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Abstract Recent research from our group has 
shown that non-invasive continuous online decoding 
of executed movement from non-invasive low-fre-
quency brain signals is feasible. In order to cater the 
setup to actual end users, we proposed a new para-
digm based on attempted movement and after con-
ducting a pilot study, we hypothesize that user control 
in this setup may be improved by learning over multi-
ple sessions. Over three sessions within five days, we 
acquired 60-channel electroencephalographic (EEG) 
signals from nine able-bodied participants while hav-
ing them track a moving target / trace depicted shapes 
on a screen. Though no global learning effect could be 
identified, increases in correlations between target and 
decoded trajectories for approximately half of the par-
ticipants could be observed.  
 
Keywords Electroencephalography, trajectory de-
coding, learning effects. 
 
Introduction 

Brain-computer interfaces (BCIs) [1, 2] are character-
ized by offering a user direct control over an interface 
without prior muscular activity. For years, a goal of our 
group has been the restoration of arm and hand move-
ment respectively in people with cervical spinal cord 
injury (SCI) [3, 4, 5]. Through a BCI, these persons 
should be enabled to control an end-effector, e.g., a 
neuroprosthesis or a robotic limb. Starting from identi-
fying different movement directions [6, 7, 8], the focus 
has advanced to continuous movement decoding.  
Recently, it was shown that movement information 
(positions and velocities) in a plane is contained in low-
frequency EEG signals, making it possible to infer ex-
ecuted movement trajectories in an online target track-
ing task with correlations between decoded and actual 
trajectories well above chance [9, 10]. However, the 
used paradigms were tailored to able-bodied partici-
pants, making their application to end users with lim-
ited motor output impossible.  
As a possible solution to this, we conducted a pilot 
study based [11] on attempted instead of executed 
movement [12]. Feedback from the participant on the 
perceived level of control at the beginning and the end 
of the experiment lead to the assumption that the de-
coder accuracy may be improved through training. 
This implies that the decoding performance may not 
only be optimized through utilization of increasingly 
powerful signal processing and machine learning al-
gorithms, but also via neuroplasticity with respect to 
the BCI users themselves. Considering this assess-
ment, we hypothesized that any visible learning effects 

would take place within a short time span already. For 
this reason, we chose to investigate possible in-
creases in BCI user performance over three sessions 
within five days. This timeframe was selected to keep 
the experience fresh in the participants’ minds while 
allowing them to recuperate from the mental workload 
between the sessions.  
In this work, we evaluate the two different paradigms 
we presented the participants with regarding an in-
crease in performance over the sessions. Further, we 
evaluate whether neuroplasticity can play a role in 2D 
trajectory inference. 
 
Methods 

Participants and setup EEG of nine able-bodied 
participants (24.2 ± 5.0ys) have been recorded three 
times each within five days. The participants sat in 
front of a TV screen with their dominant arm strapped 
to the chair (see Fig. 1, C), enabling minimal move-
ment but largely restricting the motor output in order to 
mimic attempted movement [12]. Each participant 
(four female, five male) was assessed as right-handed 
according to the Edinburgh Handedness Inventory 
[13] and had normal or corrected-to-normal vision. 
Data of one specific participant was excluded from fur-
ther analysis due to erroneous marker-labelling during 
the recording. The experiment was conducted as part 
of the Feel Your Reach project and as such was ap-
proved by the ethics committee of the Medical Univer-
sity of Graz. 
 
Paradigm  In each of the three sessions, the partic-
ipant was presented with two different paradigms: the 
snakeruns (Fig. 1, A) and the freeruns (Fig. 1, B).  
For the snakeruns, a target (called ‘snake’) was shown 
on the screen, moving according to specifically de-
signed trajectories that ensured decorrelation between 
x and y coordinate. The participant was asked to visu-
ally track the snake while attempting movement with 
the strapped lower arm and hand as if wielding a cur-
sor.  
In the freeruns, three different static shapes were 
shown on the screen: two diagonals (from top or bot-
tom left, respectively), and a circle. In this paradigm, 
the participants had to trace the shape following their 
own pace without stopping, again visually as well as 
with attempted movement.  
Each session was roughly divided into an offline cali-
bration and an online feedback part.  
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During the calibration phase, two eyeruns (including 
resting gaze, blinks, horizontal and vertical eye move-
ment) and four snakeruns (12 trials of 23s each) were 
recorded. For the calibration snakeruns, fake feed-
back in form of a green dot corresponding to the de-
layed snake trajectory was shown on the screen to ac-
custom the participants to the additional visual infor-
mation. After recording the data for the calibration, the 
eye data were used to train our sparse generalized 
eye artifact subspace subtraction (SGEYESUB) algo-
rithm [14], while the snakeruns were used to fit the par-
tial least squares regression unscented Kalman filter 
(PLSUKF) decoder discussed in [10].  
In the online phase, the feedback condition was suc-
cessively increased first to 50% EEG feedback, corre-
sponding to the mean between actual and decoded 
snake position (three snakeruns: 36 trials of 23s dura-
tion), and then to 100% EEG decoded feedback (three 
snakeruns, three freeruns: 36 trials of 23s duration 
each). 
 
Recording and preprocessing Data from 64 
channels was recorded, corresponding to a 60 chan-
nel EEG according to the 10-10 system and four elec-
trooculographic (EOG) electrodes placed at the outer 
canthi of both eyes as well as above and below the left 
eye. Ground and reference electrodes were placed at 
Fpz and the right mastoid. The initial sampling rate of 
200Hz was first reduced to 100Hz after high pass fil-
tering at 0.18Hz and anti-aliasing filtering at 25Hz; the 
bad channels were then interpolated, the eye artifacts 
attenuated using the SGEYESUB algorithm [14], and 
the EOG and AF channels were removed. The data 
were then re-referenced to common average refer-
ence, and pops and drifts in the signals were attenu-
ated using the HEAR algorithm [15]. After low pass fil-
tering at 3Hz and further downsampling to 20Hz, the 
signals were fed to the PLSUKF decoder [10, 16], 
yielding the feedback output shown as a green dot on 
screen. 
 
Results 

Snakeruns An accurate assessment of the decoder 
performance was accomplished by evaluating the 
Pearson’s correlation coefficient r between actual 
snake trajectory (ground truth) and decoded EEG sig-
nals for each trial. The correlations for each feedback 
condition (50% and 100% EEG), directional move-
ment parameters (posx, velx, posy, vely), session and 

participant are presented in Fig. 2. The correlations for 
single trials (36 per session and condition, notwith-
standing trial rejection) are displayed as small dots, 
mean and 25th resp. 75th percentiles as big dots and 
whiskers. For each session, the chance levels were 
calculated using a shuffling approach [9], in which 
EEG data and corresponding snake trajectories were 
randomly interchanged, a new PLS model fitted, and r 
evaluated, for 100 times. The upper confidence inter-
vals of the chance level correlations (with alpha = 0.05) 
were then found as the 95th percentile of the correla-

tion moduli and are depicted as horizontal lines. For all 
participants, sessions and feedback conditions, mean 
correlations (approx. 0.3) lie well above chance levels 
(approx. 0.15).  
After evaluating the data of the first participant (P1), 
the initial recording sequence of three 50% EEG 
snakeruns and three 100% EEG freeruns was 
adapted, and snakeruns with 100% EEG feedback 
condition were added for quantitative performance 
analysis due to the lack of a ground truth for the self-
paced freeruns. As a result, P1 could not be included 
in the 100% EEG feedback snakerun analysis (Fig. 2, 
bottom). 
For both feedback conditions, single trial correlations 
are found to be spread over the whole range (0,1), with 
no global trend for the means over each session. A 
downward tendency from first to third session for ap-
proximately half of the participants can be observed, 
while the other half improved, often accompanied with 
a performance peak in the second session. Further, 
improvements in performance in one movement direc-
tion (x or y) are not necessarily seen in the other direc-
tion as well, implying varying decoder performance 
across movement directions over multiple sessions.  
Further measurements with additional participants will  
 

Figure 2: Correlations for all trials (small dots) with 
mean (big dots), 25th and 75th percentiles (whiskers) 
and chance levels (horizontal lines, see [9]) for each 
participant, directional movement parameter (posx, 
velx, posy, vely), session and feedback condition (top: 
50% EEG, bottom: 100% EEG). 

Figure 1: Experimental setup and paradigm. A) de-
picted moving target (snake, white) with green 
feedback dot, B) freerun shapes /, \ and O to be 
followed at the participant’s own pace, C) experi-
mental setup with the participant’s dominant 
hand/arm strapped to the chair. 
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allow for statistical evaluation of the correlations over 
all individuals. 
 
Freeruns Because of the self-paced character of 
the freerun task, target positions as in the snakeruns 
are not available as a ground truth in the freeruns. As 
a workaround, the expected target position on screen 
at each point in time was assumed as the point the 
participant was visually focusing on. The ground truth 
trajectories were inferred via horizontal and vertical bi-
polar derivates of the EOG signals. After lowpass fil-
tering at 3Hz and downsampling to 20Hz of the raw 
EOG data, the correlation between the trajectory in-
ferred via horizontal and vertical EOG derivates and 
the decoded trajectory was used as an evaluation met-
ric.  

 
Three single freerun trials taken from P4, session 2 are 
shown in Fig. 3 for demonstration. The static shape 
shown to the participant on the screen is depicted in 
red, the EEG-decoded trajectory corresponding to the 
tracing task is overlaid in black. Pearson’s correlation 
r between EOG-inferred trajectory (ground truth) and 
decoded trajectory for each participant, session and 
trial is shown in Fig. 3 (bottom). Small dots correspond 
to single trials, big dots and whiskers again to mean 
and 25th/75th percentiles of the correlations in each 
session. No distinction between the different depicted 
shapes (/, \, O) was made yet. The chance levels were 
again calculated using a shuffling approach.  
As can be seen, the mean correlation lies below 
chance level for some sessions in contrast to the 
mean correlations during the snakeruns. Again, no 
global trend can be observed in terms of improvement 
or degradation of performance over all participants. 
However, a steady increase in performance can be 

observed in approximately half of the participants. Ad-
ditionally, any trend from first to third session observed 
in one movement direction can be also seen in the 
other direction in two thirds of the participants, in con-
trast to the correlations in the snakeruns.  
 
Discussion 

Over three consecutive sessions in nine participants, 
no global learning effect could be observed for both 
presented paradigms (snakeruns, freeruns).  
For each feedback condition, participant and session, 
the mean correlation in the snakeruns lay above 
chance level, though different decoding accuracies in 
x and y direction could be observed, implying a fa-
vored decoding direction. Approximately half of the 
participants showed an increase in performance from 
first to third session, which was often paired with a per-
formance peak during the second session, while the 
other half exhibited a steady decrease in performance. 
Following a preliminary assessment, this does not di-
rectly correlate with the decoder performances ob-
served on the calibration data. This implies underlying 
causes that are not strictly related to the varying de-
coder performance from session to session, even 
though the decoder was fitted anew for each session. 
Decreasing motivation and engagement of the partici-
pants due to the long experiment (3-4 hours per ses-
sion) must be mentioned as influencing factors, along 
with a varying frustration tolerance between the partic-
ipants. Although we did not ask the participants to fill a 
questionnaire, there seemed to be a consensus that 
higher learning rates were expected. This may have 
led to frustration and can explain the decrease in cor-
relations from second to third session in participants 
with a performance peak in the second session.  
For the freeruns, approximately half of the participants 
showed improvement from first to third session, 
whereas the performance decreased for the other half.  
Mean correlations did not lie above chance for all ses-
sions, which in part can be attributed to the EOG tra-
jectories that were used as a ground truth in the 
freeruns. In part, this may also imply that the self-
paced freerun task was harder to fulfill than the track-
ing task during the snakeruns. Detailed investigations 
on correlations per specific shape (/, \, O), as well as 
on changes in correlation from session to session, re-
main to be done.  
Detailed analysis regarding the grand average over all 
participants remains to be done and cannot be pre-
sented within the preliminary results yet. 
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Figure 3: Top— Depicted shapes (red) and three 
corresponding EEG-decoded freerun trajectories 
(black) from P4, session 2. Bottom— Correlation be-
tween EOG-inferred and decoded trajectory for 
each trial (small dots), with mean (big dot), 25th resp. 
75th percentiles (whiskers) and chance levels (hori-
zontal lines) for each participant and session. 
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