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Nonequilibrium Green’s functions and their relation to the negative differential
conductance in the interacting resonant level model
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We evaluate the nonequilibrium single-particle Green’s functions in the steady state of the interacting resonant
level model (IRLM) under the effect of an applied bias voltage. Employing the so-called auxiliary master
equation approach, we present accurate nonperturbative results for the nonequilibrium spectral and effective
distribution functions, as well as for the current-voltage characteristics. We find a drastic change of these spectral
properties between the regimes of low- and high-bias voltages and discuss the relation of these changes to the
negative differential conductance (NDC), a prominent feature in the nonequilibrium IRLM. The anomalous
evolution of the effective distribution function next to the impurity shown by our calculations suggests a
mechanism whereby the impurity gets effectively decoupled from the leads at voltages where the NDC sets
in, in agreement with previous renormalization group approaches. This scenario is qualitatively confirmed by a
Hartree-Fock treatment of the model.
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I. INTRODUCTION

Transport through nanodevices such as molecular junc-
tions or quantum dots has become of great interest in the
past due to the potential application of these systems as
new types of electronic components [1,2]. Generically, the
working principle of such components is entailed in their
current-voltage (I-V ) characteristic. In some situations this
can display nonmonotonic behavior, usually referred to as
negative differential conductance (NDC), a peculiar effect
that is intriguing by itself but also most useful in potential
applications [3–7]. Therefore, a thorough understanding of the
NDC is highly desirable.

A prototypical model exhibiting a NDC is the so-called
interacting resonant level model (IRLM), a simplistic model
featuring a two-level quantum dot connected to leads used
to study the interplay of quantum fluctuations and electronic
correlations in the setting of quantum impurity problems.
Introduced by Vigman and Finkelstein [8] in the (equilibrium)
context of the Kondo problem, the IRLM in nonequilibrium
has received increasing attention over the last decade after the
discovery of an analytic expression for the I-V characteristic
[9] in the so-called scaling regime and for a special value of
the interaction, referred to as the self-dual point of the IRLM.

Previous works on the IRLM in nonequilibrium extended
the analytic treatment of the self-dual point [10], consider-
ing also higher-order statistics of charge transport [11,12],
and provided further validation by numerical treatments of
increasing accuracy [13]. Away from the self-dual point,
Perfetto et al. [14] studied the transport properties of the
IRLM employing nonequilibrium Green’s functions (NEGFs)
focusing on the effect of long-range interactions. In addi-
tion, a perturbative treatment within NEGF [15] as well as
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renormalization group (RG) approaches [16,17], valid for
weak interactions, provide further insight for small interac-
tions. In particular, it is found that the NDC within RG
arises due to a renormalization of the hopping rate into the
leads which gets suppressed for higher voltages [18–20]. In
contrast, less is known about the physical mechanism of the
NDC at the self-dual point, i.e., for intermediate values of
the interaction. Related to the NDC, but also very interesting
in itself, is the spectral function of the IRLM which in equi-
librium was numerically studied by Braun and Schmitteckert
[21] but, to our knowledge, has not been considered so far in a
nonequilibrium situation within a nonperturbative treatment.

In this paper, we evaluate NEGF of the IRLM in order
to investigate their connection with the NDC and how the
spectral and effective distribution functions evolve in terms of
the bias voltage. Our results are obtained within the so-called
auxiliary master equation approach (AMEA), a numerical
method to treat nonequilibrium quantum impurity problems
and evaluate their NEGF with considerable accuracy. For
simplicity, our calculations refer to the self-dual point, but
can be readily carried out for other values of the interaction.
Finally, we complement our discussion of the AMEA results
with a Hartree-Fock (HF) treatment in order to help with the
interpretation.

We find that in the regime of the NDC, the spectral function
evolves from a peak at finite frequencies into a dominant
central peak and that the NDC can be traced back to the
behavior of the effective distribution functions on the first lead
sites. We interpret this behavior as an effective decoupling of
the impurity from the leads, which is confirmed from the HF
calculations.

II. MODEL AND METHOD

A. Model

The IRLM is a well-known impurity model of spin-
less fermions. It features an impurity site connected to two
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FIG. 1. A sketch of the IRLM as a lattice model and its mapping
to the auxiliary open quantum system used within AMEA.

semi-infinite tight-binding chains together with a density-
density interaction term coupling the impurity site to the
neighboring chain sites (see Fig. 1). The Hamiltonian is
defined as

HIRLM = HL + HR + Hdot,

HL = − J
−2∑

r=−∞
c†

r cr+1 + H.c.,

HR = − J
+∞∑
r=1

c†
r cr+1 + H.c.,

Hdot = − J ′
r=0∑

r=−1

c†
r cr+1 + H.c.

+ U
∑
r=±1

(
c†

r cr − 1

2

)(
c†

0c0 − 1

2

)
, (1)

where c†
r /cr denote the fermionic creation/annihilation op-

erators at site r. Here, HL/R describe the semi-infinite tight-
binding chains and Hdot introduces the hopping to the impurity
as well as the interaction term. A nonequilibrium steady state
situation is induced in the system via an applied bias voltage
V simulated by shifting the chemical potentials of the leads
symmetrically, that is, μl = −μr = V

2 . We use J as the unit
of energy and work in units where h̄ = e = kB = 1.

The continuum limit and the scaling regime of the IRLM
Here, we want to summarize some well-known facts about

the IRLM in the so-called scaling regime, which are important
for the present work. A nice overview in the nonequilibrium
context can be found in the recent works [8,9,12,13] and
references therein.

When the bandwidth of the leads, W = 4J , is the dominant
energy scale in the system, the lattice model [Eq. (1)] becomes
equivalent to its continuum limit [22], allowing for a field
theoretic description. In this scaling regime of the IRLM, the
physics becomes universal with the emergence of a Kondo
energy scale TB ∼ (J ′)

4
3 . The constant of proportionality is the

lattice regularization of the corresponding field theory relating
results from the continuum limit to the lattice model.

The continuum model can be solved analytically for the
special value of the interaction U ∗

c = π , which corresponds
to U ∗

lat
∼= 2 in the lattice model, where the IRLM exhibits

a certain self-duality. Most notably, there is a closed form

FIG. 2. Current-voltage characteristic of the IRLM for two dif-
ferent hybridization strengths J ′ = 0.5 (blue circles) and J ′ = 0.2
(red squares). We display the analytic solution at T = 0 (solid lines),
the extrapolated, formally L → ∞, AMEA data from Ref. [31]
(solid symbols), and the AMEA current in the L = 13 system (open
symbols).

expression for the steady state current at T = 0,

I (V ) = V

2π
2F3

[{
5

6
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}
,
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}
; −

(
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]
, (2)

with Vc = c(J ′)
4
3 , where c ≈ 3.2 [23] and 2F3(a, b; z) is the

generalized hypergeometric function [24]. From Eq. (2), it
immediately follows that I/V = f (V/Vc) depends only on the
rescaled voltage and thus has a universal form set by the
energy scale TB. As is best seen by expanding the hyperge-
ometric function up to leading order,

I (V � Vc) ≈ V

2π

[
1 − 24

170

(
V

Vc

)6

+ O

(
V

Vc

)12
]
, (3)

the current is linear for small voltages V < Vc. The most
prominent feature of the current arises for V > Vc where
the model exhibits a negative differential conductance (see
Fig. 2).

B. Method

In this paper, we use the auxiliary master equation ap-
proach (AMEA) [25–27] to investigate the IRLM under the
influence of an applied bias voltage. AMEA is a method to
treat nonequilibrium correlated impurity problems which is
particularly efficient to target the steady state. It is based
upon mapping the noninteracting bath onto an auxiliary open
quantum system whose dynamics is described by the Lindblad
equation. This mapping becomes exponentially accurate by
increasing the number of sites in this auxiliary system. This
open quantum system effectively mimics a system with infi-
nite volume, so that one can reliably reach the steady state.
Correlation functions are then obtained by time evolution of
the many-body density matrix starting from the steady state.

The dynamics of the auxiliary open quantum system can
be solved numerically exact by available approaches. Here,
we employ the so-called stochastic wave functions [28–30],
whose application to AMEA is presented in Ref. [31]. Within
the mapping, the central interacting region |r| � 1 described
by Hdot (cf. Fig. 1) remains unchanged [32]. In total, the
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auxiliary open quantum system thus consists of L = 3 + 2NB

sites, where NB denotes the number of auxiliary dissipative
bath levels used to replace the left (right) semi-infinite leads.
For details, we refer to previous publications [25–27,31].

Steady-state current

The current Ir,r+1 across a bond connecting site r and
r + 1, which is clearly independent of r in the steady state,
can be expressed within the Keldysh Green’s function (GF)
formalism as [33]

Ir,r+1 = t2
r,r+1

∫
dω

2π
Re j(ω),

j(ω) = GR
rr (ω)gK

r+1,r+1(ω) + GK
rr (ω)gA

r+1,r+1(ω), (4)

provided the interaction self-energy is zero across the bond.
Here, a capital Gr,r (ω) denotes the local GF of the full system,
while the lower case gr,r (ω) is the one when the system is
disconnected at the bond connecting the sites r and r + 1. A
convenient choice is the bond from one noninteracting bath to
the interacting region, i.e., r = −2 to r = −1.

In equilibrium, V = 0, the Keldysh and retarded GF are
not independent and connected by the fluctuation-dissipation
theorem, which for the GFs appearing in Eq. (4) reads

Im GK
rr′ (ω) = 2[1 − 2 f (ω)]Im GR

rr′ (ω),

where f (ω) denotes the Fermi-Dirac distribution function.
In analogy, one can define an effective local nonequilibrium
energy distribution function f̃r (ω) via the relation (cf. also,
e.g., Refs. [34–38])

Im GK
rr (ω) = 2[1 − 2 f̃r (ω)]Im GR

rr (ω), (5)

which by definition reduces back to the Fermi function in an
equilibrium situation. With Eq. (5), we can express the current
from the left lead into the central region as [39]

IL(V ) ≡ I−2,−1 = 2π (J )2
∫

dωA−1(ω;V )ATB(ω)

× [ fL(ω;V ) − f̃−1(ω;V )], (6)

where Ar ≡ − 1
π

Im GR
rr is the local density of states, ATB(ω)

denotes the density of states (DOS) of the disconnected left
lead, that is, the DOS of a semi-infinite tight-binding chain,
and fL is the Fermi function of the left lead. Here, for
convenience, we have indicated any possible dependence on
the bias voltage. In Eq. (6), the frequency integrand con-
tains the difference between the effective distribution function
at the first correlated site r = −1 and the one deep into the left
lead weighted with the corresponding DOS.

III. RESULTS

In this section, we present results for the nonequilibrium
spectral properties of the IRLM. We are not aware of previous
numerically accurate results for the nonequilibrium Green’s
function of this model from the literature. We consider the
self-dual point U = 2 and compute results for two different
values of the hybridization strength J ′ = 0.2 and J ′ = 0.5
at a finite temperature T = 0.025. The size of the auxiliary
system, which controls the accuracy of the bath hybridization

FIG. 3. Local density of states at the impurity site, r = 0, for dif-
ferent bias voltages. (a) J ′ = 0.2 and (b) J ′ = 0.5. Other parameters:
T = 0.025 and U = 2. The insets show a zoom around the peak at
ω = 2 and its appearing satellite at ω = 2 ± V/2.

function (see Refs. [26,27]) is fixed to L = 13. Both the steady
state as well as the Green’s functions are obtained by time
evolution by stochastic wave functions (see Ref. [31] for
technical details). In order to illustrate the accuracy of the
approach, we first plot the steady state current as a function of
the bias voltage in Fig. 2. Specifically, we compare data from
the present L = 13 auxiliary-system calculation with the ones
of the more accurate approach of Ref. [31], where the current
is obtained via an extrapolation for values of L up to L = 19.
The analytic solution of the continuum model at T = 0 is also
shown for comparison. In this paper, we use smaller values
of L because a full Green’s function calculation for L = 19
would be computationally too expensive. These results show
that also L = 13 provides quite accurate results [40] and, in
particular, reproduces the NDC.

A. Spectral properties at the central impurity site

Figure 3 shows the density of states at the impurity site,
r = 0, for different bias voltages [41]. The equilibrium (V =
0) system is characterized by a pronounced peak at ω =
2. Upon increasing the bias voltage, the spectral weight is
removed from the ω ≈ 2 in favor of a second peak at zero fre-
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FIG. 4. Distribution function at the central impurity site for dif-
ferent bias voltages. Parameters are as in Fig. 3. The nonsmoothness
of the curves is due to the statistical error of the stochastic wave-
functions (SWF) approach, which gets amplified for the effective dis-
tribution function as this is given by the ratio two Green’s functions.
For V = 0, we observe deviations from the expected Fermi function
(see Sec. II B). It is a consequence of the fact that AMEA only
reproduces approximately the lead hybridization functions including
their occupation. This is improved exponentially upon increasing the
size L of the auxiliary system.

quency, which quickly becomes dominant for large bias volt-
ages. At the same time, the equilibrium resonance develops
sidebands at ω = 2 ± V/2. This effect is more pronounced
for the case of low J ′ = 0.2 since a stronger J ′ broadens all
peak features. At large voltages, V � 3.2 for J ′ = 0.2, the left
satellite merges with the central peak.

Out of equilibrium the fermionic effective distribution
function obviously deviates from the Fermi-Dirac distribu-
tion and acquires an anomalous, position-dependent shape.
In Fig. 4, we plot the effective distribution function, f̃r (ω)
defined in Eq. (5), at the impurity site, r = 0, for different
bias voltages. We find that the latter is dominated by a
double Fermi step, 2 f̃r=0(ω) = fL(ω) + fR(ω), for small bias
voltages and drastically changes its shape for bias voltages
where the NDC sets in.

FIG. 5. Local density of states for different bias voltages at site
r = −1. Parameters are the same as in Fig. 3.

B. Sites next to the impurity (r = ±1)
and relation with the current integrands

To make contact with the current integrands [Eq. (6)], we
now consider the spectral properties on the sites next to the
impurity (see also Sec. II B) [42]. Figure 5 displays the local
density of states for different bias voltages. It shows two
main peaks around ω = ±2 [43], and a featureless spectrum
in between. For both hybridization strengths, J ′ = 0.2 and
J ′ = 0.5, the peaks become sharper and higher with increasing
voltage. In addition, for J ′ = 0.5, spectral weight accumulates
for negative frequencies up to the lower band edge at ω = −2.

A more interesting behavior can be seen in the correspond-
ing effective distribution function for r = −1 presented in
Fig. 6. Similarly to the central impurity site, a double Fermi
step persists in the linear regime, while for higher-bias volt-
ages the effective distribution function becomes more similar
to the effective distribution function of the isolated left lead
for which all states for frequencies smaller than its chemical
potential μl are occupied. More specifically, the plateau in the
positive frequency region 0 < ω < μl rises in the regime of
the NDC.

To elucidate the effect of the bias-dependent spectral and
effective distribution functions on the current [cf. (6)], we
display in Fig. 7 for J ′ = 0.5 the difference in the effective
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FIG. 6. Same as Fig. 4 but for the site r = −1.

distribution functions entering Eq. (6) as well as the current
integrand [44] which can be seen to be dominated by the be-
havior of the effective distribution function. The difference of
the effective distribution functions has a Fermi-window form
of amplitude 1/2 for small voltages which is considerably
distorted in the NDC regime. For negative frequencies ω �
−1 the amplitude quickly vanishes due to the corresponding
states being filled at larger voltages (see Fig. 6), whereas
at positive frequencies, the amplitude gets suppressed with
increasing bias voltage which technically leads to the NDC.
Outside of the Fermi window the difference of the effective
distribution functions becomes slightly negative. One should
not overemphasize this negative region, since the negative
differential conductance does not depend on this [45].

IV. DISCUSSION AND INTERPRETATION
OF THE RESULTS

In order to understand the behavior of the spectral and
effective distribution functions presented above, we discuss
the probabilities of certain characteristic many-body config-
uration states on the correlated sites. These are displayed in
Fig. 8 and ranked according to their energy for zero voltage.
Notice that the configurations in each pair are related to each
other by a particle-hole+inversion (PHI) transformation [46]
and thus have the same probability. In addition, the states (IIa)
and (IIb) have the same probability at zero-bias voltage. The

FIG. 7. Difference of the effective distribution functions entering
the expression for the current [Eq. (6)] for different bias voltages.
The inset shows the overall integrand of Eq. (6), which is dominated
by the behavior of the effective distribution functions. We only
present the results for J ′ = 0.5. Other parameters and the label as
in Fig. 3. Note that the current integrand is identically zero outside
the bandwidth, |ω| > 2.

corresponding probability is given by the diagonal terms of
the reduced (many-body) steady state density matrix, which
is plotted in Fig. 9 as a function of the bias voltage.

One can see that the lowest-energy state, type (I), initially
slightly gains weight as the bias voltage is increased. This
occurs approximately until the point where the NDC sets
in. In the NDC regime, V > Vmax, the (I) state loses weight
and eventually crosses with the state (IIa) which becomes
the dominant state at high voltages. Further, the states of
type (IIa(b) ), which are degenerate in equilibrium, get their
degeneracy lifted by the bias voltage favoring the (IIa) state
since it is the one showing more occupation on the left in
accordance with the chemical potentials, μL > μR. On the
other hand, the weight of the highly suppressed high-energy
states (III) stays roughly constant for all bias voltages.

FIG. 8. Sketch of the eight different many-body configurations
of the interacting region Hdot. The ordering corresponds to their
respective weight in the zero-voltage case, where all states of type
(II) are equivalent. The arrows indicate the respective behavior for
growing bias voltages in the NDC regime. States are displayed in
PHI symmetric pairs.
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FIG. 9. Probabilities of the many-body configurations displayed
in Fig. 8 for J ′ = 0.2 (solid lines) and J ′ = 0.5 (dashed lines). The
markers on the x axis mark the voltages corresponding to the maxi-
mum of the current, Vmax(J ′ = 0.2) ≈ 0.5 and Vmax(J ′ = 0.5) ≈ 1.6.

A. Impurity spectral function

As discussed above, in equilibrium (V = 0), the configu-
ration (I) has a large overlap with the ground state. Adding a
particle at the impurity site to (I) leads to the state (III). Since
the energy difference, in the atomic limit J ′ = 0, between
these two states is �E = 2, this process can be associated
with the ω ≈ 2 resonance. The suppression of the ω = 2
resonance for higher voltages immediately follows from the
loss of the weight of the (I) state (cf. Fig. 9). It remains to
explain the development of the dominant central peak for high
voltages. In general, a resonance at zero frequency occurs
when two low-lying states differing by one particle, at the
corresponding site, are almost degenerate. This is the case for
the states of type (II). The development of the central peak
is then readily explained by the increased weight of the state
(IIa) at high-bias voltages.

B. Negative differential conductance

In Sec. III B, we discussed that on the level of NEGFs the
NDC at large voltage in the IRLM arises due to the effective
distribution function on the site next to impurity resembling
the Fermi function of the corresponding lead. This can be seen
as an effective decoupling of the impurity from the leads at
large bias voltage.

References [15,47] showed that the NDC in the IRLM is
already obtained at the Hartree-Fock (HF) level. Therefore, it
is interesting to investigate if the mechanism leading to the
NDC obtained from our results is qualitatively similar to the
one in the HF approximation.

FIG. 10. Scaled current as a function of scaled voltage for differ-
ent hybridization strengths 0.2 < J ′ < 0.5 (colored lines) obtained
within Hartree-Fock (HF) and the analytic solution, Eq. (2) (black
line). The inset shows the squared effective hopping amplitude |J |2
obtained within HF as a function of the rescaled bias voltage for
U = 2, T = 0, and different hybridization strengths J ′. The dashed
lines in the inset mark the squared bare hoppings J ′2.

C. Comparison with Hartree-Fock

We will not present the details of the HF calculations, but
we will only underline the connection to the AMEA results.
For an alternative discussion of the NDC arising already
within HF, we refer to the work of Vinkler-Aviv et al. [15].
Within HF for the particle-hole symmetric case, which we
are discussing in this paper, the Hamiltonian is the same as
the noninteracting one with the only exception that we have a
renormalized complex hopping between the central impurity
and the r = ±1 sites,

J ′ −→ J± = J ′ + U
〈
c†
±1c0

〉
HF

. (7)

The computation of the GFs can be taken from the U = 0
case, keeping in mind that the hopping J± is complex and
has to be determined self-consistently. It occurs that the local
NEGFs within HF depend only on |J |2 and the expression for
the distribution function on the site r = −1 has the form

f̃−1(ω;V ) = fL(ω;V ) + α(ω,V ) fR(ω;V )

1 + α(ω,V )
, (8)

where α(ω) depends on the bias voltage only through |J |2
and is proportional to |J |4 [48].

In Fig. 10, we display the (scaled) current and the squared
effective hopping amplitude as a function of the scaled bias
voltage within HF. The HF current is qualitatively the same as
in the exact solution, but instead of a smooth transition from
the linear regime to the NDC, it shows a cusp and a sudden
drop [49] at V/Vc ≈ 2. The drop in the current is accompanied
by a drop in the squared effective hopping, which becomes
small for voltages outside the linear regime. This behavior
of |J |2 can be interpreted as an effective decoupling of the

075139-6



NONEQUILIBRIUM GREEN’S FUNCTIONS AND THEIR … PHYSICAL REVIEW B 99, 075139 (2019)

impurity from the r = ±1 sites in the NDC regime, consistent
with the interpretation of the AMEA results.

In the regime in which |J |2 is small, i.e., large V , the
impurity is weakly coupled to the reservoirs. Its spectral
function thus consists of a single central peak. It follows
that the spectral function at site r = −1 will be given by
the DOS of a semi-infinite tight-binding chain. In addition,
from Eq. (8) it is clear that the effective distribution function
f̃−1(ω) will resemble the one of the left lead since α is
strongly suppressed. In the opposite case, when |J |2 is not
small, f̃−1(ω) will be close to a double Fermi step and the
spectral functions, independent of r, will resemble the DOS
of an infinite tight-binding chain. This means that A(HF)

−1 (ω)
changes between two different shapes in the large and small
V regions, in contrast to the AMEA results. Similar to the
AMEA results, the NDC within HF is also caused by the
change in the effective distribution function since the spectral
density A(HF)

−1 (ω) in the NDC regime has more spectral weight
inside the transport window compared to the solution just
before the cusp in the current.

V. SUMMARY AND CONCLUSION

We calculated the nonequilibrium single-particle Green’s
functions (GFs), as well as the (many-body) steady state
density matrix, of the interacting resonant level model (IRLM)
in the presence of an applied bias voltage employing the
auxiliary master equation approach (AMEA). We find devel-
opments of sidebands in the impurity spectral function which

transforms into a single peak at zero energy for high-bias
voltages in the regime of the negative differential conductance
(NDC). Further, on the level of the nonequilibrium spectral
and effective distribution functions, the negative differential
conductance in the IRLM arises due to the behavior of the
effective distribution functions at the sites next to the impu-
rity. In more detail, they feature a double Fermi step which
persists in the linear regime of the current and resemble their
equilibrium form of one separated lead for high-bias voltages
which we interpret as an effective decoupling of the system for
voltages in the NDC regime. Supplementing our results with
a Hartree-Fock (HF) treatment makes the decoupling explicit
and shows that the spectral features resulting in the NDC are
shared by both approaches.

In conclusion, our results suggest, in accordance with
previous results for small interactions, an effective decoupling
of the impurity from the leads as the origin of the NDC in the
IRLM also at the self-dual point.
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