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Abstract - The emergence of genome wide 
chromosome conformation capturing techniques 
such as HiC has enabled researchers to investigate 
the crucial role of chromatin folding in gene 
regulation. DNA folding forms distinct multiscale 
patterns which become visible in contact maps 
generated by such experiments. The abundance of 
information about chromatin architecture contained in
the nucleotide sequence alone is still not well 
understood. Here we present a purely sequence 
based computational approach DDA-DNA that sifts 
out the sequence dependencies of genome 
architecture at 1Mb resolution. 
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Introduction

Advances in high-throughput chromosome 
conformation capture assays such as Hi-C has 
enabled the cataloging of genome-wide interaction 
maps in various cell types. How strongly DNA 
sequence signatures alone and at which scales 
they reflect this hierarchical organization remains 
unknown. The genome has various levels of 
organization. At megabase (Mb) resolution, 
chromosomes are organized into two types of 
chromatin called A and B compartments which 
correspond to open and closed chromatin [1]. The 
A/B compartments have been found to be cell-type 
specific and contribute to cell-type-specific gene 
expression [2]. 
Here we applied Delay Differential Analysis (DDA) [3]
to extract dynamical properties of the DNA sequence 
that contribute to its conformation in 3D space. This 
method has been shown to achieve excellent 
classification and prediction performance in various 
data types [4, 5, 6]. The key difference to machine 
learning (ML) is that DDA uses a sparse feature set 
of only 4 terms compared to the typically huge 
parameter sets in ML. DDA does not utilize a typical
training/testing approach, but rather a structure 
selection step where the model and the two fixed 
parameters that best represent the overall 
dynamics of the system are searched for. This 
makes DDA robust to overfitting and easily 
generalizable to new data [3].
We hypothesize that a substantial contribution of 
chromatin organization, at least at the 1Mb scale, 
arises from the sequence itself. 

Methods

Background
Genome-wide chromosome conformation capturing 
techniques (Hi-C) is a type of next generation 
sequencing (NGS) method which produce contact 
frequency maps that depict the degree of interaction 
between two loci in the genome. The contact matrix 
is highly self-similar, a hallmark for a chaotic process,
and can thus be understood as a recurrence map. It 
has been found that the contact frequency between 
two genomic regions i and j follows the power scaling
law as

(1)
The scaling exponent  has been typically found to 
be slightly below 1. This is in good agreement with 
the predictions made by the so called “fractal” globule
model of DNA [1, 7, 8]. 

Construction of contact maps from HiC-assay 
data
The Hi-C contact maps were derived using the 
publicly available Hi-C raw sequencing data set of a 
fetal lung fibroblast cell-line (GEO accession 
GSM862724). The reads were mapped using 
bowtie2 [9] and contact maps were generated with 
hicexplorer [10]. 

Construction of contact maps from nucleotide 
sequence
The DDA-contact maps were generated in a three-
step process: 1) conversion of the nucleotide 
sequence into a numerically differentiable signal; 2) 
structure selection on chr14; and 3) testing on 
chr13,15,16, 17. A crucial fact of DDA ist that its 
functional form and parameters are never updated as
in traditional ML methods. DDA does not learn but 
rather captures the important underlying macroscopic
features of a dynamical system. A DDA model 
associates the numerical derivative of a signal, in this
case a spatial sequence, with its delayed versions 
[3]. We used a cubic 3-term DDA model with two 
parameters  and 

(2)

where  is the converted version of the 
DNA sequence delayed by . The coefficients

 and the least squares error  are 
estimated from the over-determined system of 
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equations with singular value decomposition (SVD)
[11] and used as classifying features. 

Figure 1: A) conversion of the nucleotide sequence
B)  DDA (example for a simple linear 2-term DDA

model) C) ST DDA D) CT DDA E) DE-DDA 

1) conversion of the nucleotide sequence
For DNA-DDA (see Fig. 1 B)), each nucleotide A, C, 
T and G in the sequence of the human genome 
(hg38 assembly) was encoded as 1, 2, 3 and 4 
respectively, and the entire sequence was split into 
1Mb long bins. To make the signal suitable for DDA, 
a small amount of signal-to-noise ratio (SNR) of 50 
dB Gaussian noise was overlain to the signal of each
bin  where  is the encoded DNA 
sequence,  are numbers drawn from the standard 

normal distribution and .

2) structure selection
The converted DNA signal  of each bin was 
inputted into Eq. (2) and the features  and

 were calculated for each delay pair  in a 
probe list consisting of 870 delays between 1 and 
30. 
The individual calculation of DDA features is called
single-trial(ST) DDA. Data windows of multiple time
series can be combined in cross-trial(CT) DDA 
where features are computed simultaneously by 

including them in the over-determined system of 
equations given by Eq. (2) [6, 12].
Each feature may be considered separately or 
combined. For instance for two 1Mb genomic 
regions i and j, we can compute the ST DDA 
features  as well as the CT DDA feature . 
The CT errors and mean of the ST errors should 
be similar if the analyzed time series have similar 
dynamics and their quotient will be close to one. 
The dynamical ergodicity (DE) DDA  [12] is 
defined by the quotient 

(3)

Thus the lower , the more dynamically similar 
these two 1Mb stretches of sequence are to one 
another. Motivation of this feature comes from 
ergodic theory [13] which is concerned with the 
statistical properties of a dynamical system. 
We hypothesize that DE DDA is correlated with the
proximity of two 1Mb stretches of sequence in 3D 
space. Hence, we predict the contact probability 
between two DNA sequences i and j as 

(4)

Where  is the distance between genomic bin i 
and bin j and  is the scaling exponent and was set
to .

Calling A/B Compartments
We generated the pearson correlation matrices 
from the contact matrices to call A/B 
compartments. The HiC- and DDA-contact maps 
(Fig. 2 A) were normalized with Toeplitz 
normalization using the 4D nucleome Analysis 
toolbox [14] before being converted to a correlation
matrix as described by [1]. The principal 
components which determine A/B compartments 
were derived using matlabs [15] pca function. The 
A and B compartments correspond arbitrarily to 
PC>0 or PC<0 respectively. 

3) testing
Model performance was assessed with the 
stratum-adjusted correlation coefficient (SCC) 
given by HiCRep [19], the mean square error 
(MSE), Pearson's R of the resulting first or second 
PCs of the Pearson correlation matrices ( ), and 
lastly the area under the ROC curve of the 
compartment classification (AUC). Before 
calculating testing measures, both matrices were 
normalized to 0 and 1 whilst ignoring the main 
diagonal which was subsequently set to 1. 
It is worth noting that the ordinary Pearson 
correlation coefficient is not sufficient for 
comparison of matrices of such type. The SCC 
statistic [19] takes spatial features such as domain 
structure and distance dependence into account. 
An averaging filter of size 2 was applied to HiC and
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DDA maps using matlabs fspecial function before 
calculating the SCC (smoothing parameter=0) .

Results

The interaction probability between two genomic 
regions is not simply a matter of linear distance (Fig. 
2A). Each chromosome has a unique and 
characteristic structure. Chr14 was arbitrarily chosen 
for the structure selection process. Based on the 
aforementioned performance measures the 
feature/delay pair combination that resulted in the 
highest performance was found to be  and the 
mean of the DDA-maps for . We 
tested this model-parameter combination on 
chr13,15, 16, 17 on which DNA-DDA shows 
promising performances (Tab. 1). 

Table1:  Performance  of  DNA-DDA  for  delays
 on chr13-17

ChrNr SCC

13 0.74 0.78 0.84 0.06
14 0.62 0.74 0.80 0.02
15 0.68 0.61 0.78 0.06
16 0.74 0.71 0.82 0.06
17 0.73 0.71 0.82 0.06

Figure 2: A) log-transformed HiC- and DDA-contact
maps ( ) for chromosomes 13-17. One value in
the map corresponds to a genomic region of 1Mbp.

B) Corresponding Pearson correlation HiC- and
DDA-maps for chromosomes 13-17. 

Figure 3: PCs of HiC (blue) and DDA (magenta)
correlation maps  (Fig  2 B))

Highly interacting regions predicted by DNA-DDA 
match very well those of the HiC-contact maps 
achieving a mean SCC of 0.72 on hold out 
chromosome contact maps (Fig. 2B). DNA-DDA-
based compartment prediction was also remarkably 
accurate (Fig. 3) achieving a mean AUC of 0.82 on 
hold out chromosomes.

Discussion

We present DDA-DNA,  a  novel  method  based in
nonlinear dynamics and ergodic theory that predicts
the folding of chromatin inside the nucleus using the
nucleotide  sequence  alone.  Being  able  to  infer
structural changes in the genome could immensly aid
in understanding disease pathology and be of clinical
use in the long run.  Hierarchial organization of the
genome  is  crucial  for  nuclear  activity  such  as
transcription, DNA replication as well as for cellular
processes and development. 
Current  approaches  for  modeling  genome
organization  are  based  on  machine  learning  or
polymer chemistry and physics. The former typically
rely on epigenomic information as input (eg [2,  16]),
which are not able to model the effects of genetic
variation.  However  recently, some deep  learning
sequence  based  multi-scale  models  including
DeepC, Akita,  and Orca for chromatin architecture
have  emerged  [17,  18,  20].  DeepC  is  a  transfer-
learning  based  neural  network  which  like  Akita,
predict  interactions  within  Mb-scale  loci.  The
training/testing and validation sets were split based
on  chromosomes.  DeepC  uses  two  training
procedures the first of which used chr11 and chr12
for validation and chr15-17 for testing,  the second
used  tha  same  validation  chromosomes  but  only
chr16  and  chr17  for  testing.  GPU  support  was
needed for training and the final models had ~60M
parameters. DeepC models were trained on seven
human  and  one  mouse  data  sets   and  cross-
validation  accross  all  chromosomes  acheived  an
average distance stratified Pearson’s R of ~0.36 on
raw  skeleton  data  and  ~0.57  when  applying  a
smoothing filter  to the discrete  and noisy skeleton
[17]. Akita uses a convolutional neural network that
predicts  interaction  contacts  up  to  1Mbp.  They
divided the human genome into ~1Mb sequences
and  used  a  80/10/10  random  split  for  training,
testing and validation sets ( ~262kb in the training
set  and ~524kb for the validation and test  sets).
The  resulting  model  has  746,149  trainable
parameters.  Training  and  prediction  were
conducted on 5 high quality Hi-C and Micro-C data
sets and acheived performances of MSE=0.14 and
distance stratified Pearson’s R=0.61. Akita currently
makes predictions for 1Mb long windows and will
need to be extended to make prediction on more
distal  pairs  of  genomic  loci  to  obtain  chromatin
features  such  as  A/B  compartmentalization  [18].
Currently  in  preprint,  Orca  is  the  first  sequence
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based model  that  predicts  chromatin  architecture
from kp to  whole-chromosome scale.  The model
takes  1Mb-256Mb  as  input  and  predicts
interactions  from  4kb-256Mb.  On  holdout  test
chromosomes  9  and  10,  the  model  achieves  a
Pearson  correlation  of  0.78-0.84  and  0.72-0.79
consistently across all scales for the two micro-C
datasets.  Based  upon  additional  analysis  on
sequence  effects  on  A/B  compartments,  they
proposed that compartment A formation is driven
by  TSS  sequences  whereas  compartment  B
requires  sequences  of  >  6-12kp  without
compartment A activity, is  AT-enriched, and may
be the “default” state established on all sequences
not belonging to compartment A [20]. 
DNA-DDA’s  performance  measures  do  very  well
when  compared  with  these  recent  publications
achieving  a  mean  of  SCC=0.72,  MSE=0.06,
AUC=0.82  and  rPC=0.70  across  the  test
chromosomes.  What sets this method apart from
the others, is the vastly lower number of parameters
and  distinguishing  features.  Opposed  to  other
methods, we use merely one chromosome (chr14) to
fix  the  DDA-model  and  parameters  (

) and subsequently test it on four
others (chr13, 14, 15, 16, 17). Furthermore, the final
fixed DNA-DDA can be computed on CPUs on new
chromosomes in minutes (chr13: ~23 minutes on 6
AMD Ryzen 9 3950X CPUs).  There remain many
possibilities  of  adjusting  our  analysis  such  as:
conversion of the sequence to a time series signal
and using a different DDA functional form. 
Additional  analysis  is  still  needed to assess DNA-
DDA’s  robustness  on  all  remaining  human
chromosomes and on the sub-megabase scale. 
We hypothesize that DNA-DDA has the potential to
detect  cell-type specific structural  differences. DDA
applied to other systems such as the human brain is
able to classify various disease states defined by a
certain delay pair and thus we hypothesize that also
here, a different delay pair will best characterize DNA
structure in another cell type. 
We  believe  tha  DNA-DDA  has  high  potential  in
helping  to  understand  the  mechanisms  by  which
derangement  in  the  hierarchial  architecture  of  the
genome causes diesease pehotypes. Implementing
DNA-DDA to perturbed sequences could help predict
the effects of various genetic mutations. This is of
particular  interest  for  understanding  disease
progression such as in cancer. Similarly, removal of
certain sequence motifs can give us insight into the
highest  contributing  sequence  signatures  and
biological mechanisms of genome folding at various
scales. 
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