

Geometric Image Processing in Remote Sensing

Lecture 2 – Mathematical Basics

Dr. Roland Perko WS 2020/2021

Unless otherw ise noted this work is licensed by Roland Perko under a <u>Creative Commons</u> <u>Attribution 4.0 International License</u>.

Lecture Overview

IG Institute of Geodesy

Ability to describe Newton's method and its applications

[Newton Methode und deren Anwendung beschreiben können]

Mathematical Notations

¤ Domains N, Z, R, C, H
¤ Numbers
$$x \in \mathbb{R}; x = \pi \approx 3.14159$$
 $i \in \mathbb{N}_0; i = 42$
¤ Vectors $v \in \mathbb{R}^n; v \in \mathbb{R}^2 = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a, b \end{bmatrix}^T$
¤ Matrices $M \in \mathbb{R}^{m \times n}; M \in \mathbb{R}^{2 \times 3} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$

lpha Functions $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

$$f : \mathbb{R}^2 \to \mathbb{R}$$
 with $f(x, y) = xy^2 + x - 1$

¤ Equation systems

$$F(\boldsymbol{x}) : \mathbb{R}^{m \times n} \to \mathbb{R}^n$$

$$F : \mathbb{R}^{2 \times 3} \to \mathbb{R}^3 \quad \text{with}$$

$$F_1(x, y) = xy^2 + 1$$

$$F_2(x, y) = x + y - 3$$

$$F_3(x, y) = x^2 + y - 2$$

Matrix Notation

$$x' = x \cos \alpha + y \sin \alpha$$
$$y' = -x \sin \alpha + y \cos \alpha$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$x' = \mathbf{R}(\alpha)x$$

Parameter Adjustment – Example

¤ Find a line that optimally fits the measured points

One equation per point

- $y_1 = a + bx_1 + r_1$
- $y_2 = a + bx_2 + r_2$

 $y_n = a + bx_n + r_n$

One equation per point

Parameter Adjustment – Example

¤ Find a line that optimally fits the measured points

Least Squares Adjustment

Least squares adjustment (over-determined system) Ц

Ax = b	equation system does not have a solution
$\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}=\boldsymbol{0}$	reformulate
$oldsymbol{r} = \min_{oldsymbol{x}} oldsymbol{A}oldsymbol{x} - oldsymbol{b} _2$	find best "solution" via least squares with residuals $m{r}$
$\widetilde{m{x}}=m{A}^+m{b}$	
$\boldsymbol{A}^+ = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$	pseudo inverse of $oldsymbol{A}$
$\widetilde{\boldsymbol{x}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$	

Could also be solved via Singular Value Decomposition (SVD) Ц

¤ Find an affine transformation between two 2D point sets

reference image

search image

IG Institute of Geodesy

affine transformation parameters

11

reference image

search image (registered)

search image

reference image

registered search image

Intervation Linearization of a function f(x) is the linear approximation of f(x) at a given point x_0

 \diamond Taylor expansion at x_0

$$T_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!} (x - x_{0})^{k} = f(x_{0}) + \frac{f'(x_{0})}{1!} (x - x_{0}) + \frac{f''(x_{0})}{2!} (x - x_{0})^{2} + \frac{f'''(x_{0})}{3!} (x - x_{0})^{3} + \cdots$$

$$f(x) \approx f(x_{0}) + f'(x_{0})(x - x_{0})$$

Linearization

Linearization

ifG

x Linearization of a multivariable function f(x, y) = f(x)

$$f(x,y) \approx f(x_0,y_0) + \frac{\partial f(x,y)}{\partial x} \Big|_{x_0,y_0} (x - x_0) + \frac{\partial f(x,y)}{\partial y} \Big|_{x_0,y_0} (y - y_0)$$

$$f(x) \approx f(x_0) + \nabla f|_{x_0} (x - x_0) \quad \text{with } \nabla \dots \text{ nabla operator} \qquad \nabla = \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}\right)$$

$$\int_{\frac{2}{y}} \int_{\frac{1}{y}} \int_{$$

Linearization – Example

function $f(x)=\sqrt{x}$

7

5

Х

 \bowtie Approximation near $x = x_0$

$$f(x) = \sqrt{x}$$
 and $\sqrt{4} = 2$
 $\sqrt{4.001} = ?$
linearization of $f(x)$ at $x = x_0$ yields

2.5

$$y(x) = f(x_0) + f'(x_0)(x - x_0) = \sqrt{x_0} + \frac{1}{2\sqrt{x_0}}(x - x_0)^{\frac{1}{0}} + \frac{1}{$$

$$x_0 = 4$$
 and $y(x) = 2 + \frac{x-4}{4}$ and $y(4.001) = 2.00025$

is very close to the real value $\sqrt{4.001} \approx 2.000249984$

G Institute of Geodesy

TU Graz

TU Graz

Graz

Graz

Graz

Newton's Method (from 1669)

IG Institute of Geodesy

Newton's Method

⊥ Linearization and Least Squares Adjustment

- Allows to solve non-linear equation systems
- $F(\boldsymbol{x}) = \boldsymbol{0} \dots$ non linear multivariable equation system
 - x_0 ... starting point
- $\begin{array}{ll} \varkappa \ \ \mbox{Linearization} \\ F({m x}+\Delta {m x}) \approx F({m x}) + {m J}_F({m x}) \Delta {m x} \end{array}$

¤ Iterate

$$egin{aligned} oldsymbol{J}_F(oldsymbol{x}_n) \Delta oldsymbol{x}_n + F(oldsymbol{x}_n) = oldsymbol{0} &
eq \mathbf{0} &
eq$$

Jacobian matrix

$$\boldsymbol{J}_{F}(\boldsymbol{a}) := \frac{\partial F}{\partial \boldsymbol{x}}(\boldsymbol{a}) = \left(\frac{\partial F_{i}}{\partial x_{j}}(\boldsymbol{a})\right)_{i,j} = \\ \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}}(\boldsymbol{a}) & \frac{\partial F_{1}}{\partial x_{2}}(\boldsymbol{a}) & \cdots & \frac{\partial F_{1}}{\partial x_{n}}(\boldsymbol{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial x_{1}}(\boldsymbol{a}) & \frac{\partial F_{m}}{\partial x_{2}}(\boldsymbol{a}) & \cdots & \frac{\partial F_{m}}{\partial x_{n}}(\boldsymbol{a}) \end{bmatrix}$$

Newton's Method – Algorithm

Algorithm 4.1: Solving non-linear equation systems with Newton's			
method.			
Input:			
1	non-linear equation system of form $F(x) = 0$		
2	and its Jacobian matrix I_{T}		
-	starting vector r_0		
3	Starting vector x_0		
4	maximal iterations // E.g., set to 20.		
5	tolerance $// E.g.$, set to $1e-7$.		
Output:			
6	solution vector x_{n+1}		
₇ Function NewtonsMethod(F , J_F , x_0 , iterations, tolerance):			
8	s for $n = 0$: iterations do		
9	$oldsymbol{J}_F(oldsymbol{x}_n)\Deltaoldsymbol{x}_n+F(oldsymbol{x}_n)=oldsymbol{0}$ // Solve for \Deltaoldsymbol{x}_n via least squares.		
10	$x_{n+1} = x_n + \Delta x_n$ // Get next approximation.		
11	if $(\Delta x_n \leq tolerance \cdot x_n)$ then		
12	break // Solution found within given tolerance.		
13	end		
14	end		
15	return x_{n+1} // Return solution vector.		

Interpolation of Pixel Values

x

¤ Get the pixel value at a subpixel location

- ♦ Get value from given image at location with subpixel coordinate
- ♦ Pixel with center ●

y

Interpolation of Pixel Values

ズ Interpolation of different order

- ♦ Use neighboring pixel values to interpolate the new value
- ♦ Nearest, Linear, Cubic, Quintic, Windowed Sinc
- ♦ The sinc function is the Fourier transform of the rectangular function

Interpolation of Pixel Values – Example

input

nearest

linear

reduced by factor 4

cubic

sinc 16

Interpolation of Pixel Values

 \varkappa Example: Image Rotation with angle ϕ

 $\boldsymbol{x}' = \boldsymbol{R}(\phi)\boldsymbol{x}$

 $oldsymbol{x} = oldsymbol{R}^{-1}(\phi)oldsymbol{x}'$

Inverse transformation

 $\, {\color{black} \,}^{\color{black} \, {\color{black} \,}}$ Example: Image Rotation with angle ϕ

 $\boldsymbol{x}' = \boldsymbol{R}(\phi)\boldsymbol{x}$ direct mapping

 $\boldsymbol{x} = \boldsymbol{R}^{-1}(\phi)\boldsymbol{x}'$

indirect mapping

License Statement

Unless otherwise noted this work is licensed by Roland Perko under a Creative Commons Attribution 4.0 International License

- × Attributions
 - ♦ Image Image by TU Graz, <u>http://cd.tugraz.at</u>
 - Image by TU Graz, <u>https://www.tugraz.at/institute/ifg/home/</u>

