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Abstract. Learning from demonstration is an ap-
proach to directly teach robots new tasks without ex-
plicit programming. Prior methods typically collect
demonstration data through kinesthetic teaching or
teleoperation. This is challenging because the hu-
man must physically interact with the robot or use
specialized hardware. This paper presents a teleop-
eration system based on tracking the human hand to
alleviate the requirement of specific tools for robot
control. The data recorded during the demonstration
is used to train a deep imitation learning model that
enables the robot to imitate the task. We conduct ex-
periments with a KUKA LWR IV+ robotic arm for the
task of pushing an object from a random start loca-
tion to a goal location. Results show the successful
completion of the task by the robot after only 100 col-
lected demonstrations. In comparison to the baseline
model, the introduction of regularization and data
augmentation leads to a higher success rate.

1. Introduction

Robot manipulation tasks in domestic services and
industry are highly complex due to the various sys-
tem components that are necessary to achieve the
goal. As a result, it is difficult to directly program
robust robot manipulation strategies. Reinforcement
learning is an alternative approach that alleviates the
requirement for human programming and instead en-
ables a robot platform to learn from its own experi-
ence [4, 11, 15]. However, this approach suffers from
substantial training time, with some work reporting
training times in the order of months [15]. Learning
from demonstration (LfD) is an attractive solution in
which a human illustrates how to perform a task and

Hand Tracking

Demonstrations Learned Policy

Figure 1. Teleoperating the robot arm using hand tracking
from RGB images. The demonstrations are used to teach
a policy to perform a task (e.g. push the box to the goal).

the robot attempts to imitate [21, 2]. This requires no
human programming and far fewer training examples
compared to reinforcement learning methods.

Demonstrations for learning are often collected
through kinesthetic teaching [1] or teleopera-
tion [27]. However, these methods are cumbersome
because the human must either physically interact
with the robot to generate example motions or con-
trol the robot system with specialized hardware that
the operator may not have experience with. De-
spite the advances of teleoperation systems that en-
able novices to improve task performance after only
a small number of attempts [8], the hardware is not
always readily available. LfD can also leverage sim-
ulation [18] or by directly observing human activ-
ity [9, 13, 16, 24]. But these approaches demand ad-
ditional solutions to transfer across domains.

To that end, we present an end-to-end system for
LfD through vision-based teleoperation, which al-
leviates the necessity for virtual reality and teleop-

Proceedings of the Joint Austrian Computer Vision and Robotics Workshop 2020 DOI: 10.3217/978-3-85125-752-6-11

42



eration hardware while still directly controlling the
robot platform to avoid the domain shift. We directly
track the human hand using a webcam and use the es-
timated hand pose to control the end-effector of the
robot. The demonstration data are used to train a neu-
ral network, based on the architecture of [27], to en-
able imitation by the robot system. We extend this
work to include different regularization techniques
during training and data augmentation to manage
changes in brightness and imperfect demonstrations.

Our method is implemented for the KUKA LWR
IV+ [3] robotic arm for the task of pushing objects.
Experiments show that the robot is able to replicate
the demonstrated task with as few as 100 recorded
examples. In comparison to the baseline [27], our
inclusion of regularization and data augmentation
achieves a higher success rate.

In summary, we make the following contributions:

• A vision-based hand tracking system to teleop-
erate a robot arm to perform manipulation tasks.

• Training of a neural network with our generated
teleoperated data that enables task imitation.

• Evaluation of the generalization of the imitation
learning to unseen configurations.

• Improvements over the baseline by including
regularization methods during the training.

The remainder of this paper is as follows. Sec-
tion 2 reviews related work and Section 3 presents
our approach. In Section 4 we present our experi-
ments and results. Section 5 concludes the paper.

2. Related Work

A popular approach to program a robot to per-
form manipulation tasks is learning from demonstra-
tion [21, 2]. This involves recording example ma-
nipulation sequences and then to transfer the trajec-
tories to the robot platform to perform the task itself.
Trajectories are typically recorded using kinesthetic
teaching [22, 19, 1], teleoperation [27, 10, 20] or gen-
erated in simulation [6, 18]. Given a set of demon-
strations, these methods find an appropriate mapping
in order to replicate the closest matching trajectory,
often making adaptations due to the variation be-
tween the current and demonstrated scenarios. Some
approaches represent the demonstrations as a set of
primitives by encoding the trajectories and then gen-
erating robot motions through probabilistic methods,

e.g., Gaussian mixtures [5], Gaussian processes [22]
or dynamic movement primitives [19, 12]. This al-
lows for a more efficient search for the most appro-
priate trajectory to replicate.

More recent works apply deep neural net-
works to learn visuomotor policies that map in-
put images to robot trajectories through behavioral
cloning [27, 20]. A network is trained on demon-
strations to learn the image-to-action mapping such
that a closed-loop controller commands the manip-
ulator through sequences of states to complete the
task. In this line of work, teleoperation is the pre-
ferred method to kinesthetic teaching because the hu-
man does not contaminate the training images.

Extensions have been made that generalize the
models to multiple tasks, which allows few- or even
one-shot learning of new tasks [6, 26]. These meth-
ods apply meta-learning to efficiently adapt a learned
model, trained on many prior tasks, to a new task
that is to be imitated. James et al. [10] take a dif-
ferent approach and use metric learning to create
a task embedding. Imitating a new demonstration
is achieved by training a control network to trans-
late learned task embeddings into desired actions.
Huang et al. [9] propose neural task graphs to learn
the common structure of tasks and the conjugate re-
lationship between observed states and actions.

Another direction of work is to learn by using only
videos of humans performing tasks, e.g., [13, 16, 24].
However, human demonstrations do not provide suf-
ficient supervision for learning. Therefore, other
approaches explicitly learn the relationship between
human and robot demonstrations in order to directly
imitate human tasks in the online setting [26].

In this work, we build on the approaches for learn-
ing visuomotor policies through behavioral cloning.
In particular, we adapt the methodology presented by
Zhang et al. [27] by replacing the teleoperation hard-
ware with a vision-based system. Our work is com-
plementary to it as well as to the extension that in-
corporates human demonstrations [26] by using our
teleoperation system as an alternative.

3. Approach

This section describes our approach for learning
from demonstration, an overview is given in Fig-
ure 2. For teleoperation, a webcam is used to track
the hand (Section 3.1) to generate positions that con-
trol the robot’s end-effector (Section 3.2). During
the trajectory, the RGB-D images from a ceiling
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mounted ASUS Xtion camera are recorded with the
end-effector pose of the robot. Many demonstrations
are shown to create a dataset that is used to train
a deep imitation learning model (Section 3.3). The
learned policy is then executed by the robot using
only the live RGB-D images and end-effector poses.

3.1. Hand Tracking

The hand tracking method developed by Pan-
teleris et al. [17] is used to estimate the 3D pose of
the human demonstrator from RGB images in real-
time. This approach consists of three steps: (1) Crop-
ping the user hand in the image, (2) passing the
cropped image to a 2D joint position estimator and
(3) mapping the 2D joints on a 3D hand model to
recover 3D positions of the joints.

For finding an initial bounding box of the hand,
a deep neural network model [25] to detect hands in
real-time is applied. Afterwards, the cropped image
of the hand is passed through the hand key-point lo-
calization model of [7] to estimate the 2D location of
the hand joints. It localizes the 21 key-points for the
wrist, 5 fingertips and 5 × 3 = 15 finger joints. This
specific model was selected because it matches or
outperforms other state-of-the-art methods but with
much lower computational requirements. In the end,
the 2D locations of the joints are mapped to the 3D
hand model via non-linear least-squares optimiza-
tion. The 3D positions are then used as the initial
step for the optimization of the next frame.

The 3D positions of the joints are also used to up-
date the bounding box of the hand, which eliminates
the need to use the hand detector model for each
frame. However, failure of the hand tracking mod-
ule based on the hand position and movement in the
previous frames (e.g. due to sudden movements, oc-
clusion, or failure in 2D localization), results in poor
optimization. Therefore, to make the tracker more
robust, the optimization score is checked to reset the
optimizer’s initial state and to use the hand detector
to find a new bounding box for the hand if necessary.

3.2. Robot Control

For the teleoperation of the robot end-effector, the
3D hand position from the hand tracking system is
compared with an initial hand position. If the differ-
ence between the current and the initial position for
any Cartesian coordinate is above a certain thresh-
old κ, a new end-effector position is calculated and
commanded to the robot. This difference is then
transformed from the camera frame to the robot base

frame and denoted as h. The transformation aligns
the directions of the hand and end-effector movement
to allow intuitive teleoperation.

The desired end-effector position p∗ is calculated
by adding the current end-effector position p and the
value ∆p. This is calculated for each Cartesian co-
ordinate with pi, hi ∈ p,h according to:

∆pi =






α(min{hmax, hi − κ}) ∀ hi > κ,

α(max{hmin,−hi − κ}) ∀ hi < −κ,

0 otherwise,
(1)

where hmax expressing the upper, hmin the lower
limit and α as a parameter that indirectly allows the
sensitivity to speed to be tuned.

As described in Section 3.3, ∆p is directly
learned. When executing the learned policy, ∆p is
used to calculate the desired end-effector position.
For either the teleoperation or the task execution by
the learned policy, the desired end-effector position
is updated continuously and commanded to the robot.
The orientation of the end-effector could be changed
similarly but was not necessary for our specific task.

3.3. Deep Imitation Learning

We employed the algorithm presented by [27] and
adapted it in several ways to work with our robotic
setup involving imperfect demonstrations and chang-
ing environment conditions (e.g. brightness). The
adapted network can be seen in Figure 2. The in-
put ot at each timestep t consists of the cropped and
scaled color image It ∈ R120×160×3, depth image
Dt ∈ R120×160×1, and the 5 most recent end-effector
positions pt−4:t ∈ R15. After 3 convolutional layers,
the data is passed through a spatial softmax layer in-
troduced in [14]. During training, the output of this
layer is used for auxiliary predictions of the current
end-effector position and the end-effector position at
the end of each demonstration with two fully con-
nected layers per auxiliary prediction. The output of
the network is the change of the end-effector position
of the robot ∆p in millimetres. Compared to [27],
we omit one convolutional layer but use more units
in our dense layers, which slightly reduces training
time without deteriorating performance. Since we do
not change the orientation of the end-effector for this
simple task, we can simplify the output of the net-
work at time t to be ∆pt = πθ(ot) ∈ R3.

The input data is augmented by randomly chang-
ing the brightness during training and batch normal-
ization is added after each layer to better cope with
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Figure 2. Overview of the system. The dashed lines show the procedure to collect demonstrations for training. The
continuous lines show the information flow during policy execution.

the changing lighting conditions in the test environ-
ment. Additionally, we added dropout of the recent
end-effector positions to avoid the robot following
the same trajectory during most executions and not
taking the object position into account.

The overall loss is defined as

L(θ) = λl1Ll1+λl2Ll2+λcLc+λsLs+λauxΣaL(a)
aux.
(2)

The first two terms are the l1 and l2 losses. Lc is the
cosine loss and Laux are the l2 losses of the auxiliary
predictions. Compared to [27], we added the loss

Ls = exp (−||πθ(ot)||2) (3)

that penalizes very slow speeds. The weights
were chosen as λl1 = 1.0, λl2 = 0.01, λc = 0.05,
λs = 0.1, and λaux = 0.01.

4. Experiments

This section presents the experimental results. We
first describe the setup and procedure for collecting
demonstration data. We analyze the performance of
our method with respect to the network design.

4.1. Experimental Setup

All experiments are conducted with a KUKA
LWR IV+ [3] robotic arm using the provided con-
trol unit. The arm has 7 degrees of freedom and
is controlled with position commands for the joints.
The arm is mounted on the ceiling with a small ta-
ble standing underneath it on which the target object
(box) rests. The goal region is marked with tape. An
ASUS Xtion RGB-D camera is mounted to the ceil-
ing to capture the scene from above. For hand track-
ing, a separate webcam is used and faces the operator.

The algorithms for the hand tracking and the task
execution run on a remote PC connected to the
KUKA control unit via Ethernet. The communica-
tion between the remote PC and the control unit is

enabled through the kuka-lwr-ros package1 using the
fast research interface (FRI) [23].

For data collection, the teleoperator directly faces
the robot and the webcam. For each demonstration,
the box is positioned randomly on the table. The
teleoperator moves the box to the goal position us-
ing our control scheme. We collected 98 demon-
strations with an average length of 42.8 s with a
rate of 10 Hz for our evaluation. That is signifi-
cantly above the average demonstration time per task
of [27], which is between 3.7 s and 11.6 s and neces-
sitates our changes to the architecture to deal with
these imperfect demonstrations.

4.2. Results

For the evaluation, the workspace of the robot on
the table is divided into a grid of 9 different posi-
tions with 20 cm intervals. Per position, the learned
policy is executed for 4 different rotations of the box
(−45◦, 0◦, 45◦, 90◦). We measure both if the box is
pushed towards the goal (started push) as well as if
at least part of it is pushed into the goal (success).
If the robot starts to push the box, but loses it, we
restart the policy manually and keep the box in the
same position when the end-effector stops or leaves
the workspace. This could be automated with a sim-
ple heuristic. If the task can be achieved in a consec-
utive trial, we still count it as a success.

As shown in Table 1, our learned policy started to
push the box in the right direction in 86.1 % of the
cases and reached the goal in 58.3 % of the overall
attempts. A reason for most failure cases is the grid
nature of our workspace separation, which inherently
tests the robot on the edges of its workspace where it
is much more difficult to perform the task.

We conducted an ablation study to evaluate our
changes to the original architecture of [27]. We re-

1https://github.com/epfl-lasa/kuka-lwr-ros
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Figure 3. Examples of the learned policy. First row shows successful trials. Bottom row shows failures.

Table 1. Ablation study

Started Push Success

Vanilla Policy 50.0 % 27.8 %
No Dropout 66.7 % 27.8 %
No Brightness Aug. 75.0 % 41.7 %
Our Policy 86.1 % 58.3 %

implemented the original model and adapted it to our
robotic platform and task. To test the effect of indi-
vidual changes, we applied our policy once without
dropout and once without data augmentation. The
vanilla policy and our policy without dropout only
achieve a success rate of 27.8 %, which were almost
exclusively the trials when the box was located in a
middle position and only required a straight push.

The purpose of applying dropout to the end-
effector pose input of the network is to put more em-
phasize on the input images. With the added dropout,
the success rate rises to 41.7 %. Brightness augmen-
tation alone did not improve the overall success rate
over the vanilla policy. However, the combination
of dropout and brightness augmentation achieved a
success rate of 58.3 %. We introduced the data aug-
mentation due to changing lighting conditions in the
test environment during the demonstrations. For the
evaluation we kept the lighting conditions the same.

Qualitative results are presented in Figure 3. The
first row shows sequences of successful trials in
which the box is pushed to the goal. The second row
shows examples of failures. In one case, the robot
end-effector slides past the box and the policy loses
the target. In the second case, the box is pushed to a
location that is not the goal.

5. Conclusion

This paper presented an approach for learning
from demonstration using a vision-based solution for
robot teleoperation. A hand tracking method was
employed to generate commands that control the

robot’s end-effector as the human operator completes
a manipulation task. The set of demonstrations were
used to train a deep imitation learning network that
learns a policy, enabling the robot to imitate the task.
Experiments showed that the introduction of regular-
ization and data augmentation increased the success
rate over the baseline method.

For future work, we plan to combine the LfD ap-
proach with reinforcement learning in simulation. By
starting from the learned policy in simulation, the
training time of reinforcement learning approaches
can be greatly reduced. Additionally, combining real
data with synthetic data collected in simulation mit-
igates the problem of domain adaptation of pure re-
inforcement learning methods. Another avenue is to
use more high-level knowledge of the scene (e.g. ob-
ject pose) to make the approach less susceptible to
environment changes.
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