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Abstract
The main goal of this contribution is to determine the excitation of an industrial robot, such that the
energy consumption becomes a minimum during the manipulation of the tool center point (TCP) from
a start position to a given end point within a predefined time.Such tasks can be restated as optimiza-
tion problems where the functional to be minimized consistsof the endpoint error and a measure for
the energy. The gradient of this functional can be calculated by solving a linear differential equation,
called the adjoint system. On the one hand the minimum of the cost functional can be achieved by
the method of steepest descent where a proper step size has tobe found or on the other hand by a
Quasi-Newton algorithm where the Hessian can be appreciated. The theory is applied to a six-axis
robot and the identification leads to a reduction of 47% of thesignal energy.
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1. Introduction

In this contribution an approach to such inverse dynamical problems is presented. It starts from an
optimal control formulation of the problem by introducing acost functional which has to be min-
imized subject to a system of differential equations (c.f. [1, 2]). The gradient computation of the
cost functional is based on the so called adjoint method. Dueto better convergence a Quasi-Newton
method is used instead of the simple gradient method. Therefore, the Hessian matrix is approximated
by using the BFGS-algorithm.

The adjoint method is already used in a wide range of optimization problems in engineering sciences.
Especially, in the field of multibody systems, the computation of the gradient of the cost function is
often the bottleneck for computational efficiency and the adjoint method serves as the most efficient
strategy in this case. The basic idea of the adjoint method isthe introduction of additionaladjoint
variables determined by a set of adjoint differential equations from which the gradient can be com-
puted straightforward. This main idea directly corresponds to the gradient technique for trajectory
optimization pioneered by Bryson and Ho [3].

Various authors have utilized the adjoint method in the sensitivity analysis of multibody system, as
e.g., [4, 5]. Bottasso et al. [6] presented a combined indirect approach of the adjoint method in
multibody dynamics for solving inverse dynamics and trajectory optimization problems, also similar
to the ideas presented in [7].
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For a signal energy optimal manipulation of the robot a cost functional is introduced, which consists
of the quadratic input signals in every time step and of a so-called Scrap-function which defines the
end point deviation.

The identified movements were tested on a PUMA six axis robot.With the measured control variables
the required energy was evaluated. Based on this test data a considerably energy reduction was
detected.

2. Problem definition

At first, let us consider a nonlinear dynamical system

q̇ = v

M (q)v̇ = f̃(q, v,u, t),
(1)

whereq ∈ Rn is the vector of generalized coordinates andv ∈ Rn is the vector of generalized
velocities. In addition,M is then × n mass matrix and̃f ∈ Rn the force vector. The vectoru
indicates the control variables in an opened or enclosed region Γ ⊆ Rm. By introducing the vector of
state variablesxT = (qT vT) we may rewrite Equation (1) by

ẋ = f (x,u, t) x(t0) = x0. (2)

In general the force vectorf is a continuous vector field which depends on the statesx, controlsu
and on timet. In robotics, the position and velocity of the tool center point (TCP) will be of particular
interest instead of the joint angles and angular velocities. Hence, the system outputy ∈ Rl is given
by

y = g(x).

In order to meet a predefined end point we have to satisfy the boundary condition

g(x(tf)) = ȳ. (3)

However, we substitute the boundary condition of Equation (3) by the optimal control problem

ẋ = f (x,u, t)

J =

∫ tf

t0

h(x,u, t) dt+ S(tf ,x(tf)) −→ Min.
(4)

where the integral describes the energy consumption and theScrap-functionS includes the end point
error. If the closed regionΓ is not empty the solution of theoptimal controlproblem of Equation (4)
leads to an energy optimal manipulation of the dynamical system of Equation (2).

3. Gradient computation

To determine the gradient of the cost functional (4) we first add zero terms to it:

J =

∫ tf

t0

h(x,u, t) + pT [f(x,u, t)− ẋ]︸ ︷︷ ︸
=0 Eq. (2)

dt + S(tf ,x(tf)) (5)
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The Lagrange-multipliersp are denoted as adjoint variables and are arbitrary at this point. Integration
by parts of the term

∫
pẋ dt leads to

J =

∫ tf

t0

(
H + ṗTx

)
dt + S(tf ,x(tf))− pTx

∣∣∣
tf

t0
, (6)

where theHamiltonianH(x,u,p, t) = h(x,u, t) + pTf(x,u, t) is introduced. In order to find a
minimum of the cost functionalJ with respect tou we consider the variation ofJ according to a
small changeδu which is given by

δJ =

∫ tf

t0

[(
Hx + ṗT

)
δx+Huδu

]
dt +

[
Sx(tf ,x(tf))− pT(tf )

]
δx(tf ) + pT(t0)δx(t0). (7)

Due to the fact that no variation of the states att = t0 is allowed, the termp(t0)δx(t0) is zero. If the
adjoint variables are defined, such that

ṗT = −Hx and pT(tf) = Sx(tf ,x(tf)), (8)

the complex relations betweenδx andδu need not to be computed and the variation ofJ according
to Equation (7) is reduced to

δJ =

∫ tf

t0

Huδu dt. (9)

Equation (8) is a linear and time-variant system of differential equations which have to be solved
backwards in time starting att = tf . Hence, the largest possible increase ofδJ is obtained, ifδu(t)
is chosen in the direction ofHT

u . For that reasonHT
u may be considered as the gradient of the cost

functionalJ(u).

4. Numerical determination of the optimal control

Based on the adjoint gradient computation, outlined in the previous section, we may now search for
a controlu which minimizes the objective functionalJ . First of all, the method of steepest descent
is described, where we always walk a certain distance along the negative gradient until we end up
in a local minimum ofJ . Due to the costly line search step during every iteration and the slow
convergence the gradient method is extended to a Quasi-Newton method. Therefore, we have to solve
the problem of findingu such that the gradient becomes zero.

4.1. The Method of Steepest Descent

The method of steepest descent tries to find a minimum of a function or, subsequently, of a functional
by walking always along the direction of its negative gradient. This concept has first been developed
to optimal control problems by H.J. Kelley [8] and A.E. Bryson [9].

The gradient is already derived from the adjoint system which is shown in Section 3. Now we use
HT

u and simply walk a short distance along the negative gradientof J . By reason of numerics the
continuous functions are discretized. Hence, the cost functional reads

J(u) ≈ Ĵ(u1,u2, . . . ,uN) (10)
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whereui = u(ti) and t1, . . . , tN is a sequence of consecutive time steps in the interval[t0, tf ]. A
variation of the controlsui leads to a variation of the cost functional

δĴ =

N∑

i=1

∂Ĵ

∂ui
δui.

On the other hand, the variationδĴ can be expressed by Equation (9) which, after discretisation,
results in

δĴ =

N∑

i=1

Hu,i∆tiδui

whereHu,i is the evaluation ofHu at t = ti. Hence, the gradient of the discretised functional may be
identified as

∂Ĵ

∂ui

= Hu,i∆ti

in which∆ti = ti − ti−1. For walking in the direction of the negative gradient a small numberκ > 0
has to be chosen to get the increment

δui = −κHT
u,i∆ti. (11)

If κ is sufficiently small, the updated controlui + δui will always reduce the cost functionalJ .
However, finding the numberκ such thatJ is reduced may require several simulations of the system
equations. For that purpose, the increments given by Equation (11) are considered as functions ofκ.
After solving the equations of motion withu + δu as inputs also the objective functionJ becomes,
ultimately, a function ofκ. By means of a line search algorithm one may find a numberκ in a
predefined interval[0, κmax] which minimizesJ .

4.2. Application of a Quasi-Newton Method

It is well known that the convergence of the gradient method is rather slow, especially near the optimal
solution. Hence, a Newton method provides an alternative approach to find the minimum of the cost
functionalJ . The basic idea is the following one: If̂u = (uT

1 ,u
T
2 , . . . ,u

T
N )

T is defined by a zero
gradient, i.e. by the equations

∇Ĵ =

[
∂Ĵ

∂u1
, · · · , ∂Ĵ

∂uN

]T

= 0

which can be solved for̂u by Newton’s method. However, the HessianH is required for that pur-
pose. To avoid the full computation ofH, which would be extremely time consuming, several quasi-
Newton methods have been developed. They all approximate the Hessian by using the gradients
of successive Newton-iterations. For example, the Hessiancan be estimated efficiently by the well
known Broyden-Fletcher-Goldfarb-Shanno(BFGS)-Algorithm (c.f. [10]). Even its inverse can be
efficiently obtained by applying theSherman-Morrison formula(c.f. [11]).

We compute an approximatioñH
−1

of the inverse of the Hessian from the BFGS-algorithm. Then,
an incrementδû of the discretized control signal is given by




δu1

δu2
...

δuN


 = −H̃

−1∇Ĵ (12)
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Figure 1. Schematics of the six-axis
PUMA robot

Figure 2. Image of the six-axis PUMA robot

Note, that it is strongly recommended to use a quasi-Newton method which directly approximates the
inverse of the Hessian. Otherwise, if the original Hessian is computed, a very large and dense matrix
must be inverted, since the number of components ofJ might become large.

The inverse of the Hessian afterk + 1 iterations is given by

H̃
−1

k+1 =

(
I − pkq

T
k

qT
kpk

)
H̃

−1

k

(
I − qkp

T
k

qT
kpk

)
+

pkp
T
k

qT
kpk

(13)

whereI is the identity matrix,pk is the gradient direction of thekth-iteration andqk is the change of
the gradient during the last iteration.

5. Application to the six-axis-robot

The presented method is used to minimize the signal energy consumption of the robot which is de-
picted in Figure 1. The reason why we have chosen this robot isthat a lot of different parameters
are available which are necessary for the evaluation and verification of the results. Afterwards, the
simulation results are verified at a real six-axis-robot which is shown in Figure 2.

5.1. Problem definition

The system consists of three degrees of freedom,θ1, θ2 and θ3 which denote the relative rotation
angles of the joints. Due to the complicated structure of theequations of motion and the minor
influence on the energy consumption the three wrist joints are fixed. First of all the equations of
motion are derived and have the forṁx = f (x,u, t) with the initial conditionx(t0) = x0 and where
u = [M1,M2,M3]

T contains the torques of the motors andx = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
T is the vector of

states of the dynamical system. The system outputy = g(x) is a nonlinear function which depends
on the states and describes the coordinates of the tool center pointy = [x(t), y(t), z(t)]T.

For the energy optimal manipulation of the robot from a start-point x0 to a given end-pointy, ẏ
(c.f. Table 1) within a predefined timetf we define the cost functional in the form

J =

∫ tf

t0

uTu dt

︸ ︷︷ ︸
signal-energy

+S(tf ,x(tf)). (14)
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Table 1. Start and end position of the robot

start position final position start velocity final velocity

θ1 0 ◦ −90 ◦ 0 rad/s 0 rad/s

θ2 0 ◦ −10 ◦ 0 rad/s 0 rad/s

θ3 0 ◦ 45 ◦ 0 rad/s 0 rad/s

xTCP −0.15320m 0.81441m 0m/s 0m/s

yTCP 0.92112m −0.15320m 0m/s 0m/s

zTCP 0.02032m 0.22233m 0m/s 0m/s

which contains the quadratical signal energy to be minimized. The scrap-functionS of Equation (14)
describes the endpoint error and is specified by

S(x, t) = α

{
β [y(x)− y]2 +

[
∂y

∂q
q̇ − ẏ

]2}
(15)

whereα andβ are proper weighting factors andy, ẏ contains the position and velocity of the endpoint
in coordinates of the system output.

5.2. Results

The identification process of the signal energy optimal manipulation was started with the standard
motion which is given from the robot controller. The resultswere verified on a real six-axis robot at
the home institution. Hence, the data of the experiment and the simulation results are summarized in
Figure 3. On the vertical axis the signal energy consumptionis plotted over the time. It can be seen,
that the standard manipulation wastes a lot of energy at the beginning and at the end of the motion
due to the abrupt acceleration of the bodies. However, the signal energy optimal manipulation starts
with a smooth movement of the heavy bodies. Therefore, the maximal speed of the axis have to be
higher in comparison to the standard manipulation to reach the endpoint in the same period of time.
As a result the reduction of the signal energy after the optimization process is about47% with respect

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9
0

50

100

Figure 3. Build-up of the mechanical energy consumption
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to the standard manipulation of the robot control.

In the upper part of Figure 4 the joint angles of the signal energy optimal manipulation in comparison
to the standard manipulation of the robot are plotted over time. Obviously, the smooth characteristic
of the optimal solution, which corresponds to the dashed line can be seen. However, the standard ma-
nipulation, which corresponds to the solid line, shows the commonly used standard motion calculated
by the robot controller. In the lower part of Figure 4 the torques are depicted over the time. Here, the
smooth characteristic of the optimized solution can be seenclearly.
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Figure 4. Trajectory of the states and torques in the axis

6. Conclusions and outlook

To reach a desired endpoint within a predefined time, the definition of a Scrap-function is required
only. In addition, various requests to the system behavior can be considered in the integral part of the
cost functional, such as the signal energy of an industrial robot.

This paper should reveal that the trajectory with minimal signal energy does not lead automatically
to the mechanical energy optimal manipulation of the robot.Nevertheless, in practice such quadratic
input terms are often used because this leads to less stress of the components. In simply terms you can
say that the electrical parts are protected against overheating and the operation life span is increased
additionally if the torques remain small and smooth over themanipulations.

For the results in Section 5.2. we neglected the three degrees of freedom of the wrist and fixed them
to keep the equations of motion and the necessary matrices simple. However, if we consider this
joint angles in the system equations it is possible to reach apredefined endpoint in different ways.
This means that more than one final configuration of the robot exists which meet the end point in the
coordinates of the tool center point.
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Furthermore, the proposed identification can be done duringoperation. Instead of the forward simu-
lation the measures of the previous manipulation can be usedto solve the adjoint system and calculate
the gradient. Hence, the defined cost functional, and therefore the signal energy, decreases during
the manipulation of the robot. A big advantage is that it is not necessary to exchange any part of the
robot, only an update of the robot control is required.
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