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Abstract. We study methods for the generation of
highly accurate binary segmentation masks with ap-
plication to images of cars. The goal is the auto-
mated separation of cars from their background. A
fully convolutional network (FCN) based on the U-
Net architecture is trained on a private dataset con-
sisting of over 7000 samples. The main contributions
of the paper include a series of modification to com-
mon loss functions as well as the introduction of a
novel Gradient Loss that outperforms standard ap-
proaches. In a specialized postprocessing step the
generated masks are further refined to better match
the inherent curvature bias typically found in the out-
line of cars. In direct comparison to previous imple-
mentations our method reduces the segmentation er-
ror measured by the Jaccard index by over 65%.

1. Introduction

A majority of buyers and sellers of cars choose to
use online platforms. The quality of pictures on such
platforms has a considerable impact on a buyers like-
lihood to purchase and thus leads to a demand for vi-
sually appealing images. For most sellers it is finan-
cially infeasible to take professional photographs and
it has instead become common practice to digitally
edit them. A binary segmentation mask is created
that segments the image into foreground (the vehi-
cle) and background. This mask is used to either al-
ter (e.g. blur) or entirely replace the background with
an artificial scene. Due to the significant demand
for high quality segmentation masks dedicated busi-
nesses offering this service have emerged. As each
photograph is edited by hand, the total time until the
segmentation mask is available to the dealership lies
between one and two days. The delay in time gener-
ates non-negligible costs. Based on novel deep learn-
ing techniques that have advanced the state-of-the-art
in recent years we study methods for the fully auto-

mated generation of segmentation masks with focus
on the maximization of accuracy. This paper aims to
improve the state of the CarCutter1 service.

2. Related Work

The first application of convolutional networks to
semantic segmentation with per-pixel prediction was
made possible by the introduction of fully convolu-
tional networks (FCN) [13]. Previously segmenta-
tion solutions repurposed convolutional network ar-
chitectures [12, 4] intended either for classification
or object detection and always included fully con-
nected layers. These adaptations come with draw-
backs on either speed or accuracy. By reinterpret-
ing fully connected layers in classification networks
as convolutional layers that cover the entire input re-
gion the network architecture is made independent
of the dimensions of the input image. Instead of
a class probability vector the reinterpreted network
outputs a coarse heatmap for each class. In order to
obtain predictions at the pixel level the coarse seman-
tic information of deeper levels is repeatedly upsam-
pled and added to the activations of shallower fea-
ture maps. This innovation was quickly expanded
on and led to development of the U-Net architec-
ture [11]. It introduces a symmetric encoder-decoder
format consisting of a contracting encoder compo-
nent and an expanding decoder component. This
setup is chosen with the intention of learning a com-
paratively low dimensional image representation in
the narrow region of the network (referred to as
the bottleneck) that captures global context while at
the same time dramatically reducing the number of
learned parameters. Skip connections efficiently pass
shallow encoder features with high localization ac-
curacy to deep decoder layers that are rich in se-
mantic information. Variations on networks of this

1https://www.car-cutter.com/ (accessed February 24, 2020)
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type are often focused on the decoder component,
while the standard approach for the encoder com-
ponent is the repurposing of the convolutional stage
of known, well performing networks, such as VGG-
16 [14]. The variations in the decoder component
essentially explore the trade-off between low mem-
ory requirements (and fast inference) and high accu-
racy. Architectures such as [16] also investigate the
benefits of an additional ResNet [5] based refinement
stage. Benchmarks show [2, 10] that almost all state-
of-the-art solutions for a variety of image segmenta-
tion tasks are based on the U-Net architecture. It is
also chosen by well performing entries [6, 15] to the
Kaggle Carvana Image Masking challenge. Ternaus-
Net [6] was part of the winning entry in the challenge
and uses a pretrained encoder based on VGG-11 [14]
while [15] placed in the top 4% using an ensemble
of five network with a pretrained ResNet-50 [5] en-
coder.

3. Dataset

Training was done on a private dataset consisting
of 7614 pairs of RGB-images and binary segmenta-
tion masks. Some images contain additional cars in
the background that are smaller by area. In these
cases the solution is expected to only segment the
main vehicle. The dataset exhibits a bias towards
German car brands such as Volkswagen, BMW and
Mercedes and contains a disproportionate amount of
images with cars higher-than-average in cost. During
preprocessing all images are resized to a resolution of
800px× 600px. Data augmentation is used to boost
the available training data.

To our knowledge, the most closely related dataset
is tied to the Kaggle Carvana Image Masking chal-
lenge2. The goal of this challenge is identical to ours.
Its dataset contains roughly 100 000 image/mask
pairs with resolution 1920px×1080px. Compared to
our dataset the samples are more uniform. Each pic-
ture contains exactly one vehicle which is placed in
a fixed position and all photographs are taken by the
same stationary cameras under identical lighting con-
ditions. The winning entry of this challenge achieved
a Jaccard index of 0.9947 which we consider to be an
upper bound to the score achievable on our dataset.

2https://www.kaggle.com/c/carvana-image-masking-
challenge (accessed February 21, 2020)

4. Methods

Segmentation is performed with a fully convo-
lutional neural network of the U-Net architecture.
Its implementation is similar to [16], with a pre-
trained convolutional stage of a VGG-16 network
with batch normalization for the encoder and an ad-
ditional ResNet-style refinement block after the de-
coder. Segmentation quality is evaluated using the
Jaccard index which is the de facto standard metric
for image segmentation methods:

MJ(P, T ) :=
|P ∩ T |
|P ∪ T | . (1)

In our context T and P are subsets of target (ground
truth) and predicted pixels in a segmentation mask.
Images x, target masks t and predicted masks p are
assumed to be non-binary with height N , width M
and values in the range [0, 1].

We study training with (modifications of) the loss
functions Mean Squared Error LMSE and Binary
Cross-Entropy LBCE as well as the Dice Loss [9]
LDSC which is defined as

LDSC(p, t) := 1−
ε+ 2

∑
(i,j)∈D pijtij

ε+
∑

(i,j)∈D pij + tij
, (2)

and is related to the Jaccard index. Here D =
{1 . . N} × {1 . . M} is the domain of the segmen-
tation masks and ε� NM is a small scalar regular-
ization term.

4.1. Weighting Schemes

We propose modifications that improve upon the
standard losses Mean Squared Error and Binary
Cross-Entropy. The main idea is that not all areas
of an image are equally important or equally diffi-
cult to segment. Loss functions that are the sum or
mean of pixelwise losses can be modified to assign
weights to each pixel in order to adjust for this inho-
mogeneity. We can use a map w of real weights with
shape equal to t and p and define a modified version
of Mean Squared Error as:

LMSE(p, t) :=
1

NM

∑

(i,j)∈D
wij
(
pij − tij

)2
. (3)

An analogous modification can be made to Binary
Cross-Entropy.
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Notation The notation ∇σ y expresses the convo-
lution of a stack of feature maps y with the gradi-
ent of a two-dimensional Gaussian density with mean
vector (0, 0)T and covariance matrix σI , where I is
the identity matrix. In practice it is a convolution
∇σ y = y ∗ G∇σ with a kernel G∇σ that is normalized
and has shape 2 × C × C with C ∼ 4σ. The opera-
tion doubles the channels of the tensor y. To ensure
fast computation the convolution is implemented as
a convolutional layer with frozen weights.

Median Frequency Balancing A simple and pop-
ular [3, 1] weighting scheme is Median Frequency
Balancing (MFB). Each class (foreground and back-
ground in our binary setting) is assigned a weight to
compensate for imbalance in the frequency of occur-
rence. The weights can either be computed individu-
ally for each sample or once for the entire dataset. In
the individual case a foreground/background weight
pair (wf , wb) for a target mask t is given by

wf =
N

2
∑

(i,j)∈D tij
and wb =

N

2
∑

(i,j)∈D(1− tij)
.

(4)

An example of such a weight map is shown in the
second column of Figure 1. If a single weight pair
for the entire dataset is preferred then it is computed
as the mean of all sample weights.

Boundary Proximity The separating boundary be-
tween foreground and background is the only area
where the segmentation mask is non-constant. Con-
sequently it is also the area where masks generated
by neural networks exhibit the largest mistakes. In
this approach pixels in close vicinity to the boundary
are assigned larger weights. Such a method is already
suggested by the authors of the original U-Net archi-
tecture [11], although with a less general approach.
We calculate a weight map based on a pixel’s dis-
tance to the separation boundary using convolution
based edge detection. A large gradient in a segmen-
tation mask indicates the presence of an edge. Based
on this we define the weight map

wij = 1 + c‖(∇σ t)ij‖22 .

A map of this type is shown in the third column of
Figure 1. The parameter c is a scaling constant and
is set to 5.

Gradient Ratio The typical location of segmen-
tation errors can be characterized more concretely.
Photographs are often taken in poor lighting condi-
tions or with cheap camera equipment resulting in
over- or underexposed areas. Common occurrences
are bright reflections in a vehicles roof or dark shad-
ows around its wheelbase (see Figure 2). Both sce-
narios can obscure the precise transition point be-
tween foreground and background. At the data level
we are confronted with image patches that are ei-
ther nearly entirely white or nearly entirely black,
while the same patch in the ground truth segmen-
tation mask contains a binary transition. Motivated
by this observation we claim that the ratio between
change in the mask and change in the corresponding
image is a measure for prediction difficulty and use
it to define a new weight map. Again we employ dis-
crete gradients:

wij = 1 + c
‖(∇σ t)ij‖22
‖(∇σ x)ij‖22 + ε

.

As previous the parameter c is a constant which is set
to 0.1 and ε is a small regularizing constant with ε�
NM . The result of the convolution ∇σ x is a stack
of six feature maps, one for each combination of the
three image channels and the two partial derivatives
in the gradient. A weight map of this type is shown
in the fourth column of Figure 1.

Comparative Results In Table 1 we show results
for the pixelwise losses Mean Squared Error and Bi-
nary Cross-Entropy, first in their default state and
then with the addition of one or more weighting ex-
tensions. To us a pixelwise loss is a function that
sums over the losses of individual pixels. Conse-
quently when the gradient is computed during back-
propagation all terms except the ones belonging to
the individual pixels vanish. We can argue that in
such a loss function no pixel is ignored or treated
lesser.

In direct comparison Binary Cross-Entropy out-
performs Mean Squared Error in every test. From an
information theoretic point of view it is the natural
loss for binary classification problems. When using
Mean Squared Error none of the proposed weighting
schemes improved over uniform weights whereas the
opposite holds true for Binary Cross-Entropy where
the best results are achieved using a combination of
Median Frequency Balancing and Gradient Ratio.
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Figure 1. Comparison of weighting methods. A sample
image (left) and weight maps for Median Frequency Bal-
ancing (left middle), Boundary Proximity (right middle)
and Gradient Ratio (right).

Figure 2. Examples of an overexposed bright region (left)
and an underexposed dark region (right).

LMSE LBCE

Default 1.189 × 10−2 1.145× 10−2

MFB 1.284× 10−2 1.114× 10−2

Boundary Proximity 1.217× 10−2 1.126× 10−2

Gradient Ratio 1.296× 10−2 1.108× 10−2

MFB + Gradient Ratio 1.282× 10−2 1.106 × 10−2

Table 1. Comparison of network performance after train-
ing with Mean Squared Error LMSE and Binary Cross-
Entropy LBCE measured by 1−Jaccard index.

4.2. Gradient Loss

We expand on the idea of using discrete gradients
in loss functions and introduce the Gradient Loss.
This loss is inspired by the H1 Sobolev seminorm
|f |H1 := ‖∇f‖L2 . Instead of optimizing the plain
value of the segmentation mask we optimize its gra-
dient:

L∇(p, t) := LMSE(∇σ p,∇σ t) (5)

In our tests we observe that neural networks trained
with this loss produce masks with cleaner constant
regions. We believe it allows them to learn that seg-
mentation masks should be largely constant, i.e. for
most areas∇σ p should be zero. It is not advisable to
use the Gradient Loss on its own since it is based only
on a seminorm. Depending on how the convolution
treats missing values on the boundaries there might
hold L∇(p + c, t) = L∇(p, t) for constant values c

1−Jaccard index
LDSC 9.237× 10−3

LBCE 1.145× 10−2

LMSE 1.189× 10−2

LDSC + LBCE 1.045× 10−2

LDSC + LMSE 9.633× 10−3

LBCE + L∇ 1.082× 10−2

LMSE + L∇ 1.224× 10−2

LDSC + LBCE + L∇ 1.027× 10−2

LDSC + LMSE + L∇ 9.118 × 10−3

Previous solution 2.640× 10−2

Table 2. Network performance after training with compos-
ite loss functions measure by 1−Jaccard index.

(invariance to constant shifts). If the Gradient Loss
is combined with Mean Squared Error we essentially
obtain a discrete version of the H1 Sobolev norm.

4.3. Composite Loss Results

It is common practice to combine the Dice Loss
with a pixelwise loss [8] which results in segmenta-
tion maps with sharper boundaries. The combination
of multiple loss functions is achieved by simple ad-
dition of the individual losses. Addition of the Dice
Loss to the pixelwise losses uniformly results in a
performance increase (see Table 2) due to its close
relation to the Jaccard index. In these tests Mean
Squared Error surpasses Binary Cross-Entropy by a
significant margin while the incorporation of weight-
ing schemes worsened results. The further addition
of the Gradient Loss leads to mixed, but generally
positive results. Although the effects on the combi-
nation of Dice Loss and Binary Cross-Entropy are
minor, we achieve overall best results with the com-
bination of the three losses Dice Loss, Mean Squared
Error and Gradient Loss. The score outperforms the
previous best result which was achieved with plain
Dice Loss. Compared to a previous implementation
used by the CarCutter service the segmentation error
is reduced by 65%.

4.4. Postprocessing

The proposed weighting schemes and loss func-
tions can only work if over- or underexposed re-
gions are not completely devoid of texture. Other-
wise a neural network may only learn to predict a
pixel’s probability to belong to the foreground class
which inevitably causes non-sharp transition in the
predicted masks. An alternate approach is the use of
a custom postprocessing procedure.
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Figure 3. Two examples of active contour modeling.
Crops of car images (left), the inferred segmentation
masks (middle) and contour segments (right) before ac-
tive contour modeling (red) and after (blue).

Inferred segmentation masks are thresholded and
the resulting sharp separating contour between the
foreground and background region is subjected to a
refinement procedure. The contour is split into cer-
tain and uncertain regions depending on the neural
networks certainty in its prediction. A contour re-
gion is considered to be certain if nearby values in
the corresponding segmentation mask are close to 0
or 1, and uncertain otherwise.

Uncertain Regions These contour regions typi-
cally occur in over- or underexposed areas of an im-
age and are iteratively adjusted using active contour
modeling [7]. The method aims to minimize an en-
ergy functional of a spline contour in the inferred
segmentation mask. Figure 3 shows the effects of
the approach on two examples. The first example
shows its positive influence while the second is a fail-
ure case.

Certain Regions Cars typically have large regions
that are smooth for aerodynamic and aesthetic rea-
sons. Edges that are present however can be rather
sharp. The motivation of the following procedure,
which we call adaptive smoothing, is to mimic this
bias. We aim to perform a high degree of smooth-
ing without displacing the contour by more than 0.5
pixels. The upper limit is enforce since based on the
neural network assessment such a segment is already
close to the ground truth target.

As an initial step the contour segment is split into
separate sequences for x and y coordinates. The fol-
lowing procedure is applied separately to both. Let
κ = (κi)

N
i=1 be such a sequence of real points. We

use Gaussian filters Gσi with standard deviations σi
that adept to the current position. A kernelGσi is ob-

1 2 3

4 5

1

2
3

4

5

Figure 4. Comparison of a contour before postprocessing
(red) and after adaptive smoothing (blue). Full segmenta-
tion mask and contours (bottom second from the left) and
five enlarged regions.

tained by sampling a Gaussian density in the points
Z ∩ [−2σi, 2σi] and normalizing.

The smoothed contour κs has equal shape to κ and
is defined as

κsi :=
(
κ ∗Gσi

)
i
. (6)

For the computation of the values σi we are looking
for the largest kernel that displaces κ less than 0.5
pixels. A naive implementation of this idea has two
issues: First the set

{
σi ∈ R≥0 :

∣∣κi − κsi
∣∣ < 0.5

}

might not be bounded and second this approach can
lead to large jumps in consecutive entries of σ. For
this reason we pose the definition with additional re-
strictions:

(B) σ1 = σN = 0,

(C) |σi − σi+1| ≤ α, i ∈ {1 . . . N − 1},
(M) σi ∈ R≥0 maximal s.t. |κi − κsi | < 0.5.

Under these conditions solutions exist and are
unique. Requirement (B) enforces the fixed bound-
ary conditions κ1 = κs1 and κN = κsN while (C)
ensures continuity within the contour segment. The
parameter α specifies an upper bound for the slope.
In practice the setting α = 0.5 performs well. For
the implementation of this method it is advisable to
only consider a discrete set of possible values for σi.
A comparison of contours before and after postpro-
cessing can be seen in Figure 4.

5. Conclusion

We studied methods for the generation of highly
accurate binary segmentation masks, including
weighting schemes that improved the performance of
default loss functions and a novel Gradient Loss. In
addition we developed a specialized postprocessing
procedure that exploits a bias in our dataset. We cre-
ated a solution that poses a significant upgrade over
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a previous implementation of the CarCutter service.
Direct comparison of masks generated by our imple-
mentation with ones generated by the service in April
of 2019 showed a reduction of 65% in the segmenta-
tion error as measured by the Jaccard index. With the
exception of our postprocessing procedure the pre-
sented methods are applicable to the general image
segmentation task.

Acknowledgments

We would like to thank micardo GmbH3 for a
fruitful collaboration and the use of their private
dataset. This work has been partly funded by the
Austrian security research programme KIRAS of the
Federal Ministry for Transport, Innovation and Tech-
nology (bmvit) under Grant 873495.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Seg-

net: A deep convolutional encoder-decoder architec-
ture for image segmentation. 2017 IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 2017.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic ur-
ban scene understanding. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 3213–3223, June 2016.

[3] D. Eigen and R. Fergus. Predicting depth, surface
normals and semantic labels with a common multi-
scale convolutional architecture. In Proceedings of
the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pages 2650–2658,
Washington, DC, USA, 2015. IEEE Computer Soci-
ety.

[4] Feng Ning, D. Delhomme, Y. LeCun, F. Piano,
L. Bottou, and P. E. Barbano. Toward automatic
phenotyping of developing embryos from videos.
2005 IEEE Transactions on Image Processing (TIP),
14(9):1360–1371, Sep. 2005.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[6] V. Iglovikov and A. Shvets. Ternausnet: U-net with
VGG11 encoder pre-trained on imagenet for image
segmentation. CoRR, abs/1801.05746, 2018.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
Active contour models. International Journal of
Computer Vision, 1(4):321–331, 1988.

3https://www.micardo.com/ (accessed February 24, 2020)

[8] M. Khened, V. Alex Kollerathu, and G. Krish-
namurthi. Fully convolutional multi-scale resid-
ual densenets for cardiac segmentation and auto-
mated cardiac diagnosis using ensemble of classi-
fiers. Medical Image Analysis, 51, 01 2018.

[9] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully
convolutional neural networks for volumetric med-
ical image segmentation. In 2016 Fourth Interna-
tional Conference on 3D Vision (3DV), pages 565–
571, Oct 2016.

[10] C. Rhemann, C. Rother, J. Wang, M. Gelautz,
P. Kohli, and P. Rott. A perceptually motivated on-
line benchmark for image matting. In 2009 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1826–1833, June 2009.

[11] O. Ronneberger, P.Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image seg-
mentation. In 2015 Medical Image Computing
and Computer-Assisted Intervention (MICCAI), vol-
ume 9351 of LNCS, pages 234–241. Springer, 2015.
(available on arXiv:1505.04597 [cs.CV]).

[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu,
R. Fergus, and Y. Lecun. Overfeat: Integrated
recognition, localization and detection using convo-
lutional networks. In 2014 International Conference
on Learning Representations (ICLR), CBLS, April
2014, 2014.

[13] E. Shelhamer, J. Long, and T. Darrell. Fully convo-
lutional networks for semantic segmentation. 2017
IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 39(4):640–651, Apr. 2017.

[14] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
In 2015 International Conference on Learning Rep-
resentations (ICLR), 2015.

[15] J. Xu, H. Guo, A. Kageza, S. Wu, and S. AlQarni.
Removing background with semantic segmentation
based on ensemble learning. EAI, 9 2018.

[16] N. Xu, B. Price, S. Cohen, and T. Huang. Deep im-
age matting. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 311–
320, July 2017.

121


