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Because of their repetitive nature, short sequencing 
reads derived from transposable elements (TEs) 
cannot be unambiguously mapped to the reference 
genome. As a result, most genomic analyses neglect 
over 50% of the human genome. Here, we present 
T3E, an algorithm to characterize the histone 
modifications associated with TEs from Chromatin 
Immunoprecipitation Sequencing (ChIP-seq) data. 
T3E relies on the structure of the ChIP-seq control 
experiment to assess enrichment. When applying T3E 
to five ChIP-seq libraries we found consistently fewer 
enrichments compared to a strategy that assumes a 
random distribution of the reads across the genome, 
suggesting that the latter has a high false positive rate. 
This provides a framework for the functional analysis 
of TEs. 
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Introduction 
Over half of the human genome consists of repetitive 
sequences, including transposable elements (TEs) 
[1]. Based on their sequence and transposition 
mechanisms, TEs have been hierarchically classified 
into several groups/subgroups [2]. TEs are 
contributors to regulatory network evolution, playing 
role as host promoters, enhancers, and forming 
silencer/insulator regions [3]. To study the exaptation 
of TEs as cis-regulatory elements, we aim to 
quantitatively investigate the relationship between 
epigenetic histone modifications and TE 
groups/subgroups. 
Repetitive sequences pose several analytical 
challenges to current short-read sequencing 
technologies. Specifically, reads originating from 
repetitive sequences will often map to multiple loci 
(multi-mappers) and cannot be unambiguously 
assigned to any region of the genome. The problem 
has been tackled in different ways. For example, some 
strategies simply use one random mapping, 
increasing the number of mapped reads, but reducing 
the precision of the mapping [4]. Others discard multi-
mappers from the analysis and use only uniquely 
mapped reads [5]. 
Here, we present T3E, an algorithm that identifies TE 
groups featuring enrichment for specific histone 
modifications using chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) data.  

Methods 
Selection of ChIP-seq datasets 
We selected five ChIP-seq samples for the H9 cell line 
from the ENCODE Project data repository [6]: 
H3K4me1 and H3K4me3 (active euchromatin), 

H3K9me3 and H3K27me3 (repressed 
heterochromatin), and H4K8ac (both euchromatin and 
heterochromatin). All single-ended sequencing 
libraries were generated by the laboratory of Zhiping 
Weng, UMass Medical School.  

ChIP-seq reads quality control and mapping 
The raw data quality of all samples and their 
respective “input” controls (FASTQ files) were 
assessed using FASTQC [7]. Sequencing adapters 
were removed and low-quality reads (minimum Phred 
score of 10) were filtered out/or trimmed. Mapping was 
performed using BWA mem [8] against the 
GRCh37/hg19 assembly of the human genome with 
the parameter “-a”, which outputs all found alignments 
for the single-end reads. The resulting mappings 
(BAM files) were processed with SAMtools [9] and 
BEDtools [10] to filter out unmapped reads, non-
chromosomal scaffolds, and reads mapping to the 
mitochondrial chromosome (Tab. 1). The “input” 
controls were processed in the same manner. 

Table 1. ENCODE Project ChIP-seq libraries 
considered in this study. * Number of processed 
reads. ENCFF969KKW has 9,862,491 reads and a 
read length of 30 base pairs (bp). ENCFF416GCS 
has 16,845,808 reads and a read length of 36 bp. 
The read length considered for the sample is the 
same for the corresponding “input” control. 

Histone 
modifications 

File  
accession 

* Read 
count 

Input file  
accession 

H4K8ac ENCFF974
MOD 

5508640 ENCFF969
KKW 

H3K9me3 ENCFF776
JLA 

7054172 ENCFF969
KKW 

H3K4me3 ENCFF909
NXO 

9771318 ENCFF416
GCS 

H3K27me3 ENCFF212
TLT 

12002119 ENCFF416
GCS 

H3K4me1 ENCFF210
BMG 

16779354 ENCFF416
GCS 

TE groups/subgroups 
Repeat annotation for the GRCh37/hg19 assembly of 
the human genome was obtained from the 
RepeatMasker track of the UCSC Genome Browser 
[11]. Repeat annotation was processed to filter out 
simple repeats (micro-satellites), low complex repeats, 
satellite DNA, RNA repeats (including RNA, tRNA, 
rRNA, snRNA, scRNA, srpRNA, non-TE elements 
and uncommon repeats (less than 100 instances). 
Adjacent and overlapping TE instances of the same 
group/subgroup were merged. 
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Reads associated with a TE group/subgroup 
The contribution of a read to a TE group/subgroup 
considers the fraction of a read mapping to a given TE 
instance and the total number of mappings for the read 
in the genome: 

𝐶𝐾 	 = 	!!!
𝑙𝑘	𝑟𝑖
𝑁𝑟	𝐿𝑟

𝑁𝑟

𝑖=1!∈#𝑘∈𝐾

																																												 (1) 

where 𝐾  is the set of all instances of a TE 
group/subgroup in the genome, 𝑆 is the set of all reads 
in the sample, 𝑁* is the number of mappings of read 
𝑟, 𝐿*	is the length of read 𝑟, and 𝑙+	*# is the number of 
nucleotides of the 𝑖th mapping of read 𝑟 overlapping 
with TE instance 𝑘, where /𝑙+	*# ∈ ℤ,

-: 0 ≤ 𝑙+	*# ≤ 𝐿*5. 

Input-based background probability distribution 
The estimated probability of a mapping starting at 
position 𝑛  on chromosome 𝑐 ∈ {1, 2, … , 22, 𝑋, 𝑌}  of 
the genome is calculated based on the reads in the 
“input” library and defined by: 

𝑝. =	
∑ 1

𝑁**∈/

∑ 𝐿*
𝑁**∈0

																																																																				(2) 

where 𝐿* is the length of read 𝑟, 𝑁* is the number of 
mappings of read 𝑟, 𝐾 is the set of all read mappings 
on chromosome 𝑐 overlapping 𝑛, and 𝑀 is the set of 
all read mappings on chromosome 𝑐 . Note that 
nucleotides with zero coverage have no probability 
assigned and are consequently excluded from the 
analysis. 
We sample genomic positions from the corresponding 
empirical cumulative distribution for a given 
chromosome using discrete sample. Then, among the 
reads mapping to that position, we randomly select 
one. Finally, we identify all other mappings of the 
selected read (if any). The process is repeated as 
many times as there are reads in the ChIP-seq library 
of interest, resulting in a simulated “input” library of the 
same size of the ChIP-seq library. 

TE group enrichment analysis 
For each ChIP-seq library, we simulated N=100 “input” 
libraries. For each of them, we computed the number 
of reads associated with a TE group/subgroup as 
described above. 
For each TE group/subgroup, the number of reads in 
the ChIP-seq library was compared to the number in 
the simulated “input” libraries using a permutation test. 
A P-value was calculated as the number of simulated 
“input” libraries with a number of reads higher than or 
equal to the number of reads associated with the TE 
group/subgroup in the ChIP-seq library divided by N. 
A fold-change (FC) was computed as the ratio 
between the number of reads associated with the TE 
group/subgroup in the ChIP-seq library divided by the 
average of the number of reads associated with the 
TE group/subgroup across all N simulated “input” 
libraries. 

Note that enrichment was calculated for TE 
groups/subgroups, not for individual TE instances. 

Uniform background distribution 
A more traditional method to define a background 
distribution assumes a uniform distribution of the 
sequencing reads across the genome. Thereby, the 
reads of a ChIP-seq library are randomly shuffled 
across the entire genome. 

Computational specifications and execution time 
The algorithm is written in Python 3 and was executed 
in two machines using Python 3.8.5. Three samples 
were processed on a computer with AMD Ryzen 9 
3900X, 12 cores, with in total 128 GB of RAM and 
running Linux version 5.8.0-41-generic (machine 1). 
Two samples were processed using a computer with 
AMD Ryzen Threadripper 3970X, 32 cores, with in 
total 128 GB of RAM and running Linux version 5.8.0-
44-generic (machine 2). The execution time increased 
approximately linearly with the library size (Fig. 1). 

 
Figure 1. Execution time as a function of the ChIP-
seq library size. Note that the times correspond to 
two different machines. 

Results 
In T3E the number of mappings observed for a given 
read is taken into account to quantify the contribution 
of a read to a TE group/subgroup. By doing this, every 
single nucleotide mapping onto a TE instance is 
counted and weighted by the uncertainty of where 
multi-mapper reads come from. As background for the 
enrichment analysis, the algorithm constructs a 
probability distribution of read mappings based on the 
read mappings in the ChIP-seq control experiment 
(Fig. 2).  
In total, the repeat annotation comprises 860 different 
TE groups/subgroups covering 44.83% of the human 
genome. Read mapping statistics evaluation shows a 
substantial percentage of alignments uniquely 
mapping on TE regions (Fig. 3), indicating that 
although different instances of the same TE 
group/subgroup have repetitive sequences, they are 
not identical. Multi-mapper reads also mapped to non-
TE regions, indicating the presence of other genomic 
repetitive sequences or non-annotated TEs. 
The number of reads that are expected to be mapped 
by chance to TE groups/subgroups computed based 
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on the reads in the “input” library is strongly correlated 
with that computed assuming a uniform distribution 
(Fig. 4). However, LINE and SINE major groups 
exhibit clear deviations, in particular for LINEs using 
the ENCFF416GCS “input” library (Fig. 4). 

 
Figure 2. T3E algorithm strategy. The structure of 
the “input” control is used to construct the background. 
Overlapping of different TE groups are shown and 
reads mapping on this region contribute partially to 
both groups. 
 
Consistently, T3E identified fewer TE 
groups/subgroups featuring histone modification 
enrichments. On average, T3E found only 11.11% of 
the TE groups/subgroups identified based on the 
uniform background distribution (Fig. 5). In total, 11 TE 
groups/subgroups showed enrichment: 4 to H3K4me3 
(including LTRs, MER57E3 and HERVH-int, all 

classified into ERV1 - endogenous retroviruses group) 
and 7 to H3K9me3 (LTR12E and 6 SVA 
retrotransposons).  

 
Figure 3. Read mapping statistics. On average, 
10,223,121 reads comprised 64.04% uniquely 
mapped on non-TE, 15.77% multiple mapped on TE 
regions, 14.32% uniquely mapped on TEs, and 5.88% 
multiple mapped on non-TEs. 

 
Figure 4. “Input” control simulations. Comparison 
of T3E input-based background and uniform 
background distribution counts as the average of 10 
iterations. Each dot represents one TE 
group/subgroup. Unknown represents ancient TE not 
yet classified [12]. 
 

 
Figure 5. TE group/subgroups enrichment for different histone modifications. Only TE group/subgroups 
exhibiting a P-value ≤ 0.05 and a log2 FC ≥ 1 were considered enriched. Light-coloured cells indicate no enrichment. 
Red intensity varies according to log2 FC values, from 1.0 to the maximum found (log2 FC = 4.99). (*) Uniform 
background distribution. (**) T3E. Columns were clustered using Euclidean distance and complete linkage.

Discussion 
Although a considerable effort has been done to study 
TEs in an integrative manner, several challenges are 

faced when mapping TE-derived sequences and 
predicting the enrichment of TEs in high-throughput 
sequencing, such as ChIP-seq data. Long reads 
increase the uniqueness of sequenced fragments and 
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also help in the mapping step, but still, it is a limiting 
factor in ChIP-seq and many other applications.  
Like the repEnrich [13] method, T3E accounts for the 
uncertainty in the mapping of multi-mapper reads by 
dividing by the total number of mappings. In addition, 
T3E was developed to use the structure of the “input” 
library to estimate TE enrichments. Thus, the 
probability of observing a mapping at a given genomic 
position reflects the read distribution of the “input” 
control. Our approach avoids the bias of a uniform 
background, which does not reflect the read 
mappings, since TEs are not uniformly distributed 
across the genome [14] and the read mappings in the 
“input” control have a specific distribution. This is 
reflected in the decrease in the number of TE 
groups/subgroups showing enrichment. Furthermore, 
T3E’s strategy of randomly sampling read mappings 
based on the “input” library takes into account potential 
library preparation biases. It also eliminates the need 
for normalization in enrichment computations, 
preventing the removal of true biological variations.  
In summary, T3E is more conservative compared to 
other current approaches and has the benefit of 
estimating TE enrichment of groups/subgroups at a 
nucleotide resolution, without the need of further 
normalizations. Although this study is a proof of 
principle, it provides a framework for the analysis of the 
regulatory functions of TEs. 
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