
SCIENCE

PASSION

TECHNOLOGY

Design Patterns

Part 12: Summary & Wrap-Up



Schedule

Date from to Content

07.10.2020 13:00 16:00 Introduction, Organisation

14.10.2020 13:00 16:00 Theory, Principles, and Guidelines, Iterator

21.10.2020 13:00 16:00 Adapter, Facade, Decorator, Proxy

28.10.2020 13:00 16:00 Layers, Broker, Pipes & Filters, Master/Slave, Client/Server, Broker

04.11.2020 13:00 16:00 Factory Method, Abstract Factory, Builder, Singleton, Prototype, Memento, State, Flyweight

11.11.2020 13:00 16:00 Visitor, Strategy, Command, Composite, Template Method, Fluent Interface

18.11.2020 13:00 16:00 Mediator, Bridge, Blackboard, Microkernel, Messages (Message, Endpoint, Translator, Router), Observer

25.11.2020 13:00 16:00
Locks (Mutex, Semaphor, Condition Variable), Scoped Locking, Double Checked Locking, Monitor, 
Future/Asynchronous Completion Token, Active Object, Thread Specific Storage, Async-Await

02.12.2020 13:00 16:00
Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching, Pooling, Leasing, Garbage Collector, Scoped 
Resource, Active Record

09.12.2020 13:00 16:00 Chain of Responsibility, Counted Pointer, Interpreter/Abstract Syntax Tree, Proactor, Reactor

13.01.2021 12:00 15:00 Model-View-Controller, Model-View-Viewmodel, Model-View-Presenter, Presentation-Abstraction-Control

20.01.2021 13:00 16:00 Summary and Exam Preparation

27.01.2021 13:00 15:00 Exam

2



Patterns in this course…

▪ Wrapping: Adapter, Façade, Decorator, Proxy

▪ Creation: Factory Method, Abstract Factory, Builder, Prototype, Singleton, Flyweight

▪ Behaviour: Strategy, Command, State

▪ Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-Server

▪ Collections: Iterator, Visitor, Composite

▪ Communication: Observer, Bridge, Broker, Mediator, Blackboard, Microkernel, 

Client-Dispatcher-Server/Lookup, Messaging & Service-Orientation: Message, 

Message-Endpoint, Message-Translator, Message-Router, MVC

▪ Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, Thread-

Specific Storage, Double-Checked-Locking, Async/Await, Proactor, Reactor

▪ Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching & 

Pooling, Leasing, Garbage Collector, Scoped Resource

▪ Others: Memento, Counted Pointer, Chain of Responsibility, Interpreter/Abstract 

Syntax Tree

3



Learning Goals

Design Patterns Theory

▪ What is a design pattern? Why do we need them?

▪ What are the core principles behind design patterns?

▪ How to describe design patterns?

▪ What is a pattern language?

Design Patterns in Detail

▪ Know core ideas and application of 
important design patterns! (~50)

Application of Design Patterns

▪ When to use what?

Learning Goals
4



Learning Goals

▪ You know common design patterns and their core idea (approx. 50 patterns).

▪ You can apply them in software development regardless of the programming 
language or development environment.

▪ You can derive the consequences of design patterns and see the design 
decisions.

▪ You decide if the consequences of a pattern are acceptable or not.

▪ You avoid overengineering and misuse of patterns.

▪ You can make reasonable design decisions by balancing out the forces, 
consequences, and requirements for arbitrary problems and contexts.

Learning Goals
5



Design Patterns

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem hurt in this context? 

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour

• Consequences (Rationale):

What are the benefits and liabilities?

What are the limitations and tradeoffs?

How are the forces resolved?

• Known-Uses: Real Life Examples

6

A proven solution template for a recurring problem.What is a pattern?



7
Design Patterns House

Context

Problem Solution

Forces Consequences

Known Uses

Name



SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and 
only one, reason to change.

• Open Closed: You should be able to extend a class’s 
behavior, without modifying it.

• Liskov Substitution: Derived classes must be 
substitutable for their base classes.

• Interface Segregation: Make fine grained 
interfaces that are client specific.

• Dependency Inversion: Depend on abstractions, 
not on concrete implementations.

8



Principles of Good Programming

• Decomposition
make a problem manageable
decompose it into sub-problems

• Abstraction
wrap around a problem
abstract away the details

• Decoupling
reduce dependencies, late binding
shift binding time to “later”

• Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive

9



Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes & Filters, Broker, Model-View-Controller, Microkernel

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming languages or 
environments

• Examples: Counted Pointer, Scoped Locking

10



A few philosophical thoughts…

“Patterns are a universal principle”

• How to transfer knowledge?

• How to make knowledge explicit?

• How to make knowledge findable?

• How to make knowledge understandable?

• How to make knowledge applicable?

11



“Study hard what interests you the most 

in the most undisciplined, irreverent and 

original manner possible.”

― Richard Feynmann



Michael Krisper

michael.krisper@tugraz.at
Uncertainty and Risk Propagation

Expert Judgment for Cyber-Security

Vehicle CO2 Simulation

Georg Macher

georg.macher@tugraz.at
Safety & Security 

Automotive & Autonomous Driving

Distributed Industrial Systems

Remember us for your Projects/Seminars/Bachelor’s/Master’s Thesis

Institute of Technical Informatics

Web: https://iti.tugraz.at

Discord: https://discord.gg/rFXPjW3

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3
https://iti.tugraz.at/
https://discord.gg/rFXPjW3

