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Abstract. Precise thickness measurements of retinal
layers are crucial to decide whether the subject re-
quires subsequent treatment. As optical coherence
tomography (OCT) is becoming a standard imaging
method in hospitals, the amount of retinal scans in-
creases rapidly, automated segmentation algorithms
are getting deployed, and methods to assess their
performance are in demand.

In this work we propose a semi-supervised frame-
work to detect incorrectly segmented OCT retina
scans: ground-truth segmentations are (1) embed-
ded in 2D feature space and (2) used to train an out-
lier scoring function and the corresponding decision
boundary.

We evaluate a selection of five outlier detection
methods and find the results to be a promising start-
ing point to address the given problem. While this
work and results are centred around one concrete
segmentation algorithm we sketch the possibilities of
how the framework can be generalized for more re-
cent or more precise segmentation methods.

1. Introduction

It is known that frequent eye screening helps to
early-diagnose the diabetic macular edema (DME)
[14] and therefore raises the effectiveness of needed
treatments. Additionally, the number of age-related
macular degeneration (AMD) patients is increasing,
because of ageing population [9], as well as those
suffering from DME due to the rising number of dia-
betes cases. OCT technology is nowadays minimally
invasive, very fast, and therefore widely spread, so
that a large number of OCT scans needs to be pre-
processed automatically. Ophthalmological depart-
ments are developing or deploying systems to deal
with the large amount of OCT data produced. One
such instance to segment retinal layers from OCT

scans is based on the work [5]. While accurate in
most of cases, the method occasionally exhibits im-
perfections. An improvement is desirable, as the cor-
rect segmentation is essential for further automatic
evaluation of OCT scans. This is because the thick-
ness of the retinal layers is highly related to the pres-
ence of diseases, like AMD or DME [5]. They are
caused by intraretinal and subretinal fluids, leading
to a swelling of the retinal layers [10], exerting pres-
sure on the light-receptors damaging them and thus
eyesight.

Imperfections in segmentation can be caused by
different reasons such as bad contrast of parts of the
scan, noise, artefacts or an unsupported edge-case of
the segmentation algorithm.

This work aims to support the identification of in-
correctly segmented OCT scans with a two-fold pur-
pose in mind. First, it is of interest to increase the
trust of ophthalmologists in the algorithm by flag-
ging segmentations that may potentially require man-
ual inspection. Second, to improve segmentation al-
gorithms, it is desirable to automatically identify in-
correct segmentations of previously unseen scans and
focus on improvements for such cases.

2. Dataset

A set of 100 OCT scans, each accompanied with
both manual ground truth (GT) and algorithmic (A)
segmentation [5] have been provided for this study.
Each OCT scan is a stack of 200 1024 × 200 gray
scale images. Both the ground truth and the algorith-
mic segmentation are available as slice-wise bound-
aries of 13 retina layers. Figure 1 shows boundary
examples of the first retina layer (L1). There is no
expert assessment available on whether the algorith-
mic segmentations are accepted as correct or not.

For legal issues, this dataset is currently unavail-
able for public use.
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Figure 1: Three examples (scans 1, 2, and 5) of ground truth (left) and incorrect algorithmic (right) segmenta-
tions of the first retina layer (L1) in mid-stack slices.

3. Method

In order to identify incorrectly segmented OCT
scans we suggest in section 3.1 to embed the segmen-
tation results in as few dimensions as possible. While
this is certainly motivated by curse of dimensionality
it is additionally motivated by an increase of inter-
pretability – ophthalmologists may desire to visually
relate a particular case to cases inspected previously.

Methods of outlier detection can be divided in
three branches [6]. Supervised classification, when
both inliers and outliers are labeled and in balance;
unsupervised when training data of both inliers and
outliers are unlabeled; and semi-supervised when
training data consists only of observations describ-
ing normal behavior. In section 3.2 we follow semi-
supervised methods for the following reasons. First,
there is no assessment of algorithmic segmentations
available and we only can roughly estimate the class
based on some metric (e.g., the Dice coefficient).
Second, the outlier class (wrong segmentations) is
expected to be under-represented. Third, it is likely
there are several sources of segmentation error which
could map to low-density clusters. We aim to detect
outliers in low-density regions, too. We model the
distribution of the inliers (correct segmentation) and
compare the test points to this distribution.

3.1. Area curves and their representation

While for each retinal layer a list of region proper-
ties can be thought of, for sake of interpretability the
slice-wise area values are of special interest. Further-

more, the focus of this work was restricted to layer 1.
This decision is based on the observation that a seg-
mentation error in L1 layer propagates to subsequent
layers while correct L1 segmentations tend to corre-
late with correctly segmented scans.

For each segmented OCT, we introduce the vector
a = [a0, . . . , a199]

> of layer-1 area values and refer
to is as the area curve. Examples of how area curves
look like for both ground truth and algorithmic seg-
mentations are given in figure 2.

Looking at the (orange) area curves calculated
from the algorithmic segmentation, which are of the
main interest, two types of shape appear: Those ex-
hibiting a maximum (cf., scan 1, 2 or 5 of figure 2),
or a minimum (cf. scan 0) around the middle of the
slices.

In healthy eyes, the layers get thinner around the
cavity of the fovea [11], causing the area curves to
exhibit a global minimum and tend to be convex. The
first hypothesis about the curves with dominant con-
cave bumps therefore was that they may correspond
to pathologies where fluid intruded into the retinal
layers and caused them to thicken.

Closer inspection of the corresponding scans and
a comparison to the (blue) GT area curves, however,
quickly disproved this hypothesis and revealed that
the concave bumps tend to correspond to failures in
segmentation. Further investigations revealed that
the issue of a too thick segmented layer 1 appeared
in all scans that exhibit a global maximum in the area
curve or tend do be concave.
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Figure 2: Examples of area curves resulting from ground truth (blue) and algorithmic (orange) segmentations.
Scan 0 is an example of correct segmentation, the remaining three cases (scans 1, 2, 5) correspond to incorrect
segmentations shown in figure 1.

3.1.1 Curve Embedding

To grasp the convex-vs-concave nature of the area
curves and to embed them in a lower dimensional
space we chose to approximate them by second or-
der polynomials a(x;w) ≈ w0 + w1x + w2x

2 and
to represent them by the three regression coefficients
wi.

Following [3] the regression coefficients w =
[w0, w1, w2]

> for each area curve are calculated by
means of regularized least-squares, i.e, by solving
w = (λI+Φ>Φ)−1Φ>a, where λ is the regulariza-
tion term, I the 3× 3 identity matrix, Φ the 200× 3
design matrix with rows [1, x, x2], and x indexes the
slices x ∈ {0..199}.

The optimal regularization coefficient was deter-
mined close to zero λ ≈ 0, which can be explained
by the fact that fitting a low-grade polynomial to 200
values does not suffer from overfitting. This reduces
the curve fitting to ordinary least squares, i.e., mul-
tiplication of the area curve vector by the psuedoin-
verse of the design matrix: w = (Φ>Φ)−1Φ>a =
Φ†a.

3.1.2 Regression Coefficients

Regression coefficients corresponding to all 100
ground truth (blue) as well as algorithmic (orange)
segmentations are scatter-plotted in the first row of
figure 3. Its second row shows the three correspond-
ing kernel density estimation (KDE) plots.

The twow0 KDE plots indicate very similar distri-
butions and therefore the w0 coefficients do not seem
to be discriminative.

The too-thick segmented layers are mapped to
concave area curves. Therefore, the distribution of
w2 coefficients is of special interest, as they are re-
sponsible for the positive/negative curvature of the
polynomials. Looking at the KDE plot of w2 coef-
ficients, there is a high peek from the ground truth
coefficients between 0 and 0.5, showing that there
are almost no negative w2 coefficients. Therefore the
assumption that ground truth curves tend to exhibit
convexity (positive curvature) holds. In contrast, the
orange KDE resulting from algorithm segmentations
is more flat in the GT area and also exhibits a minor
peek around -0.5. This indicates the presence of a
cluster of negative w2 values, which corresponds to
concave area curves. This distribution can be con-
firmed looking at scatter plots including w2. For
example in the w1–w2 plot there is a (blue) clus-
ter formed by ground truth coefficients while several
negative w2 algorithm coefficients are scattered out-
side of it.

Interestingly the w1 coefficients exhibit a very
similar behaviour to the w2 coefficients: almost no
positive w1 GT coefficients and a tendency to bi-
modal distribution of the algorithm ones forming a
small peek around value of 100.

The highly correlated coefficients w1 and w2 en-
courage for further dimensionality reduction. Indeed,
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Figure 3: Scatter and kernel density estimation plots of the L1-area curve regression coefficients. The blue and
orange dots/curves correspond to the respective coefficients of ground truth and algorithmic segmentation.

an interactive 3D scatter plot revealed the points
close to a 2D linear manifold embedded in three
dimensions. Projection of both ground-truth and
algorithm-segmentation coefficients onto the first
two PCA eigenvectors yields 2D scatter plot shown
in the left part of figure 4.

In the following the problem of identifying incor-
rect segmentations is thus cast to outlier detection in
a 2D feature space.

3.2. Outlier Detection Using Projected Regression
Coefficients

Our approach to outlier detection is a semi-
supervised one: we reuse the ground-truth coeffi-
cients to fit a model that represents the expected seg-
mentation behavior. Subsequently the likelihood of
an algorithmic segmentation to be generated by the
learned model is tested.

While there is a broad spectrum of methods for
outlier (novelty) detection, we show a digest of 5 al-
gorithms resulting from our experiments and discuss
their performance.

Feature Bagging (FB) [7] fits several base detec-
tors on sub-samples of the dataset and use aver-

aging to combat over-fitting. We used the LOF
(see below) as the base detector.

Nearest Neighbors (KNN) [2] the distance of the
sample to its most distant k-th neighbor is used
as the outlier score. We set k = 5.

Local Outlier Factor (LOF) [4] Samples with
much lower local density than their neighbors
are declared as the outliers. The local density
was estimated by 20 nearest neighbors.

Minimum Covariance Determinant (MCD) [12]
fits the minimum covariance determinant model
to the data. The outlier-ness of a sample is
proportional to its Mahalanobis distance.

One-class SVM (OCSVM) introduced in [13] aims
to find a smooth boundary modelling a user-
specified probability that randomly drawn point
will land outside.

4. Results and Discussion

To evaluate the outlier detectors quantitatively, no-
tion of positives (incorrect segmentation) and nega-
tives is necessary for the test data, i.e. for algorithmic
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segmentations. As this information was not present
we chose to disambiguate the two classes by setting
a Dice coefficient threshold. To figure out a suffi-
ciently high Dice threshold we refer to the score-vs-
dice scatter plot in the middle column of figure 4.
Here the blue margin corresponds to the ground-truth
region, proposed by the detector. The orange clus-
ter within this margin then corresponds to true neg-
atives (correct segmentations), and suggests the dice
threshold of 0.87.

Figure 4 shows three plots for each of the five
methods. In the following its columns are described
in detail.

Left column: in addition to feature scatter plot the
decision boundary and the scoring function of the re-
spective detector are shown. In the following texts
the orange test points falling outside the blue region
will be referred to as the positives, points inside the
blue region as the negatives.

Middle column shows scatter plots of Dice vs out-
lier scores. The horizontal line is the Dice thresh-
old. The vertical lines are the thresholds of the scor-
ing function proposed by the respective algorithms.
The four quadrants correspond to TNs, FPs, FNs, and
TPs, respectively. These four numbers are typeset in
the top center of the plot and the recalls and preci-
sions computed thereof are displayed in the titles.

Right column shows the ROC and Precision-
Recall curves corresponding to the possible thresh-
olds in the scoring function. The areas under these
curves are abbreviated by auROC and auPR, respec-
tively, and are displayed in the title.

The performance numbers are summarized in Ta-
ble 1. In terms of precision, the areas under ROC and
PR, the kNN seems to be the method of choice. How-
ever, the OCSVM wins in term of recall, because of
its steep narrow margin which determines the outlier
score. While LOF and FB are of lower recall, they
are less over-fitted than earlier two, and we can ob-
serve an improvement when an ensemble of LOFs
is aggregated into the FB. The MCD is easily inter-
pretable but unfortunately not performing well.

Looking at the result of the well-fitting OCSVM,
there are four FNs with a low Dice coefficient. In-
vestigation on these revealed that such cases indeed
might appear, because the area curves of the ground
truth do not show a minimum around the middle of
the slices, but have a nearly a rising shape. While
the segmentation algorithm did not perform well on
these scans, it still exhibits a convex fit to the area

method Rec. Prec. auROC auPR
FB 0.73 0.95 0.96 0.93
KNN 0.77 1.00 0.97 0.94
LOF 0.65 0.89 0.96 0.91
MCD 0.54 0.88 0.95 0.87
OCSVM 0.85 0.92 0.88 0.89

Table 1: Summary of results

curve.
Analyzing the two false positives, one of them ap-

peared close to the OCSVM boundary. The less over-
fitted detectors (e.g the MCD), however, have classi-
fied this point correctly. The second false positive
was a FP in all methods, except for the KNN. This
could be because the ground truth data again shows
an unusual shape: in contrast to the other ground
truth shapes it starts with a high maximum, then falls
down, but does not rise up again. There are few addi-
tional ground truth curves having this kind of shape
which we consider unusual. When the segmentation
algorithm yields such a shape, it is more likely to be
a wrong segmentation.

Whether an ROC curve should be used to assess an
outlier detector depends on the imbalance of the test
set. In the current setting, the segmentation algorithm
[5] does not seem to be mature enough as it pro-
duces around 25 percent of incorrect segmentation.
As more reliable segmentation methods will be de-
veloped, the test set becomes increasingly more im-
balanced and the validation by ROC and its area will
have to be replaced by the precision-recall curves.

5. Conclusion and Future Work

We proposed a semi-supervised method to detect
incorrectly segmented OCT retina scans: ground-
truth segmentations are used, after feature extraction
and projection to 2D, to train the decision bound-
ary and the outlier scoring function. This function is
subsequently used to flag the incorrectly segmented
scans.

We evaluated a selection of five outlier detection
methods and find the results to be a promising start-
ing point to address the given problem.

While in this work the data-pipeline components
are tailored to a specific segmentation algorithm and
its pitfalls, we would like to sketch how the presented
approach can be generalized. Firstly, higher-degree
polynomials (i.e., more regression coefficients) could
be used if it turns out that the segmentations can not
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be discriminated by the concave/convex shapes. Sec-
ondly, we concentrated only on description of layer
1, as imperfections in its segmentation propagated to
subsequent layers. As the segmentation algorithms
mature, descriptors of remaining layers could be in-
corporated. With an increased number of features,
the ensemble-based detectors (FB in this work) may
improve in their performance. Finally, after the seg-
mentation algorithms become very advanced, it may
turn out that the area-related descriptors loose their
discriminative power and a need for completely new
set descriptors may arise. In the proposed semi-
supervised framework, the manually crafted features
can be replaced by ones proposed by auto-encoders
[1] or generative adversarial neural networks [8].
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Figure 4: Selected outlier detectors and their performance on test set, i.e., the segmentation results of the
algorithm.
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