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ABSTRACT 
Soft-linking multi-energy system (MES) models with 
urban energy simulation platforms (UESP) enable 
high spatial resolution modeling of local energy 
systems. The smallest energy unit of an urban MES 
model is the “building energy-hub” that describes the 
interaction between different energy carriers in a 
building. A building also represents a data structure 
that consists of geometrical, topological, and semantic 
information in a UESP. 
In this paper, we present a concept and first results of 
a simple urban use-case for soft-linking MES models 
and UESP. The potential to extend this method to 
model the interactions among many prosumers is also 
discussed.  

SYMBOLS 

Sets: 

T ൌ Set of time-steps  

Ι = Set of technologies   

Parameters: 

𝜂௕௔௧ = Battery efficiency   

𝑃௕௔௧
௖ℎ,௠௔௫, 𝑃௕௔௧

ௗ௖,௠௔௫ = Max. battery charge and 
discharge rates 

 

Ω௥௔௠௣ = Max. heat pump ramp rate  

𝝋𝒈𝒓𝒊𝒅
𝑪𝑶𝟐 , 𝝋𝒅𝒉𝒏

𝑪𝑶𝟐 = Emission factors for electricity and 
district heating  

𝝀𝒊𝒏𝒗, 𝝀𝒐𝒑, 𝝀𝒇𝒆𝒆𝒅 = Investment, operation, and feed-in 
costs 

𝝀𝒈𝒓𝒊𝒅, 𝝀𝒅𝒉𝒏 = Energy purchase cost from grid and 
district heating network 

Variables: 

P௚௥௜ௗ = Power import from the grid  

𝑷𝒉𝒑, 𝑷𝒆𝒍 = Heat pump and building elect. demand   

𝑃௕௔௧
௖ℎ , 𝑃௕௔௧

ௗ௖  = Charge/ discharge power of battery 

𝑄ௗℎ௡ = Heat import from district heating network

𝑄ℎ௣, 𝑆ℎ௣ ൌ Heat pump energy for space heating and 
hot water generation

𝑄ℎ௘௔௧, 𝑆ℎ௪ ൌ Heating and hot water energy demand 

𝑄௧௘௦௦
௖ℎ , 𝑄௧௘௦௦

ௗ௖  = Charge/ discharge power of thermal 
storage 

𝑆ℎ௪
௖ℎ , 𝑆ℎ௪

ௗ௖ ൌ Charge/ discharge power of hot water 
buffer storage 

𝐻௣௩ = PV generation  

𝑃௣௩, 𝑃௙௘௘ௗ, 𝑃௖௨௥௧ = PV consumption, feed-in, and 
curtailment 

𝐶𝑂𝑃ℎ௣ = Heat pump efficiency  

𝑆𝑜𝐶௕௔௧ = Battery state-of-charge  

𝐶௕௔௧, 𝐶௛௣ = Battery and heat pump installed 
capacity 

 

INTRODUCTION 
Energy system co-planning models combine the 
characteristics of expansion and operation planning 
models, whereby the expansion decisions are 
determined by considering the operational aspects of 
the energy system. The requirement for considering 
operational details of the energy system in the 
expansion planning process stems from the increase of 
variable renewable energy generation and the smart-
grid technologies in the energy system. The weather-
dependent energy production, behavior dependent 
demand, and incentive-driven control strategies 
directly influence the future technology mix we 
require to achieve the economic optimality while 
meeting other technical and environmental 
requirements. 
A recent review article by (Heendeniya et al., 2020) 
discusses the status-quo of district-scale energy 
system co-planning models. The article identifies key 
challenges and the future research potential for 
modeling district-scale multi-energy systems (MES), 
in which multiple energy vectors dynamically interact 
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with each other that discussed under three main 
aspects. 

1. Temporal resolution. 
2. Energy system and network models. 
3. Spatial granularity. 

(Heendeniya et al., 2020) further emphasizes that 
linking MES co-planning models with UESP, enable 
more comprehensive and high-resolution evaluation 
of energy scenarios in the districts. Some examples of 
the state-of-the-art UESP and their capabilities to 
represent energy network and multi-energy couplings 
are shown in Table 1. 

Table 1: Energy network and multi-energy 
interaction modeling capabilities of some existing 

UESP. 
REF. ENERGY 

NETWORK 
MODEL 

MULTI-
ENERGY 

COUPLINGS 

Hong et al, 2016 None No 

Reinhart et al, 
2013 

None No 

Bergerson et al, 
2015 

None No 

Nageler et al, 2017 District heating 
only 

No 

This contribution builds on top of the insights from 
(Heendeniya et al., 2020), attempts to conceptualize a 
method to couple MES co-simulation with the UESP 
SimStadt. SimStadt uses 3D CityGML files as the 
primary input and connects the geometric, semantic, 
and topological data from CityGML files to several 
databases and libraries. The calculation of building 
energy demands and renewable energy potentials is 
performed by the INSEL simulation engine (Nouvel et 
al., 2015). Figure 1 shows a graphical overview of 
SimStadt and (Weiler et al., 2019) provides a 
comprehensive description of the architecture and the 
current applications of SimStadt. 

In the proposed concept, each building in the 
neighborhood is represented by an equivalent energy-
hub model and a mixed-integer optimization 
algorithm is implemented to evaluate the optimal co-
planning strategy for each of the building. The 
buildings may interact with each other and with the 
external energy system through the energy network. 

The objective of this contribution is to,  

1. present the broad concept for soft-linking 
SimStadt and MES co-simulation model, 

2. discuss the necessity to model part-load 
performance of distributed generators, and 
present a methodology to accomplish that,   

3. present a simple use-case of a single-building 
energy-hub that soft-links with SimStadt 
UESP,  

4. share future directions and potential for 
multi-disciplinary research collaborations.  

 
Figure 1: Simplified structure of SimStadt with inputs 

and outputs 

CONCEPT AND METHODOLOGY 

Overview 

Figure 2 shows one (simple) way of conceptualizing 
the district-scale MES co-simulation within an UESP. 
The architecture in figure 1 has several sub-modules 
that generates/ forecasts energy demand profiles for 
each building. The generated demand and renewable 
generation profiles are stored in a cloud-based data 
platform accessible to the MES co-simulation model.   

Figure 3 illustrates the energy-hub model of a single 
building. The energy-hub models represent electricity, 
heating, and domestic hot water energy demand 
vectors. The energy supply vectors are the utility 
network for electricity, heat, and renewable energy 
from solar photovoltaics. It also models the charging 
and discharging of the battery and thermal storage and 
power-to-heat conversion via a ground-source heat 
pump (GSHP). 

 
Mathematical model 

This section explains the mathematical representation 
of the energy-hub model and the co-planning 
optimization problem for a single building. 

The mathematical representation of the energy-hub 
model captures the fundamental demand and supply 
balances for each energy carrier and the conversion 
between energy carriers.  

Equation 1-3 describe the energy balance equations 
for electricity, heat, and hot water at each time-step in 
the planning period. The most common application of 
building-scale battery storage is to improve the self-
consumption of renewable generation. Thermal 
storage is used to store heat from power-to-heat 
conversion. These intentions are described using the 
binary decision variables 

𝑥𝑏𝑎𝑡
𝑐ℎ ሺ𝑡ሻ, 𝑥𝑏𝑎𝑡

𝑑𝑐 ሺ𝑡ሻ, 𝑥𝑡𝑒𝑠𝑠
𝑐ℎ ሺ𝑡ሻ, 𝑥𝑡𝑒𝑠𝑠

𝑑𝑐 ሺ𝑡ሻ, 𝑥ℎ𝑤
𝑐ℎ ሺ𝑡ሻ, 𝑥ℎ𝑤

𝑑𝑐 ሺ𝑡ሻ 
that indicate whether a charging or discharging action 
occurs for each type of storage at each time-step. We 
implement a quadratic formulation of the energy 
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balance equations with the above-mentioned decision 
variables to constrain the battery and thermal storages 
from being charged by grid electricity supply and 
district heating supply. 

 

 
Figure 3: The energy-hub representation of the 

multi-energy system for a single building.  

 

P௚௥௜ௗሺ𝑡ሻ. ቀ1 െ 𝑥௕௔௧
௖ℎ ሺ𝑡ሻቁ ൅ 𝑃௣௩ሺ𝑡ሻ

െ𝑃௕௔௧
௖ℎ ሺ𝑡ሻ. 𝑥௕௔௧

௖ℎ ሺ𝑡ሻ
൅𝑃௕௔௧

ௗ௖ ሺ𝑡ሻ. 𝑥௕௔௧
ௗ௖ ሺ𝑡ሻ

െ𝑃ℎ௣ሺ𝑡ሻ െ 𝑃௘௟ሺ𝑡ሻ

  ൌ 0 (1) 

 

𝑄ௗℎ௡ሺ𝑡ሻ. ቀ1 െ 𝑥௧௘௦௦
௖ℎ ሺ𝑡ሻቁ

െ𝑄௧௘௦௦
௖ℎ ሺ𝑡ሻ. 𝑥௧௘௦௦

௖ℎ ሺ𝑡ሻ
൅𝑄௧௘௦௦

ௗ௖ ሺ𝑡ሻ. 𝑥௧௘௦௦
ௗ௖ ሺ𝑡ሻ

൅𝑄ℎ௣ሺ𝑡ሻ െ 𝑄ℎ௘௔௧ሺ𝑡ሻ

                   ൌ 0 (2) 

െ𝑆ℎ௪
௖ℎ ሺ𝑡ሻ. 𝑥ℎ௪

௖ℎ ሺ𝑡ሻ ൅ 𝑆ℎ௪
ௗ௖ሺ𝑡ሻ. 𝑥ℎ௪

ௗ௖ ሺ𝑡ሻ
൅𝑆ℎ௣ሺ𝑡ሻ െ 𝑆ℎ௪ሺ𝑡ሻ

    ൌ 0 (3) 

∀ 𝑡 ∈ 𝑇  

The renewable electricity from PV must be either 
consumed (directly or via storage), fed back to the 
grid, or curtailed (equation 4). The PV power feed-in 
at any time-step t should be less than the maximum 
power feed-in.  

 𝐻௣௩ሺ𝑡ሻ െ 𝑃௙௘௘ௗሺ𝑡ሻ െ 𝑃௖௨௥௧ሺ𝑡ሻ ൌ 𝑃௣௩ሺ𝑡ሻ (4) 

∀ 𝑡 ∈ 𝑇  

The conversion of one energy carrier to another is 
characterized by the corresponding conversion 
efficiency. Equation 5 describes the relationship 
between the thermal output of the GSHP and its 
electrical input. The COP depends on the loading of 
the heat pump at each time-step, as shown by equation 
6. Here, 𝛾ℎ𝑝ሺ𝑡ሻ is the part-load level of the GSHP at 

time t and 𝐶ℎ௣ሺ𝑡ሻ is the installed capacity of the GSHP. 

𝑄ℎ௣ሺ𝑡ሻ ൅ 𝑆ℎ௣ሺ𝑡ሻ ൌ 𝐶𝑂𝑃ℎ௣ሺ𝑡ሻ. 𝑃ℎ௣ሺ𝑡ሻ (5) 

𝑄ℎ௣ሺ𝑡ሻ ൅ 𝑆ℎ௣ሺ𝑡ሻ ൌ 𝛾ℎ௣ሺ𝑡ሻ. 𝐶ℎ௣ (6) 

∀ 𝑡 ∈ 𝑇  

The relationship between the part-load level and the 
COP is shown in figure 4, which is mathematically 
modelled using a piece-wise linear approximation.  

The dynamics of charging and discharging the energy 
storage is described in equations 7-8. 

𝑆𝑜𝐶௕௔௧ሺ𝑡 െ 1ሻ ൅ 𝑃௕௔௧
௖ℎ ሺ𝑡ሻ. 𝑥௕௔௧

௖ℎ ሺ𝑡ሻ. 𝜂௕௔௧

െ𝑃௕௔௧
ௗ௖ ሺ𝑡ሻ. 𝑥௕௔௧

ௗ௖ ሺ𝑡ሻ. 𝜂௕௔௧
 ൌ SoC௕௔௧ሺ𝑡ሻ (7) 

∀ 𝑡 ∈ 𝑇 𝑎𝑛𝑑 𝑡 ് 1  

 

𝑃௕௔௧
௖ℎ ሺ𝑡ሻ. 𝑥௕௔௧

௖ℎ ሺ𝑡ሻ. 𝜂௕௔௧    
െ𝑃௕௔௧

ௗ௖ ሺ𝑡ሻ. 𝑥௕௔௧
ௗ௖ ሺ𝑡ሻ. 𝜂௕௔௧

               ൌ SoC௕௔௧ሺ𝑡ሻ (8) 

∀ 𝑡 ∈ 𝑇 𝑎𝑛𝑑 𝑡 ൌ 1  

 

Figure 2: Concept for neighborhood-scale energy 
simulations by coupling a MES co-optimization 

model and an UESP. 
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Figure 4: Part-load efficiency variation of the GSHP. 

The time-step resolution is not explicitly shown in 
equations 7-8, because in this case-study, we use one-
hour time-steps. The state-of-charge of battery storage 
at time t is limited to the installed capacity of the 
battery storage (equation 9) and the charging and 
discharging power is limited to the maximum charge/ 
discharge power (equations 10-11). The storage 
dynamics for thermal and hot water buffer storages are 
modeled similarly.  

SoC௕௔௧ሺ𝑡ሻ ൑ 𝐶௕௔௧ (9) 

𝑃௕௔௧
௖ℎ ሺ𝑡ሻ ൑ 𝑃௕௔௧

௖ℎ,௠௔௫ (10) 

𝑃௕௔௧
ௗ௖ ሺ𝑡ሻ ൑ 𝑃௕௔௧

ௗ௖,௠௔௫ (11) 

∀ 𝑡 ∈ 𝑇  

The ability of the heat pump to increase and decrease 
its electrical power input (hence the thermal power 
output) is a useful source of flexibility for the local 
power distribution network (Fischer et al, 2017).  

Ω௥௔௠௣ ൑ 𝑄ℎ௣ሺ𝑡ሻ ൅ 𝑆ℎ௣ሺ𝑡ሻ 

െ𝑄௛௣ሺ𝑡 െ 1ሻ െ 𝑆௛௣ሺ𝑡 െ 1ሻ 
(12) 

െΩ௥௔௠௣ ൒ 𝑄ℎ௣ሺ𝑡ሻ ൅ 𝑆ℎ௣ሺ𝑡ሻ 

െ𝑄௛௣ሺ𝑡 െ 1ሻ െ 𝑆௛௣ሺ𝑡 െ 1ሻ
(13) 

∀ 𝑡 ∈ 𝑇 𝑎𝑛𝑑 𝑡 ് 1  

 
The equations 12 and 13 define the maximum heat 
pump power-up and power-down (ramp) rate 
constraints. 

The total amount of CO2 emissions that results from 
the MES operation is calculated by equation 14. Here, 
𝜑௚௥௜ௗ

஼ைଶ  and 𝜑ௗ௛௡
஼ைଶ are the CO2 emission factors of the 

electricity distribution and district heating, 
respectively (equation 12).  

∑ P௚௥௜ௗሺ𝑡ሻ. ቀ1 െ 𝑥௕௔௧
௖ℎ ሺ𝑡ሻቁ௧∈் . 𝜑௚௥௜ௗ

஼ைଶ

൅ ∑ 𝑄ௗℎ௡ሺ𝑡ሻ. ቀ1 െ 𝑥௧௘௦௦
௖ℎ ሺ𝑡ሻቁ . 𝜑ௗ௛௡

஼ைଶ
௧∈்

ൌ 𝜋஼ைଶ (14) 

The total cost of the MES co-planning is the 
annualized sum of the investment, operation, and 
 

energy purchase costs. In equations 15-19, 𝜎௜௡௩, 𝜎௢௣, 
𝜎௘௡, and 𝜎௙௜௧ are the total investment cost, operation 
cost, energy cost, and feed-in revenue for the planning 
horizon. The technology life time and the discount rate 
are given by n and r, respectively.   

∑ 𝐶ሺ𝜄ሻ. 𝜆௜௡௩ሺ𝜄ሻఐ∈஁ ቂ
௥.ሺଵା௥ሻ೙ሺഈሻ

ሺଵା௥ሻ೙ሺഈሻିଵ
ቃ         ൌ 𝜎௜௡௩ (15) 

∑ ∑ 𝑃ሺ𝜄, 𝑡ሻ. 𝜆௢௣ሺ𝜄ሻఐ∈஁௧∈்             ൌ 𝜎௢௣ (16) 

∑ P௚௥௜ௗሺ𝑡ሻ. ቀ1 െ 𝑥௕௔௧
௖ℎ ሺ𝑡ሻቁ . 𝜆௚௥௜ௗ௧∈்

൅ ∑ Pௗℎ௡ሺ𝑡ሻ. ቀ1 െ 𝑥௧௘௦௦
௖ℎ ሺ𝑡ሻቁ . 𝜆ௗ௛௡௧∈்

ൌ 𝜎௘௡ (17) 

∑ 𝑃௙௘௘ௗሺ𝑡ሻ. 𝜆௙௘௘ௗ௧∈்              ൌ 𝜎௙௜௧ (18) 

𝜎௜௡௩൅𝜎௢௣ ൅ 𝜎௘௡ െ 𝜎௙௜௧             ൌ 𝜎௧௢௧௔௟ (19) 

The optimization objective of the co-planning 
problem is to minimize the total cost 𝜎௧௢௧௔௟. 

𝑂𝑏𝑗. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ൌ 𝑀𝑖𝑛. 𝜎௧௢௧௔௟ (20) 

PART-LOAD EFFICIENCY MODELING 

Significance of part-load efficiency curve modeling  

The part-load operation and short cycling conditions 
result in the efficiency degradation of heat pumps 
(Waddicor et al., 2016). The heating and hot water 
demand in buildings can be significantly time-
varying; therefore, it can impose highly variable 
loading conditions on the heat pump. The effect of 
variable loading conditions on the heat pump depends 
on the sizing and the operating strategy of the heat 
pump. In other words, by choosing the optimal size 
and the operation strategy for the heat pump, it is 
possible to minimize the loss of efficiency at part-load 
conditions. Therefore, MES co-planning models must 
consider the variation of heat pump efficiency under 
variable loading conditions. 

Piece-wise linear approximation of the GSHP part-
load efficiency curve  

This subsection provides a detailed explanation of the 
piece-wise linear approximation of the GSHP part-
load efficiency curve. 

Piece-wise linear approximation of a non-linear 
function can be evaluated by sampling the non-linear 
function into several "pieces" and then calculating the 
linear curve-fitting of the non-linear function inside 
the domains represented by those pieces. In our co-
planning model, the part-load efficiency curve of the 
GSHP is a piece-wise linear approximation function 
with three pieces.  

To model the piece-wise linear approximation, we 
introduce a set of four weight variables W and a set of 
four binary decision variables Y (equations 21-22). 
Assuming ሺ𝛼ଵ, 𝛽ଵሻ, ሺ𝛼ଶ, 𝛽ଶሻ, ሺ𝛼ଷ, 𝛽ଷሻ, and ሺ𝛼ସ, 𝛽ସሻ are 
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the breakpoints of the three linear segments, we can 
model the piece-wise linear approximation as shown 
in the equations 23-30.  

𝑊 ൌ ሼ𝑤௜|𝑤௜ ∈ ℝା, 0 ൑ 𝑤௜ ൑ 1, 𝑖 ൌ 1,2,3,4ሽ (21) 

Y ൌ ሼ𝑦௜|𝑦௜ ∈ ሼ0,1ሽ, 𝑖 ൌ 1,2,3,4ሽ (22) 

𝐶𝑂𝑃ℎ௣ሺ𝑡ሻ ൌ ∑ 𝛽௜. 𝑤௜ሺ𝑡ሻ௜  (23) 

𝛾ℎ௣ሺ𝑡ሻ ൌ ∑ 𝛼௜. 𝑤௜ሺ𝑡ሻ௜  (24) 

1 ൌ ∑ 𝑤௜ሺ𝑡ሻ௧∈்  (25) 

2 ൒ ∑ 𝑦௜ሺ𝑡ሻ௧∈்  (26) 

 

𝑦௜ሺ𝑡ሻ ൒ 𝑤௜ሺ𝑡ሻ (27) 

1 ൑ 𝑦ଵሺ𝑡ሻ ൅ 𝑦ଷሺ𝑡ሻ (28) 

1 ൑ 𝑦ଵሺ𝑡ሻ ൅ 𝑦ସሺ𝑡ሻ (29) 

1 ൑ 𝑦ଶሺ𝑡ሻ ൅ 𝑦ସሺ𝑡ሻ (30) 

∀ 𝑡 ∈ 𝑇  

CASE-STUDY 

The case study is a multi-family building in Stuttgart - 
Germany (figure 5). The building has;  

 a footprint area of 2,311m², 

 a total roof area of 2,366m² and, 

 a heated area of 6,174m². 

 

Each of the four stories of the building has an average 
height of 3.3 meters. The building contains 77 
households and a total occupancy of 152 people. The 
total yearly heat demand (incl. domestic hot water) is 
estimated at 320.12MWh/a, and the electricity 
demand is 215.46MWh/a. The heating demand is 
calculated with DIN 18599, using parameters, like U-
values from the German Building Typology (Loga et 
 

al., 2015). This building is specified with a year of 
construction in 2002 and has an average U-value of 
0.39 W/(m²K). Other key model parameters are given 
in Table 2. 

Table 2: Key model parameters. 
MODEL PARAMETER VALUE 

Rated HP COP 4.47 

Thermal storage efficiency 0.90 

Hot water buffer storage efficiency 0.90 

Battery storage efficiency 0.95 

Electricity cost 0.30 EUR/kWh 

District heating cost 0.10 EUR/kWh 

Investment costs: 

- PV roof top 

- Heat pump 

- Battery storage 

- Thermal (and buffer) storage 

 

1000 EUR/kW 

1400 EUR/kW 

1066 EUR/kW 

60 EUR/kW 

Operation cost: 

- PV roof top 

- Heat pump 

- Battery storage 

- Thermal (and buffer) storage 

 

0 

0.001 EUR/kWh 

0.005 EUR/kWh 

0.002 EUR/kWh 

Figure 6 shows the SimStadt-generated hourly thermal 
load profile for the whole building. The heating period 
is set from October to April, while the interior set point 
temperature is defined with 20°C and the heating limit 
temperature is set to 15°C. Also, a night-time 
temperature setback is considered from midnight until 
6 am. The highest peak demand is seen on January 
12th with 135kW. 

Figure 7 and figure 8 show the hourly electricity load 
profile for a typical winter period (January 1st till 
January 14th) as well as a typical summer period (June 
1st till June 14th). The baseload throughout the year is 
10kW, the average at 24.6kW with a 
minimum/maximum value of 7.3/64.1kW. 

Nine roof surfaces with a total area of more than 40m² 
are considered for the PV potential calculation. Due to 
practical reasons, smaller surfaces are not taken into 
consideration. The total available roof area for PV 
installation, hence, is 2,297m². To model the 
relationship between the hourly PV production and the 
installed capacity, we normalize the hourly PV 
generation potential with an area requirement of 
6m2/kWp. A set of 2880 representative time-steps 
(one month per season) is selected to keep the 
computational time within a reasonable limit. 

The optimization problem is modeled in python 
programming language and solved using Gurobi 9.0.0 
(academic license) solver.  
 

 

Figure 5: 3D visualization of the multi-family 
building in Stöckach. 
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Figure 6: Hourly heating demand of the building for 

an entire year. 

 

 
Figure 7: Hourly electricity demand of the building 

for two winter weeks. 

 

 
Figure 8: Hourly electricity demand of the building 

for two summer weeks. 

RESULTS 

We compared the results of the MES model with and 
without implementing the part-load efficiency 
variation of the heat pump. In the latter, the heat pump 
efficiency is equal to its maximum rated efficiency at 
every time-step. 

Influence of part-load modelling on thermal 
storage  

Table 3 shows the optimal value calculated by the 
MES co-planning model for four different decision 
variables when the heat pump part-load efficiency 
variation is considered and when not. The most 
significant difference that we observe is in the optimal 
 

sizing of thermal and buffer storages. This observation 
is intuitive because when there is no penalty for the 
low part-load operation of the heat pump, the benefits 
of thermal and buffer storage to improve heat pump 
capacity utilization are not well-demonstrated. The 
resulting unfavorable cost-benefit balance hinders the 
installation of thermal and buffer storage. 

Table 3: 

The optimal value calculated for various model 
variables with and w/o heat pump part-load 

efficiency variation.  
 

MODEL 
VARIABLE 

WITH PART-
LOAD EFF. 

VARIATION 

W/O PART-
LOAD EFF. 

VARIATION 

HP capacity 47.3 kWth 45.9 kWth 

Thermal storage 
capacity 

10.0 kWh 0.0 kWh 

Hot water 
buffer storage 
capacity 

262.3 kWh 247.8 kWh 

Heat import 
from district 
heating network 

32.5 MWh 34.2 MWh 

 

Influence of part-load modelling on heat pump 
operation  

The variation of the heat pump loading for the first 
1200 time-steps of the simulation for time-varying and 
constant efficiency is shown in figure 9 and figure 10. 

From the part-load efficiency curve in figure 4, we 
observe that the heat pump efficiency curve is 
relatively flat between 60 – 100% loading. Below the 
60% load level, the efficiency drops rapidly. 

 
Figure 9: Heat pump loading over the first 1200 
time-steps of the simulation under time-varying 

efficiency. 
Figure 9 shows the influence of having an efficiency 
penalty for low part-load operation. In contrast to not 
having an efficiency penalty for low part-load 
operation (figure 10), we see that the heat pump tends 
to adjust its operating point to maintain approx. 60 - 
100% loading the majority of the time. The thermal 
storage system provides the required flexibility so that 
the heat pump can optimally adjust its operating point 
(figure 11). On the flip-side, this may result in a higher 
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number of on-off sequences of the heat pump, as the 
heat pump tends to shut down entirely at low loading 
conditions.  

 
Figure 10: Heat pump loading during the first 1200 

time-steps under constant efficiency. 

 
Figure 11: The direct consumption and charging of 
heat and hot water buffer storage with heat pump 

thermal energy output for the first 200 time-steps of 
the simulation with part-load efficiency modelled. 

 
Figure 12: The direct consumption and charging of 
heat and hot water buffer storage with heat pump 

thermal energy output for the first 200 time-steps of 
the simulation at constant heat pump efficiency. 

The ill-significances of the rapid heat pump on-off 
cycles are, 1) the degradation of the heat pump and 2) 
the negative effect on the local electricity distribution 
due to high starting current.  

Influence of the ramp constraint on heat pump 
operation  

Table 4 shows the optimal value for a set of selected 
decision variables with and without a maximum heat 
pump ramp limit of 2% (of the installed capacity) per 
time-step. The results show that the sizing of the 
technologies is not affected by the ramp constraint.  
 
 

Table 4: 

The optimal value calculated for various model 
variables with and w/o heat pump part-load 

efficiency variation.  
 

MODEL 
VARIABLE 

WITH RAMP 
CONSTRAINT 

W/O RAMP 
CONSTRAINT 

HP capacity 45.9 kWth 45.9 kWth 

Thermal storage 
capacity 

0.0 kWh 0.0 kWh 

Hot water 
buffer storage 
capacity 

247.8 kWh 247.8 kWh 

Heat import 
from district 
heating network 

34.4 MWh 34.2 MWh 

The ramping constraint reduces the number of rapid 
on-off cycles that we observed previously.  

Figure 13 shows that the ramping constraint, without 
the part-load efficiency variations, could lead to the 
heat pump operating more frequently at very low part-
load conditions. 

The stack plot in figure 14 shows the shares of the 
thermal energy output of the heat pump that is directly 
consumed and used to charge thermal and hot water 
buffer storage for the first 200 time-steps (for clear 
visualization).  

 
Figure 13: Variation of heat pump loading during 
the first 1200 time-steps with constant heat pump 

efficiency and 2% maximum ramp rate. 

 
Figure 14: The direct consumption and charging of 
heat and hot water buffer storage with heat pump 

thermal energy output for the first 200 time-steps of 
the simulation with 2% maximum ramp rate. 
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DISCUSSION AND CONCLUSION 

The two main arguments to why part-load efficiency 
variation of heat pumps must be considered in MES 
co-planning models are; firstly, it influences the cost-
optimal scheduling of the heat pump and secondly it 
enables demonstration of the load-shifting benefits of 
thermal storage systems in the energy system to 
improve heat pump capacity utilization.    

The heat pump ramping constraint, on the other hand, 
sets a threshold to heat pumps ability to follow the 
thermal demand. Whether the ramping constraint 
significantly affect the operating flexibility of the heat 
pump depends on the thermal demand profile of the 
building.   

Frequent on-off cycles of the heat-pump reduces the 
life-time of the heat pump and unfavorable for the 
power system. Such effects can only be visualized by 
integrating a dynamic power system model in the 
future. 

The main challenge of soft-linking UESP and MES 
optimal co-planning models are the scalability. The 
run-time of mixed integer optimization models grows 
exponentially as the increasing number of decision 
variables, which is the case when the number of 
simulated buildings increase. One of the ways to lower 
the computational burden is to carefully select the 
minimum number of representative time-steps by 
considering the trade-offs between the required 
solution accuracy for the given co-planning objective 
and the computational burden. This method, although 
widely popular, does not reduce the complexity of the 
problem structure.  

A hierarchical structure to the optimization problem 
that aligns better with the microgrid control 
architecture is also interesting to look at. In such an 
architecture, the optimization problem maybe defined 
at the system, building, and the heat pump level taking 
into account the key planning decisions that needs to 
be taken at each hierarchical level. The planning 
horizon, inputs, and constrains can be defined only as 
relevant to each hierarchical level; therefore, reducing 
the complexity.  
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