paik, and M. A. Abidi. Normal Vector Voting: Crease
Detection and Curvature Estimation on Large, Noisy Meshes. Graphical Models, 64(3–4):199–
229, 2002. Special issue: Processing on large polygonal meshes.

[12] R. Sablatnig and C. Menard. Stereo and Structured Light as Acquisition Methods in the Field
of Archaeology. In Mustererkennung 1992, pages 398–404. Springer, 1992.

[13] W. von Soden. The ancient Orient: an introduction to the study of the ancient Near East. Wm.
B. Eerdmans Publishing Co., 1994.

182



Noise Robustness of Irregular LBP Pyramids
Christoph Körner, Ines Janusch, Walter G. Kropatsch

Pattern Recognition and Image Processing (PRIP)
Vienna University of Technology, Austria
{christoph,ines,krw}@prip.tuwien.ac.at

Abstract
In this paper, we briefly introduce the SCIS algorithm - a hierarchical image segmentation approach
based on LBP pyramids - and evaluate its robustness to uniform, Gaussian, and Poisson distributed
additive chromatic noise. Moreover, we study the influence of image properties such as the amount
of details and SNR on the segmentation performance. Our evaluation shows that SCIS is robust to
Gaussian and Poisson noise for our testing environment.

1. Introduction

Local binary patterns (LBPs) were originally introduced as a texture descriptor by Ojala et al. in 1994
[14]. Due to their computational simplicity and their robustness to varying lighting conditions LBPs
have since become popular texture operators. In order to compute the LBP for a certain pixel, this
pixel is compared to its subsampled neighbourhood. In case the value of a neighbouring pixel is larger
than or equal to the value of the center pixel its bit is set to 1 otherwise to 0. The resulting bit pattern
thus describes the neighbourhood relations. The bit pattern may be transformed to a decimal number
by encoding each neighbourhood pixel using its position in a binary data item.
Image pyramids provide a multiscale representation of an image by applying smoothing and sub-
sampling to this image repeatedly. Burt proposed in 1981 such an approach using a Gaussian like
smoothing [1]. The well known Laplacian pyramid was later introduced by Burt and Adelson in [2].
For the Laplacian pyramid (except for the top level) the difference images of successive layers of a
Gaussian pyramid are stored instead of the Gaussian smoothed images itself. A reconstruction of the
original image is possible based on its Laplacian pyramid representation. Image pyramids are for ex-
ample used when computing multi-scale image features as it is done by SIFT (scale invariant feature
transform) [11] or for image compression (as described in [2]).
Both LBPs and image pyramids among other applications have been used individually in image seg-
mentation algorithms:
Chen et al. [5] and Heikkilä et al. [8] for example use LBPs for segmentation purposes. These
approaches however use LBP histograms, the spatial information of LBPs is therefore lost. Two vi-
sually completely different images may have the same LBP histogram - a major drawback of these
approaches.
For hierarchical image segmentation a wide range of approaches has been published in the past:
Kropatsch et al. present in [9] a hierarchical segmentation method based on minimum weight span-
ning trees of graph pyramids. A similar approach that allows user interaction during the segmentation
process is presented by Gerstmayer et al. in [7]. A hierarchical image segmentation approach based
on the feature detector MSER (maximally stable extremal regions) was proposed by Oh et al. in [13].
In this paper we discuss a recent image segmentation approach that combines LBPs and combinato-
rial pyramids - the structurally correct image segmentation algorithm (SCIS) introduced by Cerman
[3]. Using this approach highly textured regions are merged late in the segmentation hierarchy. Thus,
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preserving visual information that is important for human perception up to high levels of the pyra-
mid. It is known that standard image pyramids such as Gaussian and Laplacian pyramids as well as
hierarchical representations based on these concepts eliminate noise in the image due to the repeated
smoothing operation [6]. However, since regions showing noise may also be consider as highly tex-
tured regions this may not be the case for SCIS. Therefore, we analyze the noise robustness of SCIS
in this paper.

The rest of the paper is structured as follows: A short introduction to the SCIS algorithm is given
in Section 2. Its robustness to noise is tested in experiments presented in Section 3. Results of these
experiments are discussed in Section 4. Section 5. concludes the paper and gives an outlook to future
work.

2. Structurally Correct Image Segmentation

The “structurally correct image segmentation” (SCIS) algorithm was first presented in [3]. Although,
SCIS is based on LBPs it does not use histograms. This hierarchical segmentation approach constructs
an irregular graph pyramid (sequence of reduced graphs), by iteratively identifying and removing re-
dundant structural information, and merging regions with the lowest dissimilarity first.
The SCIS algorithm represents an image as a directed acyclic graph. Each vertex corresponds to a

pixel, a superpixel or a region, and each edge corresponds to an adjacency relationship between two
pixels, superpixels or regions. After merging neighboring vertices with equal grayscale-/color values,
it is possible to assign each edge a direction, and thus describing the relationship between adjacent
vertices as strict inequality relationships. As a result, this merging induces a strict partial order onto
the vertices of the image graph. This ordering of the vertices is not a total ordering, because not
all pairs of vertices are comparable by following monotonically increasing or decreasing paths. An
edge is said to be ”structurally redundant”, if the removal of this edge does not break the reachability
property of the graph. The SCIS algorithm identifies most of these redundant edges in a fast manner
by means of a primal and dual topological LBP classification (see [4] for more detailed information)
and removes them.

SCIS (see Algorithm 1) employs this idea, mentioned as simplifying the structure in algorithm 1
(line 5-8). Structurally redundant dual edges are determined and removed. Subsequently, regions
with the lowest dissimilarity are merged. In the case of grayscale images, the absolute region in-
tensity difference d(x, y) = |g(x) − g(y)| is used, where x and y are two regions, and g(x) is the

Algorithm 1 structurally correct image segmentation (SCIS)
input: 2D image
output: combinatorial pyramid

1: k := 0
2: initialize base level C of combinatorial pyramid
3: C ′ := remove dual saddles in C
4: C0 := merge plateaus in C ′

5: repeat
6: k := k + 1
7: simplify structure in current level Ck

8: until Ck = Ck−1
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intensity of x. For color images, the current implementation uses the CIEDE2000 color difference
[15]. During the merging of regions, the algorithm computes the new value of the region as the mean
value of all included pixels, and verifies, if this merging does not break the strict partial ordering of
the previous graph.
In practice it is sufficient to remove redundant dual edges and to check that a newly computed value
fits the surrounding LBP values. The remaining dual edges are then sorted according to their contrast.
The dual edge with the lowest contrast is considered first and checked if it can be merged. Therefore,
a new value for the merged dual vertices is computed (in our case this is the color mean) and if this
value satisfies the binary relationships stored at the incident dual edges the edge is contracted. If not,
the dual edge with the next lowest contrast is considered. This process is repeated until a suitable dual
edge for merging is found. This way, by removing edges with the lowest contrast first, regions with
low contrast are merged first.
Therefore, visual information that is important for humans is preserved even at high levels of reduc-
tion since highly textured regions are merged late in the hierarchy. This way, around 70 percent of
regions can be merged in an image, with only a minimal loss of information important to humans. In
many cases, merging up to around 94 percent is possible with visually acceptable results.

3. Experimental Setup

Depending on the technology for capturing a picture (analog or digital) and storing the picture (com-
pressed or uncompressed) various types of noise are introduced to the resulting image. In this paper,
the SCIS algorithm is evaluated regarding its robustness to common types of noise in digital images,
such as quantization noise, sensor noise and shot noise.

3.1. Types of Noise

Quantization noise is introduced when the sensor of a digital camera maps the incoming light inten-
sity to quantized levels of color values for each pixel. For the experiments, this noise type is modeled
as uniform distributed chromatic additive noise with an amplitude of 50; the average SNR of the test
images is −9.03 ± 0.34dB. Figure 1a shows the normalized distribution of the quantization noise
model.
Sensor noise can be caused by multiple environmental effects in a digital image sensor, such as bad
lighting conditions, thermal conditions, and many more. For the experiments, this noise type is mod-
eled as a Gaussian distributed chromatic additive noise with a σ of 5 and centered around 0; the
average SNR of the test images is 6.20± 0.34dB. Figure 1b shows the normalized distribution of the
sensor noise model.
Shot noise is introduced due to the fluctuations of the amount of photons that hit the sensor for a given
exposure. For the experiments, this noise type is modeled as Poisson distributed chromatic additive
noise with a λ of 50 centered around 0; the average SNR of the test images is 3.19± 0.33dB. Figure
1c shows the normalized distribution of the shot noise model.
Figure 2 shows these noise types applied to a sample image.

3.2. Image Data Set and Ground Truth

The SCIS algorithm is tested on 26 animal and landscape images of the Berkeley Image Segmentation
data set [12] (see Figure 2a for a sample test image). This data set includes multiple ground truth
segmentations per test image which have been segmented by humans. For the evaluation of the
segmentation error for each test image, the first ground truth reference in alphabetic order is used (see
Figure 2b for a sample ground truth image).
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The segmentation error is evaluated on the reconstructed grayscale images of the LBP pyramid on a
range from 0 to 5000 segments. Figure 3 shows the reconstructed images of the LBP pyramid for
200, 500, 1000 and 2000 segments as well as the magnitudes of the 2D Fourier transform. It is well
visible that the frequencies are evenly distributed. A Fourier transform of a Laplacian pyramid shows
circular structures due to the bandpass effect of this pyramid, for a Gaussian pyramid lowpass effects
are visible in the frequency domain. Since these effects are not visible in the Fourier transforms of
the LBP pyramid we conclude that the LBP pyramid does not have a bandpass nor a lowpass effect.

3.3. Validation Methodology

For estimating the empirical segmentation error against the ground truth images, the region-based
segmentation measurement Global Consistency Error (GCE) [12] is used. It is a robust technique and
independent of the number of segments in each image. The GCE is defined as:

GCE(S1, S2) =
1

n
min

(∑

i

E(S1, S2, pi),
∑

i

E(S2, S1, pi)
)

(1)

To measure the same local refinement error E when changing the order of the reference image such
that E(S1, S2, pi) = E(S2, S1, pi), we take the minimum of both sums over all pixels in the GCE
computation. In order to define E, we first denote the set difference of A and B as A \B, and |A| the
cardinality of the set A. Let R(S, pi) be the set of pixels in the segmented image S that correspond to
the region R containing pixels pi, then the local refinement error E is defined as:

E(S1, S2, pi) =
|R(S1, pi) \R(S2, pi)|

|R(S1, pi)|
(2)

4. Results

The GCE error is evaluated for all 26 test images for the range of 0 to 5000 segments, both for the
reconstruction of the original images and of the noisy images. Figure 4 shows the original and the
noisy images reconstructed with a different number of segments (compare with Figure 2b showing
the ground truth).
As we can observe in Figure 4b, we expect the noise to introduce additional high frequencies to the
original image and hence to result in smaller regions compared to the reconstruction of the original
image (Figure 4a) for the same number of segments. For a bigger SNR, this effect should be less
visible such as in Figure 4c and 4d.

Figure 5a shows the GCE evaluation of the reconstructed test images with an increasing number
of segments. If one compares the GCE obtained from the original segmentation to the segmentation
of the images with uniformly distributed noise (see Figure 5b), we observe that the GCE curves are

(a) Uniform noise (b) Gaussian noise (c) Poisson noise

Figure 1: Normalized noise distributions
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(a) Original (105025.jpg) (b) Ground truth

(c) Uniform noise (d) Gaussian noise (e) Poisson noise

Figure 2: Image with overlaying noise

(a) 200 segments (b) 500 segments (c) 1000 segments (d) 2000 segments

(e) 2D FFT of 200 segm. (f) 2D FFT of 500 segm. (g) 2D FFT of 1000 segm. (h) 2D FFT of 2000 segm.

Figure 3: Reconstructions from the LBP pyramid (top) and their Fourier transforms (bottom).

shifted to the right (towards increasing number of segments). The shift is around 200 to 500 segments
for images with a low SNR and between 500 and 1500 segments for images with a better SNR. For
Gaussian (see Figure 5c) and Poisson (see Figure 5d) distributed noise the shifts are more concentrated
between 200 and 1000 segments and the GCE curve rises steeper.
However, this is not exactly the behavior that we were expecting. A shift of the GCE curve to the
right means that for the same number of segments the GCE of the noisy image is lower than for the
original image. This effect can be better observed when looking at the difference of the GCE from the
reconstruction of the test images and noisy images in Figure 6, in the range of 200 to 1500 segments.
In this figure, a positive value corresponds with a lower GCE than in the original image whereas a
negative value corresponds with a greater GCE.
For uniformly distributed noise (see Figure 6a), we can differentiate between 2 types of images in
the range below 1500 segments: one group with a lower GCE than the original images and the other
group with a greater GCE. These image groups correlate with the amount of details in an image as
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(a) Original 500 seg. (b) Uniform noise 500 seg. (c) Gaussian noise 500 seg. (d) Poisson noise 500 seg.

(e) Original 2000 seg. (f) Uniform noise 2000 seg. (g) Gaussian noise 2000
seg.

(h) Poisson noise 2000 seg.

Figure 4: Reconstructed original and noisy images

(a) Original images (b) Images with uniform noise

(c) Images with Gaussian noise (d) Images with Poisson noise

Figure 5: GCE segmentation error of the test images and noisy images

well as the SNR: high amount of details (low SNR) and average amount of details (higher SNR). The
latter group of images corresponds with the previously expected behavior.
For images with Gaussian distributed noise (see Figure 6b), we conclude that the GCE is almost
the same as for the original images with a few outliers at maximal difference of 0.2. The Poisson
distributed noise (see Figure 6c) has a similar behavior to uniformly distributed noise but less outliers.
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(a) Images with uniform noise (b) Images with Gaussian noise

(c) Images with Poisson noise

Figure 6: Difference of the GCE segmentation error of original images and noisy images

5. Conclusion

The SCIS algorithm shows a maximal decrease of 0.2 for outliers in the GCE for images with Gaus-
sian distributed noise for reconstructions using more than 200 segments (see Figure 6b). The GCE
stays the same also for increasing σ and sometimes gets even lower for reconstructions using less than
1000 segments. Hence, it can be said that the SCIS is robust to Gaussian noise under the constraints
of the testing environment.
For reconstructions using less than 1000 segments, the SCIS algorithm is very sensitive to uniform
noise leading to both better and worst segmentation result strongly depending on the SNR and the
amount of details in the image (see Figures 5b and 6a). Also for reconstructions using more than
1000 segments, the mean difference to the original GCE is around 0.075 with many outliers around
0.4. However, it should be noted that the tested noise amplitude was slightly higher compared to
quantization noise in common digital sensors.
For Poisson distributed noise, the mean difference to original GCE values is less than 0.05 for recon-
structions above 1000 segments with only a few outliers up to 0.5. For less segments, the behavior
is similar to uniform distributed noise. Hence, we conclude that the SCIS algorithm is also robust to
Poisson noise under the constraints of the testing environment.
We have shown that SCIS algorithm achieves good segmentation results for images with chromatic
additive Gaussian and Poisson distributed noise and is sensitive to uniformly distributed noise. The
experiments could be extended to also evaluate monochromatic noise and other relevant noise types
e.g. Salt-and-pepper noise.
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Abstract
This work presents a tracking and control mechanism for an UGV (Unmanned Ground Vehicle) and
its integration into ROS (Robot Operating System). The overall goal of which this work is part, is
the creation of a fleet of ackermann robots to conduct studies in the field of autonomous driving. In
order to achieve this goal a 1:10 RC-race car model is equipped with an Arduino board to control
the vehicles actuators and a Raspberry Pi to host the ROS server. In addition, a physics simulation is
used to model this car for testing. The shown results support the used velocity motion model and the
applicability of the developed interface to control both platforms.

1. Introduction

During the last years, many studies have been conducted in the field of autonomous driving [6, 1] and
the automotive industries as well as companies like Google are showing great interest in this market.
Up to 2007, competitions like the DARPA Grand and Urban Challenge pushed research towards
autonomous cars with great success [4]. Nowadays, events like the Freescale Cup1, the Carolo-Cup2

and others are created to target young students by using RC-race car models which in terms of costs
are very attractive. With this in mind, the Institute of Computer Aided Automation at the Technical
University of Vienna is planning to create a fleet of autonomous ackermann robots to attract students
and to at one point take part in such a competition.
This paper describes the creation of the first of these vehicles and its simulation while also introducing
a common interface and a tracking system supporting them.
The robot is based on a RC-race car with an ackermann steering. The computation and controlling
of the robot is achieved through a Raspberry Pi and an Arduino Uno equipped with a motor-shield.
In addition the vehicle is simulated with Gazebo [8], an open source software for physical simulation
based on ODE (Open Dynamics Engine). To keep the vehicle and the simulation compatible, the same
interface is used, which is based upon the open source software ROS (Robot Operating System) [2].
The vehicle and the simulation are both using the same velocity motion model [4] which equals the
prediction step of a Kalman filter for motion tracking [4, 7]. The velocity motion model introduced
by Thrun is defined for differential drive robots, but given several changes, which will be further
explained, it can also be used for ackermann robots. Since they are commonly used in robotics and
provide enough information for an ackermann robots motion, differential drive commands are chosen
as input. A ROS node transforms the differential drive commands to ackermann commands, which
include a velocity and a steering angle. The robot and its simulation publish their estimated pose
and its uncertainty into ROS topics. This allows for easy comparison of the trajectory driven by the

1Freescale Cup: https://community.freescale.com/docs/DOC-1284 (25.04.2016)
2Carolo-Cup: https://wiki.ifr.ing.tu-bs.de/carolocup/ (25.04.2016)
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RC-race car, its simulation and the motion model.
This paper is structured as follows. At first, related research is introduced and the interface as well
as the adapted velocity motion model are described. Based on this knowledge, the robot and its
simulation are annotated and their basic structure is discussed. Additionally, the trajectories of the
two vehicles are compared and the reasons why the trajectories and the motion model deviate from
each other are explained. Finally, further improvements for the adapted motion model in use with the
robot and the simulation are introduced.

2. Related Work

Autonomous driving is currently a research topic of both major automobile manufacturers like Volvo,
Ford or Nissan and newcomers to the topic of automobiles like Google [6]. At the DARPA urban
challenge, universities like the Massachusetts Institute of Technology and the Stanford University
present their research accomplishments [3]. An example for research on autonomous vehicles with
ackermann drive using ROS is Marvin, the autonomous car by the University of Texas at Austin.
Members of the Marvin-Team ported the software of the autonomous car to ROS and shared it this
way. The ackermann group represents a community developing open source ROS packages for such
vehicles. For the project discussed within this paper, ROS is used because is allows to combine and
enhance such packages for navigation and odometry. Twist messages3 and ackermann messages4 are
used to control the robot, and odometry messages5 are used for tracking. The structure of ROS allows
to combine all these different messages contained in different packages into one interface.

3. Interface

The interface is created to ensure compatibility between the robots of the fleet and the simulation. For
that reason, the interface converts twist messages to ackermann messages. It also converts these ROS
messages into serial commands and vice versa for those vehicles unable to run ROS. The converting
structure of the interface is shown in Figure 1.
Twist messages are commonly used as motion commands because the six parameters they hold pro-
vide enough information to define motions in a three dimensional space. In the further, twist messages
holding only one linear velocity and one angular velocity are assumed, since they provide enough in-
formation for motions in a two dimensional space. Ackermann messages contain a velocity, a steering
angle and information about the acceleration and the jerk. The last two are not used for this project.
The velocity of the ackermann messages equals the linear velocity of the twist messages. The steering
angle of the ackermann messages can be calculated with the knowledge of the cars geometry. A curve
radius of an imaginary third front wheel is calculated by dividing the rotational velocity of the twist
message by the its linear velocity. With this radius, the knowledge of the wheelbase and the usage of
trigonometric functions, the steering angle ϕ can be calculated. Based on the motion commands the
car and its simulation receive, they return odometry messages containing the estimated pose and its
uncertainty. This information is calculated based on the motion model.

3Twist Messages: http://wiki.ros.org/geometry msgs (25.04.2016)
4Ackermann Messages: http://wiki.ros.org/ackermann msgs (25.04.2016)
5Odometry Messages: http://wiki.ros.org/nav msgs (25.04.2016)
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Twist Messages

Odometry Messages
Interface

Odometry Messages

Ackermann Messages

Serial Ackerman Messages

Serial Odometry Messages

Real Car

Simulated Car

Figure 1: The interaction of the different messages of the interface.

4. Motion Model

Simple problems like wheel slips, bumps, and inaccuracies within the robot effect the robots mo-
tion [4, 7]. The tracking system for this project is based on the velocity motion model which consid-
ers these errors. Although the velocity motion model introduced by Thrun [4] is conceived for robots
able to turn around their own axis, its simple structure allows its customization for ackermann drive
robots. Based on the motion commands, the velocity motion model calculates the robots estimated
pose and a matrix in which its uncertainty is contained. This is equal to the prediction step of a
Kalman filter [4, 7].
Further, the motion model is applied to a flat space represented by x and y and the parameter θ which
stands for the robots orientation as shown in Figure 2.
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Figure 2: The geometry of the ackermann robot in the two dimensional space.
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By adding the change of x, y and θ in one time step to the previous pose, the robots pose at any given
time can be calculated recursively.

xt (xt−1,u) =




xt = xt−1 + v · cos (θt−1) ·∆t
yt = yt−1 + v · sin (θt−1) ·∆t
θt = θt−1 + v·tan(ϕ)

wwheelbase
·∆t


 (1)

The change of the pose is represented by the jacobian matrix G (xt−1, u), which is the derivative of
the pose xt−1 with respect to the pose xt−1.

G =
∂xt (xt−1,u)

∂xt−1

=




1 0 −v · sin (θt−1) ·∆t
0 1 v · cos (θt−1) ·∆t
0 0 1


 (2)

The jacobian matrix V (xt, u) is the derivative of the pose xt−1 with respect to the motion command
u. This equals the change of the motion.

V =
∂xt (xt−1,u)

∂u
=




cos (θt−1) ·∆t 0
sin (θt−1) ·∆t 0

tan(θt−1)·∆t
wwheelbase

v·∆t
wwheelbase·cos2(θt−1)


 (3)

The error matrix M (u, α) considers the effect of motion errors, while the parameter α considers their
severity.

M =

(
α1v

2 + α2ϕ
2 0

0 α3v
2 + α4ϕ

2

)
(4)

The covariance matrix Pt contains the uncertainty of the pose.

Pt = G · Pt−1 ·GT + V ·M · V T (5)

The first term of calculation 5 represents the pose prediction and the second term the uncertainty in
the accuracy of the motion. The covariance can be visualized by plotting the ellipse defined by the
eigen-vectors and the eigen-values of this matrix. Without any correction, the covariance ellipse will
grow whenever the robot moves. The growth rate of this ellipse is defined by α which depends on the
robot and its environment.

(a) (b)

Figure 3: The (a) real robot and its (b) simulation.
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5. Real Car

A Tamiya RC-race car in the scale 1:10 is used as base frame for the ackermann robot, see Figure 3a.
The vehicle is powered by a BLDC (Brushless Direct Current) motor, and a servo motor is used for
steering. Since the position can be derived from internal hall sensors within the BLDC motor there is
no need for additional encoders.
An Arduino Uno microcontroller is used because of its real time capability and its special hardware for
such low level actors and sensors. Serial messages from the interface are the means of communication
between the Arduino Uno and the Raspberry Pi. In this project, Raspbian is the operating system for
the Raspberry Pi because it is based on Debian, which supports ROS. A W-LAN stick is installed on
the Raspberry Pi to grant access from other workstations.
The Sensor Level CPU which is represented by the Arduino Uno is responsible for controlling the
car, reading sensors and presenting the data in a useful way. A motion controller [5] is implemented
for the BLDC motor. Three signals similar to sinus waves generated with pulse width modulation on
the Arduino Uno are applied to the motor. The calculation of the pose and its covariance also takes
place on the Arduino Uno based on the velocity motion model mentioned before. The calculation
frequency is about 100Hz which results in an update rate of 0.01s. The controlling structure of the
vehicle is shown in Figure 4.

RaspberryPi

ROS

Arduino Uno

Controller BLDC

Steering
ServoSerial

USB

Figure 4: The control hierarchy from ROS to the cars actuators.

Since the steering appears to be the primary source of uncertainty, two improvements are considered.
The first is to replace the unsteady steering with a more stable one. The second is to upgrade the car
with an encoder for the steering.

6. Simulated Car

Validation of systems and algorithms is an important task in mobile robotics. Thus, Gazebo is used
for visualisation and physical simulation of the robot. The simulation contains the parts which are
vital for the robots motion. They are imported to Gazebo with a URDF (Unified Robot Description
Format) file, see Figure 3b. In the first attempt to simulate the ackermann drive robot, a link was
created for each part of the steering and they were connected with joints. The parent-child structure
of joints in URDF makes it impossible to create such a closed loop, so a workaround was needed. To
get an ackermann steering like behavior, a ROS plug-in is used to control the kingpins, see Figure 2.
The plug-in calculates the angles for both front wheels and adjusts the kingpins accordingly. For
these calculations, the knowledge of the wheelbase and the track is required. The curve radius of the
imaginary third front wheel has to be calculated. It has to be considered that the radii of the left and
the right front wheel differ by a half track width from the previously calculated radius. Based on this,
the steering angles ϕL and ϕR can be calculated, using the trigonometric functions.
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To avoid unintended movements of the kingpin joints, the Gazebos real time update has to be 2000Hz
and the maximum step size 0.0005s.
The following three improvements would increase the accuracy of the simulation. Firstly, detailed
measurements should be taken to replace the wheels approximated friction parameter. Secondly,
damping should be added to the vehicle. Finally, the front wheels should be powered and equipped
with a differential.

7. Results

Two tests are carried out to quantify the accuracy of the real and the simulated robots motion. For
the first test, a semicircle with the maximum steering angle and a velocity of 0.1m/s was driven. The
low speed used during the test allows for errors stemming from wheel slipping and centrifugal force
to be ignored. The motion model represents the motion commands in this test, so it can be used as a
reference. The radius of the semicircle driven by the real car is 5cm bigger than the reference. This
is caused by the unsteady steering of the RC-race car. The simulated car drives a trajectory differing
from a circle. During the whole test, the positions of the real and the simulated car are covered by the
covariance ellipse. In Figure 5a the test results are shown.
For the second test, a straight line was driven with a velocity of 0.1m/s, based on the motion models
response. The real car stops 4.5cm before the reference, because of inaccuracies in the measurement
of the wheel size. The simulated car stops 1.8cm behind the reference. The reason for this deviation
is that unlike Gazebo, the motion model does not regard the kinetic energy of the vehicle. Again, the
covariance ellipse covers the position of the real and the simulated vehicle. The test results are shown
in Figure 5b.
To increase the accuracy of the motion model, two improvements can be made. Firstly, the number
of updates can be increased to downsize the time steps. Secondly, the kinetic energy of the vehicle
should be considered by the velocity motion model.

Motion Model
Real Car
Simulates Car
Covariance

(a)

Motion Model
Real Car
Simulates Car
Covariance

(b)

Figure 5: Comparison of trajectory and visualisation of the (a) rotational and (b) the straight behavior
of the covariance ellipse.
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8. Conclusion

This paper presents the creation of an ackermann robot, its simulation and their common interface.
Furthermore, the implementation of a velocity motion model for these vehicles was explained. For
future work, the created software will be allocated to the robotics community. Adding sensors like
an IMU (Internal Measurement Unit) to the vehicle to increase the accuracy of the motion tracking is
planned. Therefore, the interface needs to be extended to handle the new data input. This platform
will be expanded by adding self localisation, thus sensor input is required. Based on the knowledge
gained with the robot, further vehicles will be built.
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Abstract 
Improving work efficiency and ensuring safety of the human worker while the human worker and 

robot simultaneously perform the tasks in close proximity is one of the key research topics in 

human-robot cooperation. Given a process which contains a set of tasks or process steps performed 

within the shared human-robot workspace, a methodology for the robot’s trajectory planning will 

be mentioned in this concept paper. The methodology will be based on activity recognition and 

identification of low-level process deviations. Here, the low-level process deviations which occur 

from the robot assistant side are mainly focussed.  

 

 

1. Introduction 
 

A key requirement in the field of human-robot cooperation is to realize the process execution in a 

safe and time-efficient manner. Here, process refers to a list of process steps/tasks performed 

simultaneously by the human worker and robot assistant. To achieve safe execution of shared 

human-robot tasks, a process monitoring component which identifies low-level process deviations 

is a pre-requisite. In the context of shared human-robot tasks, deviations are often classified into 

robot assistant side deviations and human worker side deviations. Robot assistant side deviations 

are defined as unexpected events like unreachable goal configuration, grasp failure reported by the 

robot’s tool and high probabilistic existence of collision-prone trajectories with the nearby static or 

dynamic objects while the robot performs an object manipulation task in the shared workspace. 

Human worker side deviations are defined as expected events like performing spatial sequence of 

actions or activities and unexpected transition between the tasks or process steps. Process 

deviations from the human worker side are not considered within this work. The motivation behind 

this research work is to come up with a trajectory planning framework which can identify and 

handle low-level process deviations with respect to the simultaneous recognition of human 

activities and process steps/tasks. In this research work, the handling of process deviations will also 

be mentioned. 

 

1.1. Related Work 

 

Recent work which deals with trajectory planning is based on prediction of human actions and 

activities to achieve spatio-temporal synchronization in shared human-robot tasks. The 
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manipulation planning framework presented in [3], [9], [16], [5], and [1] considered the trajectory 

planning problem from the normal operation of a manipulation task. A time-series classification 

algorithm was presented in [3] to perform the online prediction of human reaching motion by 

applying a motion capture camera system.  Partial segments of actual motion variables are 

compared with the subset of motion variables which represent the optimally time aligned human 

motion demonstrations. In [9], the predicted motion trajectories are represented as 3D voxels which 

infers the workspace occupancy information. Similar approaches were adopted in [16], [5] for 

human motion prediction. In [6], human-object interactions in combination with human motion 

trajectories were used to build temporal conditional random fields for anticipating human activities. 

In [1], a human worker’s intent was estimated by computing the probabilistic representation of 

workspace segmented areas to which the human is heading.  

 

Task and motion planners were integrated in [13] and [4] to identify and handle low-level process 

deviations such as collision-prone trajectories with the neighbouring objects. Here, the process 

addressed is a pick and place operation performed by a robot on a cluttered table and a payload 

carried by two robots respectively. During the process execution, the interface layer in between the 

task and motion planners determines the presence/absence of obstructions by identifying the 

collision-prone trajectories from the trajectory planner as low-level process deviations. Based on 

these deviations, the task planner is updated with a new state and sends a variation of the initial task 

plan to the trajectory planner. An alternative way to handle these kinds of deviations is to replace 

object grasping with multiple push-grasps in a cluttered environment [10]. With our work we intend 

to enhance the state of the art by cascading activity recognition and task recognition to identify low-

level process deviations and perform task level trajectory planning. In this work, we also intend to 

realize activity recognition by estimating the skeletal joint positions with a higher sampling rate.  

 

1.2. Paper Organization 

 
Section 2 deals with the methodology proposed for trajectory planning based on activity recognition 

and identification of low-level process deviations. Section 3 will present the experimental setup 

including a static process plan where the human worker and robot performs process steps/tasks 

within their shared workspace. Section 4 will detail the expected contributions.  

 

 

2. Methodology 
 
In this section, the methodology behind the trajectory planning based on activity recognition and 

identification of low-level process deviations will be described along with the system architecture. 

Figure 2 depicts the system architecture which consists of 7 major building blocks 1) Object 

tracking 2) Skeletal joints estimation 3) Action recognition 4) Activity recognition 5) Task 

recognition 6) Trajectory planner and 7) High-level planner. The algorithms applied for object 

tracking and action recognition components have already been realized and evaluated in [14] and 

[15] respectively and will not be mentioned in this research work. Therefore, the methods required 

for the remaining major blocks will be mentioned here. 
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Figure 2: System architecture 

 

2.1. Skeletal Joints Estimation 

 
Estimation of skeletal joints is a crucial pre-requisite to overcome real-time data loss. The sampling 

rate of currently affordable RGB-D sensors is 30 fps. Recent works [3, Section 1.1], [9, Section 1.1] 

indicates that this sampling rate is not sufficient to recognize human activity in less than 1s. This 

leads to the motivation of estimating the skeletal joints data with a higher sampling rate. In the first 

stage, mathematical modelling of skeletal joints of left and right hands with respect to Head, Neck 

and Spine Shoulder skeletal joints will be performed in offline. In the second stage, the measured 

skeletal joints will be fed to a zero order hold (ZOH) component to provide the k
th

 sample at time 

instant k*Ts with repeated values until the k+1
th

 sample appears at time instant (k+1)*Ts. To 

overcome real-time data loss at time instant k*Ts, extrapolated values for skeletal joints of the left 

and right hands will be generated from the mathematical model. In the third stage, the samples with 

the higher sampling rate resulting from the ZOH and the extrapolated values resulting from the 

mathematical model will be used for estimating the desired skeletal joints positions. A forward 

Markov model describing the desired skeletal joints positions will be assumed and a stochastic 

subspace realization algorithm [8] will be applied to estimate the desired skeletal joint positions.  

 

2.2. Activity and Task Recognition 

 
Activity is defined as the sequence of actions or a single action performed by a human and his/her 

interactions with the objects of interest within an arbitrarily short time window. During the offline 

stage, probabilities of the recognized actions, human-object interactions and actual positions of 

robot’s joints are considered as activity specific features and are collected with respect to M activity 

demonstrations by L individuals. Here, human-object interactions are represented by human motion 

trajectories and 3D position information, IDs and probability values of tracked objects. The 

recorded M*L demonstrations are then fed to a classifier for activity classification. A Markov model 

will be adopted to represent the temporal relationship between human activities over time. During 

the online stage, partial segment of the activity specific features are used as inputs to compute the 

probability for states which represents human activities. The state with the highest probability will 

then be the recognized activity [12]. The activity recognition approach mentioned in this section 

will be extended for task recognition using a Hidden Markov model (HMM) to represent the 

process steps/task as its states. In the case of task recognition, the probability values of human 
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actions and his/her activities, robot’s planned trajectories and positions of the robot’s tool will be 

considered as task relevant features to model the states of the HMM [2].  

 

2.3. Trajectory Planner 

 
The trajectory planner considers the static workcell, actual skeletal joint positions, detected human 

activities and 3D locations of the objects of interest as an input and computes a collision-less 

trajectory for the robot. These activity dependent collisions-less trajectories will result in process-

specific object manipulations like Grasp, Lift, Place, and Present. During the execution of the 

process, trajectory planner will send status updates about the object manipulations which will be 

requested by the high-level planner. Path planning algorithms which were applied in [11], [7] will 

be investigated to verify which one of them would be ideal for safe execution of the considered 

process. 

 

2.4. High-Level Planner 

 
High-Level Planner is an intermediate layer which receives the status updates continuously from 

major building blocks and robot’s tool positions to monitor the process execution. The High-Level 

Planner will be included with the static description of sequential order of process steps/tasks 

involved within a process. During the execution of the process, the High-Level Planner will 

compare the actual state of the process with its desired state and identify the low-level process 

deviations from the robot assistant side. Based on these deviations, the trajectory planner will then 

compute a collision-free trajectory which will lead to successful completion of the previously failed 

process steps/tasks. Here, High-Level Planner will continuously send the same process step/task to 

the trajectory planner until the identified deviation vanishes. 

 

 

3. Experimental Setup 
 
The process of assembling a Steam cooker device using its individual objects is considered here. 

The individual objects of the steam cooker are present on the worktable as depicted below.  

 
Figure 3: Experimental setup included with individual objects of a steam cooker device 

 

In Figure 3, UR10 is the universal robot which is placed on a movable platform. This movable 

platform is clamped to the worktable where the human worker and ur10 robot will share the 

workspace.  A Kinect v2 sensor is applied for the human action and human activity recognition and 
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an Asus Xtion sensor provides the scene data for the localization and tracking of objects of interest. 

The following static work plan related to the assembly process of a Steam cooker will be assumed.  

 Step 1: Human worker picks the base object and robot grasps and lifts the heater object 

 Step 2: Human worker holds the base object and robot shows the heater object to the human 

 Step 3: Human worker attaches the base object to the heater object and inserts the timer cap 

on the side of heater object and performs the screwing 

 

 
Figure 3.1.2: Human worker performing step 3 

 

 Step 4: Robot lifts and places the compound object resulted from step 3 

 Step 5: Human picks the turbo ring object and places it inside the compound object while 

the robot grasps and lifts the tray object 

 Step 6: Robot presents and hands over the tray object to the human worker 

 Step 7: Human worker inserts the tray object into the compound object resulted from step 5  

 

 
Figure 3.1.3: Left image => step 6 and Right image =>step 7 

 

 

4. Expected Contributions 
 

The expected contributions resulting from this research work will be 1) Identification of low-level 

process deviations from the robot assistant side 2) task level trajectory planning based on 

simultaneous task and activity recognition to handle such process deviations 3) estimation of 

skeletal joints positions with a higher sampling rate.  
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Abstract
Actuation redundancy is a means to improve the dexterity, accuracy and reliability of parallel manipu-
lators (PKMs). Over the last decade, various novel designs and control concepts have been developed
and implemented in functional prototypes. In spite this extensive research several fundamental issues
still remain to be addressed. This requires test benches allowing for flexible and modular setup of
PKM prototypes. Aiming at agile light-weight PKMs, such a test bed should in particular enable to
replace rigid by elastic links, and to implement model-based robust control concepts.
Such an experimental test platform is presented in this paper. The PKM under investigation is a
2-DOF planar PKM redundantly actuated by three actuators. Its mechanical design and actuation
concepts together with the control system are presented. The dynamical model is presented as basis
for the non-linear control. Fully parallel manipulators are characterized by repetitive use of identical
modules connecting the moving and fixed platform. Therefore emphasize is given to the submodel-
ing concept, which allows seamless integration of different modules (rigid vs. flexible links). Initial
results are reported for the 2-PKM when controlled by an augmented PD scheme.

1. Introduction

The main purpose of the presented research is to create a modular parallel manipulator with actuation
redundancy as a test platform. The dynamics modeling is carried out by means of subsystem model-
ing, see [1], [3] for details. The key for flexible and quick manufacturing is rapid prototyping. The
prototype has links with low mass and inertia and are 3D printed.
The modularity allows for two, three, or four arms, connecting the moving platform, and thus gives
rise to actuation redundancy. A model-based control scheme is used. This is based on a non-linear
dynamic model. In this paper a computationally efficient formulation is used in terms of minimal as
well as redundant coordinates [2], [4], [8], [7]. These dynamic models are the basis for the inverse
dynamics and later for the augmented PD controller. Because of actuation redundancy, the inverse
dynamic can be extended by a null space term, wich does not affect the manipulator’s motion. It
admits to increase the preload to annihilate backlash or manipulate the endeffector (EE) stiffness [9],
[5], [6]. Finally, simulation results of an augmented PD controller are presented and analyzed.

∗This work has been supported by the Austrian COMET-K2 program of the Linz Center of Mechatronics (LCM), and
was funded by the Austrian federal government and the federal state of Upper Austria.
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2. Platform Structure

The construction of the redundantly actuated parallel platform (see Fig. 1) is quite simple. It is a
planar mechanism with δ = 2 degrees of freedom. Redundantly actuated means, that the platform has
more actuators (m = 3) than degrees of freedom. Altogether there are n = 6 joints.
However, the main dimension of the experimental test platform is 610 x 610 x 170 mm and the
distance between the motors is 400 mm. Each link of an arm is l = 200 mm long. The general

Figure 1. Platform with three arms (motor, active link, passive
link) in different colors

Motor 1

Motor 2

Motor 3

l

l

l

l

l
l

EE

qa1

qa2

qa3

qp1

qp2

qp3

Figure 2. Joint coordinates of the redundant ac-
tuated parallel mechanism

purpose, the high modularity, can be noticed by many features of the platform. Base of this planar
parallel manipulator is a four millimeter steel plate with twelve hole patterns. On these hole patterns
motor sockets are centered and mounted. On the one hand, we are able to position the motor sockets
on different location trying various motor constellations. On the other hand, a symmetrical disposal
of two, three or four arms (each consisting of two links), is possible. The mounting concept, used
for the platform, has the advantage to exchange arms (e.g. with flexible links instead of rigid ones)
quickly. To distinguish arms from each other, they have got different colors (red, gray, black).
The arms are driven by brushless maxon motors EC-i 40 with a power of 100 W.

3. Dynamic Modeling

The repetitive use of identical link combination (e.g. motor, active link, passive link) in parallel
manipulators is a typical characterization. Therefore modeling of arms by means of subsystems is
obvious.

3.1. Subsystem Modeling

The most important advantage of modeling a system by subsystems is the flexibility to add com-
ponents such as additional actuated kinematic chains connecting the moving platform with the base
platform. Furthermore it is easy to amend the model if in order to represent different phenomena such
as elasticity of links, gear backlash or gear elasticities, which will be done in the near future.
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The starting point is the Projection Equation of an entire arm as a kinematic chain
Nj∑

b=1

[ (
∂vs

∂q̇j

)T (
∂ωs

∂q̇j

)T
]

b

[
ṗ + ω̃Rp − fe

L̇ + ω̃RL − Me

]

b

(1)

with index j = 1, 2, 3 for each arm. Nj is the number of bodies and q̇j =
(

q̇p,j q̇a,j

)T is describing
velocity of each subsystem. Furthermore, vs, ωs are the absolute velocities of the center of gravity
(CoG), ωR is the angular velocity of a chosen reference frame, p, L are the linear and angular mo-
menta, respectively, while fe, Me are the applied forces of each body. Equation 1 leads to the motion
equation of each arm modeled as a subsystem

Mj q̈j + Cjq̇j − Qj = uj. (2)

Mj is the mass matrix, Cj is the Coriolis and Centrifugal matrix, Qj are the remaining forces and
uj =

(
0 Mj

)T with the motor torque Mj describes the control forces of each arm. Furthermore,
the equations of each arm (Eq. 1) can be assembled to the motion equation of the unconstrained
system

M(q)q̈ + C(q, q̇)q̇ + Q(q, q̇) = u, (3)

with q as the generalized coordinates written in an arbitrary sequence, f.e.

q =
(

qp,1 qp,2 qp,3 qa,1 qa,2 qa,3

)T
. (4)

Moreover M is the mass matrix , C is Coriolis and Centrifugal matrix , Q are the remaining and

u =

(
0
c

)
, u ∈ Rn, c ∈ Rm, c =

(
M1 M2 M3

)T
. (5)

are the control forces. Vector c contains the three motor torques.
Detailed calculations about dynamical modeling of subsystems can be found in [1], [3].

3.2. Subsystem Constraints

As described in the section before, the arms are modeled by means of subsystem modeling. Af-
terwards, these motion equations are assembled to an entire unconstrained system. Note that the
sequence of joint coordinates q (Eq. 4) is arbitrary. In the unconstrained model the arms are not
connected to the platform. Therefore, r geometric

h (q) = 0, h ∈ Rr (6)

respectively kinematic constraints (with the Jacobian matrix J)

ḣ (q) =

(
∂h
∂q

)
q̇ = Jq̇ = 0, J ∈ Rr,n (7)

have to be built to connect them together. The geometrical constraints represents the linkage between
the revolute joints and the EE. Thus, two independent loops, each with two independent constraints
(⇒ r = 4) can be located. Finally, after installing the constraint forces JT (q)λ into the motion
equation of the unconstrained system, the entire model has a structure like

M(q)q̈ + C(q, q̇)q̇ + Q(q, q̇) + JT (q)λ = u (8)
Jq̇ = 0. (9)

Equation 8 is the Lagrangian motion equation of first kind.
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3.3. Different Formulations of Motion Equations

Equations (8) and (9) are the point of departure, for many formulations. These formulations are
necessary, because solving this system of equations (Eq. 8, 9), which is called a differential algebraic
equation (DAE), is very complex. Moreover, it is not appropriate for the inverse dynamics. To reduce
it to an ordinary differential equation (ODE), the constraint forces must be eliminated. This paper
presents the minimal and redundant coordinates formulation [2], [4], [8], [7].

3.3.1. Minimal Coordinates Formulation

There are six independent joint angles, without the geometrical constraints. While introducing these
four constraints, the number of independent angles will be reduced form six to two. Thus, the coordi-
nates can be split in dependent qd and independent qi ones

q =

(
qd

qi

)
, qd ∈ Rn−δ, qi ∈ Rδ. (10)

Moreover, the kinematic constraints (Eq. 7) can be divided too, to express the dependent joint veloc-
ities explicitly

Jq̇ = Jqd
q̇d + Jqi

q̇i = 0, q̇ = Fq̇i, F =

( −J−1
qd

Jqi

Iδ

)
, F ∈ Rn,δ (11)

with the identity matrix I. Matrix F is therefore an orthogonal complement of the Jacobian matrix J,
i.e. the product of both vanishes identically (JF ≡ 0). Since the constraint forces vanish with matrix
F, it is an appropriate projector and leads to the minimal coordinates formulation

M(q)q̈i + C(q, q̇)q̇i + Q(q, q̇) = AT (q)c (12)

with

F =

(
P
A

)
, A ∈ Rm,δ, P ∈ Rn−m,δ (13)

M := FT MF, C := FT (CF + MḞ), Q := FT Q. (14)

This formulation consists of δ independent equations. A drawback is the selection of two independent,
local appropriate coordinates. Therefore parametrization singularities can occur. A method to avoid
this is to switch between motion equations with different independent coordinates selection [4].

3.3.2. Redundant Coordinates Formulation

The problem of the latter formulation (Eq. 12) are the parametrization singularities, due to the choice
of independent coordinates. There are two possibilities to avoid this. The first way, the switching
method, has been mentioned before. The other way is to use another formulation without any coordi-
nates selection, by means of a null-space projector

NJ,M := In − J+
MJ, NJ,M ∈ Rn

n (15)

with the right pseudoinverse
J+

M = M−1JT (JM−1JT )−1. (16)
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Since JNJ,M ≡ 0, the transformation leads to the redundant coordinates formulation

M̃(q)q̈ + C̃(q, q̇)q̇ + Q̃(q, q̇) = Ã
T
(q) c (17)

with

NJ,M =

(
P̃
Ã

)
, Ã ∈ Rm,n, P̃ ∈ Rn−m,n (18)

M̃ := NT
J,MMNJ,M, C̃ := NT

J,M(CNJ,M + MṄJ,M), Q̃ := NT
J,MQ. (19)

Unlike before, this formulation consists of n equations, where δ ones are independent.

4. Model-Based Control with an Augmented PD-Controller

Model-based control is very important for parallel mechanisms with actuation redundancy, because
of the antagonistic forces. As the name, redundant actuation, implies, there are more driving forces
than degrees of freedom m > δloc to control the mechanism.
However, with this feature it is possible to increase the internal preload and thus, e.g. to annihilate
backlash due to manufacturing or manipulate the EE stiffness [9], [5], [6].
The generalized force of an augmented PD Controller consists of three parts. The first part is a feed
forward term calculated with the inverse dynamics, which releases the feedback controller. Thus, the
joint angle error is much smaller. The second one is a feedback term, with weighted error position
and velocity of the joint angles. And finally the third one has no dynamic effect i.e. it increases the
internal forces. For further information, see [2], [4], [8], [7].

4.1. Inverse Dynamics

The inverse dynamics solution is the basis for an augmented PD or a computed torque controller.

4.1.1. Minimal Coordinates Formulation

The solution of the inverse dynamics is given by minimization of (c − c0)T W(c − c0) as

c =
(
AT (q)

)+
W

(
M (q) q̈i + C (q, q̇) q̇i + Q (q, q̇)

)
︸ ︷︷ ︸

1

+ NAT ,W (q) c0

︸ ︷︷ ︸
3

(20)

with the weighting matrix W and an arbitrary preload parameter vector c0. Furthermore, (AT )
+

W =

W−1A(AT W−1A)−1 is the right pseudoinverse and NAT ,W = Im − (AT )
+

WAT is a null space projector
of matrix AT .

4.1.2. Redundant Coordinates Formulation

The number of equations of the redundant coordinates formulation is higher, than the number of free
parameters c ∈ Rm (n < m). Furthermore, there are δ independent equations, i.e. only δ columns of
Ã

T
are linear independent. Therefore Eq. 17 must be rewritten as

ỹ = Ã
T

c = Ã
T

1 c1 + Ã
T

2 c2, c1 ∈ Rδ, c2 ∈ Rm−δ, (21)

c1 =
(

Ã
T

1

)+ (
ỹ − Ã

T

2 c2

)
,

(
Ã

T

1

)+

=
(

Ã1Ã
T

1

)−1

Ã1, (22)
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with the modified optimization problem
{ ‖c‖ = ‖c1‖ + ‖c2‖ → min

c1 =
(

Ã
T

1

)+ (
ỹ − Ã

T

2 c2

)
}

. (23)

The solution structure is equivalent to

c =
(

Ã
T

(q)
)+ (

M̃ (q) q̈ + C̃ (q, q̇) q̇ + Q̃ (q, q̇)
)

︸ ︷︷ ︸
1

+ N
Ã

T (q) c0

︸ ︷︷ ︸
3

, (24)

with N
Ã

T = Im − (Ã
T
)
+

Ã
T

, but unlike before

(
Ã

T
)+

=




(
Ã

T

1

)+
(

In − Ã
T

2

(
Im−δ + BT B

)−1 BT
(

Ã
T

1

)+
)

(
Im−δ + BT B

)−1 BT
(

Ã
T

1

)+


 , B =

(
Ã

T

1

)+

Ã
T

2 (25)

is not the right pseudoinverse.

4.2. Augmented PD Controller

The solution of the inverse dynamics is only a control scheme without the feedback term by weighted
joint errors. Therefore, such a term has to be added to Eq. 20

c =
(
AT (q)

)+
W

(
M (q) q̈d

i + C (q, q̇) q̇d
i + Q (q, q̇)

)
︸ ︷︷ ︸

1

−
(
AT (q)

)+
W

(
KP ei + KD ėi

)
︸ ︷︷ ︸

2

+ NAT ,W (q) c0

︸ ︷︷ ︸
3

,

(26)
for the control torques in minimal formulation and

c =
(

Ã
T

(q)
)+ (

M̃ (q) q̈d + C̃ (q, q̇) q̇d + Q̃ (q, q̇)
)

︸ ︷︷ ︸
1

−
(

Ã
T

(q)
)+ (

K̃P e + K̃Dė
)

︸ ︷︷ ︸
2

+ N
Ã

T (q) c0

︸ ︷︷ ︸
3

.

(27)
for the redundant formulation (Eq. 24). The superscript d indicates the desired values. The variables
ei = qi −qd

i , respectively e = q−qd are the error coordinates and KP , KD, K̃P , K̃D are the weighting
matrices for the PD controller.

4.3. Simulation Results

The simulations are realized with an augmented PD controller in both formulations. Furthermore,
quantization effects of encoders are implemented. The weighting matrices of the PD controller are
chosen by two issues. Firstly, the joint error shall be as small as possible. And secondly, the torque
of the motors shall not be too high and aggressive.
The path is a simple point to point motion with a few arbitrary points and the acceleration is realized
by sin2 profiles.
Furthermore, the unknown dynamics parameters are found with a CAD program. Table 1 shows an
overview. J is the mass inertia around the CoG and relevant axis, except the entry of the Motor/active
link - combination. Instead it is along the motor axis. m is the mass and ls is the distance between
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Component J in kg m2 m in kg ls in m

Motor/active link - combination 4.22 × 10−4 − −
Black passive link 3.97 × 10−4 5.41 × 10−2 1.034 × 10−1

Red passive link 2.90 × 10−4 4.48 × 10−2 8.32 × 10−2

Gray passive link 3.61 × 10−4 5.04 × 10−2 9.64 × 10−2

Table 1. Overview of the dynamic parameters

the previous joint and the CoG of each component. A comparison of both formulations implies, that
behavior of the joint error, while controlled with an augmented PD controller in minimal coordinates
formulation, is at least ei,max = 0.014 rad (see Fig. 3). Additionally, there is a discontinuity in the
motor torques at t = 0.6 s, while the selection of independent coordinates is changed. From the
simulation point of view, the redundant coordinates formulation is a quite better choice (c.f. Fig.
4). There are no discontinuities in the motor torques and joint errors are quite smaller (ei,max =
0.005 rad).
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Figure 3. Simulation results with an augmented PD-controller in minimal coordinates formulation

5. Conclusion

In this paper a proposal for a experimental test platform with modular setup has been given. Because
of the usual reuse of similar modules in parallel manipulators, a method to model entire systems with
subsystems has been demonstrated. Different model formulations for designing a model-based con-
troller have been given and simulation results with an augmented PD controller in both formulations
have been presented.
Shortly, a geometric and dynamic calibration must be done and thus, the simulation results has to be
validated with experimental results. Furthermore, in the near future a replacement of these arms with
elastic ones is proposed.
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Figure 4. Simulation results with an augmented PD-controller in redundant coordinates formulation
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Abstract
The main goal of this contribution is to determine the excitation of an industrial robot, such that the
energy consumption becomes a minimum during the manipulation of the tool center point (TCP) from
a start position to a given end point within a predefined time. Such tasks can be restated as optimiza-
tion problems where the functional to be minimized consists of the endpoint error and a measure for
the energy. The gradient of this functional can be calculated by solving a linear differential equation,
called the adjoint system. On the one hand the minimum of the cost functional can be achieved by
the method of steepest descent where a proper step size has to be found or on the other hand by a
Quasi-Newton algorithm where the Hessian can be appreciated. The theory is applied to a six-axis
robot and the identification leads to a reduction of 47% of the signal energy.

Keywords: optimal control, multibody dynamics, adjoint system, optimization, calculus of variation.

1. Introduction

In this contribution an approach to such inverse dynamical problems is presented. It starts from an
optimal control formulation of the problem by introducing a cost functional which has to be min-
imized subject to a system of differential equations (c.f. [1, 2]). The gradient computation of the
cost functional is based on the so called adjoint method. Due to better convergence a Quasi-Newton
method is used instead of the simple gradient method. Therefore, the Hessian matrix is approximated
by using the BFGS-algorithm.

The adjoint method is already used in a wide range of optimization problems in engineering sciences.
Especially, in the field of multibody systems, the computation of the gradient of the cost function is
often the bottleneck for computational efficiency and the adjoint method serves as the most efficient
strategy in this case. The basic idea of the adjoint method is the introduction of additionaladjoint
variables determined by a set of adjoint differential equations from which the gradient can be com-
puted straightforward. This main idea directly corresponds to the gradient technique for trajectory
optimization pioneered by Bryson and Ho [3].

Various authors have utilized the adjoint method in the sensitivity analysis of multibody system, as
e.g., [4, 5]. Bottasso et al. [6] presented a combined indirect approach of the adjoint method in
multibody dynamics for solving inverse dynamics and trajectory optimization problems, also similar
to the ideas presented in [7].
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For a signal energy optimal manipulation of the robot a cost functional is introduced, which consists
of the quadratic input signals in every time step and of a so-called Scrap-function which defines the
end point deviation.

The identified movements were tested on a PUMA six axis robot. With the measured control variables
the required energy was evaluated. Based on this test data a considerably energy reduction was
detected.

2. Problem definition

At first, let us consider a nonlinear dynamical system

q̇ = v

M (q)v̇ = f̃(q, v, u, t),
(1)

whereq ∈ Rn is the vector of generalized coordinates andv ∈ Rn is the vector of generalized
velocities. In addition,M is then × n mass matrix and̃f ∈ Rn the force vector. The vectoru
indicates the control variables in an opened or enclosed regionΓ ⊆ Rm. By introducing the vector of
state variablesxT = (qT vT) we may rewrite Equation (1) by

ẋ = f (x, u, t) x(t0) = x0. (2)

In general the force vectorf is a continuous vector field which depends on the statesx, controlsu
and on timet. In robotics, the position and velocity of the tool center point (TCP) will be of particular
interest instead of the joint angles and angular velocities. Hence, the system outputy ∈ Rl is given
by

y = g(x).

In order to meet a predefined end point we have to satisfy the boundary condition

g(x(tf)) = ȳ. (3)

However, we substitute the boundary condition of Equation (3) by the optimal control problem

ẋ = f (x, u, t)

J =

∫ tf

t0

h(x, u, t) dt + S(tf , x(tf)) −→ Min.
(4)

where the integral describes the energy consumption and theScrap-functionS includes the end point
error. If the closed regionΓ is not empty the solution of theoptimal controlproblem of Equation (4)
leads to an energy optimal manipulation of the dynamical system of Equation (2).

3. Gradient computation

To determine the gradient of the cost functional (4) we first add zero terms to it:

J =

∫ tf

t0

h(x, u, t) + pT [f(x, u, t) − ẋ]︸ ︷︷ ︸
=0 Eq. (2)

dt + S(tf , x(tf)) (5)
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The Lagrange-multipliersp are denoted as adjoint variables and are arbitrary at this point. Integration
by parts of the term

∫
pẋ dt leads to

J =

∫ tf

t0

(
H + ṗTx

)
dt + S(tf , x(tf)) − pTx

∣∣∣
tf

t0
, (6)

where theHamiltonianH(x, u, p, t) = h(x, u, t) + pTf(x, u, t) is introduced. In order to find a
minimum of the cost functionalJ with respect tou we consider the variation ofJ according to a
small changeδu which is given by

δJ =

∫ tf

t0

[(
Hx + ṗT

)
δx + Huδu

]
dt +

[
Sx(tf , x(tf)) − pT(tf )

]
δx(tf ) + pT(t0)δx(t0). (7)

Due to the fact that no variation of the states att = t0 is allowed, the termp(t0)δx(t0) is zero. If the
adjoint variables are defined, such that

ṗT = −Hx and pT(tf) = Sx(tf , x(tf)), (8)

the complex relations betweenδx andδu need not to be computed and the variation ofJ according
to Equation (7) is reduced to

δJ =

∫ tf

t0

Huδu dt. (9)

Equation (8) is a linear and time-variant system of differential equations which have to be solved
backwards in time starting att = tf . Hence, the largest possible increase ofδJ is obtained, ifδu(t)
is chosen in the direction ofHT

u . For that reasonHT
u may be considered as the gradient of the cost

functionalJ(u).

4. Numerical determination of the optimal control

Based on the adjoint gradient computation, outlined in the previous section, we may now search for
a controlu which minimizes the objective functionalJ . First of all, the method of steepest descent
is described, where we always walk a certain distance along the negative gradient until we end up
in a local minimum ofJ . Due to the costly line search step during every iteration and the slow
convergence the gradient method is extended to a Quasi-Newton method. Therefore, we have to solve
the problem of findingu such that the gradient becomes zero.

4.1. The Method of Steepest Descent

The method of steepest descent tries to find a minimum of a function or, subsequently, of a functional
by walking always along the direction of its negative gradient. This concept has first been developed
to optimal control problems by H.J. Kelley [8] and A.E. Bryson [9].

The gradient is already derived from the adjoint system which is shown in Section 3. Now we use
HT

u and simply walk a short distance along the negative gradient ofJ . By reason of numerics the
continuous functions are discretized. Hence, the cost functional reads

J(u) ≈ Ĵ(u1, u2, . . . , uN) (10)
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whereui = u(ti) and t1, . . . , tN is a sequence of consecutive time steps in the interval[t0, tf ]. A
variation of the controlsui leads to a variation of the cost functional

δĴ =

N∑

i=1

∂Ĵ

∂ui
δui.

On the other hand, the variationδĴ can be expressed by Equation (9) which, after discretisation,
results in

δĴ =

N∑

i=1

Hu,i∆tiδui

whereHu,i is the evaluation ofHu at t = ti. Hence, the gradient of the discretised functional may be
identified as

∂Ĵ

∂ui

= Hu,i∆ti

in which∆ti = ti − ti−1. For walking in the direction of the negative gradient a small numberκ > 0
has to be chosen to get the increment

δui = −κHT
u,i∆ti. (11)

If κ is sufficiently small, the updated controlui + δui will always reduce the cost functionalJ .
However, finding the numberκ such thatJ is reduced may require several simulations of the system
equations. For that purpose, the increments given by Equation (11) are considered as functions ofκ.
After solving the equations of motion withu + δu as inputs also the objective functionJ becomes,
ultimately, a function ofκ. By means of a line search algorithm one may find a numberκ in a
predefined interval[0, κmax] which minimizesJ .

4.2. Application of a Quasi-Newton Method

It is well known that the convergence of the gradient method is rather slow, especially near the optimal
solution. Hence, a Newton method provides an alternative approach to find the minimum of the cost
functionalJ . The basic idea is the following one: If̂u = (uT

1 , uT
2 , . . . , uT

N )T is defined by a zero
gradient, i.e. by the equations

∇Ĵ =

[
∂Ĵ

∂u1
, · · · ,

∂Ĵ

∂uN

]T

= 0

which can be solved for̂u by Newton’s method. However, the HessianH is required for that pur-
pose. To avoid the full computation ofH, which would be extremely time consuming, several quasi-
Newton methods have been developed. They all approximate the Hessian by using the gradients
of successive Newton-iterations. For example, the Hessian can be estimated efficiently by the well
known Broyden-Fletcher-Goldfarb-Shanno(BFGS)-Algorithm (c.f. [10]). Even its inverse can be
efficiently obtained by applying theSherman-Morrison formula(c.f. [11]).

We compute an approximatioñH
−1

of the inverse of the Hessian from the BFGS-algorithm. Then,
an incrementδû of the discretized control signal is given by




δu1

δu2
...

δuN


 = −H̃

−1∇Ĵ (12)
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Figure 1. Schematics of the six-axis
PUMA robot

Figure 2. Image of the six-axis PUMA robot

Note, that it is strongly recommended to use a quasi-Newton method which directly approximates the
inverse of the Hessian. Otherwise, if the original Hessian is computed, a very large and dense matrix
must be inverted, since the number of components ofJ might become large.

The inverse of the Hessian afterk + 1 iterations is given by

H̃
−1

k+1 =

(
I − pkq

T
k

qT
k pk

)
H̃

−1

k

(
I − qkp

T
k

qT
k pk

)
+

pkp
T
k

qT
k pk

(13)

whereI is the identity matrix,pk is the gradient direction of thekth-iteration andqk is the change of
the gradient during the last iteration.

5. Application to the six-axis-robot

The presented method is used to minimize the signal energy consumption of the robot which is de-
picted in Figure 1. The reason why we have chosen this robot is that a lot of different parameters
are available which are necessary for the evaluation and verification of the results. Afterwards, the
simulation results are verified at a real six-axis-robot which is shown in Figure 2.

5.1. Problem definition

The system consists of three degrees of freedom,θ1, θ2 and θ3 which denote the relative rotation
angles of the joints. Due to the complicated structure of the equations of motion and the minor
influence on the energy consumption the three wrist joints are fixed. First of all the equations of
motion are derived and have the forṁx = f (x, u, t) with the initial conditionx(t0) = x0 and where
u = [M1, M2, M3]

T contains the torques of the motors andx = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
T is the vector of

states of the dynamical system. The system outputy = g(x) is a nonlinear function which depends
on the states and describes the coordinates of the tool center pointy = [x(t), y(t), z(t)]T.

For the energy optimal manipulation of the robot from a start-pointx0 to a given end-pointy, ẏ
(c.f. Table 1) within a predefined timetf we define the cost functional in the form

J =

∫ tf

t0

uTu dt

︸ ︷︷ ︸
signal-energy

+S(tf , x(tf)). (14)
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Table 1. Start and end position of the robot

start position final position start velocity final velocity

θ1 0 ◦ −90 ◦ 0 rad/s 0 rad/s

θ2 0 ◦ −10 ◦ 0 rad/s 0 rad/s

θ3 0 ◦ 45 ◦ 0 rad/s 0 rad/s

xTCP −0.15320 m 0.81441 m 0 m/s 0 m/s

yTCP 0.92112 m −0.15320 m 0 m/s 0 m/s

zTCP 0.02032 m 0.22233 m 0 m/s 0 m/s

which contains the quadratical signal energy to be minimized. The scrap-functionS of Equation (14)
describes the endpoint error and is specified by

S(x, t) = α

{
β [y(x) − y]2 +

[
∂y

∂q
q̇ − ẏ

]2
}

(15)

whereα andβ are proper weighting factors andy, ẏ contains the position and velocity of the endpoint
in coordinates of the system output.

5.2. Results

The identification process of the signal energy optimal manipulation was started with the standard
motion which is given from the robot controller. The results were verified on a real six-axis robot at
the home institution. Hence, the data of the experiment and the simulation results are summarized in
Figure 3. On the vertical axis the signal energy consumption is plotted over the time. It can be seen,
that the standard manipulation wastes a lot of energy at the beginning and at the end of the motion
due to the abrupt acceleration of the bodies. However, the signal energy optimal manipulation starts
with a smooth movement of the heavy bodies. Therefore, the maximal speed of the axis have to be
higher in comparison to the standard manipulation to reach the endpoint in the same period of time.
As a result the reduction of the signal energy after the optimization process is about47% with respect

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9
0

50

100

Figure 3. Build-up of the mechanical energy consumption
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to the standard manipulation of the robot control.

In the upper part of Figure 4 the joint angles of the signal energy optimal manipulation in comparison
to the standard manipulation of the robot are plotted over time. Obviously, the smooth characteristic
of the optimal solution, which corresponds to the dashed line can be seen. However, the standard ma-
nipulation, which corresponds to the solid line, shows the commonly used standard motion calculated
by the robot controller. In the lower part of Figure 4 the torques are depicted over the time. Here, the
smooth characteristic of the optimized solution can be seen clearly.
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Figure 4. Trajectory of the states and torques in the axis

6. Conclusions and outlook

To reach a desired endpoint within a predefined time, the definition of a Scrap-function is required
only. In addition, various requests to the system behavior can be considered in the integral part of the
cost functional, such as the signal energy of an industrial robot.

This paper should reveal that the trajectory with minimal signal energy does not lead automatically
to the mechanical energy optimal manipulation of the robot. Nevertheless, in practice such quadratic
input terms are often used because this leads to less stress of the components. In simply terms you can
say that the electrical parts are protected against overheating and the operation life span is increased
additionally if the torques remain small and smooth over the manipulations.

For the results in Section 5.2. we neglected the three degrees of freedom of the wrist and fixed them
to keep the equations of motion and the necessary matrices simple. However, if we consider this
joint angles in the system equations it is possible to reach a predefined endpoint in different ways.
This means that more than one final configuration of the robot exists which meet the end point in the
coordinates of the tool center point.
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Furthermore, the proposed identification can be done during operation. Instead of the forward simu-
lation the measures of the previous manipulation can be used to solve the adjoint system and calculate
the gradient. Hence, the defined cost functional, and therefore the signal energy, decreases during
the manipulation of the robot. A big advantage is that it is not necessary to exchange any part of the
robot, only an update of the robot control is required.
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Abstract
In state of the art production and assembly lines industrial robots with six axes are widely used to
manipulate production goods in all six degrees of freedom in space. Hence, mechatronics and robotics
students have to achieve an in-depth comprehension regarding the configuration and adaptation of
industrial robots from different manufacturers for applications such as welding, milling, assembling
or the handling of components. However, these industrial robots typically cannot be disassembled to
explore their internal structure and functionality due to, e.g., warranty reasons. Thus, educational
facilities have to use auxiliary means, such as simulation in respective teaching units. To solve that
problem, this paper describes the dimensioning and design of an industrial robot with six degrees
of freedom for educational purposes, produced by the use of additive manufacturing techniques. Its
main strengths are its low costs despite full functionality, its sound maintainability, and the fact that
it can be disassembled multiple times by students in the course of, e.g., mechanics, electronics or
software development projects. Besides, the proposed educational robot platform has been designed
safe-to-use and aesthetically pleasing. Further mechanical structure optimization, the synthesis of
the mathematical and kinematic model and control system configuration have to be done in future
projects.

1. Introduction

Mechatronics and robotics students have to achieve an in-depth comprehension regarding the con-
figuration and adaptation of industrial robots with six axes to manipulate production goods in all six
degrees of freedom in space. Therefore, for educational purposes it is especially important to work
with robots that may be disassembled in order to explore their internal structure and functionality.
This normally rules out the use of commercial robots beyond manufacturer’s designated robot func-
tionalities – usually pure end effector choice, parameter configuration and programming. The use of
auxiliary means like 3D-simulation programs is possible, but pedagogically disadvantageous, as the
learning experience is impaired by the fictitiousness of virtual robot behavior [Tocháček et al., 2016].
Additionally, educational institutions will typically be subject to strict financial restrictions. Hence,
they rely on either loans (i.e., industrial robots that cannot be disassembled) or low-price facilities,
eventually self-constructed. Therefore the objective of this paper is to construct a robot platform that
suits the aforementioned educational purposes and context requirements.

The technical challenge of this project was to create a robot with full and accessible functionality at
a fraction of the costs of a commercial product by using additive manufacturing techniques. Critical
attributes to be met in the course of the design process were the educational robot’s ability to be
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disassembled multiple times and to be maintained easily, with as little effort as possible. Besides, the
proposed educational robot platform had to be designed safe-to-use and aesthetically pleasing.

Additionally this contribution pays respect to the fact that some authors even state, that the practice
of introducing robotics into the academic process is still in an initial development stage (cp. e.g.,
[Ospennikova et al., 2015]) – at least in specific sectors: the majority of contributions within the
current body of literature refers to school education below university level (e.g., [Eguchi, 2010]).
Other major developments and respective projects and publications in the field of educational robotics
are driven either by major industry players, i.e., robot manufacturers and similar companies (cp.
e.g., [Yoo, 2015]) with the disadvantage that disassembly for a deeper understanding is prohibited.
Another field of huge activities is the topic of robot competitions (cp. e.g., [Eguchi, 2016]), primarily
focusing on robot performance optimization, but rarely on the teaching of advanced robot functional
and structural principles at the level of robot engineering master courses within university education.

The remainder of the paper is as follows: section 2 provides a short overview on the field and explains
general design principles with regard to the current endeavor. Subsequently sections 3-5 describe
design details of the educational robot that has been developed in the course of this project. Finally
section 6 draws a brief conclusion with regard to the achieved results and provides an outlook towards
future activities.

2. Design principles for educational robotic experiences

The abilities of collegiate robotic and computational thinking and sufficient ways to facilitate the
achievement of respective learning objectives within educational programs have been widely dis-
cussed in the literature (see e.g., [Miller et al., 2008], [Wing, 2008], [Eguchi, 2010], [Lee et al., 2011]
or [Khanlari, 2013]). Although it is not the aim of this paper to provide an exhaustive literature
overview, it can be said that the field of juvenile and undergraduate education is well elaborated
in particular regarding elementary robot handling, control and programming. However the topic of
advanced engineering and mechatronics education has to face further issues. As Alessandri and Pacia-
roni [Alessandri, 2012] conclude with reference to neuroscience (in particular, cp. [Varela et al., 1995]),
an educational robotic experience has to allow for a shift from (more or less passive) observation of
a device towards a deep immersion into the system in action. Transferred to the learning target of
gaining an in-depth understanding not only from an industrial robots behavior and control, but as
well from its functional principles and structures with regard to mechanics, electronics and software
development, this leads to the conclusion that advanced robotics and mechatronics students must be
provided with the opportunity to construct, simulate, assemble and disable a robotic system alter-
nating with physical system-behavior experiments. Thus, before-after explorations could be done,
e.g., after having improved mechanical components like a gripper or a joint, after having modified
the electronic circuits, after having changed software code or parameters, or even after having to-
tally disassembled and reassembled the whole robot for either maintenance, repair or experimental
purposes.

Moreover, this practical education approach supports a further aspect that gains more and more im-
portance in modern engineering disciplines, and especially in the field of mechatronics and robotics:
teaching mechanical, electronic and informatics-related skills is a well-known issue. However, the
interdisciplinary integration of these (and as needed also further) fields requires greater emphasis,
and the same applies for system integration abilities [Gómez et al., 2014]. The educational robot,
developed in the course of the current project was also designed for the purpose of strengthening
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an integrative system engineering approach in theory (robot design and dimensioning) and practical
application (robot programming, control and optimization).

Supporting factors to enable robotics learning experiences according to the aforementioned criteria are
the ongoing price decline of progressively powerful sensors, motors and micro-controllers together
with increasingly widespread additive manufacturing abilities in order to create adequate mechanical
parts and actuator components. 3D-printing of synthetic materials has not only become financially
affordable. Moreover, meanwhile even basic knowledge of production techniques like e.g., fused de-
position modeling (FDM) allows for a rapid design, construction and fabrication of customized robot
components with low mass (for further details of filament fabrication refer to e.g., [Allen, 2015]).
There is, however, one possible disadvantage to be taken account, when using 3D-printed compo-
nents: due to expectable inexactness of the printed parts, each robot prototype might have slightly
differing attributes. As educational application will scarcely have the need of producing high quanti-
ties of identical machines, this can yet be considered as a minor constraint.

Altogether the mentioned developments have enabled the current project. Concretely, a six-axis robot
was designed using CAD software that can handle payloads of up to 500g mass within a working
envelope of 700mm in diameter. The belt driven joints were designed to hide all contained drive belts
inside the robot in order to ensure safety and to achieve an aesthetically pleasing design. The goals
of operator-friendliness and maintainability were obtained by assembling all components in enclosed
modular sub-assemblies in order to be able to change each module easily or to adapt just one specific
part of the robot. In contrast to commercial industrial robots, there is no need to strictly separate the
working range of the robot from human reaching areas by means of a closed assembly cell. Figure 1
illustrates the naming conventions and the structure of the robot.

Figure 1. Naming convention and structure of the robot
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In this paper the different assemblies are referred to as ’wrist’, ’lower arm’, ’upper arm’and ’base’.
The following metaphor is applied to alleviate the comprehension of the system: The robot can be
seen like a human arm. The ’shoulder joint’is mounted to the surface of the table and will be referred
to as the ’base’. Next comes the ’upper arm’, which connects the ’shoulder’to the ’elbow joint’. In
this project the assemblies that are equal to the ’upper arm’and the ’elbow joint’are called ’upper
arm’and ’third joint’. Finally, the ’lower arm assembly’is connected between the ’elbow joint’and the
’wrist’.

According to this rough concept, a six-axis robot was designed using CAD software that can handle
payloads of up to 500g mass within a working envelope of 700mm in diameter. In order to provide a
save to use platform the robot was designed to hide all moving parts such as belts, pulleys and shafts
inside the robot. This at the same time allows for an likable design. In contrast to commercial indus-
trial robots, there is no need to strictly separate the working range of the robot from human reaching
areas by means of a closed assembly cell. The goals of operator-friendliness and maintainability were
obtained by assembling all components in enclosed, modular assemblies in order to be able to change
each module easily or to adapt just one specific part of the robot. A further important design require-
ment was to provide a platform that is decomposable multiple times without relevant part defects as
a consequence of the dis- and re-assembly process. Even after multiple assembly loops, the robot
must ensure a sufficient level of precision. This was achieved by introducing index pins in order
to prevent from inaccurate re-assembly. Comparably, centering pins are used in order to be able to
re-establish the exact coaxial position of every joint after reassembly. All parts were designed and
optimized for the use of additive manufacturing techniques in order to enable the re-manufacturing
of any part quickly, easily and cost-efficient. A further major design objective was to preferably use
standard parts instead of manufacturing customized items. This helps to decrease manufacturing-time
and -effort and at the same time makes use of the granted precision provided by supplier-dependent
tolerances. In order to cut the maintenance effort to a minimum, only encapsulated bearings were
used (no greasing or cleaning).

3. Design of the Base

Due to limitations regarding the maximum size of the 3D-manufactured objects, the base was split
into two parts which were screwed together to provide a single solid base. Educational institutions
that have access to more advanced equipment or are willing to deviate from the pure 3D-printing
approach, could easily design their own robot concepts by means of using a one-piece manufactured
base as an alternative. The base has two hollow chambers in order to hold all electronic components
and the controller boards shielded and space-saving. As these openings contain all electronic and
controller components, the robot can be used in stand alone mode as well as connected to a computer.
A further compartment on the bottom of the base hides the drive belt of the first axis and its motor.
This additional opening could as well be used to append extra weight (e.g., heavy steel plates) to
prevent the base from moving while the robot is used in a stand-alone mode. Another possible use
of the bottom compartment is to hold batteries, in case the robot shall be used in locations without
electrical power supply, e.g., on fairs or exhibitions. Besides, the batteries take effect as additional
weight. As shown in figure 2, the base consists of a cylindrical tube, also containing the motor-holder
for the motors of the second and third axis. The first axis is moved by simply shifting the whole
cylindrical tube together with the rest of the robot. The motors for the second and third axis are
connected to the fork by means of two timing belts. The fork consists of a hollow shaft which is
directly powered by the timing belt assigned to the motor of the second axis. The timing belt on the
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other side of the hollow shaft drives a second pulley inside the shaft.

Figure 2. Exploded view of the base

4. Design of the Upper Arm

To reduce the weight of the arm and to maximize the manipulable payload, the motor of the third
axis was relocated from the elbow joint into the base. To be able to transmit the torque of the third
axis from the base to the elbow joint an arrangement of rods and cardan joints was used inside the
upper arm assembly. The upper arm assembly is composed of two main housing parts. It consists of
a timing wheel inside the upper arm assembly, which in turn is connected to the timing wheel inside
the hollow fork shaft. Finally the torque is transmitted by a bevel gear to the rod assembly and further
to the lower arm assembly.

5. Design of the Lower Arm

Another huge challenge was the design of the lower arm and the TCP-gearhead due to heavy restric-
tions regarding size and weight. Every additional gram that the robot weights implies one gram less
that can be manipulated by the later robot. Therefore the construction maxim was to use as few com-
ponents as possible and within as small space as possible. To provide a counterweight to the handled
payload and to alleviate the drive train design, the motors for the fourth, fifth and sixth axis were
located at the third joint. The challenge was to place three motors next to each other, but still have
their drive shafts positioned coaxial since a parallel position of two or more axes would lock at least
one of the three axes. This problem was solved by using a spur gear drive with a various amount of
gears combined with a hollow shaft which holds another shaft inside. The spur gears bridge the two
dimensional displacement of the motor shafts from the coaxial position. Each of the two coincide
shafts inside the upper arm assembly drives a bevel gear drive inside the lower arm which subse-
quently drives the fifth and sixth axis of the robot using a timing belt connection and another bevel
gear box inside the TCP head. The assembly can be seen in figure 3. For the purpose of adjusting
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the belt tension of the fifth and sixth axis it was necessary to split the lower arm into two pieces, as
to adjust the belt tension by a longitudinal displacement between lower arm and wrist assembly. The
wrist is accordingly hold in the position by the cover that encloses the lower arm assembly, together
with the exposed belt drives.

Figure 3. Lower arm assembly with visible torque path of 6th axis

6. Conclusion and Outlook

Concluding, the robot was designed and can be used within future projects. The platform was split
into several enclosed, modular sub-assemblies to be able to adapt or change only parts of the robot
and to alleviate the final assembly of the robot. Furthermore the robot was designed in the most cost
efficient way that was possible with the given resources. Future projects will have to further improve
the electronics, the control system and the software to be able to further program the robot. Another
possible future project could implement am additional force feedback system by measuring and con-
trolling the current that flows to the motors. This would enable the user to teach the robot by dragging
the manipulator in the desired pose and teaching its joint positions. Another big advantage of measur-
ing and controlling the motor currents would be the ability of preventing damage to the mechanical
structure or the motors itself by mechanical overload of each joints. Besides this technical improve-
ments, practical evidence within educational context will show the practicability and usefulness of
the learning experiences, the robot is able to offer.
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