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Abstract. Median filtering is well established in
signal and image processing as an efficient and ro-
bust denoising filter with favourable edge-preserving
properties, and capable of denoising some types of
heavy-tailed noise such as impulse noise. For multi-
channel images such as colour images, flow fields
or diffusion tensor fields, multivariate median filters
have been considered in the literature. Whereas the
L1 median filter so far dominates in image process-
ing applications, other multivariate concepts from
statistics may be used such as the half-space median
which in the focus of this work.

In the understanding of discrete image filters a
central question is always how these relate to the
space-continuous physical reality underlying dis-
crete images. For the univariate median filter, a mile-
stone in answering this question is an asymptotic ap-
proximation result that links median filtering to the
mean curvature motion evolution. We will present an
analogous result for half-space median filtering in
the bivariate (two-channel) case, which contributes
to the theoretical understanding of multivariate me-
dian filtering and provides the basis for further gen-
eralisations in future work.

1. Introduction

Median filtering [10] is a well-established proce-
dure in signal and image processing. For grey-value
images it is known as an efficient and robust denois-
ing method with favourable edge-preserving proper-
ties. In standard median filtering, a pixel mask (for
example, a (2m + 1) × (2m + 1) square, or a dis-
crete approximation of a disc) is moved as a sliding
window across the image. At each pixel location, the
mask is used to select grey-values of the input im-
age; the median of these grey-values is then assigned
to the central pixel as its new grey-value in the output

image. This filter can also be iterated, which is then
called iterated median filtering.

Continuous median filtering. Thus, median filter-
ing is designed in the first place as a discrete pro-
cedure. An important question regarding its valid-
ity for images is therefore whether it is in a sound
relationship to the underlying continuous nature of
images. This is indeed the case: Firstly, it is straight-
forward to conceive mathematically a median filter
for space-continuous images: Given an image as
a function over a planar domain, one can cut out
a neighbourhood around each location in the plane
(say, a square or disc centered at the reference point)
and determine the median of the (continuous) distri-
bution of image values within this neighbourhood.
Discrete median filtering of a sampled image ap-
proximates this concept. Secondly, assuming disc-
shaped neighbourhoods (of radius %) in this pro-
cess, it has been proven in [5] that iterated space-
continuous median filtering approximates a partial
differential equation (PDE) as % → 0 in the sense
that one space-continuous median filter step asymp-
totically approximates a time step of size %2/6 of an
explicit time discretisation of the mean curvature mo-
tion PDE ut = |∇u|div

(∇u/|∇u|
)

for the planar
image u evolving in time.

Multivariate medians. Due to the success of me-
dian filtering for grey-value images, researchers
have proposed generalisations of the median filter
to multi-channel images (such as colour images, op-
tic flow fields, diffusion tensor fields). After early
attempts such as the vector median filters from [1]
which focussed on methods to select one vector from
a given set of input vectors as its median, attention
turned soon to multivariate median concepts known
from the statistical literature in which the median

Proceedings of the Joint Austrian Computer Vision and Robotics Workshop 2020 DOI: 10.3217/978-3-85125-752-6-34

151



Figure 1. From left to right: Synthetic test image (30× 30 pixels) in orange–blue colour space. – Componentwise median
filtering. – L1 median filtering. – Oja median filtering. – Half-space median filtering. For all median filters the sliding
window was a discrete disc of radius

√
5, and one iteration was applied.

of multivariate data (such as points in the plane or
space) is not restricted to be one of the input data.
The L1 median [12] was the first concept of this kind
discussed in the statistical literature [2, 4, 13] and
also in image processing [9, 17]. Shortcomings of
this concept, especially its lack of affine equivari-
ance which contrasts to the very general monotonous
equivariance of the classical univariate median, led
statisticians to alternative concepts such as Oja me-
dian [7], half-space median [6, 11] and convex-hull-
stripping median [3, 8].

All of these multivariate medians are defined in
the first place as discrete concepts: Given a set of
points x1, . . . ,xm in Rn, they yield a median µ ∈
Rn. Algorithmically, their application to multivari-
ate images is straightforward; however, the validity
of such a procedure again depends on the question
whether it approximates a suitable filter for space-
continuous images. Furthermore, the question arises
whether a PDE can be stated that is approximated by
such a space-continuous multivariate median filter.
For the L1 median and Oja median, these questions
have been answered in [14]: The definition of space-
continuous variants of these filters is more or less
straightforward, and PDE limits could be stated for
images with values in R2 and R3. For the half-space
median, a space-continuous counterpart has been de-
scribed in [15] but the PDE limit (in R2) was stated
only as a conjecture, without proof. We mention that
for the convex-hull-stripping median stating a space-
continuous filtering procedure is already a difficult
task in itself, see [16].

Our contribution. The purpose of this work is
to advance the theoretical understanding of half-
space median filtering as a multivariate image fil-
ter. We will derive the PDE approximated by space-
continuous half-space median filtering of bivariate
images, thereby proving the conjecture stated in [15].

Aspects of practical application are not in the fore-
ground at the present stage of research; examples are
presented just for illustrating the properties of multi-
variate median filters, and are restricted to the bivari-
ate case (notwithstanding the greater practical impor-
tance of three-channel colour images).

Structure of the paper. After shortly demonstrat-
ing the effect of multivariate median filters, we will
recall the definition of the half-space median for dis-
crete data and its space-continuous analogue in Sec-
tion 2. In Section 3 we will prove the PDE approx-
imation result as conjectured in [15]. A short sum-
mary and outlook in Section 4 concludes the paper.

2. Multivariate Median Filtering

The univariate median filter excels as an edge-
preserving denoising filter for images that can deal
well with types of noise such as impulse noise. Un-
fortunately, for multi-channel images a straightfor-
ward generalisation by using the median just for each
channel separately does not lead to reasonable results
as we demonstrate by a small synthetic example in
Figure 1. For simplicity, and since our theoretical
work presented in the next section is currently re-
stricted to the bivariate case, we use a test image with
just two colour channels (yellow and blue) which
is degraded by pepper noise (impulsive noise con-
sisting of black noise pixels). Whereas componen-
twise median filtering removes noise pixels in ho-
mogeneous colour regions, it even amplifies noise
near colour edges. A more plausible filtering re-
sult is achieved by multivariate median filters three
of which are demonstrated in the figure: the L1 me-
dian filter (see e.g. [9]), the Oja median filter (see
e.g. [14]) and the half-space median filter which is
in the focus of the present paper. As can be seen,
the multivariate median filters lead to some interpo-
lation between the two colours near edges but don’t
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Figure 2. Left: Set of 30 sample points in the plane. Right:
Map of half-space depths w.r.t. the sample points. Points
in the white area are half-space medians.

amplify noise. Whereas the L1 median filter yields
the visually most appealing result in this example, its
underlying median concept relies on Euclidean dis-
tances which might not be always be meaningful in
applications. The Oja simplex median as well as the
half-space median cure this weakness (they are affine
equivariant), with the half-space median yielding a
better denoising result in this example.

Discrete half-space median. Let us shortly recall
the definition of half-space median based on [6, 11].
Given points x1, . . . ,xm ∈ Rn, the half-space depth
of a point p ∈ Rn is the minimal number of data
points that can lie on one side of a hyperplane
through p. For example, the half-space depth of any
p outside the convex hull of the given points is zero
because there exists a hyperplane through p which
does not split the data points at all. In contrast, if
there is a p somewhere in the middle of the given
points for which any hyperplane through p splits the
data set in half, it will have a half-space depth equal
or close to m/2. A half-space median of the given
data is then simply a point of maximal half-space
depth, see Fig. 2 for an example. For discrete data
sets, there is in general a convex polyhedron in Rn

consisting entirely of half-space medians. We will
not further discuss this underdetermination, however,
as it plays no role in the continuous situation.

Application of the discrete half-space median for
the filtering of Rn-valued images is in principle
straightforward: A sliding window is used to select at
each pixel location a set of neighbouring pixels, and
the half-space median of their values becomes the
new image value at the given pixel. Practically, how-
ever, the algorithmic complexity of the half-space
median computation is an issue which requires fur-
ther work, see the remarks in [15].

Having shown a synthetic example in Figure 1, we

Figure 3. Left: Test image sailboat (512 × 512 pixels)
reduced to yellow–blue colour space. Right: Half-space
median filtering result, using a discrete disc of radius 2 as
sliding window, 5 iterations.

present the result of half-space median filtering on a
natural colour image (reduced to two colour chan-
nels) in Figure 3. Similar to the classical median
filter for grey-value images, the iterated multivari-
ate median filter removes small details and simplifies
contours. Notice, however, that a slight blurring of
edges occurs, albeit much less than in linear filters
such as box averaging (with the same window size as
in the median filter) or Gaussian smoothing (with a
comparable standard deviation).

Continuous half-space median. In a continuous
setting, the discrete set of data points is replaced with
a density over Rn, i.e., an integrable function γ with
total weight 1. The half-space depth of p ∈ Rn then
is the minimum among all integrals of γ over half-
spaces cut off by hyperplanes through p. Again, the
half-space median of γ is the point of maximal half-
space density, which will be unique in generic cases.

The construction of a half-space median filter
for space-continuous Rn-valued images is again a
straightforward adaptation of the univariate proce-
dure, with the density of image values within a slid-
ing neighbourhood of each image location being the
input from which the continuous half-space median
is taken.

Affine equivariance. The definitions of half-space
depths and and half-space medians rely only on in-
cidence relations between points and half-spaces in
the data space. Affine transforms of the data space
preserve all of these relations. As a consequence, for
any such affine transform the half-space median of
the transformed input data coincides with the trans-
formed half-space median of the original data. This
is dubbed by saying that the half-space median is
affine equivariant. This property ensures that the
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half-space median can be applied meaningfully to
data for which no physically meaningful Euclidean
structure in Rn can be assumed (e.g., if different di-
mensions of the data space refer to incommensurable
physical quantities).

3. PDE Limit of Half-Space Median Filtering

Our main theoretical result is the following propo-
sition which was already stated as a conjecture in
[15]. It specifies the space- and time-continuous
image evolution which is approximated by iterated
space-continuous half-space median filtering in the
limit case when the radius of the sliding window goes
to zero, thereby generalising the result from [5] for
the univariate median filter and results from [14] for
other multivariate median filters. In particular, the
approximated PDE is identical with the one approxi-
mated by the Oja median filter, see [14, 15].

Proposition 1 Let u : R2 ⊃ Ω → R2, (x, y) 7→
(u, v) be a smooth bivariate image over a compact
domain Ω . At any regular location x = (x, y) ∈ Ω ,
i.e., for which the Jacobian Du(x) is of rank 2, one
step of space-continuous half-space median filtering
with a disc-shaped window of radius % approximates
a time step of an explicit time discretisation of the
PDE

ut = 2 ∆u+A (uyy − uxx) +Buxy (1)

with time step size %2/24, where the coefficient ma-
tricesA ≡ A(Du),B ≡ B(Du) are given by

A =
1

uxvy−uyvx

(
uxvy+uyvx −2uxuy

2vxvy −uxvy−uyvx

)
, (2)

B =
2

uxvy−uyvx

(
uxvx−uyvy −u2x + u2y
v2x − v2y −uxvx+uyvy

)
. (3)

The proof of this result relies on the following
lemma.

Lemma 2 Let u be as in Proposition 1, and let x0 =
0 ∈ Ω be a regular point for which u(x0) = 0, and
Du(x0) is the 2 × 2 unit matrix. Then one step of
space-continuous half-space median filtering with a
disc-shaped window of radius % approximates at x0

a time step of an explicit time discretisation of the
PDE system

ut = uxx + 3uyy − 2vxy , (4)

vt = 3vxx + vyy − 2uxy (5)

with time step size %2/24.

Note that the lemma states the approximation re-
sult of the proposition for a specific geometric con-
figuration where the gradients of the components u,
v of u are locally aligned with the x, y coordinate
axes and of unit magnitude. This special geometric
situation also helps in understanding the effect of the
PDE of the proposition. A more detailed discussion
is found in [14, Sect. 3.1.3] from which we shortly re-
call the main facts. First, the right-hand side contains
terms which play a similar role as the mean curvature
motion approximated by the univariate median filter:
in the lemma, uyy and vxx represent separate mean
curvature motion contributions for the u and v chan-
nel. Second, there are coupling terms – in the lemma:
vxy in the equation for u, and uxy in the equation for
v – that promote a joint evolution of the channels.
Third, there is an isotropic diffusion term ∆u which
has no counterpart in the univariate case. Remember
that also Figure 3 shows a slight edge-blurring effect
of multivariate median filtering.

Proof of Lemma 2. By Taylor expansion of u
around 0 we obtain within the %-disc D% around 0

u
.
= x+ ax2 + by2 + cxy , (6)

v
.
= y + dx2 + ey2 + fxy . (7)

where .
= denotes equality up to O(%3) terms. The

inverse function can be written as

x
.
= u− au2 − bv2 − cuv , (8)

y
.
= v − du2 − ev2 − fuv . (9)

Coarse estimates yield that the median of the values
u(x, y) for (x, y) inD% differs from 0 byO(%2). Let
therefore a median candidate point in the (u, v) plane
be given as µ = (λ%2, µ%2)T with λ, µ = O(1) (i.e.,
bounded for % → 0). To determine the half-space
depth of µ, we consider straight lines through µ in
the (u, v) plane. A parametric representation of such
a line L = L(ϕ) is

u(t) = λ%2 + tp , v(t) = µ%2 + tq (10)

where p = cosϕ, q = sinϕ with the angle ϕ denot-
ing the direction of the line, and t is a real parameter
which also determines an orientation of L.

We are interested in the total weight w(ϕ) of the
density of values u within the half-plane on the right
side of L(ϕ). The half-space depth of µ is propor-
tional to the minimum of w(ϕ) for ϕ ∈ [0, 2π].
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The lineL is mapped to some curveC in the (x, y)
plane by the inverse function u 7→ x from (8), (9).
Then, w(ϕ) is proportional to the area of the part of
D% that lies on the right side of C. We will there-
fore study in the following the part of C within D%.
For sufficiently small %, this is a curve segment cor-
responding to a parameter interval [t−, t+] for t, with
t± = O(%).

We calculate a parametric representation of C by
inserting (10) into (8), (9) to obtain

x(t)
.
= λ%2 + tp− at2p2 − bt2q2 − ct2pq , (11)

y(t)
.
= µ%2 + tq − dt2p2 − et2q2 − ft2pq . (12)

By easy estimates, one has t± .
= ±% + r±%2 with

r± = O(1). Thus, the intersection points x+ =
(x(t+), y(t+))T, x− = (x(t−), y(t−))T of C with
the boundary of D% are given by

x± .
= ±%

(
p
q

)
+ %2η± , (13)

η± =

(
λ+ r±p− ap2 − bq2 − cpq
µ+ r±q − dp2 − eq2 − fpq

)
. (14)

As x± are to lie on the boundary of D%, we have
for their Euclidean norms |x±| that |x±|2 = %2. By
p2 + q2 = 1, this implies 〈(p, q)T,η±〉 = O(%) and
thus r± = r +O(%) and η± = η +O(%) with

r = ap3 + (c+ d)p2q + (b+ f)pq2 + eq3 , (15)

η =




λ+ ap4

+(c+ d)p3q + (b+ f)p2q2 + epq3

−(λp+ µq)p− ap2 − bq2 − cpq
µ+ ap3q
+(c+ d)p2q2 + (b+ f)pq3 + eq4

−(λp+ µq)q − dp2 − eq2 − fpq



. (16)

From (14) it is evident that the intersection points x±

differ from the intersection points ±%2(p, q)T of the
diameter δϕ of D% in direction ϕ with the boundary
ofD% just by an offset %2η+O(%3). The component
of this offset perpendicular to δϕ is

〈%2η, (−q, p)T〉 = %2
(
µp− λq − dp3

+ (a− f)p2q + (c− e)pq2 + bq3
)
. (17)

Up to higher order terms O(%3), the entire curve C
is approximated by a parabola over the diameter δϕ
with height h(t) = %2(µp − λq) + t2

(
−dp3 + (a −

f)p2q+ (c− e)pq2 + bq3
)

for t ∈ [t−, t+]. The area
on the right of C (i.e., below C) differs from that of

the half-disc below the diameter δϕ by

∆(ϕ) =

∫ t+

t−
h(t) +O(%3) dt

= 2%3(µp− λq) + 4
3%

3
(
−dp3 + (a− f)p2q

+ (c− e)pq2 + bq3
)

+O(%4) . (18)

The half-space depth of µ is proportional to the min-
imum of π%2/2 + ∆(ϕ) for ϕ ∈ [0, 2π].

The sought half-space median is therefore given
by those λ, µ for which the minimum of ∆(ϕ) is
largest. It can be proven that the minimum of ∆(ϕ)
differs only by higher-order terms w.r.t. % from that
of

∆̃(ϕ) =
(
3µ− 3

4d+ 1
4(c− e)

)
cosϕ

+
(
−3λ+ 1

4(a− f) + 3
4b
)

sinϕ

+
(
−1

4d− 1
4(c− e)

)
cos(3ϕ)

+
(
1
4(a− f)− 1

4b
)

sin(3ϕ) (19)

where we have inserted p = cosϕ, q = sinϕ,
and addition theorems. This function is the super-
position of a shifted 2π-periodic sine function (com-
bining the cosϕ, sinϕ contributions) and a shifted
2π/3-periodic sine function (combining the cos(3ϕ),
sin(3ϕ) contributions). Moreover, ∆̃ is an odd func-
tion, such that is maximum and minimum are of
equal magnitude and opposite sign. Since only the
2π-periodic part of ∆̃ depends on λ, µ, it is easy to
see that the amplitude of ∆̃ is minimised (and thus
the minimum is maximised) if and only if λ, µ are
chosen such that the 2π-periodic contribution van-
ishes. Again, the neglection of higher order terms
in ∆(ϕ) above entails only a higher-order error in λ,
µ. Therefore, the sought median is determined up to
higher order terms by

λ = a
12 + b

4 −
f
12 , µ = d

4 + e
12 − c

12 (20)

from which the claim of the lemma follows by virtue
of a = uxx/2, b = uyy/2, c = uxy, d = vxx/2,
e = vyy/2, f = vxy. �

Proof of Proposition 1. The transfer of the lemma
to the general geometric situation of the proposition
is analogous to [14, Sect. 3.1.2]. It relies on the ob-
servation that for any regular point x ∈ Ω , trans-
forming the values u in its neighbourhood via the
affine transform û = (Du(x))−1u leads to a trans-
formed function û with Dû = diag(1, 1) as required
by the lemma. Due to the affine equivariance of the
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half-space median, the median of û yields the me-
dian of the original data by the inverse transform. As
the PDE system of Lemma 2 is identical to that for
the Oja median in [14], the calculations from [14,
Eqs. (25)–(26)] for the transform step apply verba-
tim, and yield the claim of our proposition. �

4. Summary and Outlook

In this work, we have studied the continuous limit
of half-space median filtering, one of the possible
generalisations of median filtering of grey-value im-
ages to multi-channel images, in the bivariate case.
We have proven a result already conjectured in [15]
stating the approximation of a particular PDE by this
filter. The result is embedded in the context of pre-
vious work on PDE approximation by multivariate
median filters, see [14], and is a step on the way to
a deeper understanding of multivariate median filters
for signals and images.

An interesting fact is that despite clear differences
in the practical outcome of the corresponding filters
on discrete images (see Figure 1), the affine equiv-
ariant Oja median and half-space median filter ap-
proximate the same PDE. This indicates that they can
be seen as different discrete realisations of one un-
derlying fundamental multivariate median filter, de-
spite the substantial differences in their underlying
discrete concepts (see the discussion in [15]).

As mentioned earlier, the focus of our work was
in the theoretical domain. Further study of the prac-
tical applicability of half-space median filtering is a
subject of ongoing work. In particular, algorithmic
efficiency issues will require further investigation.
Moreover, bivariate images as considered here are
a rare exception in practice (with two-dimensional
optic flow fields being the most relevant case, see
[14]). A much greater role is played by images with
three (such as RGB colour images or tensor fields in
two dimensions) or even more channels (multispec-
tral images, tensor fields in three dimensions). Ex-
tension of the theoretical investigation to three and
more channels is therefore another important goal for
future research.
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