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Abstract

Nowadays, video surveillance is ubiquitous, posing a potential privacy risk to law-abiding individu-
als. Consequently, there is an increased interest in developing methods for de-identification, i.e. re-
moving personally identifying features from publicly available or stored data. While most of related
work focuses on de-identifying hard biometric identifiers such as faces, we address the problem of
de-identification of soft biometric identifiers – tattoos. We propose a method for tattoo detection
in unconstrained images, intended to serve as a first step for soft biometric de-identification. The
method, based on a deep convolutional neural network, discriminates between tattoo and non-tattoo
image patches, and it can be used to produce a mask of tattoo candidate regions. We contribute a
dataset of manually labeled tattoos. Experimental evaluation on the contributed dataset indicates
competitive performance of our method and proves its usefulness in a de-identification scenario.

1. Introduction

In the last decade, video surveillance has spread to almost all aspects of daily life. Storing the recorded
surveillance data in its unprocessed form poses a privacy risk to law-abiding individuals, as their
whereabouts and activities can be exposed without their consent. Privacy concerns are aggravated by
the development of various video retrieval techniques [17, 26, 16] that enable searching for content in
large volumes of video data, as well as by the development of techniques for person re-identification
across different video sequences [1, 8]. In order to minimize privacy risks, many jurisdictions imple-
ment strict regulations for the protection of personal data (see e.g. the Data Protection Directive of the
European Union1). For video sequences, protection of personal data entails obfuscating or removing
personally identifying features of the recorded individuals, usually in a reversible fashion so that law
enforcement can access them if necessary.

The process of removing personally identifying features from data is called de-identification. One of
the most commonly used de-identification techniques, used in commercial systems such as Google
Street View, involves detecting and blurring the faces of recorded individuals. However, this approach
ignores soft biometric and non-biometric features like clothing, hair color, birthmarks or tattoos, that
can be used as cues to identify the person [6, 20]. In this paper, we propose a method for detecting
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tattooed skin regions that can be used in an advanced de-identification pipeline to obfuscate or remove
tattoos. We train a convolutional neural network that acts as a patch classifier, labeling each patch of
an input image as either belonging to a tattoo or not.

2. Related work

Current research in de-identification is mainly concerned with de-identifying hard biometric features,
especially the face [9]. Considerably less volume of research is devoted to soft and non-biometric fea-
tures [20]. Tattoo detection is typically studied not in the context of de-identification, but in forensic
applications. There the goal is to build a content-based image retrieval system for tattoos that would
help law enforcement in finding suspects and other persons of interest, e.g. persons associated with a
particular gang etc. [6, 12, 10]. For instance, Jain et al. [12] propose a content-based image retrieval
system intended to be used by law enforcement agencies. The query image is a cropped tattoo, which
is then segmented, represented using color, shape and texture features and matched to the database.
Han and Jain [10] take the concept further by proposing a content-based image retrieval system for
sketch-to-image-matching, where a sketch of the tattoo is matched to real tattoo images. Their system
uses SIFT descriptors to model shape and appearance patterns in both the sketch and the image, and
matches the descriptors using a local feature-based sparse representation classification scheme. Kim
et al. [13] propose combining local shape context, SIFT descriptors and global tattoo shape for tattoo
image retrieval. Their descriptor is robust to partial shape distortions and invariant to translation, scale
and rotation.

The methods used in content-based image retrieval systems often assume that tattoo images are
cropped, which limits their potential use in other scenarios. Heflin et al. [11] consider detecting
scars, marks and tattoos “in the wild”, i.e. in uncropped images, where a tattoo can appear anywhere
in the image (or not appear at all) and be of arbitrary size. They propose a method for tattoo detection
where tattoo candidate regions are detected using graph-based visual saliency. Further processing of
the candidate regions utilizes the GrabCut algorithm [21], image filtering and the quasi-connected
components technique [4] to obtain the final estimate of the tattoo location.

Wilber et al. [25] propose a mid-level image representation called Exemplar Codes and apply it to
the problem of tattoo classification. Exemplar codes are feature vectors that consist of normalized
outputs of simple linear classifiers. Each linear classifier measures the similarity between the input
image and an exemplar, i.e. a training image that best captures some property of the tattoo. Decision
score outputs from individual linear classifiers are used to estimate probabilities using extreme value
theory [23], thus forming exemplar code feature vectors. A random forest classifier is trained on
exemplar codes, enabling multi-class tattoo recognition.

Because of great variability of tattoo designs, individual skin color and lighting conditions in real-
world tattoo images, as well as the fact that the tattoos resemble many different real world objects,
it is very difficult to devise good hand-crafted features suited for differentiating between tattoos and
background [19]. In recent times, however, convolutional neural networks (CNNs) were shown to
be able to automatically learn good features for many classification tasks [15]. We therefore propose
to apply a deep convolutional neural network to the difficult problem of tattoo detection. In seminal
work by Krizhevsky et al. [14], convolutional neural networks were proven to be extremely success-
ful on the ImageNet dataset. According to LeCun et al. [15], this success can be attributed to several
factors: efficient use of GPUs for network training, use of rectified linear units, use of dropout reg-
ularization and augmenting the training set with deformations of the existing images. Convolutional

36



networks have already been successfully applied to the problem of scene labelling [7] and semantic
segmentation [18].

In contrast to related work, in this paper we take a bottom-up approach. Our CNN-based model
operates at the level of small image patches and enables classifying each patch as either belonging
to a tattoo or not. Our approach can be used on arbitrary images to obtain a low-level estimate of
candidate tattooed regions.

We propose this approach with our target application of de-identification in mind. In a de-identification
pipeline, the detected candidate tattoo regions can be removed or averaged to remove personally iden-
tifying information. We place much greater importance on correctly detecting all tattooed regions than
on eliminating false positive detections, as false positives can be eliminated in subsequent stages,
e.g. by combining our method with a person detector (e.g. [5]).

3. Our method

Our proposed method for tattoo detection is based on image patch labeling using a convolutional
neural network. We do not detect a tattoo as a global entity. Rather, we use the sliding window
approach and at each window position we extract a patch of the size N × N . The patch is then
classified as either tattoo or background. The output of our method consists of masked image regions
that are tattoo candidates.

Convolutional neural networks typically consist of several convolutional layers, followed by one or
more fully connected layers. Convolutional layers are in charge of learning good features and they are
characterized by (i) local receptive fields (i.e. the neuron in the convolutional layer is not connected to
the outputs of all the neurons from the previous layer, but only to the ones in its local neighborhood),
and (ii) shared weights, reflecting the intuition that the features are computed in the same way at
different image locations. After the convolutional layers, the so-called pooling layers are typically
inserted in order to reduce the dimensionality of feature space for subsequent steps. Fully connected
layers perform the task of classification and contain the majority of learned weights.

The architecture of our network is broadly inspired by the successful VGGNet model, proposed in
2014 by Simonyan and Zisserman [24]. The VGGNet is characterized by a very homogeneous ar-
chitecture that only performs 3 × 3 convolutions and 2 × 2 pooling from the beginning to the end.
However, our model modifies it to accommodate smaller input images and smaller number of output
classes. The simplified network, with fewer and smaller layers is faster to train and it proved adequate
for our purposes. The proposed network architecture is shown in Fig. 1.

The input to the network is an N × N color image (we assumed the RGB color model). The image
has to be classified either as belonging to the tattoo or not, depending on whether its center lies inside
the polygon that demarcates the tattoo.

The network consists of eight layers (not counting the input layer, i.e. the image itself). The first two
layers are convolutional layers with 32 feature maps with 3× 3 filters and ReLU activation units. The
third layer is a max-pooling layer that reduces the feature map dimensions by 2 × 2. The fourth and
the fifth layers are again convolutional layers with ReLU activation units, but with 64 feature maps
(again with 3× 3 filters). The sixth layer is another max-pooling layer, once more reducing the input
dimension by 2× 2. The seventh layer is a fully connected layer consisting of 256 neurons. The final,
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Figure 1: The architecture of the proposed ConvNet model.

Figure 2: Examples of annotated tattoo images.

eighth layer consists of two neurons with the Softmax activation function, corresponding to the two
output classes. Dropout, with the dropout ratio set to 0.5, is applied to the fully connected layer.

We implemented the described network in Python, using Theano [2, 3] and Keras 2 libraries.

4. Experiments

Given the relatively modest volume of work on tattoo detection, there are no readily available tattoo
detection datasets. Recently, a dataset called Tatt-C has been published [19], but it cannot be freely
downloaded. Hence, to facilitate the development and testing of our method we have assembled our
own dataset3 by collecting and manually labeling 890 tattoo images from the ImageNet database [22].

Each of the collected images contains one or more tattoos. We annotated each tattoo using a series
of connected line segments. Example annotated images from our dataset are shown in Fig. 2. We
attempted to closely capture the outline of each tattoo, which can be a challenging task, as tattoos can
have highly irregular edges.

2https://github.com/fchollet/keras, accessed March 2016.
3The dataset is available at http://www.fer.unizg.hr/demsi/databases and code/tattoo dataset.
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(a) tattoo patches (b) background patches

Figure 3: Example extracted patches from our dataset (patch size 32× 32).

4.1. Training the network

For training, we constructed a training set by randomly sampling a number of image patches of
predefined size from each annotated tattoo image in our dataset. This procedure was done both
for positive and negative samples, i.e. for patches that do and do not contain tattoos. Examples of
extracted patches can be seen in Fig. 3.

The training of the network was carried out by optimizing the mean squared error loss function,
using stochastic gradient descent with momentum. We used the mini-batch of 32 samples and the
momentum was set to 0.9. The learning rate was set to 0.1. The training was performed for maximaly
40 epochs, with early stopping based on validation loss. The duration of the training varied greatly
with the size of the patches, in our case from 10 minutes for smallest patches to 13 hours for the
largest.

4.2. Performance evaluation

The set of all extracted patches totalled 22700 images (11359 positive and 11341 negative samples).
This set was divided into sets for training (containing 15134 samples, out of which 7573 positive and
7560 negative), and validation and testing (both of the same size of 3783 samples, out of which 1893
positive and 1890 negative). We have ensured that all patches extracted from the same image end up
in only one of the sets (either training, validation or testing), in order to avoid mixing training and
testing data.

We trained and evaluated the network for different patch sizes (8 × 8, 12 × 12, 16 × 16, 24 × 24,
32 × 32 and 48 × 48) to determine the optimal patch size. The larger patches presumably provide
more information about context, but the network that utilizes them is slower to train and test.

The test set was used for evaluation. The results are summarized in Table 1. The accuracy was
calculated as a total number of misclassifications (false positives and false negatives) divided by the
test set size. As we can see, the results improve in terms of accuracy with the increase in image patch
size, up to the largest considered size (48×48) that gives slightly worse results than most of the smaller
patch sizes. The difference in accuracy is not very pronounced; i.e. we can say that results for all the
patch sizes are similar. The other thing that can be noticed is that the improvement in performance
with the increase in patch size comes mainly from reducing the number of false positives, while at the
same time the number of false negatives rises.

We have done a preliminary qualitative evaluation of the performance of the network in a sliding
window setting. Some results are shown in Fig. 4. These examples are relatively simple, with homo-
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Patch size 8× 8 12× 12 16× 16 24× 24 32× 32 48× 48
False negatives 152 (8.03%) 229 (12.10%) 187 (9.88%) 213 (11.25%) 248 (13.10%) 290 (15.32%)
False positives 593 (31.37%) 418 (22.12%) 444 (23.49%) 436 (23.07%) 337 (17.83%) 408 (21.59%)

Accuracy 0.8031 0.8290 0.8332 0.8283 0.8454 0.8155

Table 1: Evaluation of the network performance on different patch sizes

geneous skin around the tattoo and simple background. We see that many tattoo patches are correctly
detected, but there are also some misclassifications. In more difficult examples with more background
containing textured objects, the number of false positives rises. In the context of de-identification,
this problem could be addressed by combining this detector with other stages of a de-identification
pipeline, e.g. by eliminating detections outside of candidate person locations.

(a) the original images

(b) labeled tattoo patches

Figure 4: The output of the network on full images.

5. Conclusion and outlook

We addressed the challenging problem of tattoo detection for soft biometric de-identification. Instead
of hand-crafting image features, we applied deep learning. We trained and evaluated a deep convo-
lutional neural network using the dataset of positive and negative patches generated from a subset of
ImageNet tattoo images annotated by hand. Our findings indicate that using a convolutional neural
network to classify small image patches can be a reliable way to detect candidate tattoo regions in an
image. Patch sizes should be kept small, up to 32× 32 patches, in order to obtain best accuracy, good
foreground-background segmentation and minimize false negatives.

In our future work, we plan to combine this method with other stages of a de-identification pipeline
in order to solve the problem of false positives. As our qualitative analysis shows that the majority of
false positives are in the surroundings rather than on the person, one possibility is to run the method
only on the outputs of a person detector. We also plan to quantitatively evaluate the performance of
our network on full tattoo images (as opposed to patches), and investigate whether this performance
could be improved by merging the detections into blobs.
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