
RELEVANCE-GUIDED DEEP LEARNING FOR FEATURE IDENTIFICATION IN R2* MAPS IN
ALZHEIMER’S DISEASE CLASSIFICATION

C. Tinauer1, S. Heber1, L. Pirpamer1, A. Damulina1, M. Soellradl2, M. Sackl1, E. Hofer1,
M. Koini1, R. Schmidt1, R. Stollberger2, S. Ropele1, C. Langkammer1

1Department of Neurology, Medical University of Graz, Austria
2Institute of Medical Engineering, Graz University of Technology, Austria

christian.tinauer@medunigraz.at

Abstract- When using deep neural networks to
separate Alzheimer’s disease patients (n=119)
from normal controls (n=131) by using MR images,
heat mapping revealed that the image
preprocessing is introducing misleading features
used by the classifier. Therefore we systematically
investigated the influence of registration and brain
extraction on the learned features by heat
mapping. Results were compared to a novel
relevance-guided training method, focusing on
brain tissue. The relevance-guided configurations
yielded highest classification accuracies and also
confirmed histopathologically relevant regional iron
deposition.
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Introduction
Deep learning techniques are increasingly utilized
in medical applications, including image
reconstruction [1], segmentation [2], and
classification [3,4]. However, despite the good
performance those models are not easily
interpretable by humans [5]. Especially medical
applications require verification that the high
accuracy of those models is not the result of
exploiting artifacts in the data [6]. Our previous
experiments on Alzheimer's disease (AD)
classification showed that Deep Neural Networks
such as Convolutional Neural Networks (CNNs)
might learn from features introduced by the brain
extraction algorithm [7]. Therefore, in this work we
investigated how preprocessing steps including
registration and brain extraction determine which
features in the R2* maps are relevant for the
separation of patients with AD from normal
controls. MR-based R2* mapping enables the in
vivo detection of iron. Brain iron accumulates
during aging and has been associated with
neurodegenerative disorders including AD.

Methods
Dataset: We retrospectively selected 252 MRI
datasets from 119 patients with probable AD
(mean age=72.4±9.0 years) from our outpatient
clinic and 133 MRIs from 131 age-matched healthy
controls (mean age=70.3±9.1 years) from a local
community dwelling study. Patients and controls
were scanned using a consistent MRI protocol
performed at the same scanner at 3 Tesla
(Siemens TimTrio) including a T1-weighted
MPRAGE sequence (1mm isotropic resolution)
and a spoiled FLASH sequence (0.9x0.9x2mm³,
TR/TE1=35/4.92ms, 6 echoes, 4.92ms echo
spacing, 64 slices). The AD data was randomly
split up into 178 training, 37 validation and 37 test
scans and the normal control data was randomly
split up into 95 training, 19 validation and 19 test
scans, creating 1 partition.

Preprocessing: Binary brain masks from each
subject were obtained using FSL-SIENAX [8] and
subsequently used for brain extraction (BET) to
isolate the brain tissue from the skull. R2* maps
were calculated voxelwise using a numerical
correction model [9] and nonlinearly registered to
the 1mm MNI152 template using FSL fnirt [10].

Classifier network: We utilized a 3D classifier
network, combining a single convolutional layer
(kernel 8x8x8, 8 channels) with a
down-convolutional layer (kernel 8x8x8, 8
channels, striding 2x2x2) as the main building
block. The overall network stacks 4 of these main
building blocks followed by two fully connected
layers (16 and 2 units) (Figure 1). Each layer is
followed by a Rectified Linear Unit (ReLU)
nonlinearity, except for the output layer where a
Softmax activation is applied.
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Figure 1: Overview of the used relevance-guided classifier network. We extend a default classifier network
(green) with a relevance map generator (blue). For every layer of the classifier network a corresponding
relevance redistribution layer is added to the generator network. The output relevance map of the generator
has the same resolution as the R2* map used as input for the classifier and allows to guide the training of the
classifier network by adding a term that sums relevance values outside a given brain mask to the categorical
cross entropy loss.

Relevance-guided classifier network: To focus
the network on “relevant features”, we propose a
relevance-guided network architecture that
extends the given classifier network with a
relevance map generator (Figure 1). To this end
we implemented the deep Taylor decomposition
(z+-rule) [11] to generate the relevance maps of
each input image depending on the classifier's
current parameters.

Training: We trained models for two differently
preprocessed types of R2*:

● R2* images in native subject space
● R2* images nonlinearly registered to the

1mm MNI152 template
For each type we compare the two standard
classifier networks (unmasked and masked) with
the outcome of our relevance-guided method.
Each model was trained using Adam optimizer [12]
for 60 epochs with a batch size of 8. The difference
in the class sizes was accounted for using a class
weighting in the loss function.

Heat map presentation: Besides qualitatively
comparing individual heat maps, we compared

average heat maps by accumulating the bin
contents of each averaged heat map histogram
from top until we reached 20 % of all relevance
within the heat map overlaid on an MNI152 1mm
template.

Results
The resulting balanced classification accuracy
between normal controls and AD shows increased
performance on the test set for the
relevance-guided models (Table 1). However, the
obtained relevance maps (Figure 2) show that
using unmasked images or brain masking yield
highly relevant features for AD/normal control
classification at the respective outer boundaries
(left and center column). In contrast,
relevance-guided training identifies regions within
brain tissue, with the highest feature density in the
basal ganglia. The corresponding receiver
operating characteristics (ROC) curves for all six
models are shown in Figure 3.
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Figure 2: Mean relevance maps (highest relevances in yellow) overlaid on MNI152 template and balanced
classification accuracy (percentage) obtained for all six models. Unmasked and masked MRI classifiers
obtain relevant image features overwhelmingly from volumetric information (left and center columns). In
contrast, the proposed relevance-guided method bases the classifier’s decision on deep brain image
features, virtually independently of the registration method (right column).

Table 1: Performance (in %) for the different
models on the test set. Highest values per column
are highlighted in bold.

Class., Classifier; BET, brain extraction; Reg.,
registration; Bal. acc.; balanced accuracy; Sens,
sensitivity; Spec., specificity; AUC, area under the
curve of the receiver operating characteristics;
CNN, convolutional neural network; RG,
relevance-guided

Class. BET Reg. Bal.
acc. Sens. Spec. AUC

CNN no - 70% 89% 50% 0.70
CNN yes - 73% 89% 56% 0.79
CNN no nlin 73% 84% 63% 0.77
CNN yes nlin 74% 79% 69% 0.79
CNN+
RG no - 79% 92% 66% 0.80

CNN+
RG no nlin 83% 79% 88% 0.85

Discussion and Conclusion
In this explorative study we demonstrate that the
preprocessing of MR images is crucial for the
feature identification by DNNs. While previous
work has shown that skull stripping is necessary
to avoid identification of features outside the
brain, this introduces new edges by the brain
mask, which are subsequently used by the DNN
for classification. In this context, it was
demonstrated that the outcome of brain extraction
algorithms can be biased by the patient cohort
[13]. In contrast, when using the proposed
relevance-guided approach and independently of

Figure 3: Comparison of receiver operating
characteristics for all six configurations. The
relevance-guided models (blue) show higher
values for the area under the curve (AUC in
legend) compared to unmasked (purple) and
masked (orange) configurations.

preprocessing, the regions of highest relevance
were found in the basal ganglia. R2* is considered
as a measure of iron content [14]. Histological and
in-vivo studies [15], [16] have shown that brain
iron concentration is higher in these regions in AD
patients compared to normal controls. In
conclusion, our results are in good agreement
with findings from iron mapping studies and
strongly support the hypothesis that the
relevance-guided approach is minimizing the
impact of preprocessing steps such as skull
stripping and registration. Additionally,
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relevance-guiding forces the feature identification
to focus on the parenchyma only and therefore
provides more plausible results with higher
classification accuracy.
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