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Abstract⎯ We investigated the cortical connectivity 
patterns that arise in subjects with spinal cord injury 
(SCI) during attempted hand and arm movements 
using multivariate autoregressive (MVAR) models and 
electroencephalographic (EEG) signals. The MVAR 
models were fitted using multiple trials from multiple 
subjects in order to capture general connectivity 
characteristics during different type of attempted 
movements. Based on the results we detected two 
main sources of information: the somatosensory and 
the primary motor area. Changes in directional 
connectivity between different regions before and after 
cue onset were found to be informative in terms of the 
type of movement attempted by the SCI participants.   
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Introduction 

Multivariate autoregressive (MVAR) models have 
been extensively used to capture couplings between 
different time-series [1]–[3]. They provide measures of 
interdependency but also causality in the frequency 
domain, which is an important aspect when 
investigating directional connectivity in the brain (i.e., 
how brain regions send and receive information).  
Herein, we applied MVAR analysis in 
electroencephalographic (EEG) signals projected, 
however, on the source space for improved 
localization of brain sources. The EEG signals were 
acquired from spinal cord injury (SCI) subjects during 
attempted arm and hand movements. It has been 
previously suggested that motor cortex areas in SCI 
subjects can be activated during motor attempts of the 
paralyzed limbs [4]. This has enabled the use of EEG-
based brain-computer interfaces (BCI) to enhance 
restoration of movements lost after SCI [5], [6]. Our 
analysis was mainly exploratory, and our main goal 
was to capture general oscillatory interactions 
between different cortex regions before and after cue 
onset. To our knowledge, there has been only one 
study by Astolfi et al. [7] that has investigated SCI 
connectivity during attempted foot movements using 
MVAR models. Herein, we focused on detecting 
possible connectivity patterns that can be linked to the 
different type of attempted hand/arm movements. This 
information is important in order to establish MVAR-
based measures as possible features for BCI 
applications. 
 

Methods 

Data Acquisition 

61-channel EEG signals were obtained from 10, 
originally right-handed, SCI participants (median 
age of 54±18.5) as described in [5] (available at 
https://doi.org/10.1038/s41598-019-43594-9). The 
neurological level of injury ranged from C1-C7. At 
the beginning of each trial, a fixation cross was 
initially presented on a black screen, along with a 
beep sound. The class cue was displayed 2s after 
the trial initialization. The participants were asked to 
attempt unilaterally one of the following arm/hand 
movements: pronation, supination, palmar grasp, 
lateral grasp or hand open. Each trial lasted for 5s. 
 
Data Preprocessing 

The recorded EEG signals were pre-processed 
using EEGLAB and Matlab. First, we bandpass-
filtered the signals between 0.3 and 70 Hz using a 
4th order, zero-phase, Butterworth filter. Trials with 
dominant impulsive noise characteristics were 
rejected using thresholding, as well as techniques 
based on abnormal joint probabilities and kurtosis 
[5]. Next, we performed independent component 
analysis (ICA) to remove stationary artefactual 
components such as blinks, saccades, and muscle 
movements. Source localization was carried out in 
Brainstorm [8] using minimum norm imaging and 
sLoreta. To examine connectivity related to motor 
function, we extracted 26 spatially segregated 
signals (13 for the left hemisphere and 13 for the 
right hemisphere) from anatomical regions defined 
by the Brodmann atlas (Fig. 1). These 26 
anatomical regions correspond to the 
somatosensory area, the primary motor area, the 
pre-motor area, the Broca’s area, the visual area 
and the perirhinal area (Fig.1). The extracted 
signals were then used to fit MVAR models using 
multiple trials from all participants for different 
attempted movements.  
 
MVAR 

In an MVAR model, each variable is predicted by 
the linear combination of its past values, as well as 
the history of all other variables. An 𝑀-dimensional 

MVAR of order 𝑝 can be expressed as [9], 

𝒚(𝑛) = ∑ 𝑨𝑘𝒚(𝑛 − 𝑘)
𝑝

𝑘=1
+ 𝜺(𝑛)            [1] 
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where 𝒚(𝑛) = [𝑦1(𝑛) … 𝑦𝑀(𝑛)]𝑻  ∈ 𝑹𝑀×1 is a 
vector containing the values of 𝑀 time-series at time 
𝑛 (i.e., the 26 source signals in our case). 𝑨𝑘 is the 

so-called autoregressive matrix for 𝑘 = 1, . . , 𝑝 and 
𝜺(𝑛) is the MVAR driving process noise which is 
assumed to be zero-mean and white. Equation 1 
can be reformulated as, 

𝒚(𝑛) = 𝑨𝝋(𝑛) +𝜺(𝑛)                       [2] 

where 𝑨 = [𝑨1 … 𝑨𝑝] ∈  𝑹𝑀×𝑀𝑝 and 𝝋(𝑛) =
[𝒚(𝑛)𝑻 … 𝒚(𝑛 − 𝑝)𝑻]𝑻 ∈  𝑹𝑀𝑝×1.  

In this work, we used multiple trials from all 
participants to fit MVAR models that describe 
different type of attempted movements. Therefore, 
we expressed 𝒚(𝑛) and 𝝋(𝑛) as, 

𝒚(𝑛) = [𝒚1(𝑛) … 𝒚𝐾(𝑛)]𝑻  ∈ 𝑹𝑀×𝐾        [3] 

𝝋(𝑛) = [𝒚(𝑛)𝑻 … 𝒚(𝑛 − 𝑝)
𝑻

] ∈  𝑹𝑀𝑝×𝐾       [4] 

where 𝒚(𝑛)  represents the 𝑀 source signals 

concatenated from all 𝐾 trials at time point 𝑛. The 
trial-based MVAR coefficients were computed using 
ordinary least-squares estimation. 

MVAR model order selection 

One important step in MVAR estimation is the 
selection of the model order 𝑝. Herein, we used the 
multivariate Akaike Information Criterion (AIC) 
defined as [10], 

𝐴𝐼𝐶(𝑝) = 𝑁 ∙ 𝑙𝑜𝑔(|�̂�|) + 2 ∙ 𝑑                 [5] 

where 𝑁 is the total number of samples, |�̂�| is the 

determinant of the covariance of the residuals and 

𝑑 = 𝑀2𝑝 the total number of MVAR coefficients. The 
optimal 𝑝 was selected by minimizing the AIC score 
described in Eq.(5). 

MVAR coupling measures 

To extract measures of coupling and directionality 
in the frequency domain, we applied the Fourier 
transform on Eq.2, 

𝒀(𝑓) = 𝑯(𝑓)𝑬(𝑓) = [𝑰 − 𝑨(𝑓)]−𝟏𝑬(𝑓)         [6] 

where 𝑨(𝑓) = ∑ 𝑨𝑘
𝑝
𝑘=1 𝑒−𝑖2𝜋𝑓𝑘𝑇 is the coefficient 

matrix and 𝑯(𝑓) = [𝑰 − 𝑨(𝑓)]−𝟏 = �̅�(𝑓)−𝟏 is the 
transfer matrix in the frequency domain. The 
relationship between 𝑯(𝑓) and 𝑨(𝑓) allows 
frequency domain measures of coupling to be 
derived easily using solely the coefficients of the 
MVAR model. The power spectral density matrix of 
the MVAR process can be written as, 

𝑺(𝑓) = 𝑯(𝑓)𝜮𝑯𝑯(𝑓)                           [7] 

where 𝑯𝑯(𝑓) is the Hermitian of 𝑯(𝑓) and 𝜮 =
𝑑𝑖𝑎𝑔([𝜎1

2 … 𝜎𝑀
2 ]) is the covariance matrix of the 

process noise 𝜺. Based on the power spectral 
density matrix, we can generate smoothed versions 
of the power spectral density of the signals under 
consideration using the MVAR model as 
interpolating function.  
The transfer matrix, the coefficient matrix as well as 
the power spectral density matrix can be also used 
to extract various coupling and causality measures 
such as coherence (COH) [11], directed coherence 
(DC) [12], partial coherence (PCOH) [13] and partial 
directed coherence (PDC) [14]. For the purposes of 
this work, we only considered DC, which describes 
causality as direct and indirect power contributions 
from one time-series to the other. DC from time-
series 𝐷 (i.e., driver) to time-series 𝑇 (i.e., target) 

(𝐷 → 𝑇) at frequency 𝑓 is computed as [12], 

𝐷𝐶𝑇𝐷(𝑓) =
𝜎𝐷 ∙  𝐻𝑇𝐷(𝑓)

√∑ 𝜎𝑚
2𝑀

𝑚=1 ∙  |𝐻𝑇𝑚(𝑓)|2  
           [8] 

The total information outflow from a particular region 
can be defined as the sum of statistically significant 
connections (e.g., DC values) towards all other 
cortical regions [1], 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝐷  (𝑓) = ∑ 𝐷𝐶𝑇𝐷
∗(𝑓)

𝑀

𝑇=1,𝑇≠𝐷

               [9] 

where 𝐷𝐶𝑇𝐷
∗(𝑓) refers to statistically significant DC 

values from time-series 𝐷 to time-series 𝑇. To 
evaluate statistical significance, we permuted 
randomly 50 times the order of the source signals in 
each trial and estimated MVAR models based on 
the acquired trials. This way we destroyed possible 

       

Figure 1: Regions of Brodmann atlas 
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causal interactions between different regions and 
generated a reference DC distribution under the null 
hypothesis of no ‘‘causality’’ from time series 𝐷 to 𝑇. 
The significance of the DC values evaluated from 
the actual data was then assessed using the 
reference DC distribution. The estimated DC and 
outflow values were finally averaged over different 
cortex areas. The 12 regions of interest (ROI) were 
the left and right hemisphere somatosensory, 
broca’s, primary motor, pre-motor, visual and 
perirhinal areas. 

Results  

The MVAR framework was applied on two different 
time periods: before and after cue onset. The 
optimal model order (p) varied from 7-9 (for a 
sampling rate of 256Hz and for different MVAR 
models fitted on different attempted movements). 
The estimated DC values averaged over different 
type of attempted movements in the frequency 
range of [0.3 70] Hz can be found in Fig. 2. In the 
depicted matrices the columns and rows represent 
the driver and target ROIs, respectively. For 
example, the first column is the DC from left 
hemisphere (L) somatosensory area to all other 
regions (denoted in the y-axis of the matrix). Figure 
3 illustrates the total information outflow (Eq. 9) from 
each ROI in different frequency bands (delta [0.3-4] 
Hz, theta [4-7] Hz, alpha [8-14] Hz, beta [14-32] Hz, 
gamma [32-60] and broad [0.3-70] Hz) and for 
different type of attempted movements before and 
after cue onset.  
The obtained results were subjected to a three-way 
analysis of variance (ANOVA) examining the effect 
of attempted movement, frequency band and ROI 
on the DC changes before and after cue onset (i.e., 
the dependent variable was defined as 

𝐷𝐶𝑇𝐷(𝑓)(𝑎𝑓𝑡𝑒𝑟 𝑐𝑢𝑒 𝑜𝑛𝑠𝑒𝑡) − 𝐷𝐶𝑇𝐷(𝑓)(𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑢𝑒 𝑜𝑛𝑠𝑒𝑡)). 
The resulting p-values for the independent variables 
and their interactions can be found in Tab. 1. 

Table 1: Three-way ANOVA examining the effect of 
attempted movement, frequency band and ROI on the DC 
changes after cue onset. p < 0.05 indicates strong effects. 

Source p-value 

Attempted movement 0.086 

Frequency band 0.011 

ROI 0 

Attempted movement ∗ Frequency band 0.984 

Attempted movement ∗ ROI 0 

Frequency band ∗ ROI 0 

Discussion 

Figs. 2 and 3 provide important information 
regarding the main sources/hubs of information. We 
detected overall increased outflow from the 
somatosensory and primary motor areas before and 
after cue onset. The outflow from the 
somatosensory area was elevated mainly in the 

beta and alpha band, whereas the outflow from the 
primary motor cortex was more pronounced in the 
delta band. The somatosensory area outflow was 
overall higher prior to cue onset. In contrast, the 
primary motor area outflow increased after cue 
onset, especially in the delta band. The main 
receivers of somatosensory information were the 
primary motor, the broca’s, the perirhinal and the 
somatosensory area itself. On the other hand, the 
main receivers of primary motor information were 
the visual, the perirhinal and the somatosensory 
area. We also detected an ipsilateral pattern 
whereby dominant sources of information originated 
mainly from the right hemisphere. 
Based on Fig.3, the outflow from different ROIs and 
for different type of attempted movements exhibited 
similar characteristics. However, we detected 
significant differences in DC changes before and 
after cue onset (Tab. 1). The three-way ANOVA 
returned a p-value of 0.086 (i.e., weak effect) for the 
factor ‘attempted movement’ and a p-value of 0 (i.e., 
strong effect) for the interactions between 
‘attempted movement’ and ‘ROI’, indicating that the 
mean DC change can be explained better when 
considering both type of movement and driving ROI. 
An important aspect that should be pointed out here 
is that the exact attempt onset after the cue is not 
exactly known and this could also affect the results 
(i.e., the effect of the factor ‘attempted movement’ 
by itself could be more significant). 

Conclusions 

We estimated directional connectivity and 
information flow in SCI subjects during attempted 
hand and arm movements. Our results indicate that 
the most prominent sources of information were the 
somatosensory area prior to cue onset (in the 
beta/alpha band) and the primary motor area after 
cue onset (mainly in the delta band). DC and outflow 
measures exhibited the same patterns for different 
type of attempted movements. However, DC 
changes before and after cue onset in different 
ROIs were more informative in terms of the type of 
movement attempted by the SCI participant. This 
implies that the time- and spatial- varying aspects of 
DC could be used as features to improve decoding 
performance in BCI applications [5]. Future work 
involves DC estimation in a time-varying (TV) 
context using nonstationary MVAR models [2] and 
attempted movement classification using various 
TV-MVAR based connectivity measures.  
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Figure 2: Averaged DC values over all attempted movements before (left panel) and after (right panel) cue onset in the 
frequency range of [0.3 70Hz]. The columns represent the drivers and the rows the targets. (L) and (R) refers to left and 
right hemisphere. 

 

Figure 3: Total information outflow before (blue) and after (red) cue onset in the delta (first column), theta (second 
column), alpha (third column), beta (fourth column), gamma (fifth column) and broad (sixth column) and for different type 
of attempted movements i.e., supination (first row), pronation (second row), hand open (third row), palmar grasp (fourth 
row) and, lateral grasp (fifth row). 
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