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Abstract
Transistor circuits play an important role in electronics. That’s why good knowledge of basic
transistor circuits is essential for every electrical engineering student, because those circuits
build a fundamental basis for more complex transistor circuits. Transistors are almost used
everywhere in nowadays electronic. Transistors can be used as either switches or amplifiers.
Consequently, there are several methods for analysing and designing such electronic circuits.

The aim of this document is to guide students through the analysis of a bipolar junction
transistor amplifier circuit. The circuit analysis will focus on a pnp-common-base transistor
circuit. The circuit analysis concepts, which will be shown in this document, can be applied
analogously to the two remaining basic transistor amplifier circuits. All analysis concepts
are as well valid for the analysis of a field effect transistor amplifier circuit and more complex
circuit topologies. The only difference between field-effect transistor and bipolar junction
transistor circuits is the control mode (field-effect transistors are voltage controlled). The
main focus of the analysis will be on calculating the bias points, input and output resistance,
phase inversion, voltage gain and magnitude and phase response of the circuit. Undoubtedly,
there are several ways of calculation which lead to the same result. Therefore, this work
highlights two different analysis concepts for the small-signal analysis and two for analysing
the frequency behaviour of the circuit. For the small-signal analysis the conventional and
the node-voltage method is introduced. Furthermore, the frequency behaviour analysis is
introduced by a conventional method and the method of quadrupoles.
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1 THE PNP-COMMON-BASE CIRCUIT

1. The PNP-Common-Base Circuit
The chosen circuit to be analysed is depicted in Figure 1. The given circuit is pnp-common-
base transistor circuit. We want to analyse the large signal and small-signal behaviour as
well as the input resistance, the output resistance and the voltage gain of the circuit. The
aim of this documentation is to describe two different ways to analyse such a transistor
amplifier. The intent is to perform a conventional network analysis with meshes and nodes
(Kirchhoff’s Law) as well as the node voltage method. Furthermore, the frequency and phase
response of the circuit are getting determined.

1.1. Circuit Explanation
Let’s have a more detailed look on the circuit in Figure 1. The circuit is called common-
base, because the base terminal represents here for ac-signals, the common terminal for
the input and output signal. The capacitor CB forces the base of the transistor Q for ac-
signals to ground potential (gnd). UBat symbolises the power supply of the circuit. The
resistors R1 and R2 are setting the bias point of the circuit. Due to the biasing the collector
current IC is defined by the collector resistance RC and the emitter resistance RE. RE is
basically used for biasing purpose and ensures that current IE has path where it can flow.
Otherwise the input source uG has to produce the biasing. uG and the the corresponding
resistance RG are representing a waveform-generator. The collector current IC has an impact
on the transconductance gm of the circuit, which is shown in section 3.2. Furthermore,
the transconductance influences the differential collector-emitter rCE and base-emitter rBE
resistance, which is dependent on the operating point. These resistances in interaction with
RE, RC and RL will influence the voltage gain of the circuit. This is evident in section 3.7.
The capacitors Cin and Cout are used for decoupling. Furthermore, the arrow at the emitter
is representing the current direction.

Figure 1: PNP-Common-Base-Circuit
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1 THE PNP-COMMON-BASE CIRCUIT

1.2. Circuit Data
The transistorQ, which is used for this application, is a general purpose transistor (BC557B).
The transistor specifications are listed below.

• UBE = −0.7 V

• UCEsat = −0.3 V

• UEA = −20 V (early-voltage1)

• B = 350

• T = 300 K

All values of the components, shown in Figure 1, are listed below.

• UBat = 9 V

• R1 = 320 Ω

• R2 = 1.8 kΩ

• RE = 150 Ω

• RC = 380 Ω

• RL = 1 kΩ

• RG = 50 Ω

• Cin = 100 µF

• Cout = 20 µF

• CB = 47 µF

1.3. Advantages of the Common-Base Circuit
The common-base amplifier ...

• is a non-inverting amplifier stage [2].

• has similar voltage gain and output terminal impedance as the common-emitter
stage [2].

• has compared to the common-emitter and common-collector stage no Miller-Multiplication2.
That’s why common-base circuits are used for RF-applications [6].

• has compared to the common-emitter and common-collector stage a very low input
impedance. This property is useful for RF-applications e.g. an antenna-LNA-interfaces
(LNA - low noise amplifier), because antennas usually have low impedance. So with
this property it is possible to achieve pretty simple impedance matching between the
antenna and amplifier [7, p. 272].

1If the early-voltage UEA is not given, it is computable via the concept of the appendix section A.
2The Miller-Multiplication is described in the appendix section D.
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2 LARGE-SIGNAL ANALYSIS (BIAS POINT)

2. Large-Signal Analysis (Bias Point)
The aim of the large-signal analysis is to find the operating point OP of the circuit [2]. The
large-signal analysis is an important step in circuit analysis because with the knowledge of
the operating point it is possible to calculate the small-signal parameters, which is shown
in section 3. With these parameters the non-linear circuit can be broken down into a linear
network which can be easily calculated with usage of linear circuit analysis concepts.

2.1. Large-Signal Model
The large-signal model of a BJT in forward active mode can be
established as follows. The terminal between base and emitter
can be modelled by a diode. For this diode a known equation
namely the Shockley-Equation exists (see equation 1). The
current, which is flowing between the collector and emitter ter-
minal, can be modelled by either a current controlled current
source or a voltage controlled current source. The control pa-
rameter is either the current through the base-emitter diode or
the voltage over the diode. The large-signal model of a npn
is given in Figure 2. The model for a pnp only differs in the
current directions (inverse current direction).

Figure 2: Large-signal
model

2.2. Large-Signal Equations for Arbitrary Bias Points
Due to the fact that a BJT is formed out of two pn-junctions it is obvious that the diode
equation (Shockley-Equation) has to appear [2, p. 97]. The forward current is given by

ID = IS ·
(
e

UD
UT − 1

)
(1)

Where UT is the temperature voltage. The temperature voltage is defined by

UT = k · T
q

(2)

- 3 -



2 LARGE-SIGNAL ANALYSIS (BIAS POINT)

For easier hand-calculations later on in the small-signal analysis (see section 3) a simplified
version of the large-signal equations, which are derivable from the complex Gummel-Poon
model [8], is used (see Table 1). Due to accuracy reasons and small-signal parameter cal-
culation the Early-Effect is included (second order effect). The equations are valid for the
forward active region (|UCE| > |UCEsat|).

Table 1: Simplified large-signal equations of the BJT

npn pnp

IB = IS

B
· e

UBE
UT IB = IS

B
· e
|UBE |

UT

IC = IS · e
UBE
UT ·

(
1 + UCE

UEA

)
IC = IS · e

|UBE |
UT ·

(
1 + UCE

UEA

)
IE = IC + IB IE = IC + IB

To get a better understanding of the above depicted equations, shown in Table 1, for the
npn and pnp transistor, the current and voltage counting-arrows are shown in Figure 3 and
4 below. By looking to the above depicted equations of the npn-transistor, it is visible that
there is no sign difference between current and voltage. This is due to the same orientation
of the counting-arrows. On the contrary, for the pnp transistor there exists a sign difference
between current and voltage. Therefore, the absolute value of the voltages has been taken
in the above depicted equations. We could get rid of the absolute values by changing the
direction of the voltage counting-arrows.

Figure 3: NPN-transistor Figure 4: PNP-transistor

To determine the bias point of the circuit, it is useful and still accurate if a further simpli-
fication is done. For this kind of analysis, it is quite common to neglect the Early-Voltage.
The simplified equations are depicted in Table 2 below.

Table 2: Simplified large-signal equations for bias point determination

npn pnp

IB = IS

B
· e

UBE
UT IB = IS

B
· e
|UBE |

UT

IC = IS · e
UBE
UT = B · IB IC = IS · e

|UBE |
UT = B · IB

IE = IC + IB IE = IC + IB
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2 LARGE-SIGNAL ANALYSIS (BIAS POINT)

2.3. The Large-Signal Concept in Action
The first step for analysing a transistor circuit is to determine the large signal behaviour
(Bias Points). We assume that there is no input signal at the input terminal of the circuit
shown in Figure 1. With the large-signal analysis, the DC-operating point of the circuit is
calculated.

Let’s start with a few assumptions. First, we will assume that the base current is much
smaller than the current through the base-biasing resistors R1 and R2.

|IB| <
∣∣∣∣∣IR2

10

∣∣∣∣∣⇒ IR1 ≈ IR2 (3)

Furthermore, the transistor has to stay in the linear or forward active operating region to
ensure amplification [9]. In the linear region the current stays almost constant.

|UCE| > |UCEsat| (4)

Because the current through resistor R2 is approximately the same as the current through
resistor R1, we can derive the voltages as for an unloaded voltage divider. So the voltage
UR2 over the resistor R2 can be easily calculated.

UR2 = UBat ·
R2

R1 +R2
= 9 V · 1.8 kΩ

320 Ω + 1.8 kΩ = 7.642 V (5)

Out of UR2 the voltage UR1 can be calculated be applying Kirchhoff’s Law.

UR1 = UBat − UR2 = 9 V + 7.642 V = 1.358 V (6)

Mesh m1, shown in Figure 1, provides the relation for the emitter-ground voltage UEgnd.

m1 : − UR2 + UBE + UEgnd = 0 V (7)
⇔ UEgnd = UR2 − UBE = 7.642 V − (−0.7 V ) = 8.342 V

Mesh m2, shown in Figure 1, provides the relation for the voltage URE over the emitter
resistor.

m2 : UR1 + UBE − URE = 0 V (8)
⇔ URE = UR1 + UBE = 1.358 V + (−0.7 V ) = 658.49 mV

The current through the resistor RE is given by the following relation:

IRE = URE
RE

= 658.49 mV
150 Ω = 4.39 mA (9)

- 5 -



2 LARGE-SIGNAL ANALYSIS (BIAS POINT)

Because we perform the large-signal analysis upon the circuit (Bias Point) there is no current
flowing in and out of the input (where the waveform generator is connected) and output
(where the load is connected) terminals of the circuit shown in Figure 1. So we get for the
current IE, which is flowing into the emitter of the transistor, the following result:

IE = IRE = 4.39 mA (10)

After analysing node C, which encloses the transistor, we get the following node equation:

C : − IE + IC + IB = 0 A ⇔ −IE +B · IB + IB = 0 A (11)

⇔ IB = IE
1 +B

= 4.39 mA
1 + 350 = 12.507 µA

To ensure that the assumption of IB (see equation 3) was correct, the equation needs to be
tested by values.

|IB| <
∣∣∣∣∣IR2

10

∣∣∣∣∣ =
∣∣∣∣∣ UR2

R2 · 10

∣∣∣∣∣ ⇔ |12.507 µA| < |424.56 µA| q.e.d (12)

By using the relation between the collector IC and the base current IB the collector current
can be expressed as follows, if the transistor is in the linear operating region [10, p. 309]:

IC = B · IB = 350 · 12.507 µA = 4.377 mA (13)

Because we perform the large signal analysis of the circuit (Bias Point) there is no current
flowing in and out of the input (where the waveform generator is connected) and output
(where the load is connected) terminals of the circuit shown in Figure 1. So we get for the
current IRC , which is flowing through resistor RC , the following result:

IRC = IC = 4.377 mA (14)

The voltage over the resistor RC is then given by:

URC = IRC ·RC = 4.377 mA · 380 Ω = 1.663 V (15)

Mesh m3, shown in Figure 1, provides the relation for the collector-emitter voltage UCE.

m3 : UBat − URC + UCE − URE = 0 V (16)
⇔ UCE = URC + URE − UBat = 1.663 V + 658.49 mV − 9 V = −6.678 V

To ensure that the transistor is really in the linear operating region, equation 4 needs to be
tested by values. This would also be the last step of the large signal analysis.

|UCE| > |UCEsat| ⇔ |−6.678 V | > |−0.3 V | q.e.d (17)

- 6 -



2 LARGE-SIGNAL ANALYSIS (BIAS POINT)

2.3.1. Calculated Operating Point Values

This section gives a brief overview of the calculated bias point values. Table 3 below shows
the calculated voltage DC-points.

Table 3: Calculated voltage DC-points

Component Resistor Transistor

Variable UR1 UR2 URE URC UEgnd UCE

OP Values 1.358 V 7.642 V 658.49 mV 1.663 V 8.342 V −6.678 V

Analogous to the voltage DC-points, the current DC-points are shown in Table 4 below.

Table 4: Calculated current DC-points

Component Resistor Transistor

Variable IRE IRC IE IB IC

OP Values 4.390 mA 4.377 mA 4.390 mA 12.507 µA 4.377 mA

- 7 -



3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3. Small-Signal Analysis and Corresponding Parameters
For studying the response of a circuit regarding to a small signal changes, we use the small
signal analysis.
The small signal analysis computes quantities such as the voltage gain and input/output
impedances. It is important to bear in mind that the small-signal analysis deals with only
small changes in voltages and currents in a circuit and their quiescent values [5, p. 176].
The small-signal analysis is basically a tool for linearisation in a specific point (operating
point OP of the circuit). So we don’t have to deal with the non-linear Shockley-Equation
of the BJT any more, which would cause more complex calculations.
The reason why we do the linearisation is because we want to calculate the behaviour of
a linear network. This property gives the advantage that linear network analysis tools,
like the nodal voltage analysis or superposition principle, can be used. Be aware that this
linearisation is only valid for a small range of signal changes, so it has marginal effect on our
previously calculated operating point (see section 2). Transistors have a non-linear relation
between the input and output if we see it as electric quadrupole. With the small signal
parameters we can calculate the slope of each operating point in the set of characteristic
curves of the transistor. We will calculate the small signal parameters for the operating
point which we got in section 2.

3.1. Small-Signal Model

The derivation of the small-signal model from the large-
signal counterpart is relatively straightforward. We per-
turb the voltage difference between every two termi-
nals (while the third terminal remains at a constant
potential), determine the changes in the currents flow-
ing through all terminals, and represent the results
by proper circuit elements such as controlled current
sources or resistors (see Figure 5) [5, p. 140].
The model for a pnp only differs in the direction of the
base and collector current.

Figure 5: Small-signal model
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.2. Transconductance
The transconductance gm describes the differential change of the collector current iC depend-
ing on the base-emitter voltage uBE. The transconductance is a rate for how the base-emitter
voltage influences the collector current. This relationship is depicted in equation 18 below.

gm = ∂iC
∂uBE

∣∣∣∣∣
OP

= ∂IC
∂UBE

= ∂

∂UBE

IS · eUBE
UT ·

(
1 + UCE

UEA

)
= 1
UT
· IS · e

UBE
UT ·

(
1 + UCE

UEA

)
︸ ︷︷ ︸

IC

= IC
UT

(2)= q · IC
k · T

= 1.602 · 10−19 C · 4.377 mA
1.381 · 10−23 J

K
· 300 K

= 169.388 mS (18)

3.3. Small-Signal Current Gain
The small-signal current gain β describes the differential change of the collector current iC
depending on the base current iB. The small signal current gain is an amplification factor
between collector and base current.
By the use of the equation for the base IB and collector current IC (see Table 1) it is possible
to substitute IS. After applying this substitution the equation will be free of the saturation
reverse current IS.

IB = IS
B
· e

UBE
UT ⇔ IS = IB ·B · e

−UBE
UT

IC = IS · e
UBE
UT ·

(
1 + UCE

UEA

)
= IB ·B · e

−UBE
UT · e

UBE
UT︸ ︷︷ ︸

=1

·
(

1 + UCE
UEA

)
= IB ·B ·

(
1 + UCE

UEA

)

(19)

With the relationship from above (see equation 19) the small-signal current gain can be
expressed as follows:

β = ∂iC
∂iB

∣∣∣∣∣
OP

= ∂IC
∂IB

= ∂

∂IB

IB ·B ·
(

1 + UCE
UEA

) = B ·
(

1 + UCE
UEA

)
≈ B = 350 (20)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.4. Small-Signal Base-Emitter Resistance
The small-signal base-emitter resistance rBE describes the differential change of the base-
emitter voltage uBE depending on the base current iB. This relationship is depicted in
equation 21 below.

rBE = ∂uBE
∂iB

∣∣∣∣∣
OP

(21)

By rearranging equation 20 the differential change of the base-current ∂iB can be expressed
via the following equation:

β = ∂iC
∂iB

∣∣∣∣∣
OP

⇔ ∂iB = ∂iC
β

∣∣∣∣∣
OP

(22)

Finally, the base-emitter resistance rBE, from equation 21, can be calculated by using the
chain rule for derivatives and plugging in the known equations from the previous sections 3.3
and 3.2.

rBE = ∂uBE
∂iB

∣∣∣∣∣
OP

= ∂uBE
(
iC (iB)

)
∂iB

∣∣∣∣∣
OP

= ∂uBE
∂iC

∣∣∣∣∣
OP

· ∂iC
∂iB

∣∣∣∣∣
OP

(22)= β · ∂uBE
∂iC

∣∣∣∣∣
OP

(18)= β

gm

∣∣∣∣∣
OP

(20)
≈ B

gm
= B

IC

UT

= B · UT
IC

(2)= B · k · T
IC · q

=
350 · 1.381 · 10−23 J

K
· 300 K

4.377 mA · 1.602 · 10−19 C
= 2.066 kΩ (23)

- 10 -



3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.5. Small-Signal Collector-Emitter Resistance
The small-signal collector-emitter resistance rCE describes the differential change of the
collector-emitter voltage uCE depending on the collector current iC . This relationship is
depicted in equation 24 below.

rCE = ∂uCE
∂iC

∣∣∣∣∣
OP

(24)

To derive an equation for the collector-emitter resistance equation 24 first needs to be rear-
ranged.

rCE = ∂uCE
∂iC

∣∣∣∣∣
OP

= 1
gCE

⇔ gCE = ∂iC
∂uCE

∣∣∣∣∣
OP

(25)

The relationship for the collector-emitter conductance gCE can be derived by plugging in the
equation for the collector-current IC (see Table 1) and a few equivalent transformations.

gCE = ∂iC
∂uCE

∣∣∣∣∣
OP

= ∂IC
∂UCE

= ∂

∂UCE

IS · eUBE
UT ·

(
1 + UCE

UEA

)
⇔ gCE = 0 + IS · e

UBE
UT · 1

UEA
= IS · e

UBE
UT · 1

UEA
·

(
1 + UCE

UEA

)
(
1 + UCE

UEA

)
= IS · e

UBE
UT ·

(
1 + UCE

UEA

)
︸ ︷︷ ︸

IC

·
(

1
UEA

)
·
(

1 + UCE
UEA

)−1

= IC ·
1

UEA(
1 + UCE

UEA

)

= IC ·
1

UEA

UEA+UCE

UEA

= IC
UEA + UCE

= 1
rCE

(26)

To get the equation for the collector-emitter resistance rCE, we have to form the reciprocal
of the equation above.

gCE = IC
UEA + UCE

= 1
rCE

⇔ rCE = 1
gCE

=


UEA + UCE

IC
for UCE, UEA ≥ 0

− UEA + UCE
IC

for UCE, UEA < 0

(27)

To ensure that equation 27 is valid for npn and pnp devices the absolute value is taken.

rCE =
∣∣∣∣∣UEA + UCE

IC

∣∣∣∣∣ =
∣∣∣∣∣−20 V + (−6.678 V )

4.377 mA

∣∣∣∣∣ = 6.094 kΩ (28)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.6. Small-Signal Equivalent Circuit
With the knowledge of the small-signal parameters from section 3.2 to 3.5 and the small-
signal model of a pnp transistor, which is shown in section 3.1, it is possible to redraw the
circuit from Figure 1 to get the small-signal equivalent circuit, which is depicted in Figure 6.
Also important to mention is that the capacitors (decoupling capacitors) are replaced by
shorts, because the capacitances are selected in such a manner so that the corresponding
reactances are neglectable for the frequency for which the circuit is designed. Also important
to bear in mind is that the circuit contains two voltages sources. On the one hand there
is the supply voltage UBat, which is necessary for biasing, and on the other hand there is
the signal source uG. As mentioned in section 3, the small signal parameters are used for
linearisation. Due to that, the super-position-principle can be applied onto the circuit. So
only the signal changes are getting analysed. The supply voltage UBat is turned-off.

Figure 6: Small-signal circuit

Finally, the transistor Q is replaced by the small-signal model for a pnp transistor, which
is shown in Figure 7. After successful calculation of the small-signal behaviour it can be
merged with the large-signal behaviour. The merged result will be the overall behaviour of
the pnp-common-base circuit. So we have a combination of DC- and AC-signals between
the decoupling capacitors Cin and Cout.

Figure 7: Small-signal equivalent circuit
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.7. Conventional Network Analysis Method with Meshes and Nodes
The aim of the conventional network analysis method is to determine the input/output
terminal resistance as well as the voltage gain of the circuit. The equivalent circuit shown
in Figure 8 below is copied over from the previous page, but extended by meshes, cut-sets
and currents.

Figure 8: Circuit for the conventional network analysis

To determine the input terminal impedance/resistance rin a voltage is applied at the input
terminal, which is shown in Figure 9. Furthermore, the circuit for calculating rin can also
be used for calculating the voltage gain of the amplifier stage. For that, the output voltage
is monitored while manipulating the input voltage. For calculating the output terminal
impedance/resistance rout, it is the other way around (see Figure 10). Bear in mind that for
calculating the output terminal impedance/resistance rout of the amplifier circuit, shown in
Figure 8, the input voltage source is set to zero [5].

Figure 9: Input-terminal impedance Figure 10: Output-terminal impedance
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

Out of the small-signal equivalent circuit of Figure 8 the mesh and node equations can be
derived as

C1: − iin + iRE + iB + iB ·B + iCE = 0 A
C2: − iB ·B − iCE + iRC − iout = 0 A
m1: − uin + uCE + uout = 0 V ⇔ uCE = uin − uout (29)

3.7.1. Small-Signal Voltage Gain

As next step the node voltages are plugged into the second current node equation C2 (see
equation 29).

C2 : − iB ·B − iCE + iRC − iout = − uin
rBE
·B − uCE

rCE
+ uout
RC

−
(
−uout
RL

)
= 0 A (30)

The current node equation 30 from above has still one unknown part included namely the
collector-emitter voltage uCE. By usage of the mesh equation m1 (see equation 29) the
unknown collector-emitter voltage can be replaced by a known term.

C2 : 0 A = − uin
rBE
·B − uin − uout

rCE
+ uout
RC

+ uout
RL

(31)

By separating and rearrangement of equation 31 the small-signal voltage gain can be ex-
pressed by

C2 : uin ·
(
B

rBE
+ 1
rCE

)
= uout ·

(
1
rCE

+ 1
RC

+ 1
RL

)

⇔ uout
uin

= Vu =
(
B

rBE
+ 1
rCE

)
·
(

1
rCE

+ 1
RC

+ 1
RL

)−1

⇔ Vu = uout
uin

=
(

350
2.066 kΩ + 1

6.094 kΩ

)
·
(

1
6.094 kΩ + 1

380 Ω + 1
1 kΩ

)−1

= 44.68

(32)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.7.2. Input Terminal Resistance

For expressing the input terminal resistance rin through the input current iin and the input
voltage uin the first node equation C1 (see equation 29) is used. Because we want known
parameters in our node current equation the currents are getting replaced by the voltage
drop over the resistors.

C1: − iin + iRE + iB · (B + 1) + iCE = −iin + uin
RE

+ uin
rBE
· (B + 1) + uCE

rCE
= 0 A (33)

After a few equivalent transformations and plugging in the mesh equation m1 (see equa-
tion 29), the input current iin is derived with respect to the input voltage uin and the input
terminal resistance rin.

C1 : iin = uin
RE

+ uin
rBE
· (B + 1) + uin − uout

rCE
= uin
RE

+ uin
rBE
· (B + 1) + uin − Vu · uin

rCE

⇔ iin = uin ·
(

1
RE

+ B + 1
rBE

+ 1− Vu
rCE

)
︸ ︷︷ ︸

1
rin

= uin
rin

(34)

Rearranging equation 34 delivers the final result for the input terminal resistance rin.

rin = uin
iin

= 1
1
RE

+ B + 1
rBE

+ 1− Vu
rCE

= 1
1

150 Ω + 350 + 1
2.066 kΩ + 1− 44.68

6.094 kΩ

= 5.903 Ω (35)

3.7.3. Output Terminal Resistance

Analogous to the input terminal resistance rin, the output terminal resistance rout can be
expressed through the output current iout and the output voltage uout. By using the first cur-
rent node equation C1 (see equation 29) and plugging in all voltage drops over the resistors,
an expression for the input voltage uin can be derived.

C1 : − iin + iRE + iB + iB ·B + iCE = uin
RG

+ uin
RE

+ uin
rBE
· (B + 1) + uCE

rCE
= 0 A

⇔ 0 A (29)= uin
RG

+ uin
RE

+ uin
rBE
· (B + 1) + uin − uout

rCE

⇔ 0 A = uin ·
(

1
RG

+ 1
RE

+ B + 1
rBE

+ 1
rCE

)
− uout ·

(
1
rCE

)

⇔ uin ·
(

1
RG

+ 1
RE

+ B + 1
rBE

+ 1
rCE

)
︸ ︷︷ ︸

α

= uout ·
(

1
rCE

)
︸ ︷︷ ︸

δ

⇔ uin = uout · δ
α

(36)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

Next, the second current node equation C2 is used. There all currents are getting replaced by
the voltage drops over the resistors, too. After a few equivalent transformations and plugging
in the input voltage uin, which was calculated on the previous page (see equation 36), an
expression for the output current iout appears.

C2 : − iB ·B − iCE + iRC − iout = − uin
rBE
·B − uCE

rCE
+ uout
RC

− iout = 0 A

⇔ 0 A = − uin
rBE
·B − uin − uout

rCE
+ uout
RC

− iout

⇔ 0 A = −uin ·
(
B

rBE
+ 1
rCE

)
︸ ︷︷ ︸

ε

+uout ·
(

1
rCE

+ 1
RC

)
︸ ︷︷ ︸

γ

−iout = −uin · ε+ uout · γ − iout

⇔ iout
(36)= −uout · δ

α
· ε+ uout · γ = uout ·

(
γ − δ · ε

α

)
︸ ︷︷ ︸

1
rout

= uout
rout

(37)

After rearranging equation 37 we get the equation for the output terminal resistance rout.

rout = uout
iout

= 1

γ − δ · ε
α

= 1

1
RC

+ 1
rCE
−

1
rCE
·
(
B

rBE
+ 1
rCE

)
1
RG

+ 1
RE

+ B + 1
rBE

+ 1
rCE

⇔ rout = 1

1
380 Ω + 1

6.094 kΩ −

1
6.094 kΩ ·

(
350

2.066 kΩ + 1
6.094 kΩ

)
1

50 Ω + 1
150 Ω + 350 + 1

2.066 kΩ + 1
6.094 kΩ

= 376.76 Ω (38)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.8. Node-Voltage Method
The node-voltage method is a very convenient tool to analyse linear circuits, because all
conductances and side conditions are put into a matrix. This matrix can be easily solved
by numerical software like Matlab®, Python® or MathCAD®. The main advantage of this
method is for sure that we only have to derive the set of equations, which needs to be
plugged into a matrix. This analysis method is also suitable for circuits where energy storing
components are included. The model we use for the small-signal equivalent circuit (see
Figure 5) is greatly simplified. If parasitic capacitors are added to the transistor model,
the conventional network analysis method would become way more complicated. So the
node-voltage analysis method would fit perfectly for such problems.

3.8.1. Additional Information to the Node-Voltage Method

If the circuit contains dependent sources, the node-voltage equations must be supplemented
with the constraint equations (side conditions CS) imposed by the presence of the dependent
sources [3, p. 95].
Furthermore, the admittance matrix Y of the node-voltage method is extended by the side
conditions. Also important to mention is that the control current/voltage of dependent
sources is modelled by an extra independent source (see Figure 11 - independent voltage
source un3). This approach gives the advantage that the control current/voltage appears in
the solution vector ~S.
Finally, the inner matrix of the overall matrix (admittance matrix Y) is symmetrical if we
use the convention that out-flowing currents are counted with a positive sign and incoming
currents are counted with a negative sign. Moreover, the leading diagonal has only conduc-
tances with positive signs included. For each node, all to the node connected conductances
appear in the corresponding cell of the leading diagonal. The off-diagonal elements are
representing the conductances between two adjacent nodes.
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

3.8.2. Input Terminal Resistance and Voltage Gain

In Figure 11 shows the small-signal equivalent circuit, which is used for the calculation of
the input terminal resistance rin and the small-signal voltage gain Vu of the common-base
amplifier shown in Figure 1. The circuit below is the same as the small-signal equiva-
lent circuit shown in Figure 7, but with a few modifications for the modified node-voltage
method. The voltage source at the input terminal of the circuit is defined by the expression
uin = 0.1V · sin (2π · 1kHz · t) (arbitrary value).

Figure 11: Circuit for calculating the input resistance and voltage gain

The circuit shown in Figure 11 above delivers the set of equations for the current nodes and
the side conditions.

C1: − i?in + iRE + iB + i?C + iCE = 0 A
C2: − i?C − iCE + iRC − iout = 0 A
C3: − iB + i?B = 0 A

SC1: i?C = B · i?B
SC2: un3 = 0 V
SC3: un1 = uin . . . arbitrary testing voltage (39)

Next, the currents through the resistors are getting expressed by the node-voltages.

iRE = un1

RE

= un1 ·GE

iRC = un2

RC

= un2 ·GC

iCE = un1 − un2

rCE
= (un1 − un2) · gCE

iB = un1 − un3

rBE
= (un1 − un3) · gBE

iout = −un2

RL

= −un2 ·GL (40)
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

Now the equation set 39 and 40 can be combined. So the new set of equations (see equa-
tion 41) only contains the node voltages uni, conductances gi, control parameters (e.g. B)
and the unknown currents i?i . The derived set of equations is now well defined which leads
to a solvable set of linear equations.

C1: un1 ·GE + (un1 − un3) · gBE + (un1 − un2) · gCE − i?in + i?C = 0 A
C2: (un2 − un1) · gCE + un2 ·GC + un2 ·GL − i?C = 0 A
C3: (un3 − un1) · gBE + i?B = 0 A

SC1: − i?C +B · i?B = 0 A
SC2: un3 = 0 V
SC3: un1 = uin (41)

After sorting the set of equations 41 depending on the node voltages, we get the following:

C1: un1 · (GE + gBE + gCE) + un2 · (−gCE) + un3 · (−gBE)− i?in + i?C = 0 A
C2: un1 · (−gCE) + un2 · (gCE +GC +GL)− i?C = 0 A
C3: un1 · (−gBE) + un3 · (gBE) + i?B = 0 A

SC1: − i?C +B · i?B = 0 A
SC2: un3 = 0 V
SC3: un1 = uin (42)

Next, the circuit can be transformed into the frequency domain. For more information,
please read appendix G. This allows to solve the circuit without having to deal with trigono-
metric functions. By using the transformation equation 100, equation 42 from above, can
be rewritten as follows:

C1: Un1 · (GE + gBE + gCE) + Un2 · (−gCE) + Un3 · (−gBE)− I?
in + I?

C = 0 A
C2: Un1 · (−gCE) + Un2 · (gCE +GC +GL)− I?

C = 0 A
C3: Un1 · (−gBE) + Un3 · (gBE) + I?

B = 0 A
SC1: − I?

C +B · I?
B = 0 A

SC2: Un3 = 0 V
SC3: Un1 = Uin (43)

With respect to the transformation equation 100 the input voltage uin can be express as
follows:

uin = Ûin · sin (ωt+ ϕu) = =
{
uin
}

= =
{
Ûin · ej(ωt+ϕu)

}
= =

ejωt · Ûin · ejϕu︸ ︷︷ ︸
Uin

 (44)

= 0.1V · sin (2πf · t) = =
{
ejωt · 0.1V · ej0

}
= =

{
ejωt · 0.1V 0◦

}
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

Next, the set of equations from above (see equation 42) can be rewritten as vector-matrix-
notation. This is necessary for solving it with a numerical solver.

GE + gBE + gCE −gCE −gBE −1 1 0
−gCE gCE +GC +GL 0 0 −1 0
−gBE 0 gBE 0 0 1

0 0 0 0 −1 B
0 0 1 0 0 0
1 0 0 0 0 0


︸ ︷︷ ︸

Y

·



Un1
Un2
Un3
I?
in

I?
C

I?
B


=



0 A
0 A
0 A
0 A
0 V
Uin


︸ ︷︷ ︸

~S

(45)

After rearranging equation 45, the set of equations can be solved by values.

Y ·



Un1
Un2
Un3
I?
in

I?
C

I?
B


= ~S ⇔



Un1
Un2
Un3
I?
in

I?
C

I?
B


= Y−1 · ~S =



0.1 V
4.468 V

0 V
16.939 mA
16.941 mA
48.403 µA


(46)

Finally, the input terminal resistance rin is calculated out of the input voltage uin and input
current i?in. This is valid because there are only resistances appearing in the small-signal
equivalent circuit. So no phase-shift will appear.

rin = uin
i?in

= un1

i?in
=

∣∣∣Un1
∣∣∣ · sin (2πf · t)∣∣∣I?

in

∣∣∣ · sin (2πf · t)
= 0.1 V

16.939 mA = 5.903 Ω (47)

Moreover, the small-signal voltage gain Vu is the ratio of the output voltage uout with respect
to the input voltage uin. Analogous to the input terminal resistance rin, the equation 48
below is valid cause of a complete resistive circuit.

Vu = uout
uin

= un2

un1
=

∣∣∣Un2
∣∣∣ · sin (2πf · t)∣∣∣Un1
∣∣∣ · sin (2πf · t)

= 4.468 V
0.1 V = 44.68 (48)
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3.8.3. Output Terminal Resistance

In Figure 12 below is the circuit depicted which is used for the calculation of the output
terminal resistance of the common-base amplifier, which is shown in Figure 1. The circuit
below is the same as the small-signal equivalent circuit of Figure 7, but with a few modifi-
cations for the modified node-voltage method. The voltage source at the output terminal of
the circuit is defined with uout = 10V · sin (2π · 1kHz · t) (arbitrary value).

Figure 12: Circuit for calculating the output resistance

The circuit shown in Figure 12 above delivers the set of equations for the current nodes and
the side conditions.

C1: − i?out + iRC − iCE − i?C = 0 A
C2: − iin + iRE + iB + i?C + iCE = 0 A
C3: − iB + i?B = 0 A

SC1: un1 = uout . . . arbitrary testing voltage
SC2: un3 = 0 V
SC3: i?C = B · i?B

(49)

Next, the currents through the resistors are getting expressed by the node-voltages.

iRE = un2

RE

= un2 ·GE

iRC = un1

RC

= un1 ·GC

iCE = un2 − un1

rCE
= (un2 − un1) · gCE

iB = un2 − un3

rBE
= (un2 − un3) · gBE

iin = −un2

RG

= −un2 ·GL (50)
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Now the equation set 49 and 50 can be combined. So the new set of equations (see equa-
tion 51) only contains the node voltages uni, conductances gi, control parameters (e.g. B)
and the unknown currents i?i . The derived set of equations is now well defined which leads
to a solvable set of linear equations.

C1: un1 ·GC + (un1 − un2) · gCE − i?out − i?C = 0 A
C2: un2 ·GG + un2 ·GE + (un2 − un3) · gBE + (un2 − un1) · gCE + i?C = 0 A
C3: (un3 − un2) · gBE + i?B = 0 A

SC1: un1 = uout

SC2: un3 = 0 V
SC3: i?C = B · i?B (51)

After sorting the set of equations 51 depending on the node voltages we get the following:

C1: un1 · (GC + gCE) + un2 · (−gCE)− i?out − i?C = 0 A
C2: un1 · (−gCE) + un2 · (GG +GE + gBE + gCE) + un3 · (−gBE) + i?C = 0 A
C3: un2 · (−gBE) + un3 · (gBE) + i?B = 0 A

SC1: un1 = uout

SC2: un3 = 0 V
SC3: − i?C +B · i?B = 0 A (52)

Next, the circuit can be transformed into the frequency domain. For more information,
please read appendix G. This allows to solve the circuit without having to deal with trigono-
metric functions. By using the transformation equation 100, equation 52 from above can be
rewritten as follows:

C1: Un1 · (GC + gCE) + Un2 · (−gCE)− I?
out − I?

C = 0 A
C2: Un1 · (−gCE) + Un2 · (GG +GE + gBE + gCE) + Un3 · (−gBE) + I?

C = 0 A
C3: Un2 · (−gBE) + Un3 · (gBE) + I?

B = 0 A
SC1: Un1 = Uout

SC2: Un3 = 0 V
SC3: − I?

C +B · I?
B = 0 A (53)

With respect to the transformation equation 100 the output voltage uout can be express as
follows:

uout = Ûout · sin (ωt+ ϕu) = =
{
uout

}
= =

{
Ûout · ej(ωt+ϕu)

}
= =

ejωt · Ûout · ejϕu︸ ︷︷ ︸
Uout

 (54)

= 10V · sin (2πf · t) = =
{
ejωt · 10V · ej0

}
= =

{
ejωt · 10V 0◦

}
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3 SMALL-SIGNAL ANALYSIS AND CORRESPONDING PARAMETERS

Next, the set of equations from the previous page (see equation 52) can be rewritten as
vector-matrix-notation. This is necessary for solving it with a numerical solver.

GC + gCE −gCE 0 −1 −1 0
−gCE GG +GE + gBE + gCE −gBE 0 1 0

0 −gBE gBE 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 B


︸ ︷︷ ︸

Y

·



Un1
Un2
Un3
I?
out

I?
C

I?
B


=



0 A
0 A
0 A
Uout
0 V
0 A


︸ ︷︷ ︸

~S

(55)

After rearranging equation 55, the set of equations can be solved by values.

Y ·



Un1
Un2
Un3
I?
out

I?
C

I?
B


= ~S ⇔



un1
un2
un3
i?out
i?C
i?B


= Y−1 · ~S =



10 V
8.341 mV

0 V
26.542 mA
1.413 mA
4.038 µA


(56)

Finally, the output terminal resistance rout is calculated out of the output voltage uout and
output current i?out. This is valid because there are only resistances appearing in the small-
signal equivalent circuit. So no phase-shift will appear.

rout = uout
i?out

= un1

i?out
=

∣∣∣Un1
∣∣∣ · sin (2πf · t)∣∣∣I?

out

∣∣∣ · sin (2πf · t)
= 10 V

26.542 mA = 376.76 Ω (57)
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4. Frequency Behaviour of the Circuit
In this section, we will focus on the frequency behaviour of the pnp-common-base transistor
circuit in Figure 1. The main focus is the bode-diagram. For that, two different analysis
concepts are presented. On the one hand, the analysis will be done via the conventional
frequency response method, which will be shown in section 4.1 and on the other hand, the
two-port analysis concept will be used (see section 4.2).

4.1. Conventional Method
This section represents why the small-signal parameters are that important. By using the
small-signal parameters from section 3.2 to 3.8, a single-ended amplifier can be modelled,
which is shown in Figure 13. The single-ended amplifier model is identical to the the small-
signal equivalent circuit of the pnp-common-base transistor circuit. This ensures a simpler
representation of the circuit. Moreover, the magnitude and phase response of the circuit can
be calculated more easily.

Figure 13: Common-base amplifier represented as single-ended amplifier

4.1.1. Calculation of the Magnitude and Phase Response

The input decoupling capacitor Cin forms a high-pass filter with the input terminal resistance
rin of the pnp-common-base transistor circuit (single-ended amplifier).

Gin (j2πf) =
U ′in
Uin

= rin
1

j2πf · Cin
+ rin

(58)

Due to the fact, that the used transistor model contains no energy storing devices, the
frequency response is constant.

GT (j2πf) =
U ′out
U ′in

= Vu (59)
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

Analogue to the input, the output decoupling capacitor Cout forms as well a high-pass filter
with the output terminal resistance rout of the pnp-common-base transistor circuit (single-
ended amplifier).

Gout (j2πf) = Uout
U ′out

= RL

1
j2πf · Cout

+RL

(60)

By connecting all three frequency responses from equation 58 to 60, the overall frequency
response can be represented as follows:

G (j2πf) = Gin (j2πf) ·GT (j2πf) ·Gout (j2πf) (61)

Furthermore, the magnitude response can be derived by taking the absolute value of the
overall frequency response G (j2πf), which is shown in equation 61.

∣∣G (j2πf)
∣∣
dB = 20 · log10

∣∣∣∣∣∣∣∣∣∣
rin

1
j2πf · Cin

+ rin

· Vu ·
RL

1
j2πf · Cout

+RL

∣∣∣∣∣∣∣∣∣∣
(62)

Finally, the phase response can be derived by taking the argument of the overall frequency
response G (j2πf), which is shown in equation 61.

arg
(
G (j2πf)

)
= arg

 rin
1

j2πf · Cin
+ rin

· Vu ·
RL

1
j2πf · Cout

+RL

 (63)
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4.1.2. The Magnitude and Phase Response

Figure 14 below depicts the magnitude and phase response of the pnp-common-base tran-
sistor circuit with neglected parasitics. The graph is created from equation 62 and 63 which
are visible on the previous page.

The slope of the magnitude response is not constant in the whole area of the transition-band3.
This is due to the high-pass filters at the input and output terminal of the pnp-common-base
transistor circuit. Each 1st order high-pass filter has it’s own cut-off frequency. If those two
cut-off frequency aren’t equal (which is the case in the below depicted bode-plot), there
will be a change in the slope at the transition-band region. Consequently, in the frequency
range, where only one 1st order high-pass filter is present, there will be an attenuation
of − 20dB/decade. Whereas, in the frequency range, where two 1st order high-pass filter are
present, there will be an attenuation of − 40dB/decade.
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Figure 14: Magnitude and phase response of the single-ended amplifier

3The transition-band is a range of frequencies between the pass-band and the stop-band, where signals are
transmitted, but damping is already present. The pass-band is a range of frequencies, where signals can
pass through without any damping. The stop-band is a range of frequencies, where no signals are passing
through.
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4.2. Two-Port Theory for Circuit Analysis
Another possibility to determine the frequency response of the pnp-common-base transistor
circuit, which is shown in Figure 1, is given by the two-port or quadrupole theory [11, p. 171].
Figure 15 and 16 below are representing the two main-topologies of the two-port theory. The
goal is to disassemble the small-signal equivalent circuit from Figure 7 into parts of the two
main-topologies.

Figure 15: T-topology [3, p. 688] Figure 16: PI-topology [3, p. 688]

4.2.1. Important Two-Port Topologies and Characteristics

For analysing the circuit, three two-port matrices are used. The first one is the impedance
characteristic [Z], where current is impressed at the terminals of the two-port, which leads to
voltages at the input and output terminal of the two-port. The second characteristic is the
admittance characteristic [Y], where voltages are applied at the terminals of the two-port.
The result is a current flow in the input and output terminal. Finally, the third characteristic
is called the chain characteristic [A], where the input voltage and current is defined by the
output voltage and current.

T-Topology (Impedance Characteristic):

[Z] =
[
Z11 Z12
Z21 Z22

]
=
[
Za + Zb Zb

Zb Zb + Zc

]
⇒

[
U1
U2

]
=
[
Z11 Z12
Z21 Z22

]
·
[
I1
I2

]
(64)

PI-Topology (Admittance Characteristic):

[Y] =
[
Y 11 Y 12
Y 21 Y 22

]
=
[
Y a + Y b −Y b

−Y b Y b + Y c

]
⇒

[
I1
I2

]
=
[
Y 11 Y 12
Y 21 Y 22

]
·
[
U1
U2

]
(65)

Chain Characteristic4:

[A] =
[
A11 A12
A21 A22

]
⇒

[
U1
I1

]
=
[
A11 A12
A21 A22

]
·
[
U2
Ĩ2

]
=
[
A11 A12
A21 A22

]
·
[
U2
−I2

]
(66)

4By definition, current counting arrows are pointing into the two-port. The Chain-Characteristic is con-
ceived for connecting multiple blocks in a chain (one behind the other). For that reason the current I2
receives a negative sign.
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4.2.2. Conversion Table and Two-Port Properties

Table 5 lists the conversion between different two-port matrices5. Each row represents a two-
port matrix. If a conversion needs to be applied on a given matrix, we have to look to the
row, where the matrix of interest is listed. First, we have to find the „1“, which represents
a part of the multiplier in front of the matrix of interest. Next, we have to keep the column
ci, where the „1“ is depicted and go to the corresponding cell entry of the matrix, which
needs to be converted. This cell entry is the denominator of the term which gets multiplied
in front of the matrix of interest. Each cell of the matrix of interest is filled by the cell of
the matrix to be converted, which is depicted in the corresponding column ci.

Table 5: Conversion table between the different matrices [1, p. 873]
c1 c2 c3 c4 c5 c6

[Z] 1 Z11 Z12 Z21 Z22 det [Z]
[Y] det [Y] Y 22 −Y 12 −Y 21 Y 11 1
[A] A21 A11 det [A] 1 A22 A12
[B] −B21 B22 1 det [B] B11 −B12
[H] H22 det [H] H12 −H21 1 H11
[P] P 11 1 −P 12 P 21 det [P] P 22

4.2.3. Disassembled Small-Signal Equivalent Circuit

The small-signal equivalent circuit, shown in Figure 7, is disassembled into 4 parts after the
signal source. Those parts are modelled as two-ports and are depicted below.

The two-port shown in Figure 17 repre-
sents the circuit which connects the transis-
tor with the signal source.

[
ZE
]

=
 1

jωCin
+RE RE

RE RE

 (67)

Figure 17: T-topology at emitter terminal

The two-port shown in Figure 18 represents the
simplified small-signal transistor model of the
pnp-common-base circuit. The derivation of the
admittance characteristic is depicted on the next
page.

[
YT

]
=
[

(B + 1) · gBE + gCE −gCE
−gCE − gBE ·B gCE

]
(68) Figure 18: Simplified transistor model

5Style of the table arrangement comes from Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Magele Christian.
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

Derivation of the admittance characteristic of the transistor model:
The derivation below describes the behaviour of the two-port transistor model shown in
Figure 18.

m: − uin + uCE + uout = 0⇔ uCE = uin − uout

C1 : − iin + iB + iCE + iB ·B = 0⇔ iin = iB · (1 +B) + iCE

⇔ iin = uin
rBE
· (1 +B) + uin − uout

rCE
= uin ·

(
1 +B

rBE
+ 1
rCE

)
+ uout ·

(
− 1
rCE

)
⇔ iin = uin ·

(
(1 +B) · gBE + gCE

)
+ uout · (−gCE)

C2 : − iout − iCE − iB ·B = 0⇔ iout = −iCE − iB ·B

⇔ iout = uout − uin
rCE

− uin
rBE
·B = uin ·

(
− 1
rCE
− 1
rBE
·B
)

+ uout ·
(

1
rCE

)
⇔ iout = uin · (−gCE − gBE ·B) + uout · (gCE)

(100)=⇒
[
Iin
Iout

]
=
[

(1 +B) · gBE + gCE −gCE
−gCE − gBE ·B gCE

]
︸ ︷︷ ︸

[YT]

·
[
Uin
Uout

]
(69)

The two-port shown in Figure 19 repre-
sents the circuit which connects the transis-
tor with the load.

[
YC

]
=
 1

RC
+ jωCout −jωCout
−jωCout jωCout

 (70)
Figure 19: PI-topology at collector terminal

The tow-port shown in Figure 20 represents
the load of the transistor circuit.

[
ZL
]

=
[
RL RL

RL RL

]
(71)

Figure 20: T-topology of the load
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4.2.4. Matrix-Conversion for Chain-Characteristic Representation

To get the overall frequency behaviour of the circuit, all individual two-ports need to be
connected in a row. This is only possible with the [A] matrix. First, all two-port matrices
from the previous pages must be converted into a [A] matrix. For that, the conversion
Table 5 from section 4.2.2 is used.

The chain-characteristic of the two-port, shown in Figure 17, can be expressed via the
impedance parameters as follows:

[
ZE
]

=
[
ZE11 ZE12
ZE21 ZE22

]
⇔

[
AE

]
= 1
ZE21

·

 ZE11 det
[
ZE
]

1 ZE22

 =
[
AE11 AE12
AE21 AE22

]
(72)

After plugging in the cell contents of equation 67, the chain-characteristic is given by:

[
AE

]
= 1
RE

·

 1
jωCin

+RE
RE

jωCin

1 RE

 (73)

The chain-characteristic of the two-port, shown in Figure 18, can be expressed via the
admittance parameters as follows:

[
YT

]
=
[
YT 11 YT 12
YT 21 YT 22

]
⇔

[
AT

]
= −1
YT 21

·

 YT 22 1
det

[
YT

]
YT 11

 =
[
AT 11 AT 12
AT 21 AT 22

]
(74)

After plugging in the cell contents of equation 68, the chain-characteristic is given by:

[
AT

]
= 1
gCE + gBE ·B

·
[

gCE 1
gBE · gCE (B + 1) · gBE + gCE

]
(75)

The chain-characteristic of the two-port, shown in Figure 19, can be expressed via the
admittance parameters as follows:

[
YC

]
=
[
YC11 YC12
YC21 YC22

]
⇔

[
AC

]
= −1
YC21

·

 YC22 1
det

[
YC

]
YC11

 =
[
AC11 AC12
AC21 AC22

]
(76)

After plugging in the cell contents of equation 70, the chain-characteristic is given by:

[
AC

]
= 1
jωCout

·

 jωCout 1
jωCout

RC

1
RC

+ jωCout

 (77)
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

The chain-characteristic of the two-port, shown in Figure 20, can be expressed via the
impedance parameters as follows:

[
ZL
]

=
[
ZL11 ZL12
ZL21 ZL22

]
⇔

[
AL

]
= 1
ZL21

·

 ZL11 det
[
ZL
]

1 ZL22

 =
[
AL11 AL12
AL21 AL22

]
(78)

After plugging in the cell contents of equation 71, the chain-characteristic is given by:

[
AL

]
= 1
RL

·
[
RL 0
1 RL

]
(79)

4.2.5. Input Terminal Impedance

With the knowledge of the chain characteristics from section 4.2.4, the input terminal
impedance Zin, which the source sees at their clamps, can be determined. To perform
this calculation, the two-port matrices

[
AE

]
,
[
AT

]
and

[
AC

]
are connected together, which

is shown in Figure 21 below.

Figure 21: Circuit for calculating the input-impedance Zin

Next, a matrix multiplication is applied to get a single admittance matrix [A], which can
be easily converted back to an impedance matrix [Z]. Moreover, with the impedance matrix
[Z], the input-impedance Zin, which the source sees, can be calculated.

[A] =
[
AE

]
·
[
AT

]
·
[
AC

]
⇔ [Z] = 1

A21
·
[
A11 det [A]
1 A22

]
=
[
Z11 Z12
Z21 Z22

]
(80)

With the impedance matrix [Z] from equation 80 we are able to determine the input
impedance Zin. The circuit for calculating the input impedance Zin is depicted in Figure 22
and 23 below.

Figure 22: Impedance matrix between
source and load

Figure 23: Source connected to
input-impedance model
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

Derivation of the Input Terminal Impedance:
The derivation below describes the input terminal impedance Zin depending on a given
frequency of the pnp-common-base transistor circuit, which is shown in Figure 1.

[
U in

U out

]
=
[
Z11 Z12
Z21 Z22

]
·
[
I in
IL

]
⇒

{
I: U in = Z11 · I in + Z12 · IL
II: U out = Z21 · I in + Z22 · IL

⇒ II: U out = Z21 · I in + Z22 · IL
!= −RL · IL ⇔ IL = − Z21

(Z22 +RL) · I in

⇒ I: U in = Z11 · I in + Z12 · IL = Z11 · I in −
Z21

(Z22 +RL) · I in

⇔ I: U in =

det[Z]︷ ︸︸ ︷
Z11 · Z22 − Z12 · Z21−RL · Z11

Z22 +RL

· I in

⇔ I: U in = det [Z]−RL · Z11
Z22 +RL

· I in

⇔ I: Zin = U in

I in
= det [Z]−RL · Z11

Z22 +RL

(81)

In Figure 24 below is the frequency behaviour of the input terminal impedance Zin depicted.
The graph is created out of equation 81, where the frequency is increased from 1 Hz towards
1 kHz. It is visible that for low frequencies the input terminal impedance Zin is high. This
is due to the high-pass filter at the input and output terminal of the circuit. The dominant
filter is the high-pass filter at the input terminal, because the terminal input resistance rin
is much lower than the load resistance RL. This causes a higher cut-off frequency, which
limits the amplifier bandwidth.
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Figure 24: Input-terminal impedance over frequency

- 32 -



4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

4.2.6. Calculation of the Magnitude and Phase Response

With the knowledge of the chain characteristics from section 4.2.4, the overall chain matrix[
AO

]
can be determined. To perform this calculation, the two-port matrices

[
AE

]
,
[
AT

]
,[

AC
]
and

[
AL

]
are connected together, which is shown in Figure 25 below.

Figure 25: Circuit for frequency response determination

Next, a matrix multiplication is applied to get the overall chain matrix
[
AO

]
. Moreover, out

of the overall chain matrix
[
AO

]
, the frequency response H (jω), which corresponds to the

reciprocal value of the first pivot element AO11 in the chain matrix, can be determined.

[
AO

]
=
[
AE

]
·
[
AT

]
·
[
AC

]
·
[
AL

]
=
[
AO11 AO12
AO21 AO22

]
=
 1

H
AO12

AO21 AO22

 (82)

By taking the reciprocal value of the first pivot element AO11 of the overall chain matrix[
AO

]
from equation 82, the expression for the frequency response H (jω) appears.

H (jω) = 1
AO11

(83)

Furthermore, the magnitude response can be derived by taking the absolute value of the
overall frequency response H (jω), which is shown equation 83.

∣∣H (j2πf)
∣∣
dB =

∣∣H (jω)
∣∣
dB = 20 · log10

∣∣H (jω)
∣∣ = 20 · log10

∣∣∣∣∣∣ 1
AO11

∣∣∣∣∣∣ (84)

Finally, the phase response can be derived by taking the argument of the overall frequency
response H (jω), which is shown equation 83.

arg
(
H (j2πf)

)
= arg

(
H (jω)

)
= arg

(
H (jω)

)
= arg

 1
AO11

 (85)
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4 FREQUENCY BEHAVIOUR OF THE CIRCUIT

In Figure 26 below is the magnitude and phase response of the pnp-common-base transistor
circuit depicted. The plot is generated out of equation 84 and 85, where the frequency is
increased from 10 mHz towards 1 MHz. It is visible that the circuit stays for low frequencies
in the transition-band. In that region the circuit has a non-constant amplification. For very
low frequencies the amplification will disappear and the attenuation will appear. This is due
to the high-pass filter at the input and output terminal of the circuit. The dominant filter is
the high-pass filter at the input terminal, because the terminal input resistance rin is much
lower than the load resistance RL. This causes a higher cut-off frequency, which limits the
amplifier bandwidth.
The two cut-off frequencies, which are basically the cut-off frequencies of first-order high-pass
filters, are depicted in equation 86 and 87 below [3, p. 533].

fcin
= 1

2π · rin · Cin
= 269.47 Hz (86) fcout = 1

2π ·RL · Cout
= 7.96 Hz (87)
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Figure 26: Magnitude and phase response of the two-port model
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LIST OF SYMBOLS

List of Symbols

Symbol Description Page

RG
6 internal resistance of the waveform generator 1

R1 resistor for defining the base bias voltage 1

R2 resistor for defining the base bias voltage 1

RE emitter resistor 1

RC collector resistor 1

RL load resistor 1

CB base capacitor 1

Cin input filter capacitor 1

Cout output filter capacitor 1

Q transistor 1

UEgnd emitter voltage with respect to ground 1

UR1 voltage drop over R1 1

UR2 voltage drop over R2 1

UBat supply voltage - Bat is an acronym for battery 1

UBE base-emitter voltage 1

UCE collector-emitter voltage 1

URE voltage drop over RE 1

URC voltage drop over RC 1

IR1 current through R1 1

IR2 current through R2 1

IB base current 1

IC collector current 1

IE emitter current 1

IRE current through RE 1

IRC current through RC 1

6capital letters are depicting time independent values
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LIST OF SYMBOLS

Symbol Description Page

uG
7 waveform generator voltage 1

uin input voltage of the circuit 1

uout output voltage of the circuit 1

iin input current of the circuit 1

iout output current of the circuit 1

mi green/black m’s are depicting voltage meshes 1

Ci blue/black C’s are depicting cut-sets or rather current nodes 1

UCEsat collector-emitter saturation voltage - voltage before reaching the sat-
uration region of the transistor

2

UEA early-voltage 2

B = hFE large-signal or DC current gain 2

T temperature 2

ID diode forward current 3

UD diode forward voltage 3

UT temperature voltage 3

k Boltzmann-Constant k = 1.38064852 · 10−23 J/K 3

q elementary charge q = 1.602176634 · 10−19 C 3

IS saturation reverse current 3

IT current being transported completely across the base region of the
transistor

4

gm transconductance 9

iC small-signal collector current 8

uBE small-signal base-emitter voltage 8

β = hfe small-signal current gain 8

iB small-signal base current 8

rBE small-signal or rather differential base-emitter resistance 10

rCE small-signal or rather differential collector-emitter resistance 11

gCE small-signal or rather differential collector-emitter conductance 11

7lower case letters are depicting time dependent values
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LIST OF SYMBOLS

Symbol Description Page

uCE small-signal collector-emitter voltage 11

Vu small-signal voltage gain 12

rin input terminal resistance 13

iRE small-signal current through the emitter-resistor RE 13

iCE small-signal collector-emitter current - current through the differential
collector-emitter resistance

13

iRC small-signal current through the collector-resistor RC 13

rout output terminal resistance 13

α wildcard - substitutes unwiedly expression 15

δ wildcard - substitutes unwiedly expression 15

ε wildcard - substitutes unwiedly expression 16

γ wildcard - substitutes unwiedly expression 16

CSi side condition 17

i?in unknown input current from ideal independent voltage source uin 18

uni node-voltages 18

i?B unknown base current for controlling the dependent source 18

i?C unknown collector current from dependent current source 18

GE emitter conductance - reciprocal of RE 18

GC collector conductance - reciprocal of RC 18

gBE base-emitter conductance - reciprocal of gBE 18

GL load conductance - reciprocal of RL 18

Uin input voltage phasor 20

Iin
? unknown input current phasor from ideal independent voltage source

Uin

20

IC
? unknown collector current phasor from dependent current source 20

IB
? unknown base current phasor for controlling the dependent source 20

Ûin peak value of the input voltage 20

uin (t) complex time dependent input voltage 20

Y admittance matrix of the node-voltage method 20
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Symbol Description Page
~S source vector of the node-voltage method 20

i?out unknown output current from ideal independent voltage source uout 21

GG internal conductance of the waveform generator - reciprocal of RG 23

Uout output voltage phasor 23

iout
? unknown output current phasor from ideal independent voltage

source Uout
23

Ûout peak value of the output voltage 23

uout (t) complex time dependent output voltage 23

u′in input voltage to be amplified 24

u′out open-loop output voltage 24

uin
′ input voltage phasor to be amplified 24

uout
′ open-loop output voltage phasor 24

Gin (j2πf) frequency response of the input-sided high-pass filter 24

GT (j2πf) frequency response of the intrinsic amplifier circuit 24

Gout (j2πf) frequency response of the output-sided high-pass filter 25

G (j2πf) overall frequency response of the pnp-common-base amplifier 25

Za input-sided longitudinal impedance of the T-Topology 27

Zb shunt impedance of the T-Topology 27

Zc output-sided longitudinal impedance of the T-Topology 27

Ya input-sided shunt admittance of the PI-Topology 27

Yb longitudinal admittance of the PI-Topology 27

Yc output-sided shunt admittance of the PI-Topology 27[
Zi
]

impedance matrix 27

Zij impedance matrix element or cell 27[
Yi
]

admittance matrix 27

Y ij admittance matrix element or cell 27[
Ai
]

chain matrix 27

Aij chain matrix element or cell 27
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LIST OF SYMBOLS

Symbol Description Page[
Bi
]

inverse chain matrix 28

Bij inverse chain matrix element or cell 28[
Hi
]

hybrid matrix 28

H ij hybrid matrix element or cell 28[
Pi
]

inverse hybrid matrix 28

P ij inverse hybrid matrix element or cell 28

Zin input terminal impedance 31

H (j2πf) overall frequency response of the pnp-common-base amplifier 33

fcin cut-off frequency of the input-sided high-pass filter 34

fcout cut-off frequency of the output-sided high-pass filter 34

η Eta-Factor - Factor which highlights the impact of the Early-Effect
between UBE and UCE

43

V AF forward Early-Voltage 43

hoe hybrid-parameter - output admittance 44

UEC emitter-collector voltage 45

UPQ voltage between two nodes 48

ZPQ impedance between two nodes 48

IP node current 48

IQ node current 48

UP node voltage 48

UQ node voltage 48

ZP node to ground impedance 48

ZQ node to ground impedance 48

Av voltage gain 48

CF feedback capacitor 48

CjCS collector to substrate junction capacitance 49

CjBC base to collector junction capacitance 49

CjBE base to emitter junction capacitance 49
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Symbol Description Page

u = u (t) time dependent voltage 58

i = i (t) time dependent current 58

t time parameters 58

Û voltage peak value 58

ω angular frequency 58

ϕu initial voltage phase 58

u (t) complex time dependent voltage 58

U voltage phasor 58

Î current peak value 58

ϕi initial current phase 58

i (t) complex time dependent current 58

I current phasor 58
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A EARLY-EFFECT AND EARLY-VOLTAGE DETERMINATION

A. Early-Effect and Early-Voltage Determination
In this section we will discuss the Early-Effect and the corresponding Early-Voltage UEA. The
Early-Voltage plays an important rule for calculating the small-signal parameters. Therefore,
we have to find a way to determine the Early-Voltage.

A.1. Early-Effect
The Early-Effect is a second order effect, which translates to a nonideality in the device
that can limit the gain of amplifiers [5, p. 145]. The result of the Early-Effect is a variation
of the collector current IC by changing the collector-emitter voltage UCE in the active region
of the BJT.

UBE (at constant IC) varies slightly with changing UCE. This effect is caused by the variation
of the effective base width WB as UCE changes, and it is given, approximately, by

∆UBE = −η ·∆UCE, (88)

where η = UT

UEA+UCE
≈ UT

UEA
≈ 10−4 − 10−5 [12, p. 92]

.
According to [12, p. 93], the Early-Effect ...

• determines a transistor’s collector-emitter resistance rCE = UEA+UCE

IC
.

• sets a limit on single-stage voltage gain.

A.2. Early-Voltage Determination
Undoubtedly, there are several possibilities to get the Early-Voltage UEA. The easiest way of
getting the Early-Voltage of the used BJT is by searching through the corresponding SPICE
model. The Early-Voltage UEA is defined by the variable named V AF (e.g. V AF = 21.11),
shown in listing 1 below.

Listing 1: BJT BC557B - Spice Model [13]
1 *Website Philips 23−02−00
2 *
3 .MODEL QBC557B PNP(
4 + IS=3.834E−14 NF=1.008 ISE=1.219E−14 NE=1.528 BF=344.4 IKF=0.08039
5 + VAF=21.11 NR=1.005 ISC=2.852E−13 NC=1.28 BR=14.84 IKR=0.047
6 + VAR=32.02 RB=1 IRB=1E−06 RBM=1 RE=0.6202 RC=0.5713
7 + XTB=0 EG=1.11 XTI=3 CJE=1.23E−11 VJE=0.6106 MJE=0.378
8 + TF=5.595E−10 XTF=3.414 VTF=5.23 ITF=0.1483 PTF=0 CJC=1.084E−11
9 + VJC=0.1022 MJC=0.3563 XCJC=0.6288 TR=1E−32 CJS=0 VJS=0.75
10 + MJS=0.333 FC=0.8027 )
11 *
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A EARLY-EFFECT AND EARLY-VOLTAGE DETERMINATION

Furthermore, the Early-Voltage can be determined by using the output characteristic of the
BJT. An exemplary output characteristic is shown in Figure 27 below. Bear in mind that the
slope of the curves in the linear operating region corresponds to the reciprocal value of the
collector-emitter resistance rCE of the respective operating point. It is visible that all curves
intersect at one specific point of the UCE-axis. This point represents the Early-Voltage UEA.
The output characteristic shows that for each curve, which is dependent on the base-current
IB, a different slope exists.

Figure 27: General output characteristic [4, p. 297]

With the output characteristic, we have two possibilities to calculate the Early-Voltage.
First, the output admittance gCE, which is given by the hybrid-parameter hoe = 60 µS in
the datasheet [14], and the corresponding collector current IC = 2 mA and collector-emitter
voltage UCE = −5 V of the datasheet [14], the Early-Voltage can be calculated by the usage
of the pnp equation 27.

1
gCE

= 1
hoe

= −UCE + UEA
IC

⇔ UEA = − IC
hoe
− UCE = − 2 mA

60 µS − (−5 V ) = −28.33 V

(89)

Due to the fact that only the maximum output admittance gCE or hybrid-parameter hoe is
given in the datasheet [14], it tends to be not accurate. That’s why we have to come up
with another concept for calculating the Early-Voltage UEA in a more accurate way.
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Generally speaking, the Early-Voltage UEA can be determined by plotting the output char-
acteristic of the BJT. Therefore a defined base current IB is set, which is shown in Figure 28.
Furthermore, the emitter-collector voltage UEC is increased towards the absolute maximum
ratings of the datasheet [14].

Figure 28: Circuit for Early-Voltage measurement

To generate the output characteristic, which is shown in Figure 29 below, the collector
current IC (flowing to ground - positive sign) and the collector-emitter voltage UCE, which
is the inverse of the emitter-collector voltage UEC , gets recorded. The Early-Voltage UEA
can be determined by extrapolating the linear region of the output characteristic. The point
where the extrapolation intersects with the UCE-axis describes the absolute value of the
Early-Voltage.

−25 −20 −15 −10 −5 0 5 10 15 20 25
UCE / V −→

−1

0

1

2

3

4

5

6

7

8

I C
/
m
A

−→

IC = f(UCE) for IB = 12.5 µA

extrapolation of the linear region

|UEA|

Figure 29: Output characteristic with corresponding Early-Voltage extrapolation

- 45 -



A EARLY-EFFECT AND EARLY-VOLTAGE DETERMINATION

To get the extrapolation and subsequently the Early-Voltage UEA, the parameters of of a
linear equation have to be calculated. First, the slope of the linear region gets calculated,
which is shown in equation 90 below. The negative sign of gCE is related to the current and
voltage counting-arrows. The counting-arrows of IC and UCE are not pointing in the same
direction (see Figure 4).

−gCE = IC2 − IC1

UCE2 − UCE1

= 7.242 mA− 7.623 mA
−18 V − (−20 V ) = −190.5 µS (90)

Next, the collector saturation current ICsat can be determined via the following equation.

ICsat = IC1 + gCE · UCE1 = 7.623 mA+ 190.5 µS · (−20 V ) = 3.813 mA (91)

With the knowledge of the above calculated parameters, the below depicted linear equation
is well defined.

IC = −gCE · UCE + ICsat (92)

Finally, the Early-Voltage is the point where the extrapolation intersects with the UCE-axis.
Due to that fact, the Early-Voltage UEA can be determined via equation 92 and setting the
collector current IC to zero.

0 = −gCE · UCE|EA + ICsat ⇔ UEA = − UCE|EA = −ICsat

gCE
= 3.813 mA

190.5 µS = −20.02 V

(93)
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B. Miller’s Theorem, Miller-Effect and Multiplication
So far we have discussed only the low frequency behaviour of the pnp-common-base transistor
circuit. But what happens if the circuit reaches the high-frequency domain? For the high-
frequency domain an important effect, named the Miller-Effect, appears. Actually, the
Miller-Effect is present for all frequencies. But for inverting amplifiers, the input impedance
decreases. This means that a capacitance appears increased at the input. This increased
capacitance causes problems for high-frequency circuits.

B.1. Miller’s Theorem
Miller’s Theorem is an important tool for analysing the frequency response of a circuit just
by inspection8. Miller says that floating impedances can be decomposed by two grounded
impedances, which is shown in Figure 30 below.

Figure 30: Miller’s Theorem [5, p. 511]

To ensure that a floating impedance can be transformed into two grounded impedances,
which is shown in Figure 30 above, the circuit must see the same load at node P and Q. Due
to that fact the currents which are drawn in/out from node P and Q must stay the same.

IP = −IQ =
UP − UQ

ZPQ

!= UP

ZP

= −
UQ

ZQ

(94)

With the above depicted equation 94, an expression for the grounded impedances ZP and
ZQ can be derived by rearranging the equilibrium.

IP =
UP − UQ

ZPQ

!= UP

ZP

⇔ ZP

UP

=
ZPQ

UP − UQ

⇔ ZP =
ZPQ

1−
UQ

UP

(95)

IQ =
UQ − UP

ZPQ

!=
UQ

ZQ

⇔
ZQ

UQ

=
ZPQ

UQ − UP

⇔ ZQ =
ZPQ

1− UP

UQ

(96)

8Association of Poles with Nodes: Let’s assume that a resistor R and a capacitance C are connected
in parallel and one of the two pins is connected to a node and the other one is connected to ground, then
the pole angular frequency can be written as: ωpi = 1

R·C [5, p. 509]
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B.2. Miller-Effect and Multiplication
Let’s consider an amplifier and an impedance connected between two nodes P and Q. By
applying Miller’s Theorem, the circuit can be redrawn as shown in Figure 31.

Figure 31: Conversion of a feedback impedance into two grounded impedances

By further investigation of equation 95, it is visible that the denominator of the impedance
expression ZP contains the transfer function of an amplifier (Av = UQ

UP
). Equation 96 contains

the reciprocal transfer function of an amplifier (A−1
v = UP

UQ
). So equation 95 and 96 can be

rewritten as follows:

ZP =
ZPQ

1−
UQ

UP

=
ZPQ

1− Av
(97)

ZQ =
ZPQ

1− UP

UQ

=
ZPQ

1− 1
Av

(98)

In summary, an impedance ZPQ tied between the input and output of an amplifier with
voltage gain Av, gets decomposed into two grounded impedances which are multiplied by
specific factors. The factor 1− Av is called Miller-Multiplication [5, p. 512].

If the feedback impedance ZPQ is purely capacitive, the equivalent input capacitor increases
for inverting amplifiers. The feedback capacitor CF gets Miller-multiplied at the input-
terminal (see Figure 32).

Figure 32: Miller-multiplied feedback capacitance
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C. The Bipolar Junction Transistor at High-Frequency
So far, we used the low-frequency model of the BJT for circuit analysis. At the high-frequency
domain, the model of the BJT will not stay the same. Obviously, several parasitic capacitors
are influencing the BJT behaviour, which is shown in Figure 33. Those parasitic capacitors
are intrinsic capacitors of the BJT which are related to the pn-junctions. Figure 34 shows
a pnp transistor and the corresponding parasitic capacitors, which are not neglectable in
high-frequency analysis.

Figure 33: Cross section of a pnp-transistor Figure 34: A pnp-transistor with
parasitic capacitors

Compared to the two junction capacitances CjBE and CjBC , the junction capacitance CjCE
is negligible. This is due to the fact that there is a proportionality between the capacitance
value and the geometry (The following applies to a plate capacitor: C ∝ 1

d
). A closer look at

the cross section, shown in Figure 33, shows that between the collector and emitter terminal
a quasi series connection of two junction capacitances is appearing. So it is clear that this
junction capacitance CjCE has to have a smaller value than the two remaining ones.
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D. Common-Base Stage with respect to the Miller-Effect
We will see in this section that the pnp-common-base transistor circuit, shown in Figure 1,
is a special circuit with respect to the Miller-Effect.

With the knowledge of the small-signal circuit of section 3.6 and the parasitic capacitors of
section C, which are important for the high-frequency perspective, we get the below depicted
small-signal circuit (see Figure 35).

Figure 35: Small-signal circuit with parasitic capacitors

After some rearrangement of the circuit, shown in Figure 35, the final small-signal circuit is
given in Figure 36. Undoubtedly, there is no capacitor tied between the input and the output
of the pnp-common-base transistor circuit (amplifier). Due to that, the circuit is Miller-Effect
independent. In addition, no parasitic capacitor gets Miller-multiplied. This fact gives the
common-base stage the advantage that it suits best for high-frequency applications. For
high-frequency applications, impedance matching is crucial. Bear in mind that the input
impedance has to match the wave-impedance of a connected cable, wire or microstrip antenna
(antenna on a printed circuit board).

Figure 36: Simplified small-signal circuit with parasitic capacitors
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E. LTspice Simulation Results
This section presents the LTspice® simulation results. The simulation software LTspice is
used for checking the hand-calculated values against the simulated ones. For simulating the
pnp-common-base transistor circuit, which is depicted in section 1.1, a spice model for the
pnp transistor is required. Therefore, pnp spice model of Philips is used [13].

E.1. Operating Point Simulation
To simulate the operating pointOP we have to use the LTspice spice directive .op. Figure 37
shows the schematic, which is used for simulating the operating point. Bear in mind that
the signal source uG is switched off for this kind of simulation.

Figure 37: LTspice - schematic for operating point simulation

Figure 38 below compares the hand-calculated against the simulated voltage operating point
values. The figure highlights that only minor differences exist between the simulated and
the hand-calculated values. This is due to simplifications and linearisation of the circuit.
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Figure 38: Comparison of calculated and simulated voltage DC-points
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Figure 39 below compares the hand-calculated against the simulated current operating point
values. As mentioned on the previous page, the figure highlights that only minor differences
exist between the simulated and the hand-calculated values. This is also due to simplifica-
tions and linearisation of the circuit.
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Figure 39: Comparison of calculated and simulated current DC-points
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E.2. Time-Domain Simulation
As the name suggests, the time-domain simulation (spice directive .tran) focuses on signal
changes, which means that the time-dependent influences are recorded. The time-domain
simulation it is suitable for analysing the small-signal behaviour of a transistor circuit.

Figure 40: LTspice - schematic for time domain simulation

To determine the voltage gain of the above depicted schematic (see Figure 40), the peak
value of the input Ûin and output Ûout voltage is monitored, which is shown in Figure 41.
Bear in mind that the signal source uG has to have a signal frequency which is within the
operating bandwidth of the circuit. For that reason, we have to keep the cut-off frequencies
of section 4.2.6 in mind. Depending on the chosen signal frequency, the stop time and the
simulation time-step has to be adjusted.

Figure 41: LTspice - time domain simulation result

Out of the above depicted plot we are able to determine the low-frequency voltage gain.

Vu = Ûout

Ûin
= 471.12 mV

11.06 mV = 42.6 (99)
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E.3. Frequency-Domain Simulation
The frequency-domain simulation (spice directive .ac) is an analysis concept for simulating
the circuit behaviour with respect to various frequencies. The frequency-domain simulation
is used for generating a Bode-Plot (magnitude and phase response).

Figure 42: LTspice - schematic for frequency domain simulation

By sweeping the input signal frequency and recording the input uin and output voltage uout
of the circuit, which is shown in Figure 42 above, the bode-plot, shown in Figure 43, is
generated. The magnitude response is related to the ratio of the absolute value of input
to output voltage. Whereas, the phase response is the argument of the ration between
input to output voltage. For better representation the magnitude response gets plotted in
a double logarithmic scale. In contrast to the magnitude response, where the abscissa and
ordinate is represented in the logarithmic scale, for the phase response only the abscissa
gets represented in the logarithmic scale. The simulated Bode-plot in Figure 43 (red trace)
matches the hand-calculated ones (blue trace) of section 4.1.2 and 4.2.6 pretty good.
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Figure 43: LTspice - frequency domain simulation result
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E.4. Simulation of Input-Terminal Resistance and Voltage Gain
To evaluate if the small-signal input-terminal resistance rin and voltage gain Vu of sec-
tion 3.7.1 and 3.7.2 are calculated correctly, the small-signal equivalent circuit, which is
shown in Figure 44 below, gets simulated via LTspice.

Figure 44: LTspice - schematic for input terminal resistance rin and voltage gain Vu deter-
mination

Due to the fact that the above depicted circuit contains only linear components, the
simulation can be done via the .ac analysis. The .ac analysis is conceived for linear frequency
dependent circuits. In contrast to the time-domain simulation .tran, the frequency-domain
simulation .ac gives an advantage in speed. Important to mention is the component F1,
which represents a current-controlled current source CCCS.

Figure 45 below depicts the simulation result of the schematic, shown in Figure 44. It is
visible in the lower Figure that the current I(Uin) has a negative sign. This due to the
LTspice current directions. The current I(Uin) is flowing into the voltage source uin.

Figure 45: LTspice - simulation for input terminal resistance rin and voltage gain Vu deter-
mination
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E.5. Simulation of Output-Terminal Resistance
Analogous to section E.4 the small-signal output-terminal resistance rout of section 3.7.3 can
be evaluated by simulating the below depicted small-signal equivalent circuit (see Figure 46).
Therefore, a voltage source uout is wired to the output terminal of the equivalent circuit.

Figure 46: LTspice - schematic for output terminal resistance rout determination

As mentioned in the previous section, the above depicted circuit, shown in Figure 46, con-
tains only linear components. Due to the fact, that the circuit contains only resistors it is
predictable that no transient behaviour will appear. For that reason, the circuit can be sim-
ulated over frequency. This gives the advantage to reduce simulation time. The simulation
results from the circuit, shown in Figure 46, are depicted in Figure 47 below. Furthermore,
the plot below shows that the current I(Uout) has a negative sign. This due to the LTspice
current directions, which we mentioned in previous section E.4. By comparing the calculated
value of the output-terminal resistance rout of section 3.7.3 with the simulated one below, it
is visible that they are more or less equal.

Figure 47: LTspice - simulation for output terminal resistance rout determination
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F. Overview of Basic Transistor Amplifier Circuits
Bipolar and MOS transistors are capable of providing useful amplification in three different
configurations. In the common-emitter or common-source configuration, the signal is applied
to the base or gate of the transistor and the amplified output is taken from the collector or
drain. In the common-collector or common-drain configuration, the signal is applied to the
base or gate and the output signal is taken from the emitter or source. This configuration
is often referred to as the emitter follower for bipolar circuits and the source follower for
MOS circuits. In the common-base or common-gate configuration, the signal is applied to
the emitter or the source, and the output signal is taken from the collector or the drain.
Each of these configurations provides a unique combination of input resistance, output resis-
tance, voltage gain, and current gain. In many instances, the analysis of complex multistage
amplifiers can be reduced to the analysis of a number of single-transistor stages of these
types. [11, p. 173-174]

It depends on the application field which type of transistor and transistor circuit fits best
for the respective application. The table 6 below gives a brief overview of some essential
parameters for the three different basic transistor amplifier configurations.

Table 6: Comparison of the three basic transistor amplifier circuits [2, p. 889]

Characteristic Common Base Common Emitter Common Collector
input terminal
resistance rin

(low) (moderate) (high)

output terminal
resistance rout

(high) (moderate) (low)

phase inversion (no) (yes) (no)

voltage gain Av (high) (high) (low)

current gain β (low) (moderate) (moderate)
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G. Transformation Concept for Sinusoidal Signals
In this section a transformation concept for sinusoidal signal will be presented. The reason
why we want to transform sinusoidal signals is due to trigonometric functions.

Equation 100 below is representing the transformation concept of sinusoidal signals between
the time- and frequency-domain. This allows to solve linear circuits without having to deal
with trigonometric functions.

u (t) = Û · sin (ωt+ ϕu) = =
{
u (t)

}
= =

{
Û · ej(ωt+ϕu)

}
= =

ejωt · Û · ejϕu︸ ︷︷ ︸
U

 (100)

= =
{
ejωt · U

}
i (t) = Î · sin (ωt+ ϕi) = =

{
i (t)

}
= =

{
Î · ej(ωt+ϕi)

}
= =

ejωt · Î · ejϕi︸ ︷︷ ︸
I


= =

{
ejωt · I

}
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