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Abstract—Decoding intended movements from individuals with 

spinal cord injury (SCI) has been a central topic in brain-

computer interface research for decades. Recent works, relying 

on neural spiking activity, demonstrated that the kinematics of 

intended movements can be detected in neural spiking activity 

and used by individuals with SCI to control end-effectors. 

Whether, and to which degree this approach translates to EEG 

remains an open question. In this work, we summarize our 

attempts towards realizing an EEG-based movement decoder. 

We summarize our efforts to address this topic from various 

perspectives, and we present results of a single case study with a 

non-disabled participant, where we decoded the intended 
movement trajectories, while the participant’s arm was fixed. 

I. INTRODUCTION 

‘Making the paralyzed move’ is a dream for many researchers 
but even more for people suffering from a spinal cord injury 

(SCI) or other diseases leading to non-functional limbs and 
therefore a dramatic decrease in quality of life. While walking 
is always the first function an independent observer thinks is 

most critical, affected people usually have other wishes [1]. 
The higher the lesion in the spinal cord, the less important is 

walking. While very high SCI lesions in the cervical vertebra 
lead to dysfunction of breathing and all motoric and sensory 
functions are lost, a lesion in the lower cervical levels lead to 

restricted hand and arm movements, while breathing, 
speaking and head movements are not so problematic [2].  
The restoration of hand and arm function has been a research 

topic since the late 90s. Relatively soon, a vision came out 
which is of “reading” the intention of movement from brain 

activity and transferring it into real movement. 
Analysing brain signals, i.e., neuronal activity from motor 
cortex and related areas first done in non-human primates [3] 

and later in humans led to first full (robotic) arm controlled 
systems [4, 5, 6]. Also neuroprosthetic devices, based on 
functional electrical stimulation, applied to the upper limb of 

tetraplegic participants could be successfully controlled by 
applying this invasive methodology [7, 8]. Recently, using the 

less invasive electrocorticogram (ECoG) technique motor 
control in tetraplegics was reported [9, 10]. 
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Almost parallel to the developments in the invasive field, a 

first application of a non-invasive BCI to control the lost hand 
function of a high spinal cord injured male was presented in 
2000 [11]. Introducing functional electrical stimulation and 

neuroprosthetics lead to more meaningful control [12, 13]. 
Improvements through hybrid BCIs [14, 15] and coding of 

brain patterns [16] were also reported [17]. However, a non-
invasive natural control of a full arm movement was out of 
reach so far. 

In a project granted form the European Research Council 
(ERC) we are working towards this vision. In the current work 
we want to give a brief overview of our findings so far. 

Additionally, we are presenting preliminary results from free 
non-invasive online decoding of 2-d movement attempts in 

one non-disabled participant. 

II. METHODS & RESULTS 

The main idea of the project is to combine several cortical 

brain patterns and mechanisms, which allow to detect goal 
directed movement intention, decode movement trajectories, 
detect errors, and provide kinesthetic sensory feedback 

related to movement.  

A. Goal-directed movement detection 

Movement-related cortical potentials (MRCPs) are neural 
correlates of movement planning which are typically revealed 
by time-locking to the movement onset. These potentials are 
modulated by several kinematic [18,19] and kinetic [20] 
aspects of movement, and also by the presence of motor goals 
[21]. The detection of movement in an asynchronous manner 
would be useful to trigger trajectory decoders (e.g., for robotic 
arm control) or discrete movement classifiers (e.g., for 
neuroprostheses control). The continuous detection of upper-
limb movements from MRCPs is challenging, but in principle 
possible also in SCI [22]. In higher SCI lesions, without 
residual upper limb function, MRCPs cannot be revealed by 
time-locking to a movement onset, and thus labelling the data 
for calibrating movement detectors is a challenge. The use of 
“go”-cues is also not a solution, as other event-related 
potentials might be elicited and mask or alter the MRCPs. We 
have explored new paradigms which can overcome this 
challenge: in [23] we have shown that the detection of self-
initiated reach-and-grasp movement imaginations is possible 
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on an asynchronous offline scenario. In [24], we have shown 
that natural reach-and-grasp movements can be detected in an 
asynchronous (and online) BCI. The features used were not 
limited to MRCPs, as additional low-frequency time-domain 
activity generated from parietal and occipital areas was also 
observed. In this task, participants were allowed to shift their 
gaze towards the movement target (which is undoubtedly more 
intuitive than in state-of-the-art paradigms). The results were 
additionally compared with a control oculomotor task (i.e., 
exclusively saccades performed towards the target). 

B. Grasp representation 

To better understand the neural and behavioral mechanisms 
involved in grasping, we investigated the relationship 
between the broad band EEG representation of observing and 

executing a large variety of hand-object interactions and the 
muscle and kinematic representations associated with the 

grasping execution. Furthermore, we investigated the 
similarity of the neural representations with categorical 
models that encode grip and object properties [25]. We found 

that the EEG representation during the observation phase was 
correlated with the muscle representation during the 
execution most strongly in the movement holding phase. 

Furthermore, we found similarities with the categorical model 
that reflects the shape and the size of the object. Object 

properties and grasp types can be decoded significantly above 
chance level during the planning and execution of the 
movement and we could decode properties of the objects 

already from the observation stage, while the grasp type could 
also be accurately decoded at the object release stage [26]. 
With these findings we gain a joint understanding of the 

relation between neural and behavioral representations of 
grasping and make a step forward towards an intuitive control 

of neuroprostheses in motor impaired individuals. 

C. Error detection during continuous movement 

One important aspect for a smoother robotic arm control is 
to identify when the decoder does not work properly or the 
occurrence of large or abrupt deviations from the expected 
trajectory. We started by investigating the asynchronous 
detection of ErrPs in an offline scenario [27]. Afterwards, we 
carried out a study with non-disabled participants, in which we 
showed that it is possible to reliably detect ErrPs during the 
continuous control of a robotic arm, using an asynchronous 
online BCI [28]. Furthermore, we developed a generic ErrP 
detector by transferring ErrPs across participants [29]. 
Recently, we published a study with participants with a spinal 
cord injury, in which we applied this generic ErrP classifier to 
detect ErrPs during the continuous control of a robot, in an 
asynchronous online BCI [30]. The participants with an SCI 
presented a non-homogeneous ErrP morphology. Never-
theless, this study showed that when participants presented 
clear ErrP signals, the generic could be successfully used. Our 
results show that ErrPs can be transferred from non-disabled 
participants to participants with a SCI and that the 
asynchronous detection of ErrPs during continuous movement 
can be applied to potential end-users of BCIs. 

D. Kinesthetic feedback 

Usually, all BCIs for motor restoration rely on visual feedback. 
To overcome this, we have implemented a vibrotactile 

stimulation system to project movement sensations to the skin 
of the shoulder blade. In order to test the feasibility of 
employing it in conjunction with a BCI based on movement-
related features, we conducted an initial study investigating 
several movement-related parameters during the execution of 
planar center-out movements. Movement trials could be 
classified against rest with accuracies significantly exceeding 
chance level, regardless of whether vibrotactile feedback was 
provided, in classification based on low-frequency amplitude 
features, as well as spectral mu and beta features. 
Classification between the movement directions only narrowly 
exceeded the significance threshold above chance level [31]. 
Currently, we investigate movement imagery of the same 
center-out tasks, with and without vibrotactile guidance. 

E. Movement decoding for continuous robot control  

Recent studies have shown the possibility to infer hand 

positions and velocities from the low-frequency (LF) 
electroencephalographic (EEG) activity [32, 33]. So far, this 
has only been performed offline. Here, we present two studies 

showing online control of a robotic arm by means of 
continuously decoded movements from LF-EEG. 

Study 1 [34]: Ten healthy subjects took part in the study. The 
paradigm implemented a pursuit tracking task [33], where 
participants had to follow a target on the screen with a robotic 

arm. The participants’ two-dimensional right-hand 
movement, EEG, and electrooculographic signals were 
simultaneously recorded. In the first part of the experiment, 

the participants performed calibration runs with the robot 
controlled by their hand movements. After the EEG decoding 

model was fitted to the hand movements, the robotic arm 
control was gradually switched from manual to EEG control, 
first with 33%, then 66%, up to the final condition of 100% 

EEG control. 
The EEG processing pipeline included filtering (0.18-1.5Hz), 
eye artefact [35] and pop/drift [36] attenuation, partial least 

squares (PLS) regression, and Kalman filtering. In the first 
study, a linear Kalman filter estimated positions, velocities 

and accelerations. Grand average correlations between real 
and decoded trajectories were r=[0.30, 0.32, 0.29, 0.26] (for 
0, 33, 66 and 100% EEG control conditions). The observed 

correlations were significantly (α=.05) higher than chance 
level (rchance=[0.13, 0.12, 0.11, 0.11]) and the ones of a PLS-
based Wiener filter (WF) (r=[0.25, 0.26, 0.22, 0.20]), used in 

a previous study [33]. Both linear decoders exhibited a 
mismatch in amplitudes between the real and decoded 

trajectories (amplitude ratio 0.4). This mismatch can be 
overcome by integrating non-directional kinematic 
information (e.g., speed) with a non-linear decoder [38]. 

Study 2 [37]: Five participants were included in this  pilot 
study. We used a nonlinear square-root unscented Kalman 
filter to integrate positions, velocities, and speed [38]. Grand 

average correlations were r=[0.43, 0.34, 0.27, 0.23] and the 
amplitude ratio between real and decoded movements was 
1.07.  

In our studies the KFs imporved the correlation upon WFs. 
Integration of speed in the second study additionally adjusted 

the amplitude of decoded trajectories, suggesting an 
informative role. Parieto-occipital and sensorimotor cortex 



  

activations are in line with the task type (visuomotor) and 
offline studies [33]. 

F. Decoding of movement attempt: preliminary results 

Following the experiments in Section II.E we further adapted 
the experimental setup and performed an experiment in one 

male participant. Following the setup where non-human 
primates were controlling a robotic device with their arms 
fixed in small tubes, we were fixing the participants right arm 

and hand on the chair arm rest. This constraint prevents the 
participant from moving his  arm and hand, therefore 
mimicking attempted movement. Clearly, the participant was 

allowed to activate muscles – just no movement was possible. 
Additionally, eye movements were tracked by a wearable eye-

tracking system (Pupil Labs, Berlin). So, the attempted 
‘movement’ trajectories were available from eye movements.  
The signal processing chain was the same as described above 

in study 2 [37] with the addition of distance and speed in the 
decoder [38]. The procedure of the experiment was divided 
into three parts: (i) Calibration of the movement decoder (50 

trials) and eye-artifact removal algorithm [35]. (ii) Feedback 
runs with 33% (1 run, 10 trials), 66% (1 run, 10 trials) and 

100% (2 runs, 20 trials). (iii) Free runs. Here, the participant 
was free to decide how to move the feedback ball. One trials 
lasted 23 s and was similar in the structure as described in 

section II.E. 
In Table I the results of the calibration as well as the feedback 
runs are visible. It is clearly visible that the decoder had 

correlation around 0.2 for position and velocity which was 
higher than the α=0.05 chance level (obtained with a shuffling 

approach), with x-components a bit lower than y-components. 
During the pure EEG decoding (0% snake), it is more evident 
that y-component was mostly contributing to the decoding 

and especially in the 33% and 100% EEG (0% snake) the x-
component was random. 

TABLE I.  POSITION (POS) AND VELOCITY (VEL) CORRELATION OF 

DECODER (UKF). FIRST COLUMN SHOWS MEDIAN OF THE CALIBRATION 

DATA (CROSSVALIDATION LEAF ONE OUT). REMAINING COLUMNS SHOW 

CORRELATION BASED ON ONLINE RESULTS. 

 100% snake 
(loo_cv, 50 

trials)* 

66% 
snake 

(10 trials) 

33% 
snake 

(10 trials) 

0% snake 
(20 trials) 

pos_x 0.22 0.36 -0.13 0.00 

vel_x 0.16 0.32 -0.15 -0.01 

pos_y 0.23 0.13 0.31 0.11 

vel_y 0.23 0.11 0.30 0.11 

 
The content of Figure 1 is twofold. First (Figure 1A) it shows 
qualitatively decoder results from the calibration runs. Both, 

position and velocity components are displayed on a 
randomly selected section. In Figure 1B a sketch of the 
participant the experimental setting can be seen. Figure 1C 

shows three trials representing all three task the participant 
chose to move the curser with 100% EEG control. In total 12 

trials were recorded where the participant repeated in the 
order given in the figure for four times: move the cursor along 
a diagonal left ‘\’, diagonal right ‘/’, and make an circle ‘o’. 

With the trajectories recorded from this data we calculated the 
1st (blue) and 2nd (green) principal component (PC) to show 
the main orientation of the decoded trajectory. The proportion 

of variance explained by each principal component in each 
movement category (\, /, o) averaged over 4 trials each can be 
seen in Table II. 

 

 
Figure 1. 2-dimensional decoding results. A) Calibration results. Shown are 

selected time frames covering about 3 trials (out of 50). In blue are the 

target trajectories, in red are the decoded trajectories. B) Experimental 
setup. Participant’s forearm and hand were strapped to the arm rest. C) 

Participant choose to try to perform left diagonal, right diagonal and 
circular movements of the curser. Selected trials (out of 12), each for one of 

the chosen movement patterns. Blue dashed line shows the 1st principal 
component, the green one the 2nd PC. 

TABLE II.  AVERAGE TRAJECTORIE ORIENTATION MAIN COMPONENTS 

DURING FREE CONTROL.  

Movement 
intention 

\ / o 

var 1st PC |  2nd PC 

in [%] 
78,79 |  21,20 65,13 |  34,87 63,04 |  36,96|  

 

III. DISCUSSION 

In this work, we gave an overview on how we plan to allow 
a person with a high cervical spinal cord injury to control an 
artificial robotic arm with a non-invasive EEG-based BCI. We 
briefly discussed asynchronous goal-directed movement 
detection (in healthies) and error-potential detection during 
continuous movement. We found insights of neural 
representation of grasp and gave first insights in how to apply 
kinesthetic feedback. The main part, however, discusses our 
findings in continuous 2-dimensional online decoding of arm 
movement as well as first preliminary results of free decoding 
of continuous arm movement attempts in non-disabled 
participants. 
We achieved continuous low frequency EEG-based 
movement decoding for the online control of a robotic arm. 
Two (linear and nonlinear) Kalman approaches to integrate 

decoding information were introduced. Furthermore, we 
applied the findings described above [36, 37] and included 
distance and speed [38] in a new setup. The participant while 



  

having the forearm and hand fixed was attempting to move 
the cursor on a screen, first in a shared control setting and 
finally with 100% EEG control. Three different movement 

patterns were freely attempted by the participant for several 
repetitions. From the preliminary results presented and from 
the experience of the participant we can learn the following: 

(i) free control was possible to some extent. Since the 
correlations were relatively low, and mainly the y-axis, it was 
not possible to control circular movements. (ii) After the trial 

started, it took several seconds until the movement attempt 
was kind of reflected in the feedback cursor. (iii) It is not clear 

what contribution user learning can bring, we are convinced 
however that this will increase the decoder performance. 
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