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Abstract

Many viscous materials of engineering, geophysical or biomedical interest can be accu-
rately modelled as generalised Newtonian fluids, that is, with an apparent viscosity de-
pending locally on the flow field. A few examples are polymer melts, dense granular ma-
terials and blood under certain flow regimes. Although these so-called quasi-Newtonian
models may appear simple, their simulation imposes various challenges ranging from quite
basic aspects such as boundary conditions, to more technical ones involving solver accu-
racy and efficiency. The focus of this work is to develop finite element methods for the
accurate, efficient and reliable simulation of incompressible flows involving generalised
Newtonian fluids – a class which also includes, of course, the Newtonian case. Within that
field, our scope is rather broad, addressing topics that go from enforcing outflow boundary
conditions to eliminating numerical artifacts; from flow simulations to inverse problems;
from efficient time-stepping to parallelisable space-time solvers; from stable to stabilised
finite element methods.

Our main contribution is devising a quasi-Newtonian finite element framework that can
naturally enforce open boundary conditions, allows equal-order velocity-pressure pairs
and eliminates the spurious pressure boundary layers typically arising from low-order dis-
cretisations. To accomplish that, we first devise a non-Newtonian version of an inverse
technique typically used for estimating arterial pressure from hemodynamic velocities. We
then insert this discrete velocity-pressure operator into the incompressible Navier–Stokes
equations to consistently break their saddle-point structure. The resulting stabilisation
method is assessed through extensive numerical testing, which confirms its improved ac-
curacy with respect to classical methods.

Then, shifting the focus from the formulation to the solution process, we introduce two
main contributions. The first is a family of split-step schemes consistently decoupling ve-
locity and pressure into a series of scalar advection-diffusion, Poisson and mass matrix
problems. These schemes are fairly similar to so-called projection or pressure-correction
methods, but allow equal-order spaces without inducing artificial pressure boundary condi-
tions. Finally, we present a space-time finite element tearing and interconnecting method to
decompose the space-time domain and yield smaller, easily parallelisable subproblems.

It must be mentioned that this work is application-motivated, yet technique-driven. We
have practical biomedical and engineering challenges as our main motivation, but the
present focus lies on developing and testing advanced numerical methods. Although the
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reader will not find, for instance, patient-specific simulations herein, most of our tech-
niques are immediately applicable not only to such scenarios, but also to industrially rele-
vant problems where complex Newtonian and non-Newtonian flows often feature.



Kurzfassung

Eine Vielzahl an viskosen Materialien in den Ingenieurwissenschaften, der Geophysik oder
in der Biomedizin können als generalisierte Newtonsche Fluide modelliert werden. Diese
Fluidmodelle berücksichtigen eine variable Viskosität abhängig von dem Strömungsfeld,
eine Abhängigkeit, die beispielsweise bei Schmelzen von Polymeren, dichten granularen
Materialien oder Blut unter bestimmten Strömungsbedingungen von zentraler Bedeutung
ist. Obwohl diese sogenannten quasi-Newtonschen Modelle einfach erscheinen, ist deren
numerische Erfassung mit einigen Schwierigkeiten verbunden, reichend von grundlegen-
deren Aspekten wie der Berücksichtigung von Randbedingungen zu komplexeren Pro-
blemstellungen im Zusammenhang mit Genauigkeit und Effizienz der Lösungsalgorith-
men. Der Fokus dieser Arbeit liegt in der Entwicklung von Finite Elemente Methoden für
die genaue, effiziente und zuverlässige Simulation inkompressibler Strömungen mit ge-
neralisierten Newtonschen Fluiden – eine Klasse von Fluiden, die den Newtonschen Fall
mitberücksichtigt. In diesem Kontext ist das Spektrum an behandelten Themen breit ge-
fächert. Die Betrachtungen befassen sich mit der Behandlung von Ausflussrandbedingun-
gen bis zur Elimination von numerischen Artefakten; von der Strömungssimulation bis
zu inversen Problemstellungen; von effizienten Zeitschrittverfahren zu parallelisierbaren
Raum-Zeit Lösern; von stabilen zu stabilisierten Finite Elemente Methoden.

Der Hauptbeitrag ist die Herleitung eines quasi-Newtonschen Finite Elemente Lösers, der
natürliche Ausflussrandbedingungen erzwingt, Interpolation gleicher Ordnung der invol-
vierten Variablen erlaubt und künstliche Druckrandschichten eliminiert, die typischerwei-
se bei Diskretisierung mit Elementen niedriger Ordnung auftreten. Um dies zu erreichen,
wird zuerst eine nicht-Newtonsche Version eines inversen Verfahrens entwickelt, das typi-
scherweise zur Berechnung des arteriellen Drucks basierend auf der Geschwindigkeit des
Blutstromes verwendet wird. Dieser diskrete Operator wird anschließend in die inkom-
pressiblen Navier–Stokes Gleichungen eingesetzt, um die Sattelpunktstruktur konsistent
aufzulösen. Die resultierende Stabilisierung wird rigorosen numerischen Tests unterzogen,
welche die verbesserte Genauigkeit mit klassischen Methoden zeigen.

In weiterer Folge wird der Fokus von der Finite Elemente Formulierung hin zum Lösungs-
prozess gelenkt, wo zwei Hauptbeiträge zu identifizieren sind: Erstens wird eine Familie
von sogenannten split-step Methoden eingeführt, die Geschwindigkeit und Druck konsi-
stent in eine Reihe von skalaren Advektions-Diffusions, Poisson und Masse-Matrix Proble-
men entkoppeln. Diese entwickelten Schemata sind Projektions- oder pressure-correction
Methoden ähnlich, erlauben jedoch die Verwendung von Polynomialräumen selber Ord-
nung ohne künstliche Druckrandbedingungen hervorzurufen. Zweitens wird eine Raum-
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Zeit tearing and interconnecting Finite Elemente Methode entwickelt, um das Raum-Zeit
Gebiet in kleinere, leicht parallelisierbare Unterprobleme zu teilen.

An dieser Stelle ist zu betonen, dass die vorliegende Arbeit grundsätzlich durch Anwen-
dungen motiviert ist, aber den Fokus auf numerische Techniken richtet. Demnach werden
fortschrittliche Numerische Methoden entwickelt und getestet, deren Design durch Her-
ausforderungen in der praktischen Anwendung motiviert ist. Obwohl der geschätzte Leser
beispielsweise keine Patienten-spezifischen Simulationen finden wird, sind die meisten der
vorgestellten Techniken und Algorithmen nicht nur auf solche, sondern auch auf relevan-
te Problemstellungen aus der Industrie, wo komplexe Newtonsche und nicht-Newtonsche
Strömungen oft auftreten, direkt anwendbar.
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1 INTRODUCTION

Many viscous materials may be perceived as simple fluids to the naked eye, while actually
having much more complex composition and mechanical behaviour. Blood, for example,
is not simply a liquid, but an organic tissue consisting of living and non-living components
immersed in a liquid matrix. Therefore, modelling hemodynamic behaviour mathemati-
cally is by no means a trivial task. In most healthy arteries, blood flows basically as a
Newtonian fluid with constant effective viscosity and density, whereas non-Newtonian ef-
fects such as shear thinning and viscoelasticity can play a major role in low-shear regions
around stenoses and aneurysms [1]. In the presence of abnormalities in either blood com-
position or vascular morphology, it is often necessary to consider biochemical phenomena
such as coagulation. In capillary vessels whose diameter is comparable to the dimensions
of erythrocytes (red blood cells), even the single-phase-continuum assumption may no
longer hold. Yet, as relevant and rewarding as constitutive modelling is, we herein direct
our attention to another side of the mathematical problem: given the set of equations aris-
ing from a fluid model, how can we solve them accurately and efficiently? In particular,
this work is dedicated to developing advanced finite element methods for incompress-
ible flow problems, especially those involving non-Newtonian models of engineering and
biomedical interest.

The non-Newtonian behaviour most frequently observed in hemodynamic or polymeric
flows is shear thinning, characterised by decreasing viscosity in the presence of increasing
shear rates. In blood, this is mostly due to the three-dimensional structures formed by
the aggregation of red blood cells [1]. Since these structures can take several seconds to
form and cannot withstand high shear rates, this non-Newtonian response is seen mainly
in flow regions experiencing long-term low shear rates [2]. Also for this reason, viscoelas-
ticity is not observed in most hemodynamic regimes [1, 3], since it is only significant in
areas with enough aggregated erythrocytes to store a reasonable amount of elastic energy.
Because such regions are quite scarce, and also due to the high computational cost re-
lated to viscoelastic flow simulations, Newtonian and quasi-Newtonian models are much
more common in computational hemodynamics, and we also stick to these in the present
work.

Generalised Newtonian models, often called quasi-Newtonian, allow for local variations
of an effective or apparent viscosity, depending usually on shear rate levels. This approach
can account for important non-Newtonian phenomena such as shear thinning and plug
flow, while maintaining a similar mathematical and computational framework as used for
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2 1 Introduction

Newtonian fluids. Furthermore, several simple models provide excellent fits to experimen-
tal data [1, 4]. Such generalised models are used not only in hemodynamics, but also in
polymeric flow simulations of industrial interest. Because both fields are highly applied,
and also due to the apparent similarity between Newtonian and quasi-Newtonian equa-
tions, one is usually tempted to try using standard numerical methods originally conceived
for Newtonian fluids. Although this is sometimes possible, it is usually not the ideal ap-
proach – neither physically nor mathematically. Yet, before commenting on the limitations
of existing methods, we must briefly outline some typical numerical issues encountered in
incompressible flow problems.

When employing Galerkin finite element methods for the simulation of incompressible
flows, one must be careful in the selection of the approximation spaces for velocity and
pressure. Using the same polynomial order for both spaces, for instance, violates the fa-
mous Ladyzhenskaya–Babuška–Brezzi (LBB) condition, thereby rendering the discretisa-
tion unstable. However, since the findings of Hughes, Franca and co-workers four decades
ago [5, 6], it has become standard to employ stabilisation techniques to circumvent the
LBB condition and allow equal-order shape functions for all unknowns. Such Petrov–
Galerkin-like stabilisation methods are usually built upon relaxed incompressibility equa-
tions devised under classical Newtonian assumptions. Probably for that reason, the use
of LBB-compatible finite elements is somewhat more frequent in the literature for quasi-
Newtonian fluids [7–16]. Although such compatible spaces offer an ideal setting from a
mathematical standpoint, combining stability and optimal convergence, they are not al-
ways a viable option. In particular, there is great practical appeal in the use of first-order
elements, especially in the biomedical context. The main reasons are the simplicity in
meshing, data structure and implementation, and the fact that patient-specific geometries
are typically obtained from voxelated medical images leading to a first-order boundary
description. Moreover, while higher-order methods are known to perform better for under-
resolved flows [17, 18], the low-Reynolds, widely laminar flows typically encountered in
hemodynamics can be satisfactorily handled by low-order elements.

Some stabilisation methods are based solely on pressure and can therefore be applied to
generalised Newtonian problems rather straightforwardly. The most popular of them is
probably the penalty method, which consists of relaxing incompressibility to decouple ve-
locity and pressure. Despite being used quite often for quasi-Newtonian fluids [19–22],
this approach was shown by Sobhani et al. [19] to attain poor pressure approximations,
even when using higher-order elements. The pressure Poisson stabilisation of Brezzi and
Pitkäranta [23] was reported by Knauf et al. [24] to also perform poorly in practice. The
pressure projection method by Dohrmann and Bochev [25] was employed successfully by
John et al. [26] and seems to be a good alternative. Time-related methods which can be ap-
plied straightforwardly to the quasi-Newtonian case are artificial compressibility [27, 28]
and non-incremental fractional-step methods [29, 30]. Although residual-based stabil-
isations such as pressure-stabilised Petrov–Galerkin (PSPG) and variational multi-scale
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(VMS) methods can also be used [31–33], their loss of consistency for linear elements can
yield inaccurate results, as we shall discuss later on.

To the best of our knowledge, there are very few works in the literature dedicated to design-
ing stabilisation techniques for generalised Newtonian problems. Some of them require
introducing the viscous stress as an additional tensor-valued unknown [34, 35], resulting
in prohibitive computational costs in practical scenarios. The VMS formulation proposed
by Masud and Kwack [36] offers a viable alternative, but – as all residual-based stabilisa-
tions – can suffer from spurious pressure boundary layers and poor mass conservation in
the low-order case. In this context, this work has, as its main contribution, the design of a
new residual-based framework intended especially – but not exclusively – for low-order fi-
nite element approximations of incompressible generalised Newtonian flow problems. We
aim to solve two inherent issues of standard methods: the loss of consistency when us-
ing linear elements and the arising of inappropriate natural boundary conditions for trun-
cated domains. In doing so, we end up achieving relevant improvements in robustness
and accuracy with respect to state-of-the-art residual-based stabilisations, not only for the
non-Newtonian case, but also for the standard incompressible Navier–Stokes problem.

In the field of stable – rather than stabilised – methods, our main contribution is a con-
tinuous, mixed space-time finite element framework. The space-time approach handles
time as an additional spatial coordinate and therefore allows for local-in-space temporal
resolution, which is not possible in traditional time-stepping methods [37, 38]. It also pro-
vides a natural framework for efficient adaptivity and parallelisation in both space and time
[39]. To further improve efficiency, we present a finite element tearing and interconnect-
ing (FETI) method using direct solvers for the subproblems, while relying on an iterative
solution of the global (interface) problem.

The first part of this dissertation focus on formulation aspects. In particular, on how to treat
the troublesome viscous term in mixed and stabilised variational problems in order to yield
physically and mathematically consistent formulations. In Chapter 2 we introduce useful
concepts and notation, while Chapter 3 presents the equations we will be dealing with,
in strong and weak forms. Also there we discuss common issues with outflow boundary
conditions in internal flows, and present a formulation dealing with those shortcomings.
The LBB-stable finite element discretisation of this and classical formulations is the topic
of Chapter 4. In Chapter 5 we introduce a technique that can be used for imaging-based
arterial pressure reconstruction, as well as for stabilisation of equal-order finite element
solvers. Then, our sixth and longest chapter deals with stabilised equal-order methods,
comparing our new techniques with classical ones and showcasing our improvements.

Until Chapter 6, we deliberately limit the discussion to stationary problems, simply for
concision and because the transient terms play no role in the issues tackled there. Then, in
Chapters 7 and 8 we turn our attention to the efficient solution of the time-dependent prob-
lem. More precisely, we introduce two very distinct approaches to solve the rather complex
system of partial differential equations at hand. The first one is a split-step framework that
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efficiently decouples the computation of pressure, velocity and viscosity into simple Pois-
son and heat-like problems. The second approach consists of a domain-decomposition-
based space-time framework offering great flexibility in discretisation, adaptivity and par-
allelisation. Finally, in Chapter 9 we discuss open questions and outline the future direc-
tions that can be taken from here.



2 PRELIMINARIES

2.1 Basic definitions

We start by introducing some mathematical definitions and notations that will be used
throughout this work. Let u and xxx be vectors in Rd , d = 2 or 3 being the number of spatial
dimensions considered. Four spatial differential operators will be used frequently: the
gradient, divergence, curl and Laplacian of u will be denoted, respectively, by ∇u, ∇ ·u,
∇ × u and ∆u. The divergence is a scalar defined as

∇ ·u :=
d∑

i=1

∂ui

∂xi
, (2.1)

where ui denotes the i-th component of u, and analogously for xi. The curl is defined as a
scalar for d = 2 and an R3 vector for d = 3:

∇ × u :=

 ∂u2
∂x1
−

∂u1
∂x2

, if d = 2,(
∂u3
∂x2
−

∂u2
∂x3
, ∂u1
∂x3
−

∂u3
∂x1
, ∂u2
∂x1
−

∂u1
∂x2

)>
, if d = 3.

(2.2)

The spatial gradient of u is a second-order tensor in Rd×d whose components are defined
as

(∇u)i j :=
∂ui

∂x j
. (2.3)

Mind that an alternative definition swapping the indices i and j is sometimes found in the
literature. The symmetric gradient is then defined as

∇su :=
1
2

[
∇u+ (∇u)>

]
. (2.4)

The Laplacian of u is a vector in which the i-th component is the (scalar) Laplacian of ui,
that is,

∆u := (∆u1,...,∆ud)>

= (∇ ·∇u1,...,∇ ·∇ud)>

≡ ∇ (∇ ·u) −∇ × (∇ × u) .
(2.5)

Notice that in two dimensions the curl-curl operator has the form

∇ × (∇ × u) :=




∂2u2
∂x1∂x2

−
∂2u1
∂x2

2
∂2u1
∂x1∂x2

−
∂2u2
∂x2

1


 . (2.6)
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6 2 Preliminaries

In time-dependent problems, we shall further denote by ∂tu the partial derivative of u with
respect to time, t. The dyadic (or outer) product between two vectors u and v is the second-
order tensor u ⊗ v, and | · | denotes the Euclidian norm of a scalar, vector or second-order
tensor. Considering a connected domain Ω ⊂ Rd with Lipschitz boundary Γ := ∂Ω, we
denote by 〈·,·〉L2(Ω) and 〈·,·〉Ω the L2(Ω) inner product and duality pairing, respectively,
and analogously for Γ.

2.2 Finite element discretisation

For the domain Ω, let us consider a sequence of admissible decompositions Ωh into Ne
shape-regular, non-overlapping elements Ωe, such that

Ωh =

Ne⋃
e=1

Ωe .

When using standard low-order finite element geometries, only polygonal/polyhedral do-
mains will be exactly represented by Ωh; in general, Ωh will be an approximation of Ω,
with ∂Ωh being a piecewise polynomial interpolation of ∂Ω. The element size is defined
as he := |Ωe |

1/d , with |Ωe | denoting the measure (area in two dimensions, volume in three)
of Ωe, while h := max {he}. For a mesh consisting of simplicial elements (triangles for
d = 2 or tetrahedra for d = 3), we denote by Sm

h (Ωh) the space of continuous Lagrangian
basis functions of degree m in Ωh, i.e.,

Sm
h (Ωh) :=

{
qh ∈ C0

(
Ωh

)
: qh |Ωe ∈ Pm(Ωe),∀ Ωe ⊂ Ωh

}
, (2.7)

where Pm(Ωe) is the space of polynomials of degree m in Ωe. As usual, Lagrangian basis
functions have the Kronecker property, i.e., each function ψi takes value 1 on node i, and 0
on the other nodes. Note that for m = 0 we relax the global C0 continuity assumption so as
to have the space of piecewise constants: each basis function ψe takes value 1 inside Ωe,
and 0 elsewhere.

When tackling incompressible flow problems, our main unknowns will be the velocity
u and the pressure p, whose finite element approximations will be denoted by uh and
ph, respectively – not necessarily in the same finite element spaces. We will denote by
PmPn the simplicial finite elements with (uh,ph) ∈ [Sm

h (Ωh)]d × Sn
h (Ωh). Similarly, QmQn

denotes the finite element pairs defined on tensor-product-based isoparametric elements
(quadrilaterals for d = 2 and hexahedra for d = 3). Of course, given a time interval t ∈
(0,T ), the finite element spaces can be straightforwardly extended to the space-time setting,
with a suitable triangulation Qh of the space-time domain Q :=Ω × (0,T ).
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In problems with known analytical solution, the estimated orders of convergence (eoc) will
be in most cases measured through a normalised L2 norm:

‖v − vh‖0 :=
‖v − vh‖L2(D)

‖u‖L2(D)
, (2.8)

where D =Ω for stationary problems and D = Q in the space-time context.





3 STRONG AND VARIATIONAL PROBLEMS

3.1 Problem statement

Let us consider a splitting of the boundary Γ into two non-overlapping parts ΓD and ΓN . In
the most general case where both convective and diffusive nonlinearities are allowed, the
incompressible Navier–Stokes system reads

ρ [∂tu+ (∇u)u]−∇ ·S+∇p = f in Ω × (0,T] , (3.1)
∇ ·u = 0 in Ω × (0,T] , (3.2)

u = g on ΓD × (0,T] , (3.3)
Tn = h on ΓN × (0,T] , (3.4)
u = u0 at t = 0 , (3.5)

where ρ is the fluid’s density, S is the viscous stress tensor, µ is the dynamic viscosity, n
is the unit outward normal vector on Γ, and T can be either the full Cauchy stress tensor or
a modified version, depending on the variational problem considered (cf. Section 3.4); the
right-hand side vectors are given quantities. Equations (3.1) and (3.2) state, respectively,
the balance of linear momentum and the conservation of mass (often called continuity). To
close the system, we need a stress-strain relationship, which for a generalised Newtonian
fluid is given by

S = 2µ∇su . (3.6)

The viscosity is most commonly modelled through a nonlinear dependence on the shear
rate γ̇ :=

√
2∇su : ∇su by a map η :R+→R+ \ {0}, that is,

µ = η(γ̇),

bounded below by zero and above by a finite value. Most rheological models of industrial
and biomedical interest can be written in the generic form

η(γ̇) = η1 +η2
[
κ+ (λγ̇)a]b ,

where a,b,κ,λ,η1,η2 are fitting parameters depending on rheological properties. The
choice κ = η1 = 0 gives the so-called power-law model, whereas κ = 1 leads to the Carreau–
Yasuda model (or simply Carreau model when a = 2). The standard (Newtonian) Navier–
Stokes equations have η2 = 0 (so that ∇µ ≡ 0), and the linear Stokes system is recovered
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10 3 Strong and variational problems

by further dropping the nonlinear convective term (ρ∇u)u. All these versions will be
considered herein.

For the pure Dirichlet problem (ΓN = ∅), two additional conditions are needed to guarantee
unique solvability of the incompressible flow system. First, solvability requires that the
Dirichlet datum (3.3) satisfy ∫

Γ

n · g dΓ= 0 ,

which is needed for global conservation of mass, since

0 =

∫
Ω

∇ ·u dΓ=

∫
Γ

n ·u dΓ=

∫
Γ

n · g dΓ .

For uniqueness, we must set a pressure scaling such as 〈p,1〉L2(Ω) = 0 ∀ t or 〈p,1〉Γ = 0 ∀ t,
as otherwise the pressure will only be defined up to an arbitrary function in time.

We shall for now stick to the stationary system:

(ρ∇u)u −∇ · (2µ∇su) +∇p = f in Ω , (3.7)
∇ ·u = 0 in Ω , (3.8)

u = g on ΓD , (3.9)
Tn = h on ΓN , (3.10)

since most of the issues we aim to discuss herein – and their corresponding solutions – are
related to viscous and not inertial effects. Chapters 7 and 8 deal with the efficient solution
of time-dependent problems.

3.2 Standard elasticity formulation

For the stationary problem, the standard variational formulation reads: for f ∈ [H−1
D (Ω)]d ,

find (u,p) ∈ [H1(Ω)]d × L2(Ω), with u |ΓD = g, such that for all (w,q) ∈ [H1
D (Ω)]d × L2(Ω)

we have

〈w,(ρ∇u)u〉Ω+
〈
∇sw,2µ(∇su)∇su

〉
L2(Ω) − 〈∇ ·w,p〉L2(Ω) = 〈w, f 〉Ω+ 〈w,t〉ΓN , (3.11)

〈q,∇ ·u〉L2(Ω) = 0 , (3.12)

where t = Sn − pn are the normal boundary tractions and H−1
D (Ω) is the dual of the space

H1
D (Ω) :=

{
w ∈ H1(Ω) : w |ΓD = 0

}
. While prescribing the real traction t as natural bound-

ary condition (BC) is crucial in fluid-structure interaction (FSI) for an accurate interface
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coupling, simulating outflow conditions for truncated domains requires using the pseudo-
traction t̃ = (µ∇u)n − pn, see Refs. [40–42]. In fact, for the Newtonian case this is the
standard setting, with the weak momentum equation (3.11) rewritten as

〈w,(ρ∇u)u〉Ω+ 〈∇w, µ∇u〉L2(Ω) − 〈∇ ·w,p〉L2(Ω) = 〈w, f 〉Ω+
〈
w, t̃

〉
ΓN
.

This is called the Laplacian formulation of the momentum equation, as it is derived from
the fact that (for a homogeneous Newtonian fluid)

∇ ·S = µ∇ ·
[
∇u+ (∇u)>

]
= µ [∆u+∇ (∇ ·u)] = µ∆u ,

since ∇ ·u = 0. Therefore, when integration by parts is used in the reduced stress diver-
gence µ∆u, the normal pseudo-traction t̃ arises as natural BC. However, in the generalised
Newtonian case, one is somewhat forced to use integration by parts on the full viscous term
∇ ·S to avoid second-order differentiation of the velocity field. This leaves us with the so-
called stress-divergence (SD) or elasticity formulation (3.11), having natural BCs given in
terms of real tractions t. In Section 3.4 we show how for the generalised Newtonian case
it is also possible to devise an appropriate variational formulation with pseudo-tractions as
natural BC.

3.3 Outflow boundary conditions

Strictly speaking, the only flow boundary conditions that can be modelled with very high
certainty are those of a confined flow: any viscous fluid in contact with a solid wall will
have, at each contact point, the same local velocity as the wall – the so-called no-slip
condition. Therefore, a fluid completely confined in an immovable container will satisfy
the homogeneous Dirichlet condition u |Γ = 0. Unfortunately, in practical situations one is
seldom in position to work with pure Dirichlet problems. Most engineering and biomedical
flow applications consider a domain which has been truncated from a larger system. Let
us take for example the domain shown in Figure 3.1, which illustrates the aorta, the largest
artery in the human body. Since there is an incoming blood flow pumped by the heart, it
is possible to estimate an inflow profile which varies periodically in time. The velocity
on the vessel walls can either be given in terms of clinical imaging data or included as an
unknown in an FSI context (or even be neglected, if we are only interested in a pure flow
simulation). So, the remaining question is what to do on the truncated outlets.

Ideally, we should know either the outflow velocity profile or the normal boundary trac-
tions, but this is seldom the case. On a section Γj of the outflow boundary ΓN , one can at
best estimate mean ouflow pressures p̄ j (t) via lumped (reduced-order) flow models based
on measured data [43]. However, enforcing only pressure data is not an option, since nat-
ural BCs include velocity contributions. Therefore, a question which has long kept the
(computational) fluid dynamics community busy is how to best enforce such outflow data
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Figure 3.1: Illustration of an aortic domain with one inlet and four outlets.

on a truncated boundary while minimising the resulting upstream perturbation to the flow
field. It is nowadays widely accepted that using pseudo-tractions for such a purpose can
attain the desired results. For a planar outlet Γj , the condition

(µ∇u)n− pn = −p̄ jn (3.13)

is not only satisfied by Womersley and Poiseuille flows, but also allows vortices to leave
the computational domain with minimal upstream perturbation (we refer the reader to the
works of Gresho and Sani [44] and Rannacher [40] for an excellent discussion on outflow
BCs). Nevertheless, in standard formulations for generalised Newtonian fluids, the natural
BC is expressed in terms of real tractions, that is, we are somewhat forced to impose

(2µ∇su)n− pn = −p̄ jn on Γj , (3.14)

which is known to induce nonphysical flow behaviour around ΓN , even for the simplest
case of laminar Newtonian flow through a straight channel [42]. Such spurious behaviours
for the non-Newtonian case are also found (but rarely discussed) in the literature [45, 46].
This has motivated us to search for a variational formulation for the generalised problem
with pseudo-tractions as natural BC, as discussed in Section 3.4.
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Remark 3.1. For highly convective flows (large Reynolds numbers), possible flow inver-
sion on the boundary can lead to numerical instabilities [47, 48]. This can be remedied by
augmenting the natural boundary data with artificial terms penalising inward flow com-
ponents. A comprehensive review on such backflow stabilisation methods can be found in
Ref. [49].

For now, we wish to show some simple yet useful results for non-Newtonian problems
with natural BCs. If the computational domain has only one outlet, any value can be set
for the mean outflow pressure, since all the flow coming from the inlet has to necessarily
leave through that outlet. The only difference between setting t̃ as zero or another con-
stant (proportional to n) is a constant (in space) shift on the pressure field, which is not
relevant for incompressible flows. Therefore, one normally sets t̃ = 0 simply to get rid of
the boundary integral. On the other hand, when multiple outlets are considered, as often
happens in hemodynamics, appropriate mean values must be prescribed at each of the out-
lets. The variation of such spatial means throughout time are either measured or obtained
through a reduced approach such as Windkessel and porous-media-based models [43, 50].
For the two-dimensional, homogeneous Newtonian case, Heywood et al. [41] showed that
setting t̃ = −p̄n on a straight outlet leads to an implicit enforcement of the value p̄ as the
mean pressure on that outlet. What we present now is a generalisation of that result to
the inhomogeneous case (∇µ . 0). Let Γj be an outflow portion of the boundary Γ where
the mean pressure p̄ j is known. We wish to enforce this condition by setting t̃ j = −p̄ jn j ,
i.e.,

(µ∇u)n− pn = −p̄ jn j on Γj , (3.15)

with n j := n |Γj . We are going to show that this condition enforces the mean pressure
exactly for homogeneous Newtonian fluids, and approximately for quasi-Newtonian ones.
The proof considers a three-dimensional setting, but the results hold also for the two-
dimensional case. Two assumptions are needed:

• Γj is generated from a planar cut, so that n j is constant.

• The line s j := ∂Γj enclosing Γj belongs to a wall, so that u |s j = 0.

Figure 3.2 depicts an example of an aortic domain with multiple outlets, one of which is
shown in close-up to illustrate the discussion. Without loss of generality, let us assume that
direction x3 is parallel to n j and directions x1 and x2 are parallel to Γj . We wish to show
that

t̃ j = −p̄ jn j ⇒

∫
Γj

(
p− p̄ j

)
dΓ ≈ 0 . (3.16)

We begin by dotting both sides of Eq. (3.15) by n j and integrating the result over Γj ,
yielding ∫

Γj

p dΓ= p̄ j

∫
Γj

dΓ+

∫
Γj

µn j ·
[
(∇u)n j

]
dΓ . (3.17)
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Since n j is constant, we can write

n j ·
[
(∇u)n j

]
= n j · ∇

(
u ·n j

)
=
∂u3

∂x3
= −

(
∂u1

∂x1
+
∂u2

∂x2

)
,

due to incompressibility. Hence:∫
Γj

µn j ·
[
(∇u)n j

]
dΓ = −

∫
Γj

(
∂u1

∂x1
+
∂u2

∂x2

)
µ dx1dx2

=

∫
Γj

(
u1
∂µ

∂x1
+u2

∂µ

∂x2

)
dx1dx2 −

∫
s j

µns j ·u ds

=

∫
Γj

∇τµ ·uτ dΓ−
∫
s j

µns j ·u ds ,

(3.18)

where ns j is the outward unit normal vector on s j , uτ is the velocity component tangential
to Γj and ∇τ denotes the tangential derivative on Γj . The last integral in Eq. (3.18) is zero,
since u |s j = 0, by assumption (no slip). Thus, from Eq. (3.17) we finally get∫

Γj

p dΓ− p̄ j

∫
Γj

dΓ=

∫
Γj

∇τµ ·uτ dΓ . (3.19)

If the viscosity is constant, then the right-hand side vanishes and the mean pressure is
enforced exactly, which is a known result for Newtonian fluids [41]. For the generalised
case this is not always true, but if the flow is hydraulically developed at the outlet and Γj is
normal to the main flow direction (cf. Figure 3.2), then uτ = 0 and the additional term will
vanish (mind that developed flows need not be stationary). In practice, non-zero tangential
flow components may exist and lead to slight differences between p̄ j and the actual mean
pressure on Γj . It is possible to show that, when such a discrepancy exists, it will be twice
as large if the mean pressure is enforced via real tractions t. This offers an additional
reason for working with pseudo-tractions.

In the light of what we have presented regarding outflow boundary conditions, a question
that naturally arises is: can pseudo-tractions be enforced, even though they are not the
natural data for the stress-divergence formulation? The answer is yes, and this can be done
using a boundary term. We first notice the splitting

t = t̃ + (µ∇u)>n .

The first term on the right-hand side is the quantity we want to enforce, so it can be replaced
by the appropriate data. The second part is brought to the left-hand side and handled as an
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Figure 3.2: Illustration of planar outlet regions in an aortic domain.

unknown term. Therefore, the momentum equation is modified to

〈w,(ρ∇u)u〉Ω+
〈
∇sw,2µ∇su

〉
L2(Ω) −〈∇ ·w,p〉L2(Ω) −

〈
w,(µ∇u)>n

〉
Γ

= 〈w, f 〉Ω+
〈
w, t̃

〉
ΓN
.

(3.20)
Although this formulation, to the best of our knowledge, has not been presented or applied
before – especially not for non-Newtonian fluids –, a similar idea was used by Huber et al.
[51] for two-phase flows, but exactly the other way around: augmenting the Laplacian
form with a boundary integral to force real traction BCs. That is necessary for the interface
coupling between two immiscible fluids in the presence of surface tension.

3.4 A generalised Laplacian formulation

The second question we aim to answer is: is it possible to devise a formulation for gener-
alised Newtonian fluids having pseudo-tractions as natural data? Or, in other words, can
the Laplacian form of the Navier–Stokes variational problem be generalised to fluids with
variable viscosity? One reason to look for such a formulation as an alternative to the one
just presented is avoiding boundary integrals, since they require a data structure which is
not always available in finite element codes. In problems with a single outlet, as often
appearing in engineering applications with non-Newtonian fluids (e.g., polymer extrusion
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[52, 53]), we could simply set t̃ = 0 on the outlet and eliminate the boundary term on the
right-hand side. In this context, our motivation here is to reformulate the variational prob-
lem for quasi-Newtonian fluids so as to yield the same natural boundary conditions as in
the Newtonian Laplacian formulation. The first step is to rewrite the viscous term as

∇ ·
(
2µ∇su

)
= 2∇su∇µ+ µ∆u+ µ∇(∇ ·u) = 2∇su∇µ+ µ∆u . (3.21)

Hence, the stress term in the variational formulation reads∫
Ω

w ·
[
∇p− µ∆u − (∇u)>∇µ−∇u∇µ

]
dΩ . (3.22)

As in the Newtonian case, the natural boundary condition is obtained through integration
by parts of the terms containing the velocity Laplacian and the pressure gradient:∫
Ω

w · (∇p− µ∆u) dΩ =

∫
Ω

∇u : ∇(µw) dΩ−
∫
Ω

p∇ ·w dΩ−
∫
Γ

w ·
[
(µ∇u)n− pn

]
dΓ ,

(3.23)
where the same natural BC as in the Laplacian formulation for Newtonian fluids can be
identified. Moreover,∫
Ω

∇u : ∇(µw) dΩ =

∫
Ω

∇u : (µ∇w+w ⊗∇µ) dΩ ≡
∫
Ω

µ∇u : ∇w dΩ+

∫
Ω

w · (∇u∇µ) dΩ .

(3.24)

Since the last integrals in Eqs. (3.24) and (3.22) cancel out, the weak form of the momen-
tum equation reduces to

〈w,(ρ∇u)u〉Ω+ 〈∇w, µ∇u〉L2(Ω) −
〈
w,(∇u)>∇µ

〉
Ω
− 〈∇ ·w,p〉L2(Ω) = 〈w, f 〉Ω+

〈
w, t̃

〉
ΓN
,

(3.25)

which will henceforth be denoted as generalised Laplacian (GL) formulation. Note that,
if µ is a constant, the term containing ∇µ vanishes and the Laplacian form for Newtonian
fluids is recovered. When that is not the case, we will show in Chapter 4 that such a term
must be handled carefully at the discrete level to avoid higher-order regularity requirements
on the velocity space.



4 STABLE FINITE ELEMENT FORMULATIONS FOR
STATIONARY FLOWS

When it comes to finite element methods for incompressible flow problems, the most in-
famous troublemaker is the saddle-point structure of the underlying system of equations.
Since the pressure does not feature in the continuity equation, the finite element spaces
used for discretising the mixed variational problem are subject to the LBB compatibility
condition. Alternatively, perturbing the continuity equation to appropriately include the
pressure can flexibilise the choice of finite element spaces. We shall henceforth denote
the former formulations as stable ones, whereas the latter will be denoted as stabilised
formulations. For concision and simplicity of presentation, the next chapters will focus
on stationary cases, whereas discretisation methods for time-dependent problems are pre-
sented in Chapters 7 and 8.

The original results presented in this chapter, as well as the theoretical discussion on out-
flow boundary conditions from the previous chapter, have been published as a research
article [54].

4.1 Stress-divergence formulation

Let Xu
h ⊂ [H1(Ω)]d and X p

h ⊂ L2(Ω) be conforming velocity and pressure finite element
spaces, respectively. The finite-dimensional variational problem reads: find (uh,ph) ∈
Xu

h × X p
h , with uh |ΓD = gh, such that for all (wh,qh) ∈ Xu

h × X p
h , wh |ΓD = 0, we have

〈wh,(ρ∇uh)uh〉Ω+
〈
∇swh,2µ(∇suh)∇suh

〉
L2(Ω) − 〈∇ ·wh,ph〉L2(Ω) = 〈wh, f 〉Ω+ 〈wh,t〉ΓN ,

〈qh,∇ ·uh〉L2(Ω) = 0 ,
(4.1)

with gh being an Xu
h-compatible approximation/interpolation of the Dirichlet data g. In

the simplest case where Xu
h = [X p

h ]d (equal-order velocity-pressure pairs), the variational
formulation is unstable, i.e., not uniquely solvable. Hood and Taylor [55] discovered the
first stable pair, which consisted of serendipity elements (second-order quadrilateral ele-
ments with no internal nodes) for the velocity, combined with bilinear quadrilaterals for the
pressure. The stability and optimal convergence of the generalised Taylor–Hood elements
Pk+1Pk and Qk+1Qk , k ∈N, was later shown by Brezzi and Falk [56]. The Qk+1Qdc

k pairs,
with superscript dc denoting discontinuous basis functions, are also stable [57]. These

17
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pairs have the advantage of providing element-wise mass conservation, but obviously in-
crease the number of pressure degrees of freedom. Another stable pair with discontinuous
pressure is the Pd P0 element, but its convergence is only linear [58]. There are also sev-
eral non-Lagrangian pairs which are LBB-stable, such as the MINI, Crouzeix-Raviart and
Rannacher-Turek elements (see Refs. [57–59] for a comprehensive description of stable
and unstable pairs).

4.2 Generalised Laplacian formulation

In our generalised Laplacian formulation, the viscous term in the weak form reads

〈∇w, µ∇u〉L2(Ω) −
〈
w,(∇u)>∇µ

〉
Ω
,

which brings a practical issue for the discretisation: when the viscosity is not only variable
but also a function of the velocity gradient, the presence of the term ∇µ implies second-
order differentiation of the velocity field, prohibiting the use of standard Lagrangian el-
ements for uh. To circumvent the need for C1-conforming finite element spaces, we ap-
ply to the viscosity field the well known idea of L2 projection onto a continuous space,
as done for the stress tensor in least-squares finite element methods [60–62]. In our
case, this corresponds to introducing µ as a continuous additional unknown and recov-
ering it weakly through the rheological law. The resulting discrete problem looks for
(uh,ph, µh) ∈ Xu

h × X p
h × X µ

h , with uh |ΓD = gh, such that〈
wh,(ρ∇uh)uh − (∇uh)>∇µh − f

〉
Ω

+ 〈∇wh, µh∇uh〉L2(Ω) − 〈∇ ·wh,ph〉L2(Ω) =
〈
wh, t̃

〉
ΓN
,

〈qh,∇ ·uh〉L2(Ω) = 0 ,〈
υh,η(γ̇(∇suh)) − µh

〉
L2(Ω) = 0

(4.2)

for all (wh,qh,υh) ∈ Xu
h × X p

h × X µ
h , with wh |ΓD = 0, where X µ

h is a continuous finite element
space. For stability and optimal convergence, we can use first-order elements for pressure
and viscosity, and second-order elements for the velocity. It is important to remark that
a generalised Newtonian model is essentially a homogenisation approach: the concept
of an apparent viscosity µ is a simplifying assumption to account for multi-scale effects
and inhomogeneities (e.g., the different components of blood) within a single-phase fluid
model. In this context, introducing the viscosity as a continuous field in (4.2) is consistent
with the single-phase assumption. In Section 6.4 we show a two-phase flow example
where the viscosity is actually not continuous and the stress-divergence formulation is
thus recommended.

The last equation in (4.2) corresponds to a mass matrix problem, so that if we use an
appropriate linearisation for the overall system, we can minimise the extra cost due to



4.2 Generalised Laplacian formulation 19

treating the viscosity as an additional variable. A quick choice of iterative method to
solve the present nonlinear problem would be Newton–Raphson. Yet, by naively doing
so, one would spoil the simple coupling between velocity and viscosity in the projection
step, thereby generating a fully-coupled system and increasing the computational cost.
Conversely, Picard-like methods are an attractive option here. In fact, an iterative method
can be specifically devised so as to exploit the particular features of the nonlinear system
at hand here. The viscous term in the momentum equation has two distinct terms, one
being the usual weak Laplacian arising in the Navier–Stokes problem, which is normally
incorporated into the velocity-velocity block of the system. The main question is then how
to handle the additional part due to ∇µ, as it can be incorporated into either the velocity-
velocity block or the velocity-viscosity block. We propose the following: given a previous
iterate

(
uk

h,p
k
h

)
, we first compute µk

h via〈
υh, µ

k
h

〉
L2(Ω)

=
〈
υh,η

k
h

〉
L2(Ω)

, (4.3)

with ηk
h := η

(
γ̇
(
∇suk

h

))
, then the next iterate

(
uk+1

h ,pk+1
h

)
via〈

wh,(ρ∇uk
h)uk+1

h

〉
Ω

+
〈
∇wh, µ

k
h∇u

k+1
h

〉
L2(Ω)

−
〈
∇ ·wh,pk+1

h

〉
L2(Ω)

=
〈
wh,(∇uk

h)>∇µk
h + f

〉
Ω

+
〈
wh, t̃

〉
ΓN
,〈

qh,∇ ·u
k+1
h

〉
L2(Ω)

= 0 ,

(4.4)

The iterations proceed until convergence, according to a preset tolerance. In fact, such
fixed point iterations are known to have generally a larger convergence radius than the
Newton–Raphson method [57]. The corresponding matrix system has the form

Mµk = r (uk
h) , (4.5)[

C(uk
h) + K(µk

h) −B>
B 0

] (
uk+1

pk+1

)
=

(
b+ S(uk

h)µk

0

)
, (4.6)

where the underlined quantities stand for vectors of nodal values, K, C and B are the usual
diffusion, convection and divergence matrices from the Navier–Stokes problem [57], M
is a standard mass matrix and b is a vector accounting for BCs and body forces. Matrix
S(uh) has d blocks with the following structure:

S =



S1

...

Sd


, with Sm

i j (uh) =

〈
ψu

i
∂uh

∂xm
,∇ψ

µ
j

〉
L2(Ω)

, (4.7)

in which (ψu,ψp,ψµ) denotes the basis functions used in the velocity, pressure and viscos-
ity spaces. In this way, it is possible to recover the viscosity separately from the rest of the
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system, which keeps the computational overhead from introducing an additional unknown
to a minimum. Besides, the additional viscous term introduced by the present formulation
can be treated simply as a right-hand side instead of contributing to the coefficient matrix.
The system matrix left to be inverted in Eq. (4.6) is thus a classical Laplacian matrix, which
allows a variety of well known efficient incompressible flow solvers and preconditioners to
be readily applied here. A simple Aitken relaxation step is then added after each iteration,
resulting in quadratic convergence for the overall iterative scheme [63], as we show in our
numerical examples. Details on the implementation of Aitken acceleration can be found
in Refs. [64, 65].

Remark 4.1. The block structure in (4.7) assumes that u is organised component-wise:
first all the nodal values of the first velocity component u1, then the same for u2, and so on.

4.3 Numerical examples

This section presents various two-dimensional numerical examples with different rheologi-
cal models. We aim to verify the convergence of our generalised Laplacian formulation, as
well as illustrate the impact of considering appropriate outflow conditions. Unless where
otherwise stated, the generalised Laplacian formulation is being employed.

Channel flow of a power-law fluid

One of the simplest models used for blood and polymer flows is the power-law relation

η(γ̇) = κγ̇n−1 , (4.8)

where κ > 0 and n < 1 for a shear-thinning fluid such as blood. It has the physical inconsis-
tency of yielding infinite viscosity for γ̇ = 0, but is used quite often in practice. In a straight
channel Ω = (0,L) ×

(
−H

2 ,
H
2

)
, the analytical solution for the hydraulically developed flow

reads

p =
4κ
H

[(
2n + 1

n

)
Q
H2

]n

(L − x1) , u1 =

(
2n + 1
n + 1

)
Q
H


1−

�����
2x2

H

�����
n+1
n


 , (4.9)

where Q is the volumetric flow rate per unit width. We will use this solution to verify
the order of approximation of the present formulation. The following BCs are considered
for the simulation: no slip (u = 0) on the walls (x2 = ±H/2), the analytical profile with
Q = 100 mm2/s on the inlet (x1 = 0), and the do-nothing condition (t̃ = 0) on the outlet
(x = L). We use hemodynamic parameters [4] ρ = 1050 kg/m3, κ = 0.035 Pa.s0.6 and
n = 0.6, with the geometric parameters L = 3H = 3 mm. A convergence study is carried
out with Q2Q1 rectangular elements: the coarsest mesh is created by dividing both L and
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H by five; then, four levels of uniform refinement are considered. Figure 4.1 shows the
velocity and pressure errors with respect to the mesh size h. Optimal convergence rates
can be verified: cubic for velocity and quadratic for pressure, in the L2 norm. To assess
the iterative convergence, we define the iteration residual as

εk+1 :=
���qk+1 − qk ������qk+1���

, with qk =



uk

pk

µk


 . (4.10)

The residual evolution for the coarsest mesh and the finest mesh are depicted in Figure 4.2,
where the expected quadratic convergence of the iterative scheme can be clearly verified.
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Figure 4.1: Power-law channel flow: uniform refinement study showing optimal conver-
gence for the Taylor–Hood discretisation of the generalised Laplacian formu-
lation.

Channel flow of a Bingham plastic

Another important type of non-Newtonian fluid is the Bingham plastic. Such materials
only start flowing when a minimum shear stress level is reached, after which they behave
as Newtonian fluids [1]. To avoid the need for tracking yield surfaces, Papanastasiou [66]
proposed a smoothened version fitting the generalised Newtonian framework:

η(γ̇) = µ∞+

(
1− e−mγ̇

)
τ0

γ̇
, (4.11)
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Figure 4.2: Power-law channel flow: evolution of the iteration residual confirming the
quadratic convergence of the Aitken-accelerated Picard scheme.

where µ∞ is the Newtonian viscosity, τ0 is the yield stress and m is a positive regularisation
parameter. The exact Bingham model is recovered when m→∞. The analytical expression
for the fully developed Bingham flow profile in a straight channel is

u1 =

 −
k

2µ∞

(
H−D

2

)2
+ kD2

8µ∞

(
1− ���2x2

D
���
)2
, if D

2 < |x2 | ≤
H
2 ,

− k
2µ∞

(
H−D

2

)2
, if 0 ≤ |x2 | ≤

D
2 ,

(4.12)

where D is the width of the unyielded region, given by [66]

D = 2τ0/|k | , (4.13)

and k is the pressure gradient in the x1 direction. When an inflow velocity profile is
prescribed instead of a pressure drop, one must first compute k in terms of the inflow rate
Q. From Eqs. (4.12) and (4.13) and the definition of Q, it is possible to derive a polynomial
expression to find k in terms of the input parameters:

k3 +
3
H

(
4µ∞Q

H2 + τ0

)
k2 − 4

(
τ0

H

)3
= 0 . (4.14)

For this example, we prescribe t̃ = 0 at the outlet x1 = L and a parabolic velocity profile
at the inlet x1 = 0. The outflow velocity profile attained through the generalised Laplacian
formulation is then compared to the analytical one. We set ρ = 1050 kg/m3, µ∞ = 3.45
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mPa.s, τ0 = 0.2 Pa, m = 100 s and L = 10H = 10 mm. The domain is divided uniformly
into 300 × 300 square elements. We calculate the Reynolds number from the mean inflow
velocity ū as

Re :=
ūH
ν∞

=
ρQ
µ∞

,

and three values are considered: Re = 1, 10 and 100. The comparison between numerical
and analytical results, depicted in Figure 4.3, reveals excellent agreement for all three cases
considered. Note that the non-Newtonian behaviour is stronger for low Reynolds numbers,
while hardly noticeable for Re = 100.

Figure 4.3: Comparison between numerical (GL) and analytical Bingham profiles.

Channel flow of a Carreau–Yasuda fluid

We now compare our generalised Laplacian formulation with the other two ones presented
in Chapter 3, namely, the classical SD formulation with real traction natural BCs and the
SD formulation augmented with a boundary term to enforce pseudo-tractions as outflow
BCs (see Eq. (3.20)). For this example we consider the popular Carreau–Yasuda model

η(γ̇) = η∞+ (η0 − η∞)
[
1 + (λγ̇)a] n−1

a , (4.15)
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with the rheological parameters [36] ρ = 1060 kg/m3, µ∞ = 3.45 mPa.s, µ0 = 56 mPa.s,
n = 0.22, λ = 3.804 s and a = 1.25. The developed flow has a semi-analytical solution:

p = |k |(L − x1), u =

|x2 |∫
H/2

f ( ỹ) dỹ ,

where |k | is the pressure drop per unit length and f is the solution of the nonlinear equa-
tion {

µ∞+ (µ0 − µ∞)
[
1 + (λ f )a] n−1

a

}
f = −|k |y, y ∈ [0,H/2] . (4.16)

We will use this known solution to assess numerical errors, setting L = 3H = 3 mm and
k = −3 kPa/m. Instead of prescribing an inflow profile, this time we consider a pressure-
driven flow by setting t̃ |x1=0 = (9,0)> Pa and t̃ |x1=L = 0, and analogously with real tractions
t for the standard SD formulation. For the convergence study, the coarsest mesh has twelve
square elements, and successive uniform refinements are applied. Bilinear basis functions
are used now for all quantities, in combination with the parameter-free stabilisation method
by Dohrmann and Bochev [25] (details on stabilised formulations will be addressed in
Chapter 6). The error plot in Figure 4.4 reveals that, although the SD formulation with
“forced” pseudo-tractions converges to the exact solution, it does so considerably slower
than the GL formulation. The latter’s pressure approximation is orders of magnitude more
accurate than the former’s. It is also clear that the classical SD formulation with traction
BCs does not converge to the exact solution, and the reason for that can be seen in Figure
4.5: as well known for the Newtonian case, using real tractions to enforce mean pressures
leads to spurious behaviour around traction boundaries.

Carreau–Yasuda fluid past a backward–facing step

The main reason for using pseudo-traction BCs is their ability to preserve accurate flow
behaviours in truncated domains [1, 41, 42]. To illustrate this property in a non-Newtonian
framework, we consider the classical backward-facing step (BFS) problem. Starting from a
basic full-domain setup, we set up different test cases by truncating the domain at different
positions, as illustrated in Figure 4.6. For each case we set zero mean outflow pressure,
which is enforced by pseudo-tractions or real tractions, depending on the formulation (SD
or GL). The remaining boundary conditions are a parabolic profile with volumetric flow
rate Q at the inlet x1 = 0, and no-slip elsewhere. We use the Carreau model

η(γ̇) = η∞+ (η0 − η∞)
[
1 + (λγ̇)2

] n−1
2 , (4.17)

with representative hemodynamic parameters [4] ρ = 1050 kg/m3, µ∞ = 3.45 mPa.s, µ0 =

56 mPa.s, n = 0.3568, λ = 1.6565 s. The domain is uniformly divided into square elements
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Figure 4.4: Carreau–Yasuda channel flow: convergence study for different formulations
using first-order elements.

of length H/50, with H = 1 mm. We present the comparison in terms of the normalised
viscosity

µ̄ :=
η(γ̇) − µ∞
µ0 − µ∞

. (4.18)

In the SD formulation, the viscosity field is discontinuous. Therefore, to allow a fair
comparison, the viscosity is post-processed using the same continuous L2 projection as for
the GL formulation. Figure 4.7 depicts the normalised viscosity field computed from both
formulations at Re = 1. The importance of using appropriate outflow BCs is also evident
here. The GL formulation with t̃ = 0 yields physically consistent solutions all the way
up to the outflow boundary, even when the domain is truncated before the flow is fully
developed. The solution produced by the classical SD approach, conversely, is highly
dependent on the position of the cut and yields clearly unphysical behaviour around the
outlet region.

Carreau fluid through bifurcating channel

We now investigate the effect of pseudo-traction BCs in domains with more than one out-
let. As a reference case, we consider a two-dimensional symmetric flow in the T-shaped
domain depicted in Fig. 4.8. This can be viewed as a model problem for blood flows
in bifurcating vessels or polymeric flows in pipe systems, and allows us to illustrate the
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SD formulation with real tractions

SD formulation with pseudo-tractions

GL formulation

Figure 4.5: Carreau–Yasuda channel flow: pressure isolines for different formulations.

theoretical discussion of Subsection 3.3. A developed Carreau profile corresponding to
Re = 15 is imposed at the inlet. The material parameters are as in the previous example
and the dimensions are L = 2H = 2 mm. First, we impose t̃ = 0 on both outlets of the
full domain. Then, we truncate one of the branches and enforce t̃ = −p̄cutn, considering
two different scenarios: first setting p̄cut = 0, then using the actual mean value obtained
at that position from the full-domain simulation (p̄cut ≈ 10 Pa). For this example, we use
square bilinear elements of edge length H/100. The results are shown in Figure 4.9; the
isolines are uniformly spaced (40 in total) and the velocity results are given in terms of the
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Figure 4.6: Problem setup for the BFS problem considering truncated domains.

normalised quantity

u∗ :=
√
u ·u

Q/H
.

Setting the appropriate pseudo-traction allows us to recover the correct solution in spite
of the asymmetric domain, while the simple “do-nothing” approach (p̄cut = 0) leads to a
completely different flow behaviour.
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(a) Generalised Laplacian formulation with t̃ |ΓN = 0.

(b) Stress-divergence formulation with t |ΓN = 0.

Figure 4.7: Normalised viscosity field for different outflow BCs in truncated domains.
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Figure 4.8: Problem setup for the Carreau fluid in a T-shaped domain.
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(a) Full domain.

(b) Truncated domain (p̄cut = 10 Pa).

(c) Truncated domain (p̄cut = 0).

Figure 4.9: Effect of mean pressure values in a domain with two outlets.



5 THE PRESSURE POISSON EQUATION

Before shifting the discussion from stable to stabilised flow solvers, we dedicate a chapter
to the pressure Poisson equation (PPE), which is the main ingredient for the stabilisation
methods we will later introduce. The original results presented in this chapter have been
partially published: the weak pressure Poisson formulation for non-Newtonian fluids and
corresponding numerical results are published in Ref. [67], while first numerical results on
the ultra-weak formulation are reported in Ref. [68], with the complete analysis currently
in preparation [69].

5.1 Strong problem

For concision, we restrict the presentation to the stationary setting, for which the momen-
tum equation can be written as

∇p = r (u) := f − (ρ∇u)u+∇ ·S . (5.1)

When u is known (e.g., from clinical imaging), we are left with what can be seen as
an inverse problem to find the pressure field. In that case, (5.1) is an overdetermined
system, as we have d equations and only one scalar unknown. Depending on the technique
employed to solve this problem, different so-called pressure estimators arise [70]. The
most popular one is the pressure Poisson equation, which we obtain by taking minus the
divergence of both sides in (5.1), assuming enough regularity of all quantities involved.
This yields

−∆p = −∇ · r in Ω . (5.2)

Pressure BCs are somewhat unnatural to incompressible flow problems and are usually not
available. Fortunately, we can obtain an artificial (but consistent!) Neumann BC by dotting
Eq. (5.1) by the normal n and restricting the result to Γ, giving us

∂p
∂n

= n · r on Γ . (5.3)

The Neumann problem (5.2)–(5.3) is solvable [44] because the right-hand side f := −∇ · r
and the boundary datum g := n · r satisfy the compatibility condition∫

Ω

f dΩ+

∫
∂Ω

g dΓ= 0 .

31
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Thus, with the addition of a pressure scaling such as 〈p,1〉L2(Ω) = 0, for uniqueness, we
have a well-posed problem to write pressure in terms of velocities – whether they are
given or part of the problem. Since the PPE is generated by differentiating a PDE which
already had second-order velocity derivatives, the main underlying challenge is devising
finite-element-suitable formulations without higher continuity requirements.

5.2 Weak formulation

Testing the PPE (5.2) with a function q and using Green’s first formula on both sides leads
to

〈∇q,∇p〉L2(Ω) − 〈q,n · ∇p〉Γ = 〈∇q,r〉L2(Ω) − 〈q,n · r〉Γ .

Substituting the Neumann boundary condition (5.3) leads to the weak form

〈∇q,∇p〉L2(Ω) = 〈∇q, f − (ρ∇u)u+∇ ·S〉L2(Ω) , (5.4)

which can be alternatively derived from the least-squares minimisation of ‖∇p−r (u)‖L2(Ω).

Notice that (5.4) is still not an “entirely weak” form, as we are left with the term ∇ · S
containing second-order derivatives of u. However, it is possible to reduce the order of
differentiation by using appropriate relations. Since ∆u ≡∇(∇·u)−∇× (∇× u) and ∇·u =

0, we can write

∇ ·S = µ [∆u+∇ (∇ ·u)] +
[
∇u+ (∇u)>

]
∇µ =

[
∇u+ (∇u)>

]
∇µ− µ∇ × (∇ × u) .

Integration by parts yields

−〈∇q, µ∇ × (∇ × u)〉L2(Ω) = 〈n × ∇q, µ∇ × u〉Γ − 〈∇ × (µ∇q) ,∇ × u〉L2(Ω) ,

and for q ∈ H1(Ω) we have

−〈∇ × (µ∇q) ,∇ × u〉L2(Ω) = 〈∇q × ∇µ− µ
= 0︷     ︸︸     ︷

∇ × (∇q),∇ × u〉L2(Ω)

= 〈∇q,∇µ × (∇ × u)〉L2(Ω) ≡
〈
∇q,

[
(∇u)> −∇u

]
∇µ

〉
L2(Ω)

.

Therefore, the weak form of the PPE simplifies to

〈∇q,∇p〉L2(Ω) =
〈
∇q, f − (ρ∇u)u+ 2(∇u)>∇µ

〉
L2(Ω)

+ 〈n × ∇q, µ∇ × u〉Γ . (5.5)

For a Newtonian fluid with ∇µ ≡ 0, only first-order derivatives remain and standard finite
element spaces for both u and p can thus be employed [71]. When µ depends on ∇u, we
proceed as in Chapter 4 and first project the viscosity onto a continuous space.
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Sufficient regularity requirements

To guarantee unique solvability of (5.5), we can take test and trial functions in H1(Ω) ∩
L2

0(Ω), and accordingly f ∈ [L2(Ω)]d , with L2
0 := {q ∈ L2(Ω) : 〈p,1〉L2(Ω) = 0}. As for the

velocity, note that having u ∈ [H1(Ω)]d does not guarantee (∇u)u ∈ [L2(Ω)]d . In fact, due
to Hölder’s inequality and the Sobolev embedding [57]

[H1(Ω)]d ⊂
[
Lm(Ω)

]d , with m ∈ [1,∞) for d = 2 and m ∈ [1,6] for d = 3 ,

this requirement is trivially satisfied by u ∈ [H1(Ω)]d for d = 2, whereas for d = 3 we
need additionally ∇u ∈ [L3(Ω)]d×d . Boundedness of the boundary term in (5.5) requires
∇ × u |Γ ∈ [H1/2 (Γ)]2d−3. Thus, for the Newtonian case, sufficient regularity is attained by
choosing the velocity space X as

X =


{
u ∈

[
H1(Ω)

]2
: (∇ × u) |Γ ∈ H1/2 (Γ)

}
, if d = 2,{

u ∈
[
H1(Ω)

]3
: (∇ × u) |Γ ∈

[
H1/2 (Γ)

]3
and ∇u ∈

[
L3(Ω)

]3×3
}
, if d = 3.

For the non-Newtonian case, we further need (∇u)>∇µ ∈ [L2(Ω)]d . Since µ ∈ H1(Ω) by
construction of the projected rheological law, we have ∇µ ∈ [L2(Ω)]d , with the Hölder
conjugate (∇u)> ∈ [L∞(Ω)]d×d . Hence, an appropriate velocity space in that case is

X =

{
u ∈

[
H1(Ω)

]d
: (∇ × u) |Γ ∈

[
H1/2 (Γ)

]2d−3
and ∇u ∈

[
L∞(Ω)

]d×d
}
.

All the above requirements are fulfilled, say, by u ∈ [H2(Ω)]d . Fortunately, in the dis-
crete case it suffices to use standard (continuous) Lagrangian finite elements [72], since
the related gradients are piecewise polynomial and thus integrable to any positive power,
including on ∂Ω.

5.3 Ultra-weak formulations

A natural question arising from the discussion on sufficient regularity is: can we formu-
late the pressure Poisson problem with more standard regularity requirements on the flow
quantities, in particular p ∈ L2(Ω)? The answer is yes, but, as we shall see, this comes at a
price.
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5.3.1 Unique solvability

To introduce the concept of ultra-weak variational formulations, let us consider the Pois-
son problem

−∆p = −∇ · r in Ω , (5.6)
∂p
∂n

= n · r on Γ , (5.7)∫
Ω

p dΩ = 0 . (5.8)

We wish to obtain an ultra-weak solution p ∈ L2
0(Ω) by solving the variational problem to

find p ∈ X := L2(Ω) such that

−

∫
Ω

p∆ϕ dΩ+

∫
Ω

p dΩ
∫
Ω

ϕ dΩ =

∫
Ω

r · ∇ϕ dΩ (5.9)

for all test functions ϕ in the space

Y =
{
q ∈ H1

∆
(Ω) : n · ∇q = 0 on ∂Ω

}
,

where H1
∆

(Ω) :=
{
q ∈ H1(Ω) : ∆q ∈ L2(Ω)

}
. The unique solvability of this ultra-weak

variational formulation is based on an inf-sup stability condition for the bilinear form

a(p,ϕ) := −
∫
Ω

p∆ϕ dΩ+

∫
Ω

p dΩ
∫
Ω

ϕ dΩ , p ∈ X, ϕ ∈ Y.

While the norm for p ∈ X is obvious, for ϕ ∈ H1(Ω) an equivalent norm is given by

‖ϕ‖2H1(Ω),Ω := ‖∇ϕ‖2L2(Ω) +
1
|Ω|



∫
Ω

ϕ dΩ




2

.

For ϕ ∈ H1
∆

(Ω) we therefore define the norm

‖ϕ‖2
H1
∆

(Ω) := ‖∇ϕ‖2L2(Ω) +
1
|Ω|



∫
Ω

ϕ dΩ




2

+ ‖∆ϕ‖2L2(Ω) .

Recalling Poincaré’s inequality, for all u ∈ H1(Ω) we have∫
Ω

(u−uΩ)2 dΩ ≤ cP

∫
Ω

|∇u|2 dΩ , with uΩ :=
1
|Ω|

∫
Ω

u dΩ , (5.10)
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which is equivalent to

‖u‖2L2(Ω) ≤
1
|Ω|



∫
Ω

u dΩ




2

+ cP‖∇u‖2L2(Ω) . (5.11)

Now we can state an equivalent norm in Y ⊂ H1
∆

(Ω), namely,

‖ϕ‖2Y := ‖∆ϕ‖2L2(Ω) +
1
|Ω|



∫
Ω

ϕ dΩ




2

.

Lemma 5.1. For ϕ ∈ Y ⊂ H1
∆

(Ω) there hold the norm equivalence inequalities

ceq ‖ϕ‖
2
H1
∆

(Ω) ≤ ‖ϕ‖
2
Y ≤ ‖ϕ‖

2
H1
∆

(Ω) , with ceq :=
1

max
{
1 + cP,1 + c−1

P

} .

Proof. While the upper estimate is trivial, it remains to prove the lower bound. For ϕ ∈ Y
we have, when applying Green’s first formula and using n · ∇ϕ = 0 on Γ,

‖∇ϕ‖2L2(Ω) =

∫
Ω

∇ϕ · ∇ϕ dΩ = −

∫
Ω

ϕ∆ϕ dΩ

≤ ‖∆ϕ‖L2(Ω) ‖ϕ‖L2(Ω) .

Now, using Young’s and Poincaré’s (5.11) inequalities gives

‖∇ϕ‖2L2(Ω) ≤ ‖∆ϕ‖L2(Ω) ‖ϕ‖L2(Ω) ≤
1
2

cP ‖∆ϕ‖
2
L2(Ω) +

1
2cP
‖ϕ‖2L2(Ω)

≤
1
2

cP ‖∆ϕ‖
2
L2(Ω) +

1
2cP


1
|Ω|



∫
Ω

ϕ dΩ




2

+ cP

∫
Ω

|∇ϕ|2 dΩ

,

that is,

‖∇ϕ‖2L2(Ω) ≤ cP ‖∆ϕ‖
2
L2(Ω) +

1
cP |Ω|



∫
Ω

ϕ dΩ




2

.
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Hence,

‖ϕ‖2
H1
∆

(Ω) = ‖∇ϕ‖2L2(Ω) +
1
|Ω|



∫
Ω

ϕ dΩ




2

+ ‖∆ϕ‖2L2(Ω)

≤

(
1 +

1
cP

)
1
|Ω|



∫
Ω

ϕ dΩ




2

+ (1 + cP) ‖∆ϕ‖2L2(Ω)

≤ max
{

1 + cP,1 +
1
cP

} 
1
|Ω|



∫
Ω

ϕ dΩ




2

+ ‖∆ϕ‖2L2(Ω)


follows. �

For (p,ϕ) ∈ X × Y we now have

a(p,ϕ) = −

∫
Ω

p∆ϕ dΩ+

∫
Ω

p dΩ
∫
Ω

ϕ dΩ

≤ ‖p‖L2(Ω) ‖∆ϕ‖L2(Ω) +

∫
Ω

p dΩ
∫
Ω

ϕ dΩ

≤

√√√√√√
‖p‖2

L2(Ω)
+ |Ω|



∫
Ω

p dΩ




2
√√√√√√
‖∆ϕ‖2

L2(Ω)
+

1
|Ω|



∫
Ω

ϕ dΩ




2

≤ ‖ϕ‖Y

√√
‖p‖2

L2(Ω)
+ |Ω|2

∫
Ω

p2 dΩ

=
√

1 + |Ω|2 ‖p‖X ‖ϕ‖Y . (5.12)

We are now in position to state the unique solvability of the variational problem (5.9).

Theorem 5.2. The function p ∈ L2(Ω) is the unique solution of the extended variational
formulation (5.9) satisfying the scaling condition (5.8), i.e., p ∈ L2

0(Ω).

Proof. For p ∈ L2(Ω) we consider the splitting

p = p0 +%, with % :=
1
|Ω|

∫
Ω

p dΩ and
∫
Ω

p0 dΩ = 0 ,

where we have

‖p‖2L2(Ω) =

∫
Ω

p2 dΩ =

∫
Ω

(p0 +%)2 dΩ =

∫
Ω

p0
2 dΩ+ 2%

∫
Ω

p0 dΩ+ |Ω|%2,
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that is,

‖p‖2L2(Ω) = ‖p0‖
2
L2(Ω) +

1
|Ω|



∫
Ω

p dΩ




2

.

Let ϕ ∈ H1(Ω) be the unique weak solution of the Neumann boundary value problem

−∆ϕ = p0 in Ω ,
∂ϕ

∂n
= 0 on Γ ,∫

Ω

ϕ dΩ = % .

Then,

a(p,ϕ) = −

∫
Ω

p∆ϕ dΩ+

∫
Ω

p dΩ
∫
Ω

ϕ dΩ

=

∫
Ω

(p0 +%) p0 dΩ+
1
|Ω|



∫
Ω

p dΩ




2

=

∫
Ω

p0
2 dΩ+

1
|Ω|



∫
Ω

p dΩ




2

= ‖p‖2L2(Ω)

and

a(p,ϕ) =

∫
Ω

p0
2 dΩ+

1
|Ω|



∫
Ω

p dΩ




2

=

∫
Ω

(−∆ϕ)2 dΩ+ |Ω|



∫
Ω

ϕ dΩ




2

≥ min{1, |Ω|2} ‖ϕ‖2Y

imply a(p,ϕ) ≥ min{1, |Ω|} ‖p‖X ‖ϕ‖Y , and therefore the inf-sup condition

min{1, |Ω|} ‖p‖X ≤ sup
0,ϕ∈Y

a(p,ϕ)
‖ϕ‖Y

for all p ∈ L2(Ω) (5.13)

follows. On the other hand, for 0 , ϕ ∈ Y ⊂ H1
∆

(Ω) we first compute

α =
1
|Ω|2

∫
Ω

ϕ dΩ ,
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and define p = −∆ϕ+α ∈ L2(Ω). For this particular choice we obtain

a(p,ϕ) =

∫
Ω

−p∆ϕ dΩ+

∫
Ω

p dΩ
∫
Ω

ϕ dΩ

=

∫
Ω

(−∆ϕ+α)(−∆ϕ) dΩ+

∫
Ω

(−∆ϕ+α) dΩ
∫
Ω

ϕ dΩ

=

∫
Ω

(∆ϕ)2 dΩ+
1
|Ω|



∫
Ω

ϕ dΩ




2

= ‖ϕ‖2Y > 0 ,

where we have used ∫
Ω

∆ϕ dΩ =

∫
Γ

∂ϕ

∂n
dΓ= 0 for ϕ ∈ Y .

Hence we have that all assumptions of the Babuška–Brezzi theorem are satisfied [73], and
therefore unique solvability of (5.9) follows. In particular for ϕ ≡ 1 we finally conclude
the scaling condition (5.8). �

5.3.2 Generalised Newtonian fluids

Now that the unique solvability of the ultra-weak Poisson problem has been shown, we can
return to the particular problem of the PPE. In that case, we have the ultra-weak Petrov–
Galerkin problem to find p ∈ L2(Ω) such that

−〈∆q,p〉L2(Ω) + 〈q,1〉L2(Ω) 〈p,1〉L2(Ω) =〈
∇q, f − (ρ∇u)u+ 2(∇u)>∇µ

〉
Ω

+ 〈n × ∇q, µ∇ × u〉Γ
(5.14)

for all q ∈Y =
{
q ∈ H1

∆
(Ω) : n · ∇q = 0 on ∂Ω

}
. Shifting all derivatives from p to q allows

discontinuous pressure but leads to a higher regularity requirement for the test space. In
practice, we will need to construct test functions with continuous derivatives. While this
is not a simple task in complex geometries, constructing C1 test functions is somewhat
simpler than doing it for trial functions, since in principle no approximation properties
are needed of test spaces. When appropriately handled, the pressure Poisson equation can
be a highly versatile tool in computational fluid dynamics. It can be used to compute
pressure directly from given velocity fields, as is the focus of this chapter, but also to
design accurate stabilisation methods and highly efficient solvers for incompressible flow
problems, as presented in Chapters 6 and 7.
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5.3.3 Compressible flows

Although our focus lies on incompressible flows, we briefly present now an extension of
the PPE to compute pressure from compressible flow velocities. In that case, we have

S = 2µ∇su − (2µ∇ ·u/3) I , (5.15)

where I denotes the d × d identity tensor. Hence,

〈∇q,∇ ·S〉Ω =

〈
µn ⊗∇q,2∇su −

(
2
3
∇ ·u

)
I

〉
Γ

−

〈
µ∇(∇q),2∇su −

(
2
3
∇ ·u

)
I

〉
L2(Ω)

=
〈
∇q,(2µ∇su)n

〉
Γ −

2
3

〈
∂q
∂n
, µ∇ ·u

〉
Γ

−

〈
µ∇(∇q),2∇su −

(
2
3
∇ ·u

)
I

〉
L2(Ω)

=
〈
∇q,(2µ∇su)n

〉
Γ −

〈
∇(∇q),2µ∇su

〉
L2(Ω) −

2
3
〈∆q, µ∇ ·u〉L2(Ω) ,

since we take test functions with zero normal derivative on Γ. So, compressibility basically
adds an extra term to the right-hand side of the PPE. The key difference lies actually on the
density, which for a compressible flow is no longer a given parameter, but one of the flow
variables. In fact, we can compute the density from the velocities through the continuity
equation ∇· (ρu) = 0, which is a linear hyperbolic equation requiring the inflow density as
boundary condition [58]. The computed density field is then used as input for the PPE.

5.3.4 Discretisation

As already mentioned, the main challenge in ultra-weak methods is constructing test func-
tions with continuous derivatives. We now give a few examples of appropriate test spaces
for piecewise constant as well as continuous, piecewise linear pressure discretisations. Of
course, the test and trial spaces must fulfill a discrete inf-sup condition to guarantee unique
solvability of the finite element formulation. This is discussed in Ref. [69].

Discontinuous pressure spaces

When using piecewise constant functions for the pressure approximation, it is sensible to
seek quadratic or d-quadratic test functions with local support and continuous derivatives.
Let us consider an intervalΩ ⊂R divided into N segments si = [xi,xi+1]. We can construct
modified B-splines Bi (x) by assuming a second-order polynomial expression within each
segment si, local support and the conditions

• Bi (x) and [Bi (x)]′ continuous at all knots x j ,

• [Bi (x)]′ = 0 on ∂Ω,
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•
N∑

i=1
Bi (x) ≡ 1.

Figure 5.1 illustrates the resulting functions for N = 4. The discrete inf-sup condition for
the ultra-weak Poisson formulation with these modified one-dimensional B-splines and
piecewise constant Ansatz is provided in Ref. [69]. For d = 2 or 3, the actual test functions
are formed by the tensor product of the one-dimensional splines, as illustrated in Figure
5.2 for the two-dimensional case. Since the trial space consists of functions that take a
constant unit value within one element and zero elsewhere, the entries of the stiffness
matrix K become

Ki j = −

∫
Ω j

∆qi dΩ+ |Ω j |

∫
Ω

qi dΩ . (5.16)

Figure 5.1: Modified one-dimensional B-splines with zero Neumann trace.

If a tensor-product discretisation is only possible patch-wise, one can relax the global C1

continuity of the test functions. This can be done by considering separate subproblems in
each patch, with possible interface conditions weakly enforced. To illustrate that, let us
consider a problem with two subdomains ΩL and ΩR and two Poisson subproblems:

−∆pL = −∇ · r in ΩL,

∂pL

∂nL
= nL · r on ∂ΩL ∩ ∂Ω,

pL = pR on ∂ΩL ∩ ∂ΩR,

��������������

−∆pR = −∇ · r in ΩR,

∂pR

∂nR
= nR · r on ∂ΩR,∫

ΩR

pR dΩ = 0.

Note that, for the left subdomain ΩL, the PPE is no longer a pure Neumann problem.
Therefore, on the interface ∂ΩL ∩ ∂ΩR the test functions of ΩL will have a zero Dirichlet
(rather than Neumann) trace. The interface continuity (pL = pR on ∂ΩL ∩ ∂ΩR) will then
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Figure 5.2: Example of the tensor-product test space in a 3×4 rectangular mesh.

be enforced weakly and naturally. In other words, the ultra-weak subproblems are to find
(pL,pR) ∈ L2(ΩL) × L2(ΩR) such that for all (qL,qR) ∈ YL × YR we have

−〈∆qL,pL〉L2(ΩL ) +

〈
∂qL

∂nL
,pR

〉
∂ΩL∩∂ΩR

= 〈∇qL, f − (ρ∇u)u〉ΩL
+ 〈nL × ∇qL, µ∇ × u〉∂ΩL

,

−〈∆qR,pR〉L2(ΩR ) + 〈qR,1〉ΩR
〈pR,1〉ΩR

= 〈∇qR, f − (ρ∇u)u〉ΩR
+ 〈nR × ∇qR, µ∇ × u〉∂ΩR

,

where

YL =
{
q ∈ H1

∆
(ΩL) : nL · ∇q = 0 on ∂ΩL ∩ ∂Ω and q = 0 on ∂ΩL ∩ ∂ΩR

}
,

YR =
{
q ∈ H1

∆
(ΩR) : nR · ∇q = 0 on ∂ΩR

}
.

Note that the boundary term on the left-hand side of the first variational problem comes
from the second integration by parts, enforcing the interface continuity (Dirichlet BC)
weakly. At the discrete level, the test functions qL must be modified to have zero Dirichlet
trace and nonzero Neumann trace on the interface. Figure 5.3 illustrates the corresponding
test functions for an example with ΩL = (0,1/2) × (1/2,1) and ΩR = (1/2,1) × (0,1).

Continuous pressure spaces

As seen in Section 5.2, for incompressible Newtonian flows it is possible to use a reduced
(curl-curl) form of the stress divergence to obtain∫

Ω

∇q · ∇p dΩ =

∫
Ω

∇q ·
[
f − (ρ∇u)u

]
dΩ+

∫
∂Ω

(n × ∇q) · (µ∇ × u) dΓ.
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Figure 5.3: Example of the decomposition and discretisation of an L-shaped domain.

Thus, using an ultra-weak formulation in this case is only needed if discontinuous pressure
spaces (or a less regular right-hand side) are desired. However, when either compressibility
or non-uniform viscous behaviour is present, the curl-curl form of the viscous term no
longer holds, so that it may be necessary to employ an ultra-weak formulation even when
assuming continuous pressure. In fact, the most general form of the viscous term is

〈
∇q,(2µ∇su)n

〉
Γ −

〈
∇(∇q),2µ∇su

〉
L2(Ω) −

2
3
〈∆q, µ∇ ·u〉L2(Ω) +

2
3

〈
∂q
∂n
, µ∇ ·u

〉
Γ

, (5.17)

which contains second-order derivatives of the test function q. The question is then how to
construct a discrete test space for continuous pressure spaces such as with piecewise linear
or d-linear shape functions. For a d-linear tensor-product mesh, tensor-product Hermite
polynomials can be used for the test space. Their support is the same as that of the trial
space, and C1 mappings can be constructed for non-Cartesian grids [74, 75].

A more interesting case is that of linear simplicial elements, since they allow more flexibil-
ity in meshing. Let us consider triangular elements with continuous, piecewise linear basis
functions for the pressure trial space. Then, at the element level, we need three linearly
independent test functions. Furthermore, zero Neumann trace is desirable for the test func-
tions in order to get rid of the boundary terms arising from the second integration by parts.
As a matter of fact, in the context of bi-harmonic plate problems there is a well-known fam-
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ily of functions satisfying these properties. The so-called Argyris triangle has twenty-one
C1-conforming basis functions related to vertex displacements, vertex first- and second-
order derivatives and mid-edge normal derivatives. These twenty-one functions form a
basis of the space of fifth-order polynomials in each triangle. Fortunately, in our case we
only need three of those, namely, the displacement basis functions. Apart from C1 conti-
nuity, they fulfil the partition of unit and nodal delta Kronecker property, besides having
zero normal derivatives on element edges, which eliminates the last term in Eq. (5.17). In
the next section we provide an example considering such test functions, whose efficient
implementation can be constructed according to Ref. [76]. Unfortunately, to the best of
our knowledge there is no natural extension of the Argyris space to three dimensions, and
the robust construction of C1 finite element spaces in general three-dimensional meshes is
still focus of intense investigation [75].

5.4 Numerical examples

The accuracy of different PPE versions will now be assessed via various numerical exam-
ples. In all cases, the given velocities are interpolated by standard finite element spaces.

Power-law fluid through straight channel

We start with the power-law flow benchmark (see Subsection 4.3), now in a square channel
with a 1 mm edge. The pressure spaces for the weak and ultra-weak methods are taken
as Q1 and Q0, respectively, whereas the analytical velocity profile from Eq. (4.9) is inter-
polated using bilinear (Q1) or biquadratic (Q2) elements. The coarsest mesh is composed
by 4 × 4 identical squares, and five levels of uniform refinement are applied. The conver-
gence plot in Figure 5.4 provides important results. When using a first-order interpolation
for the given velocity, the convergence is linear regardless of the order of the pressure
space. Therefore, the ultra-weak formulation can reduce the computational cost by allow-
ing piecewise constant pressures and eliminating the need for the viscosity projection step.

Carreau–Yasuda fluid past a backward-facing step

We consider once again the classical backward-facing step benchmark. The domain has
the same proportions as in Figure 4.6, with inflow channel height H = 5 mm. As done
by Masud and Kwack [36], we use the Carreau–Yasuda model (4.15) with representative
hemodynamic parameters ρ = 1060 kg/m3, µ∞ = 3.45 mPa·s, µ0 = 56 mPa·s, n = 0.22,
λ = 1.902 s and a = 1.25. Since no analytical solution is known, we perform a full flow
simulation at Re = 25 using a stabilised solver (see Chapter 6) on a uniform mesh with
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Figure 5.4: Pressure Poisson equation: convergence for different velocity-pressure pairs.

5 × 104 bilinear square elements. The resulting velocity field is then used to feed the ultra-
weak PPE with constant pressure elements. The comparison between pressures yielded by
the full simulation and the PPE is shown in Figure 5.5. Very good agreement is observed,
and in particular the PPE with piecewise constant pressure approximation seems to capture
the corner-induced discontinuity more accurately than the continuous pressure elements,
where some oscillation can be seen upstream of the corner (x1 = 4H).

Manufactured compressible flow solution

We now test the compressible version of the ultra-weak PPE by considering a compressible
flow accelerating through a straight channel Ω = (0,3) × (0,1) due to a body force

f =

(
ex1 [x2 (1− x2)]2

(4x1 − 1) (1− 2x2) /3

)
.

Setting a constant dynamic viscosity µ ≡ 1, a mass flow rate per unit width equal to 1/6
and an inlet density ρ(0,x2) ≡ 1 results in

u =

(
x2(1− x2)ex1

0

)
, p =

20− x1
(
4x2

2 − 4x2 + 6
)

3
and ρ = e−x1 .

Two types of discretisation are considered: quadrilateral elements with piecewise constant
pressure and blinear velocity, and triangular elements with linear pressure and quadratic
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Figure 5.5: Backward-facing step: pressure computed by the PPE with Q1Q0 elements.

velocity (and quintic Argyris test functions). First-order spaces are used for the density
in both cases. The coarsest mesh for each case is shown in Figure 5.6. The uniform re-
finement study depicted in Figure 5.7 reveals optimal convergence for both element types.

Figure 5.6: Coarsest meshes used for the compressible PPE test case.

In vitro flow in intracranial aneurysm phantom

As a last example, we consider a typical biomedical application of the PPE: reconstructing
pressure from magnetic resonance imaging (MRI) flow measurements. For this test, we
use the data obtained by Amili et al. [77] considering a giant aneurysm phantom that was
3D-printed from a patient-specific geometry. The data are originally voxelated: at each
acquisition time, the velocity field is given at nodes forming a uniform tensor-product
grid in space. So, we must first eliminate the grid points lying outside the aneurysm to
retain only the ones with valid acquisitions. Then, from the remaining nodes (i.e., inside
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Figure 5.7: Error plot for the pressure computed through the ultra-weak compressible PPE.

the aneurysm), we create a hexahedral mesh (see Figure 5.8). Amili et al. [77] used a
Newtonian fluid with ρ = 1060 kg/m3 and µ = 2.12 mPa·s, and 16 velocity samples within
a pulsation period of T = 7.92 s. The cycle-averaged velocity magnitude is shown in Figure
5.8, where we see a high-speed region due to a proximal stenosis at the parent artery
(refer to the original work [77] for geometric details). From the velocity measurements,
we reconstruct the pressure field using the weak Q1Q1 pressure Poisson equation, then
compute the mean pressure drop

δp(t) :=
1
|Γin |

∫
Γin

p dΓ−
1
|Γout |

∫
Γout

p dΓ .

We compare our results to those by Amili et al. [77], who used finite differences to compute
second-order derivatives [78]. Figure 5.9 shows a good agreement between the computa-
tions, especially in estimating the peak systolic pressure. The cycle-averaged pressure field
is depicted in Figure 5.10, which allows the identification of critical high-pressure regions.
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Figure 5.8: Giant intracranial aneurysm: cycle-averaged velocity magnitude (mm/s) from
the in vitro experiment by Amili et al. [77] (phase-contrast MRI).
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Figure 5.9: Giant intracranial aneurysm: mean pressure drop from inlet to outlet.
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Figure 5.10: Giant intracranial aneurysm: cycle-averaged pressure field (in Pa) recon-
structed using the weak PPE with Q1Q1 elements.



6 STABILISED FINITE ELEMENT FORMULATIONS

In this chapter, we devise a stabilised finite element framework based on the pressure Pois-
son formulation presented in the previous chapter. The corresponding results have been
partially published: the stabilisation method for stationary Newtonian flows is published
in Ref. [79], whereas the extension to non-Newtonian, time-dependent flows is reported in
Ref. [80]. A report on the initial higher-order convergence in equal-order methods, as well
as corresponding numerical results, is currently in preparation [81].

6.1 Some classical methods and their limitations

As already mentioned, the standard mixed finite element problem for the incompressible
Navier–Stokes equations, Newtonian or not, is unstable when the pressure and velocity
spaces are the same. The first stabilisation method allowing equal-order pairs was pre-
sented by Brezzi and Pitkäranta [23] and consists of relaxing the continuity equation as∫

Ω

qh∇ ·uh dΩ+α

Ne∑
e=1

∫
Ωe

he
2

µ
∇qh · ∇ph dΩ = 0 , (6.1)

where α is a positive parameter. This breaks the saddle-point structure of the Navier–
Stokes system and therefore eliminates the need for LBB compatibility. The stabilisation
factor α must be selected within an appropriate range to guarantee the coercivity of the
overall discrete problem and lead to stable and convergent approximations. Notice that
Eq. (6.1) is the weak form of the problem

−α∇ ·
(
h2µ−1∇p

)
+∇ ·u = 0 in Ω ,

∂p
∂n

= 0 on Γ ,

that is, the stabilisation can be seen as constructed from a completely artificial Poisson
problem for the pressure. While this is not an issue for stability, the accuracy is definitely
compromised. In particular, the artificial Neumman condition induces spurious pressure
boundary layers that degrade the order of approximation close to the boundary [82]. This
can be fixed if the stabilisation term is made consistent by using the residual of the mo-
mentum equation, as proposed by Hughes et al. [5] in their so-called pressure-stabilised

49
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Petrov–Galerkin (PSPG) formulation:∫
Ω

qh∇ ·uh dΩ+

Ne∑
e=1

∫
Ωe

δh∇qh · {∇ph + ρ [∂tuh + (∇uh)uh]−∇ ·Sh − f }dΩ = 0 , (6.2)

in which δh can be taken as proportional to he
2 or he in low- or high-Reynolds flows,

respectively [83]. This is in principle a consistent formulation, since the added stabilisa-
tion term should vanish for the exact solution. However, when using linear elements, the
velocity gradient and the viscous stress are piecewise constant, so that

Ne∑
e=1

∫
Ωe

δh∇qh · (∇ ·Sh) dΩ =

Ne∑
e=1

∫
Ωe

δh∇qh ·0 dΩ = 0 ,

that is, the viscous part of the residual is completely lost. This means that the residual
itself will never vanish, so the consistency of the method relies solely on the stabilisation
parameter δh being proportional to some positive power of he. This incomplete residual
can spoil coarse grid accuracy and restrict the choice of the stabilisation parameter [84,
85], especially for diffusion-dominated flows. In fact, this is an issue appearing not only
in PSPG, but also in most residual-based stabilisation techniques such as Galerkin-least-
squares (GLS) [6], VMS [33] and others [86, 87]. It is thus common practice to use
projection-based techniques such as the ones proposed by Jansen et al. [85] and Bochev
and Gunzburger [88] to reconstruct the viscous term [32, 89].

Another simple technique to eliminate the inconsistency of low-order residual-based meth-
ods was proposed by Codina and Blasco [90, 91]. Their method is similar to the original
one by Brezzi and Pitkäranta [23], but replaces the full pressure gradient in the stabilisation
term by gradient fluctuations [92]:

∫
Ω

qh∇ ·uh dΩ+α

Ne∑
e=1

∫
Ωe

he
2

µ
∇qh ·

(
∇ph −∇ph

)
dΩ , (6.3)

where ∇ph is the L2 projection of the pressure gradient onto the unconstrained velocity
space. The perturbation added to the continuity equation is consistent, as the fluctuation
∇p − ∇p is zero for smooth solutions of the continuous problem. Hence, this method
eliminates spurious pressure boundary layers, but at the rather high cost of a global vec-
tor projection. More efficient stabilisation methods can be constructed by employing local
projection operators [25, 93, 94]. Another family of stabilisation techniques requiring only
first-order derivatives are continuous interior penalty methods using jump-based stabilisa-
tion terms [82, 95]. The main shortcoming of such methods is the need for face-based data
structures and implementation, which are not always available.
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It is important to note that the type of stabilisation to which we herein refer is not to be
confused with other residual-based techniques such as streamline upwind Petrov–Galerkin
(SUPG) [96], grad-div [97, 98] or artificial diffusion [99]. Those methods aim to remedy
other sources of instability and can be appropriately combined with the present one for
specific flow problems and regimes. As a matter of fact, the SUPG technique employed
for stabilising convective effects also suffers from an incomplete residual evaluation in the
lowest-order case. Nonetheless, in the flow regimes for which SUPG is actually important,
the viscous terms typically have a minor contribution in the residual, so that the vanishing
stress divergence is not a critical issue. Therefore, the present work focuses on – while
not being limited to – the diffusion-dominated case. To get a broader overview of finite
element pressure stabilisations for incompressible flow problems, see Refs. [100, 101].

6.2 A fully consistent stabilisation method for elements with
continuous pressure

Given the limitations of standard pressure stabilisations and the typical pressure-Poisson-
like structure of most of them, it is quite natural to wonder whether consistent pressure
Poisson formulations such as the ones introduced in Chapter 5 can be used for stabilis-
ing equal-order incompressible flow solvers. To answer that, and inspired by ideas of-
ten present in split-step methods [71, 72, 102–109], we propose replacing the standard
momentum-mass system by an equivalent one. For concision, we stick to the stationary
case and drop body forces, but the extension to the general setting is straightforward. The
proposed system reads

(ρ∇u)u − µ∆u − 2∇su∇µ+∇p = 0 in Ω , (6.4)
−∆p = ∇ ·

[
(ρ∇u)u − 2∇su∇µ

]
+ [∇ × (∇ × u)] · ∇µ− β∇ ·u in Ω , (6.5)

∂p
∂n

= n ·
[
2∇su∇µ− (ρ∇u)u − µ∇ × (∇ × u)

]
on Γ , (6.6)

where β is some given positive function to be defined later. The velocity BCs were omitted
because they play no role in the following discussion.

Lemma 6.1. System (6.4)–(6.6) implies the standard momentum-mass system (3.1)–(3.2).

Proof. The first step is to apply the divergence operator to Eq. (6.4), leading to

∆p = ∇ ·
[
µ∆u+ 2∇su∇µ− (ρ∇u)u

]
= ∇ ·

[
2∇su∇µ− (ρ∇u)u

]
+∇µ ·∆u+ µ∇ · (∆u) ,

(6.7)

which when added to Eq. (6.5) gives

0 = [∇ × (∇ × u)] · ∇µ− β∇ ·u+∇µ ·∆u+ µ∇ · (∆u)
= µ∇ · (∆u) +∇µ · [∆u+∇ × (∇ × u)]− β∇ ·u ,

(6.8)
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but ∆u+∇× (∇ × u) ≡ ∇ (∇ ·u) and ∇· (∆u) ≡ ∆ (∇ ·u). Therefore, introducing φ :=∇·u,
we get the diffusion-reaction equation

−∇ · (µ∇φ) + βφ = 0 . (6.9)

We can obtain Neumann BCs for this equation by dotting Eq. (6.4) with n, restricting the
result to Γ and substracting it from (6.6), which gives

0 = n · [∆u+ (∇ × ∇ × u)]
= n · [∇ (∇ ·u)]

=
∂φ

∂n
on Γ .

(6.10)

The solution of Eq. (6.9) is thus φ ≡ 0, that is, ∇ ·u = 0 in Ω, as we wanted. Now that in-
compressibility has been proved, the equivalence between Eqs. (6.4) and (3.1) is straight-
forward. �

Proving the other side of the equivalence is simpler, since the PPE is directly constructed
from the Navier–Stokes equations assuming (u,p) ∈ [H2(Ω)]d × H1(Ω) [110, 111]. These
requirements can be weakened through appropriate variational problems, as shown in
Chapter 5.

As the PPE has higher-order derivatives when compared to the original mass-momentum
system, the main underlying challenge is to construct appropriate variational formulations
allowing standard finite element spaces – as already addressed in Chapter 5. Starting with
the Newtonian case (∇µ ≡ 0), we look for (uh,ph) ∈ [Xh]d × Xh, with uh |ΓD = gh, such
that

〈wh,(ρ∇uh)uh〉Ω+ 〈∇wh, µ∇uh〉L2(Ω) − 〈∇ ·wh,ph〉L2(Ω) =
〈
wh, t̃

〉
ΓN
,

〈βhqh,∇ ·uh〉L2(Ω) + 〈∇qh,∇ph + (ρ∇uh)uh〉L2(Ω) + 〈∇qh × n, µ∇ × uh〉Γ = 0 ,
(6.11)

for all (wh,qh) ∈ [Xh]d × Xh, with wh |ΓD = 0, with Xh being a continuous finite element
space. Despite being very similar to PSPG (6.2) in form and structure, this PPE-based
stabilisation is fully consistent for any continuous equal-order spaces, since no part of the
residual vanishes due to low-order discretisation. The key term for retaining full consis-
tency is the boundary integral proportional to the vorticity ωωω := ∇ × u. As a matter of fact,
in the Newtonian case this term alone accounts for the entire viscous contribution to the
residual. Hence, we shall henceforth refer to this method as boundary vorticity stabilisa-
tion (BVS). Other than that, the key distinction of the BVS method is that the stabilisation
term is computed globally rather than only in element interiors. This is permitted as long
as continuous spaces are used. It is important to mention that taking the (still undefined)
parameter βh as zero recovers the formulation introduced by Johnston and Liu [72] in the
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context of split-step schemes. Their method, which we denote as BVS0, has two important
shortcomings: it requires ΓN = ∅ and yields suboptimal velocity convergence in L2 when
using equal-order pairs. We will soon investigate how to select the parameter βh to yield
optimally convergent velocities.

For quasi-Newtonian fluids, only one additional term is needed in each equation, resulting
in the problem to find (uh,ph, µh) ∈ [Xh]d × Xh × Xh, with uh |ΓD = gh, such that〈

wh,(ρ∇uh)uh − (∇uh)>∇µh
〉
Ω

+ 〈∇wh, µh∇uh〉L2(Ω) − 〈∇ ·wh,ph〉L2(Ω) =
〈
wh, t̃

〉
ΓN
,

〈βhqh,∇ ·uh〉L2(Ω) +
〈
∇qh,∇ph + (ρ∇uh)uh − 2(∇uh)>∇µh

〉
Ω

+ 〈∇qh × n, µh∇ × uh〉Γ = 0,〈
υh, µh − η(γ̇(∇suh))

〉
L2(Ω) = 0,

(6.12)

for all (wh,qh,υh) ∈ [Xh]d × Xh × Xh, with wh |ΓD = 0.

The stabilisation parameter

The factor βh in the divergence bilinear form is still undefined, and a comparison between
our formulation and PSPG can aid the selection of this parameter. The PSPG term has the
form

〈qh,∇ ·uh〉L2(Ω) +

Ne∑
e=1

〈
δh∇qh,∇ph + (ρ∇uh)uh − 2∇suh∇µh − 2µh∇ · (∇suh)

〉
Ωe

= 0 ,

which when compared to the BVS formula reveals that the parameters βh and δh have
inverse roles. Therefore, we select βh as the inverse of the PSPG stabilisation term, that
is,

βh =
1
δh
. (6.13)

Moreover, it is known that δh =O(h2) is the optimal choice for diffusion-dominated flows,
whereas δh = O(h) is optimal for convective regimes [26]. A more general expression can
be used to account for local effects [31]:

δh
−1 =

√(
α1µh

h2

)2
+

(
α2ρ|uh |

h

)2

+

(
α3ρ

∆t

)2
,

where ∆t is the size of the temporal discretisation in time-dependent problems and α1,
α2 and α3 are appropriate stabilisation factors. Since our present focus is on diffusion-
dominated flows, we use simply

βh |Ωe =
µh

αhe
2 , (6.14)
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in which case we get〈
∇qh,∇ph + (ρ∇uh)uh − 2 (∇uh)>∇µh

〉
L2(Ω)

+ 〈∇qh × n, µh∇ × uh〉Γ+

α−1
Ne∑
e=1

he
−2 〈qh, µh∇ ·uh〉Ωe

= 0
(6.15)

as our stabilised continuity equation. We will later verify through several numerical exam-
ples that this is indeed the optimal choice for βh. The stabilised equation (6.15) has the
matrix form

Kp +
[
C̃(uh) + H(µh) + B̃(δh)

]
u −

[
S̃(uh)

]
µ = f , (6.16)

where K is a standard (Laplacian) stiffness matrix, S̃ is the viscosity gradient matrix,
namely,

S̃i j (uh) = 2
〈
∂ψi

∂xk

∂uh

∂xk
,∇ψ j

〉
L2(Ω)

, (6.17)

and the remaining matrices have a horizontal block structure, e.g. H = [H1 ... Hd], with

C̃k
i j (uh) =

〈
ρ
∂ψi

∂xk
uh,∇ψ j

〉
L2(Ω)

, (6.18)

B̃k
i j (δh) =

〈
ψi,δh

∇ψ j

∂xk

〉
L2(Ω)

, (6.19)

H k
i j (µh) =

d∑
m=1

〈
(δmk − 1)

(
nm

∂ψi

∂xk
− nk

∂ψi

∂xm

)
, µh

∂ψ j

∂xm

〉
Γ

, (6.20)

where nk denotes the k-th component of the normal n and δ is the Kronecker delta.

Despite the similarities between our approach and the standard PSPG method, there is a
fundamental difference. The added stabilisation terms in PSPG relax incompressibility in
a completely artificial way, and must therefore be small for accuracy and even for stability
(see the analysis in Ref. [86]). On the other hand, the stabilised form in our method is
constructed from a strong equation that can be seen as a weighted sum of the continuity
equation and a pressure Poisson equation that would also on its own enforce incompress-
ibility. For β→∞ we have only the divergence-free constraint – which is unstable at the
discrete level –, whereas for β = 0 (i.e., α→∞) we have the pure PPE, which is stable but
suboptimally convergent [103].

6.3 An ultra-weak stabilisation method allowing discontinuous
pressure

It is clear that the stabilisation method we just presented requires ph ∈ H1(Ω). Although
this is the case for nearly all commonly used finite element spaces, it can be of interest to
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allow pressure discontinuities. This could be either for numerical reasons, such as using
optimal lowest-order pairs, or due to the actual need for resolving high gradients or discon-
tinuities (as in two-phase flows with surface tension). It turns out that stabilisation methods
allowing piecewise constant pressure are quite scarce, since most residual-based methods
rely on gradient-based terms such as 〈∇qh,∇ph〉Ωe for stability. We therefore present now
an ultra-weak PPE-based stabilisation allowing Q1Q0 elements. One possibility would be
to consider an expression similar to the one used for the continuous pressure case, i.e,

〈βhqh,∇ ·uh〉L2(Ω) − 〈∆qh,ph〉L2(Ω) + 〈∇qh,(ρ∇uh)uh〉L2(Ω) +〈
∇(∇qh),2µh∇

suh
〉

L2(Ω) −
〈
n ⊗∇qh,2µh∇

suh
〉
Γ = 0 .

Although possible in principle, this may lead to worse conservation of mass than standard
methods, due to the wider support of the C1 test functions qh. To illustrate that, let us
assume that βh is constant and large enough that the PPE terms can be neglected, so that

〈qh,∇ ·uh〉L2(Ω) ≈ 0 .

In that case, discrete conservation of mass is (approximately) fulfilled in each patch cor-
responding to the support of qh. Thus, it is desirable to have as compact a support as
possible. If we can use piecewise constant test functions, then the conservation of mass
will be approximately satisfied per element. To achieve that, we consider an alternative
formulation. Additionally to the momentum equation, we include two equations to find
(ph, p̃h) ∈ Xh × Xh such that

〈qh,∇ ·u〉L2(Ω) +

Ne∑
e=1

δe 〈qh,ph − p̃h〉Ωe
= 0 ,

−〈∆q̃h, p̃h〉L2(Ω) + 〈∇q̃h,(ρ∇uh)uh〉L2(Ω)+〈
∇(∇q̃h),2µh∇

suh
〉

L2(Ω) −
〈
n ⊗∇q̃h,2µh∇

suh
〉
Γ = 0

(6.21)

for all (qh,q̃h) ∈ Xh × Yh, where δe is a piecewise constant stabilisation parameter, Xh is
the usual space of piecewise constants and Yh is a C1-conforming space as presented in
Chapter 5. The underlying idea is to penalise fluctuations of the original pressure ph with
respect to the stable pressure p̃h coming from the PPE (see Ref. [112] for an overview of
pressure-fluctuation-based stabilisation methods). This formulation is clearly consistent,
since p = p̃ for the exact solution of the strong problem. The relaxed continuity equation
thus reduces to an element-level constraint:

1
|Ωe |

∫
Ωe

∇ ·uh dΩ = −δe (pe − p̃e) , (6.22)

that is, the velocity field will approximately conserve mass elementwise, up to a consis-
tent term. In the numerical examples we will investigate how to select the stabilisation
parameter δe to attain optimal convergence.
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At first glance, it seems that this approach incurs extra computational cost due to the addi-
tional unknown p̃h. Yet, it is possible to eliminate this unknown without having to invert
the corresponding stiffness matrix. Let us write Eqs. (6.21) in matrix form as

Bu+ D
(
p− p̃

)
= 0 , (6.23)

Kp̃ +
[
N(uh, µh)

]
u = f , (6.24)

where N incorporates the nonlinear terms and D is a diagonal matrix with entries Dee =

δe |Ωe |. Pre-multiplying Eq. (6.23) by KD−1 leads to

KD−1Bu+ K
(
p− p̃

)
= 0 ,

in which we can substitute Eq. (6.24) to get[
KD−1B + N(uh, µh)

]
u+ Kp = f . (6.25)

By doing so, we have eliminated the additional pressure unknown at the “cost” of inverting
only a diagonal matrix. As we shall see in the numerical examples, this stabilised method
leads to very good local mass conservation.

6.4 Numerical examples

In this section, several numerical examples are provided in order to test our stabilised
formulations’ accuracy, stability and robustness with respect to stabilisation parameters.
Most examples consider equal-order elements with linear or d-linear basis functions, and
focus is placed on diffusion-dominated flows.

6.4.1 Elements with continuous pressure

In all cases involving a continuous pressure approximation, the stabilisation parameter is
set as δh = αh2/µh = βh

−1, with α being a positive stablisation factor whose effects we
aim to investigate.

Carreau fluid through straight channel

Our first numerical example is the Poiseuille flow of a Carreau fluid in the channel Ω =

(0,L) × (−H/2,H/2), with L = 3H = 3 mm. We use the same rheological parameters as in
Section 4.3 (see Eq. (4.17)) and impose no slip at the walls, t̃ |x1=0 = (pin ,0)> and t̃ |x1=L = 0,
with pin = 9 Pa. A convergence study is performed with linear triangular elements, starting
from the mesh depicted in Figure 6.1 and then applying six levels of uniform refinement.
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Figure 6.2 shows a comparison between the BVS and PSPG methods for a stabilisation
factor α = 1. It is seen that, while the velocity errors are quite similar, the BVS method
performs clearly better in the approximation of pressure. At the finest level, the BVS error
is already thirty times smaller than that attained by PSPG, and this difference shows an
increasing trend if the refinement continues.

Figure 6.1: Carreau channel flow: coarsest mesh considered.
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Figure 6.2: Carreau channel flow: uniform refinement study.

The similarity in the velocity errors does not hold in general, as revealed by the error vs. α
plot in Figure 6.3. For small α, the methods perform similarly because the divergence-free
constraint dominates over the stabilisation terms. However, increasing the stabilisation
factor leads to a much faster increase in the velocity error for PSPG than for our method.
For instance, from α = 0.1 to α = 10 the PSPG method experiences a 1000% increase in
the velocity error, in contrast to only 12% in the BVS case. This is due to the improved
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Figure 6.3: Carreau channel flow: effect of the stabilisation factor α.

mass conservation of our approach, which is fully consistent and does not “over-relax”
incompressibility.

Additionally to the possible over-relaxation of incompressibility, standard low-order residual-
based formulations have another well-known shortcoming: the induction of spurious pres-
sure boundary layers – and the straight channel flow is a perfect example to illustrate that.
For this problem, the momentum equation simplifies to

∇p = µ∆u+∇u∇µ .

Dividing both sides by µ and taking the divergence of the result gives us

∇ ·
(
µ−1∇p

)
= ∆ (∇ ·u) +

∂

∂x1

(
µ−1 ∂u1

∂x2

∂µ

∂x2

)
= 0 .

Thus, there holds
∇ ·u − γ∇ ·

(
µ−1∇p

)
= 0 (6.26)

for an arbitrary scalar γ. Let us now turn our attention to the stabilised formulation. In a
uniform mesh with linear simplicial elements, we have (∇ · Sh) |Ωe = 0 and he = h for all
elements. Then, the PSPG term for this example reads simply∫

Ω

qh∇ ·uh dΩ+αh2
∫
Ω

µ−1
h ∇ph · ∇qh dΩ = 0 , (6.27)
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which is the weak form of

∇ ·u −αh2∇ ·
(
µ−1∇p

)
= 0 in Ω , (6.28)

∂p
∂n

= 0 on Γ . (6.29)

That is, although Eq. (6.28) is consistent with this particular example (due to Eq. (6.26)),
the PSPG term induces zero Neumann BCs for the pressure as a numerical artifact. This
results in loss of accuracy close to the boundary, especially if the stabilisation factor α
is not small [82]. Therefore, α must be large enough to attain stability, but not so large
that spurious pressure boundary layers become relevant – and this, of course, restricts
the choice of the stabilisation parameter. In Figure 6.4 we display the pressure along
the channel’s centreline, for different values of α. The induced Neumann BCs can be
clearly seen in the PSPG solution, and the affected region becomes larger as α increases.
Conversely, when using the BVS this is not an issue, since the pressure satisfies consistent
boundary conditions derived from the momentum equation.
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Figure 6.4: Carreau channel flow: centreline pressure for different stabilisation factors,
demonstrating the zero Neumann conditions artificially induced by lowest-
order PSPG.

Stokes flow in the unit circle

We consider now the benchmark case proposed by Weidman [113]. It consists of the
Stokes problem in a circular domain with unit radius, centred at the origin, with zero body
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force and periodic Dirichlet datum uθ |Γ = cos nθ, in which n is an integer greater than one,
uθ denotes the circumferential velocity and θ = tan−1(x2/x1). For µ ≡ 1 and n = 2, the
analytical solution is

u =

(
2x2

3 − x2
2x1

3 − x1

)
, p = 12x1x2. (6.30)

For this example, we consider the mesh depicted in Figure 6.5 (due to symmetry, only
a quarter of the mesh is shown). The first goal is to compare the BVS and PSPG meth-
ods regarding their performance with respect to the stabilisation factor α. The L2 errors
for α ∈ [10−4,105] are shown in Figure 6.6, and important considerations can be drawn.
The expected behaviour is once again observed: the pressure error is large for small val-
ues of α, decreases as α is increased, reaches a minimum, then starts growing again and
eventually settles at a finite value. The two formulations yield similar results for small α,
since the divergence-free constraint dominates over the stabilisation terms. However, the
reasons why each method reaches a limiting performance for α→∞ are distinct. In the
PSPG formulation, the error becomes very high because a large α leads to over-relaxation
of incompressibility; in our formulation, α → ∞ leads to the pressure Poisson equation
completely replacing the divergence-free constraint, which does not violate (approximate)
incompressibility but results in suboptimal convergence [103]. Therefore, the error for
large α is much higher for PSPG than for the present formulation. Moreover, the former’s
incomplete residual has an important impact on the parameter selection. The numerical so-
lution is very sensitive to the stabilisation parameter, with the error growing very fast when
α moves away from its optimal value in either direction. Conversely, in our method the er-
ror varies in a smoother way and allows more freedom in the parameter selection. This is a
crucial feature for a stabilisation technique, since the optimal parameters are problem- and
discretisation-dependent. It is also seen that, for this example, the minimum error yielded
by our formulation is around one order of magnitude lower than that from PSPG.

To quantitatively investigate the issue of spurious pressure boundary layers induced by the
incomplete residual, we assess the pressure error on the boundary, as proposed by Burman
and Hansbo [82], using the norm

‖p− ph‖Γ :=
‖p− ph‖L2(Γ)

‖p‖L2(Γ)
.

Note that for this example, as in the previous one, the PSPG method with linear elements
reduces to the original formulation of Brezzi and Pitkäranta [23], which contains only the
term 〈δh∇qh,∇ph〉L2(Ω) and therefore induces zero Neumann BCs for the pressure. We
also include in the comparison the results attained through the pressure gradient projection
(PGP) method of Codina and Blasco [90], which is fully consistent for any continuous
equal-order pairs (see (6.3)). The plot shown in Figure 6.7 reveals a similar trend to that
attained by edge stabilisation methods [82]: the consistent residual increases the order of
the approximation on the boundary, at least initially. This is due to the fact that our for-
mulation is derived from a boundary value problem with consistent pressure BCs [44]. In
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Figure 6.5: Stokes flow in the unit circle: a quarter of the mesh employed.
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Figure 6.6: Stokes flow in the unit circle: errors for different stabilisation factors.

comparison to edge stabilisation methods, ours has the advantage of not requiring oper-
ations involving internal edges/faces, which simplifies implementation. We also see that
our method performs very similarly to the PGP technique and even sustains the quadratic
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rate longer – with the advantage of not requiring expensive vector projections.
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Figure 6.7: Stokes problem in the unit circle: pressure convergence in L2 (Γ) for different
stabilisation methods, using α = 0.1.

Kovasznay flow benchmark

Another classic benchmark for the Newtonian Navier–Stokes problem is the Kovasznay
flow [114]. It is one of the only known problems with zero body force and an analytical so-
lution, and models the behaviour of laminar flow past cylinders. The non-dimensionalised
solution in Ω = (−1/2,1/2)2 is

u =

(
1− ek x1 cos2πx2

k
2π ek x1 sin2πx2

)
, p =

ek − e2k x1

2
,

with 2k = Re−
√

Re2 + (4π)2. We solve the corresponding Dirichlet problem using linear
triangular elements. The coarsest mesh is shown in Figure 6.8, and then seven levels of
uniform refinement are considered. The pressure and velocity errors for Re = 100 and
α = 1 are shown in Figure 6.9. We observe that, although both PSPG and BVS methods
converge with similar rates, the former takes longer to reach the asymptotic behaviour,
which leads to larger errors. The reason for this “delayed” convergence is the fact that
the artificial pressure BCs induced by the PSPG formulation only become negligible as
the mesh size goes to zero [57]. Another important finding from the convergence plots is
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the remarkable performance gain of our approach with respect to the BVS0 formulation
of Johnston and Liu [72], through the addition of the simple term 〈qh, βh∇ · uh〉L2(Ω) to
penalise large velocity divergences.

Figure 6.8: Kovasznay benchmark: coarsest mesh used in the refinement study.

h

10−3 10−2 10−1 100

‖p
−

p
h
‖ 0

10−5

10−4

10−3

10−2

10−1

100

PSPG (α = 1)

Present (α = 1)

BVS0

O(h)

O(h2)

h

10−3 10−2 10−1 100

‖u
−

u
h
‖ 0

10−5

10−4

10−3

10−2

10−1

100

PSPG (α = 1)

Present (α = 1)

BVS0

O(h)

O(h2)

Figure 6.9: Kovasznay benchmark: uniform refinement study.

To further illustrate how the incomplete residual can impact the quality of the approxima-
tion, we show in Figure 6.10 the pressure isolines for the Kovasznay problem with Re = 40,
α = 100 and the third finest mesh considered in the convergence study. This is a partic-
ularly good example for illustrating the issue of spurious pressure boundary layers, since
the exact solution has perfectly vertical isolines. Note that the stabilisation parameter is
deliberately chosen far from the optimal values, so as to critically test the performance of
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both methods. We see that PSPG yields completely distorted lines all over the domain,
whereas in our approach there is only a mild distortion close to the corners.

Figure 6.10: Kovasznay benchmark: pressure isolines for PSPG (left) and BVS (right).

It is also of interest to investigate how our method performs in combination with equal-
order spaces of higher polynomial degree, since they are able to approximate the viscous
terms in the standard PSPG residual. We investigate this by assessing the effect of the
stabilisation factor α for elements of type QkQk , with k = 1,2,3,4. We consider a 64 × 64
uniform grid and Re = 100. The results depicted in Figure 6.11 reveal once again an in-
crease in accuracy for a wider range of α. This is due to the fact that, even though the PSPG
residual is complete for k > 1, large α leads to an over-relaxation of the incompressibility
constraint. This does not happen in our PPE-based formulation, which conserves mass
even for α→∞ (β = 0, see Eq. (6.9)). Especially for k = 4, the approximation attained by
our method has proven considerably less sensitive to variations of the stabilisation param-
eter. For α > 10 the solution of the PSPG method (considering zero initial guess for the
iterative scheme) diverged.

In order to put our method to a more challenging test, we use now anisotropic, highly
non-uniform meshes. The coarsest mesh is shown in Figure 6.12, where we can see that
the element size varies by a factor of up to 9 between adjacent elements – a rather extreme
setting. The pressure and velocity errors for α = 10 are shown in Figure 6.13, where good
stability and convergence behaviour is verified, as in previous examples.
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Figure 6.11: Kovasznay benchmark: error vs. stabilisation factor for elements of up to
order 4.
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Figure 6.12: Kovasznay benchmark: coarsest anisotropic mesh considered.

Carreau–Yasuda fluid past a backward-facing step

A benchmark problem with less smooth solution is the backward-facing step already con-
sidered in previous chapters. For this example we employ the Carreau–Yasuda fluid model
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Figure 6.13: Kovasznay benchmark: refinement study with anisotropic meshes.

(cf. Eq. (4.15)) with the same parameters used in the second example of Section 5.4. The
geometric proportions are as in Figure 4.6, and three different inlet channel heights are
considered: H = 0.5, 5 and 50 mm. We set Re = 25 to compare our results to those by
Masud and Kwack [36], who employed a variational multi-scale method (VMS) for the
stabilisation. The comparison is done with respect to the normalised wall shear stress τw
along the line x2 = 0:

τw :=

[
η(γ̇) ∂u1

∂x2

] ���x2=0

6µ∞Q/(2H)2 ,

whose denominator corresponds to the wall shear stress of a developed Newtonian flow.
For the numerical solution, we use α = 0.1 and a uniform mesh with 50,000 bilinear square
elements in all three cases. The comparison depicted in Figure 6.14 reveals good agree-
ment between the solutions, especially for H = 0.5 and 5 mm. For H = 50 mm there is a
discrepancy of around 2%. Fortunately, it is possible to compute the exact wall shear stress
of the developed flow:

τ∞w = −
2H
2

∂p
∂x1

�����x1→∞

, (6.31)

due to equilibrium of forces. Although the pressure gradient is not known right away, it
can be computed iteratively from the known flow rate Q. Then, with this semi-analytical
value of τ∞w , we are able to verify that our solution differs in less than 0.5% from the exact
one, while the VMS approximation differs in around 3%. For completeness, we present in
Table 6.1 the comparison for the other geometries, along with the maximum and minimum
values of τw.



6.4 Numerical examples 67

x1/H
4 4.5 5 5.5 6 6.5 7 7.5 8

τ
w

-1

1

3

5

7

9

11

13

15

17

H = 50 mm

H = 5 mm

H = 0.5 mm

Figure 6.14: Backward-facing step with Carreau–Yasuda fluid: wall shear stress along
x2 = 0 (downstream of the step) for the BVS (lines) and VMS (markers) [36]
methods.

Table 6.1: Backward-facing step with Carreau–Yasuda fluid: maximum and minimum wall
shear stresses along x2 = 0.

H [mm] min {τw} max {τw} τw |x1=L τ∞w (analytical)
0.5 -0.5394 1.147 1.087 1.099
5 -0.4048 4.180 4.139 4.167
50 -0.6814 16.115 15.839 15.897

6.4.2 Elements with discontinuous pressure

We now assess the performance of the ultra-weak stabilised formulation presented in Sec-
tion 6.3 for Q1Q0 elements. The main goal is to, via numerical examples, find a suitable
expression for the stabilisation parameter δe.

Manufactured Stokes solution in L-shaped domain

The first example consists of a Stokes flow in the L-shaped domain Ω = (0,1)2 \ [0,1/2]2.
For the discretisation we employ a hybrid approach: the momentum and (relaxed) continu-
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ity equations are posed inΩ, whereas the PPE is split into two weakly coupled subproblems
in two rectangular subdomains of Ω, as shown in Figure 5.3. Setting µ ≡ 1, u |Γ = 0 and
body force

f =

(
80x2 + 8π2 sin(4πx2)(1− 2cos(4πx1))
80x1 + 8π2 sin(4πx1)(2cos(4πx2) − 1)

)
leads to the solution

u =

(
sin(4πx2) sin2(2πx1)
− sin(4πx1) sin2(2πx2)

)
, p = 80x1x2 − 25.

For the convergence study, we consider two expressions for the stabilisation parameter:
δe = α and δe = αhe, with α > 0. Six levels of uniform refinement are performed, starting
from the mesh shown in Figure 5.3. The error plots in Figure 6.15 show that both types of
stabilisation parameters result in stable solutions with linear pressure convergence, but δe =

O(1) yields only linear velocity convergence, while δe = O(he) delivers the full quadratic
order. In fact, the PSPG formulation for zeroth-order pressure elements (often called jump
stabilisation) also has a stabilisation parameter proportional to the element size [6]. We
remark that this particular problem has a smooth (manufactured) solution, despite the re-
entrant corner at x1 = x2 = 1/2.
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Figure 6.15: Manufactured Stokes solution in L-shaped domain: convergence of the sta-
bilised Q1Q0 elements for two different types of stabilisation parameter.

For δe = he, Figure 6.16 shows the maximum element-mean ∇ ·uh, which is a measure of
local mass conservation. Although the divergence is expected to converge to zero linearly



6.4 Numerical examples 69

in L2(Ω), the local error here is quadratic, since

1
|Ωe |

��������

∫
Ωe

∇ ·uh dΩ

��������
= δe |pe − p̃e | = O(he)O(he) = O(he

2).

This is an important advantage of having discontinuous test functions in the continuity
equation.
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Figure 6.16: Manufactured Stokes solution in L-shaped domain: local divergence error.

Two-phase Poiseuille flow

A problem with less smooth yet still simple solution is the parallel flow of two immiscible
fluids with different viscosities. Let us consider a channel Ω = (0,L) × (−H,H), with the
lower half (0,L) × (−H,0) occupied by a fluid having a constant viscosity µ1, and the upper
half containing a different fluid with viscosity µ2. If the pressure is constant along the x2
direction and has a constant gradient k in the x1 direction, then solving the momentum
equation enforcing (a) no slip on the walls and (b) continuity of velocity and stresses on
the interface x2 = 0 gives the analytical velocity profile

u1 = −kH2

[
1− (x2/H)2

]
+

[
sgn(x2) − (x2/H)

]
λ

µ2 + µ1 + (µ2 − µ1)sgn(x2)
, with λ :=

µ2 − µ1

µ2 + µ1
.
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Notice that the velocity profile is continuous but has a kink at the interface, as shown in
Figure 6.17. Here it is important to use the stress-divergence formulation to avoid the term
∇µ, since the viscosity is not continuous. We consider a test case with k = −1, L = 2H = 1
and µ2 = 3µ1 = 3. The convergence study considers two different families of meshes: one
resolving the interface x2 = 0, and another one with the interface going through a row of
elements. The former starts with a mesh containing 4 × 4 square elements, while the latter
is generated similarly, but with central nodes slightly shifted upwards. The error plot for
δe = he in Figure 6.18 confirms the optimal rates for the meshes resolving the interface,
whereas the convergence of the second family of meshes seems to eventually degrade to
linear. This suboptimal convergence is a known result in two-phase flow problems and can
be overcome by enriching the discrete velocity space with distance functions to resolve the
kinks [115].
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Figure 6.17: Two-phase Poiseuille profile for µ2/µ1 = 3.

6.5 On the pressure convergence of equal-order methods

A reader who is closely familiar with equal-order methods for incompressible flow prob-
lems may have noticed that the pressure convergence observed in Subsection 6.4.1 is some-
what higher than expected. In fact, under standard assumptions, the classical theory for
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Figure 6.18: Two-phase Poiseuille flow: convergence for meshes with resolved and unre-
solved interface.

QkQk and Pk Pk elements only guarantees a O(hk ) convergence in L2(Ω) for the pres-
sure approximation, although higher orders are often observed in numerical experiments
[5, 25, 116, 117]. Indeed, a O(hk+½) convergence can be shown to hold for very smooth
problems in certain special meshes, at least for low-order elements [116]. We will next
show that, under certain conditions, an initial higher-order convergence for the pressure
may in fact be expected when using equal-order elements. As a model problem we con-
sider the Dirichlet boundary value problem for the Stokes system

−∆u+∇p = f in Ω ,
∇ ·u = 0 in Ω ,

u = 0 on Γ .
(6.32)

To simplify the notation, we will make no distinction between scalar- and vector-valued
spaces. Using the Riesz representation, we can define bounded linear operators A : H1

0 (Ω)→
H−1(Ω) and B : L2(Ω)→ H−1(Ω), i.e.,

〈Au,v〉 :=
∫
Ω

∇u : ∇v dΩ and 〈Bp,v〉 :=
∫
Ω

p∇ · v dΩ

for all u,v ∈ H1
0 (Ω) and p ∈ L2(Ω). Note that

〈Av,v〉 = ‖v‖2
H1

0 (Ω) and 〈Au,v〉 ≤ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)
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for all u,v ∈ H1
0 (Ω), as well as

〈Bp,v〉 ≤ ‖p‖L2(Ω) ‖∇v‖L2(Ω) for all p ∈ L2(Ω), v ∈ H1
0 (Ω).

We can then write the variational formulation for (6.32) in operator form as[
A −B
C D

] (
u
p

)
=

(
f
g

)
, (6.33)

in which D, C and g account for possible stabilising terms. As usual, we assume that D is
a non-negative operator and C is bounded:

‖Cv‖L2(Ω) ≤ cC
2 ‖v‖H1

0 (Ω) for all v ∈ H1
0 (Ω).

When considering compatible spaces or a purely pressure-based stabilisation method, we
have simply C = B′.

Since A is invertible, we can solve the first equation in (6.33) to get the Schur complement
system

[C A−1B + D]︸          ︷︷          ︸
=: S

p = g−C A−1 f︸       ︷︷       ︸
=: f

. (6.34)

In other words, we have the variational formulation to find p ∈ L2(Ω) such that

〈Sp,q〉L2(Ω) = 〈 f ,q〉L2(Ω) for all q ∈ L2(Ω). (6.35)

From the properties of A, B, C and D, at the continuous level we immediately get that the
operator S : L2(Ω)→ L2(Ω) is bounded and elliptic, that is,

〈Sq,q〉L2(Ω) ≥ cS
1 ‖q‖

2
L2(Ω) and ‖Sq‖L2(Ω) ≤ cS

2 ‖q‖L2(Ω) for all q ∈ L2(Ω).

Therefore, we conclude unique solvability of the variational problem (6.35). For a con-
forming finite element space Πh = Sνh (Ω) ⊂ L2(Ω) of piecewise polynomial basis functions
of degree ν, we consider the Galerkin formulation to find ph ∈ Πh such that

〈Sph,qh〉Ω = 〈 f ,qh〉Ω for all qh ∈ Πh .

Using standard arguments we arrive at Cea’s lemma

‖p− ph‖L2(Ω) ≤
cS

2

cS
1

inf
qh∈Πh

‖p− qh‖L2(Ω) ,

and from the approximation property of Πh we finally conclude the error estimate

‖p− ph‖L2(Ω) ≤ c1 hν+1 |p|Hν+1(Ω) (6.36)
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when assuming p ∈ Hν+1(Ω).

Since the composed operator S = C A−1B + D in general does not allow a direct evalu-
ation, we construct a suitable approximation by defining, for any p ∈ L2(Ω), a vector
ũ = A−1Bp ∈ H1

0 (Ω), which is the unique solution of the variational formulation

〈Aũ,v〉 = 〈p,Bv〉 for all v ∈ H1
0 (Ω).

Let Xh := Sµh (Ω)∩H1
0 (Ω) be a second finite element space of polynomial basis functions

with degree µ, for which we consider the Galerkin formulation to find ũh ∈ Xh such that

〈Aũh,vh〉 = 〈p,Bvh〉 for all vh ∈ Xh.

From the ellipticity of A and the boundedness of B we have

‖ũh‖
2
H1

0 (Ω) = 〈Aũh,ũh〉 = 〈p,Bũh〉 ≤ ‖p‖L2(Ω) ‖ũh‖H1
0 (Ω) ,

that is,
‖ũh‖H1

0 (Ω) ≤ ‖p‖L2(Ω) .

Moreover, using standard arguments, we obtain the a priori error estimate

‖ũ − ũh‖H1
0 (Ω) ≤ inf

vh∈Xh

‖ũ − vh‖H1
0 (Ω) ≤ c2 hµ |ũ |Hµ (Ω)

when assuming ũ ∈ H µ(Ω). Instead of

Sp = C A−1Bp + Dp = Cũ+ Dp ,

we now define the approximate operator

S̃p := Cũh + Dp , (6.37)

where we have

‖Sp− S̃p‖L2(Ω) = ‖C(ũ − ũh)‖L2(Ω) ≤ cC
2 ‖ũ − ũh‖H1

0 (Ω) ≤ c3 hµ |ũ |Hµ+1(Ω) .

Moreover, S̃ : L2(Ω)→ L2(Ω) is bounded:

‖ S̃p‖L2(Ω) = ‖Cũh + Dp‖L2(Ω) ≤ cC
2 ‖ũh‖H1

0 (Ω) + cD
2 ‖p‖L2(Ω) ≤

(
cC

2 + cD
2

)
‖p‖L2(Ω) .

Let us assume that S̃ is elliptic in Πh, i.e.,

〈S̃qh,qh〉Ω ≥ cS̃ ‖qh‖
2
L2(Ω) for all qh ∈ Πh.

Note that this assumption is satisfied when using either inf-sup stable finite elements or
appropriate stabilisation operators. We now consider the perturbed variational formulation
to find p̃h ∈ Πh such that

〈S̃ p̃h,qh〉Ω = 〈 f ,qh〉Ω for all qh ∈ Πh. (6.38)

Now we recall the well-known Strang lemma.
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Theorem 6.2. Let S̃ be the approximate Schur complement operator as defined in (6.37),
and p̃h the corresponding pressure approximation from (6.38). Then, under the assump-
tions of (6.36) and, additionally, the ellipticity of S̃, there holds the error estimate

‖p− p̃h‖L2(Ω) ≤ α hν+1 |p|Hν+1(Ω) + β hµ |ũ |Hµ+1(Ω) ,

with α and β independent of h.

Proof. From the triangle inequality and the error estimate (6.36) we have

‖p− p̃h‖L2(Ω) ≤ ‖p− ph‖L2(Ω) + ‖ph − p̃h‖L2(Ω) ≤ c1 hν+1 |p|Hν+1(Ω) + ‖ph − p̃h‖L2(Ω) .

From the ellipticity of S̃ in Πh we now conclude

cS̃ ‖ph − p̃h‖
2
L2(Ω) ≤ 〈S̃(ph − p̃h),ph − p̃h〉Ω

= 〈(S̃ − S)ph,ph − p̃h〉Ω

≤ ‖(S̃ − S)ph‖L2(Ω) ‖ph − p̃h‖L2(Ω) ,

that is,

cS̃‖ph − p̃h‖L2(Ω) ≤ ‖(S̃ − S)ph‖L2(Ω)

≤ ‖(S̃ − S)(ph − p)‖L2(Ω) + ‖(S̃ − S)p‖L2(Ω)

≤
(
cC

2 + cD
2 + cS

2

)
‖ph − p‖L2(Ω) + ‖(S̃ − S)p‖L2(Ω)

≤
(
cC

2 + cD
2 + cS

2

)
c1 hν+1 |p|Hν+1(Ω) + c3 hµ |ũ |Hµ+1(Ω) ,

or

cS̃‖ph − p̃h‖L2(Ω) ≤ c4c1hν+1 |p|Hν+1(Ω) + c3hµ |ũ |Hµ+1(Ω) , (6.39)

which concludes the proof with α = (1 + c4/cS̃)c1 and β = c3/cS̃ . �

We can now show an initial higher-order convergence for the pressure approximation under
certain conditions. From the triangle and Young’s inequalities and the estimate (6.36), we
get

1
2
‖p− p̃h‖

2
L2(Ω) ≤ ‖p− ph‖

2
L2(Ω) + ‖ph − p̃h‖

2
L2(Ω) ≤

(
c1hν+1 |p|Hν+1(Ω)

)2
+ ‖ph − p̃h‖

2
L2(Ω) .

(6.40)

As in the previous proof we have

cS̃ ‖ph − p̃h‖
2
L2(Ω) ≤ ‖(S̃ − S)ph‖L2(Ω) ‖ph − p̃h‖L2(Ω)
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and
‖(S̃ − S)ph‖L2(Ω) ≤ c1c4hν+1 |p|Hν+1(Ω) + c3hν |u|Hν+1(Ω)

for µ = ν. We also have

‖ph − p̃h‖L2(Ω) ≤ ‖ph − p‖L2(Ω) + ‖p− p̃h‖L2(Ω) ≤ c1 hν+1 |p|Hν+1(Ω) + ‖p− p̃h‖L2(Ω) ,

so that

‖ph − p̃h‖
2
L2(Ω)

≤

[
c4c1

cS̃
hν+1 |p|Hν+1(Ω) +

c3

cS̃
hν |ũ |Hν+1(Ω)

] [
c1hν+1 |p|Hν+1(Ω) + ‖p− p̃h‖L2(Ω)

]
=

c4

cS̃

(
c1hν+1 |p|Hν+1(Ω)

)2
+

c3c1

cS̃
h2ν+1 |p|Hν+1(Ω) |ũ |Hν+1(Ω) +[

c4c1

cS̃
hν+1 |p|Hν+1(Ω) +

c3

cS̃
hν |ũ |Hν+1(Ω)

]
‖p− p̃h‖L2(Ω) .

Thus, due to (6.40) we get

1
2
‖p− p̃h‖

2
L2(Ω) ≤

(
1 +

c4

cS̃

) (
c1hν+1 |p|Hν+1(Ω)

)2
+

c3c1

cS̃
h2ν+1 |p|Hν+1(Ω) |ũ |Hν+1(Ω) +[

c4c1

cS̃
hν+1 |p|Hν+1(Ω) +

c3

cS̃
hν |ũ |Hν+1(Ω)

]
‖p− p̃h‖L2(Ω) .

Let us write

|ũ |Hν+1(Ω) = |A−1Bp|Hν+1(Ω) = cAB |p|Hν+1(Ω) .

So, as long as (
c4c1hν+1 + cABc3hν

)
|p|Hν+1(Ω) ≤

kcS̃

2
‖p− p̃h‖L2(Ω) (6.41)

is satisfied for some k < 1, we get

1− k
2
‖p− p̃h‖

2
L2(Ω) ≤

(
1 +

c4

cS̃

) (
c1hν+1 |p|Hν+1(Ω)

)2
+

c3c1cAB

cS̃

(
hν+

1
2 |p|Hν+1(Ω)

)2
,

so that we can finally conclude

‖p− p̃h‖L2(Ω) ≤

(
cI hν+1 + cI I hν+

1
2

)
|p|Hν+1(Ω) . (6.42)

This estimate provides an explanation for the quadratic convergence observed in the previ-
ous numerical examples, see e.g. Figures 6.9 and 6.13. Although most assumptions made
towards proving (6.42) are rather standard, this is not the case for condition (6.41). In fact,
how can we interpret this condition?
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For small h, the expression on the left-hand side of (6.41) behaves (on a logarithmic scale)
as a line with slope ν. If ‖p − p̃h‖ = O(hν+½) is assumed to hold for some range of h,
we see that even if condition (6.41) is satisfied initially, the two lines (left- and right-
hand sides) will eventually intersect as h decreases, and thus (6.41) will no longer hold.
This is why estimate (6.42) shows only a possible initial higher-order convergence. As
an alternative scenario, the curve with the higher slope may already start below the other
curve, so that (6.41) will not hold for any h. Besides, due to the several constants in (6.41),
whether and for how long this higher-order convergence holds may depend on various
factors such as the problem (domain and solution) and the discretisation. Also for this
reason, the higher slope might not break down at all within a practical range of mesh sizes.
Interestingly, a similar initial higher-order behaviour can be observed (and proved) for
boundary element methods when using the same polynomial degree to approximate the
solution and boundary conditions [118].
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The stabilisation methods presented in Chapter 6 can be easily extended to time-dependent
problems by simply adding the acceleration term ∂tu to the momentum residual and then
applying an appropriate temporal discretisation. In this chapter, however, we aim to fur-
ther exploit the pressure Poisson framework developed in Chapter 5 to design efficient
split-step schemes for generalised Newtonian flow problems. Time-splitting or split-step
methods are stepping schemes that decouple the computation of pressure and velocity. This
is highly advantageous especially when employing iterative solvers, since the decoupled
blocks have a simple structure and can thus be easily preconditioned. The most popular
split-step schemes are the so-called projection methods where incompressibility of the dis-
crete velocity field is enforced through a Helmholtz-Leray projection. The first generation
of these methods were plagued by nonphysical pressure boundary conditions that induced
severe numerical boundary layers and spoiled the order of accuracy. Timmermans et al.
[119] solved this issue by introducing the so-called rotational pressure-correction scheme
that adds a correction term to the pressure update. In one of the rather scarce theoretical
studies that are not restricted to the pure Dirichlet case, Guermond et al. [120] showed that
in three-dimensional problems with natural BCs, the rotational projection method has an
intrinsic contradiction: the factor multiplying the added correction term should be taken
as equal to 1 to attain consistent pressure BCs, but must be less than 2/3 to guarantee sta-
bility. Although this does not spoil the asymptotic order of convergence per se, remedies
have been proposed to increase the accuracy of the pressure approximation on the bound-
aries [121]. An excellent overview of projection methods can be found in the works of
Guermond, Minev and Shen [120, 122].

An alternative approach was presented by Liu [71], extending the pressure Poisson method
of Johnston and Liu [72] to the more realistic setting where open/traction boundaries are
allowed. The method completely replaces the continuity equation by a pressure Poisson
problem with consistent boundary conditions. Furthermore, by treating the convective term
explicitly, the scheme decouples also the velocity components from each other, leading to
a sequence of scalar problems that can be efficiently solved. Several formulations building
up from their framework have emerged in the past decade and have proven to be powerful
tools in the efficient solution of incompressible flow problems [102–109].

Extending split-step schemes to generalised Newtonian fluids is not straightforward, es-
pecially in a finite element framework. In fact, only very recently have the first steps
in this direction been taken. Deteix and Yakoubi [123] started by extending the popular
rotational projection method to fluids with non-homogeneous viscosity. A more general

77
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setting allowing natural boundary conditions was then formulated by Plasman et al. [124].
Yet, when the viscosity is not only variable but also dependent on the velocity gradient,
the divergence of the stress tensor will not be regular (smooth) enough to be incorporated
directly into the pressure correction step. One way around that is to project the viscous
stress tensor onto a continuous space, as done by Deteix and Yakoubi [125] in their re-
cently introduced shear rate projection (SRP) schemes. Despite being very accurate and
simple, the SRP method has a high cost when compared to standard (Newtonian) pres-
sure correction schemes: in three dimensions, it requires the solution of a vector-valued
convection-diffusion problem, two Poisson equations and at least ten scalar mass matrix
problems (for adding quantities from different vector spaces). Moreover, the SRP method
does not allow equal-order velocity-pressure pairs, i.e., the LBB constraint is still impera-
tive. For these reasons, the method can be rather expensive in practical applications.

In this context, we show next how to use our non-Newtonian pressure Poisson formula-
tion to construct a split-step framework with consistent Dirichlet and Neumann pressure
BCs, reduced computational cost, very good accuracy and stability properties, while still
allowing equal-order finite element pairs. We further show that, by treating the rheological
law and the viscous stress appropriately, it is possible to decouple the velocity components
to end up with a scheme that requires the solution of one Poisson equation, one scalar
projection step and d scalar advection-diffusion equations. The corresponding results are
published as a research article [126].

7.1 Strong problem and weak formulation

We start by replacing the classical momentum-mass system (3.1)–(3.5) by the alternative
initial-boundary value problem (IBVP)

ρ [∂tu+ (∇u)u]− µ [∆u+α∇(∇ ·u)]− 2∇su∇µ+∇p = f in Ω × (0,T], (7.1)
−∆p +∇ ·

[
2∇su∇µ− (ρ∇u)u

]
− [∇ × (∇ × u)] · ∇µ = −∇ · f in Ω × [0,T] , (7.2)

u = g on ΓD × (0,T] , (7.3)[
µ∇u+ (αµ∇u)> − pI

]
n = h on ΓN × (0,T] , (7.4)

u = u0 at t = 0 , (7.5)
∇ ·u0 = 0 in Ω , (7.6)

p = ζ (u) on ΓN × [0,T] , (7.7)
∂p
∂n

= λ(u) on ΓD × [0,T] , (7.8)

where

ζ (u) := (1 +α)µ∇u : (n ⊗ n− I) −h ·n, (7.9)
λ(u) :=

[
f − ρ∂tg − (ρ∇u)u+ 2∇su∇µ− µ∇ × (∇ × u)

]
·n , (7.10)
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and α is either 1 for the stress-divergence formulation or 0 for the generalised Laplacian
one. This IBVP may seem more complex than the original one, but we shall soon see
how it can be used for constructing simple finite element formulations requiring only the
solution of Poisson and convection-diffusion problems. Note that, for the homogeneous
Newtonian case, all terms depending on ∇µ vanish and the formulation by Liu [71] is
recovered.

Theorem 7.1. For sufficiently regular p,u, f ,g and h, systems (7.1)–(7.8) and (3.1)–(3.5)
are equivalent.

Proof. The proof is somewhat similar to what was done in Chapter 6, but with some key
differences due to the time-dependent terms and mixed BCs. We will first show that (3.1)–
(3.5) imply (7.1)–(7.8). We obtain the Neumann BC (7.8) by dotting the momentum equa-
tion with the normal vector n, restricting the result to ΓD and using the relation

∆u ≡ ∇ (∇ ·u) −∇ × (∇ × u) = −∇ × (∇ × u) .

Similarly, the PPE (7.2) is obtained by taking (minus) the divergence of the momentum
equation:

−∆p +∇ ·
[
2∇su∇µ− (ρ∇u)u

]
+∇ · f = ∇ · (ρ∂tu) −∆u · ∇µ−α∇ ·

[
µ∇(∇ ·u)

]
= ρ∂t (∇ ·u) + [∇ × (∇ × u) −∇ (∇ ·u)] · ∇µ
= [∇ × (∇ × u)] · ∇µ .

To obtain the pressure Dirichlet BC (7.7), we first dot Eq. (3.4) by n to get

h ·n =
{ [
µ∇u+ (αµ∇u)> − pI

]
n
}
·n

≡ (1 +α)µ∇u : n ⊗ n− pn ·n
= (1 +α)µ∇u : n ⊗ n− p .

Then, we can arbitrarily subtract (1 + α)µ∇ · u from the right-hand side and restrict the
result to ΓN , which finally yields Eq. (7.7). The additional condition (7.6) is simply the
restriction of the incompressibility constraint to t = 0, which completes the first part of the
proof.

To prove the other direction, i.e, that (7.1)–(7.8) implies (3.1)–(3.5), we first take the di-
vergence of Eq. (7.1) and add the result to Eq. (7.2), which gives us

0 = ∇ · (ρ∂tu) − µ [∇ · (∆u) +α∆(∇ ·u)]− [∇ × (∇ × u)] · ∇µ−∇µ · [∆u+α∇(∇ ·u)]
≡ ρ∂t (∇ ·u) − (1 +α)µ∆(∇ ·u) − (1 +α)∇µ · [∇(∇ ·u)] ,

(7.11)

i.e., for the variable φ := ∇ ·u we get the heat equation

∂tφ− (1 +α)∇ · (ν∇φ) = 0 , (7.12)
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where ν = µ/ρ is the kinematic viscosity. Zero initial condition for φ is guaranteed by
(7.6), while we can obtain Neumann BCs by dotting Eq. (7.1) with n, restricting the result
to ΓD and subtracting from (7.8), which gives

0 = µn · [∆u+ (∇ × ∇ × u) +α∇(∇ ·u)]

≡ (1 +α)µn · [∇ (∇ ·u)] = (1 +α)µ
∂φ

∂n
,

that is,
∂φ

∂n
on ΓD , (7.13)

since (1 +α)µ , 0. Dirichlet BCs for φ on ΓN come from dotting (7.4) with n and adding
the result to (7.7), which yields

0 = (1 +α)µ∇u : I = (1 +α)µφ on ΓN , (7.14)

so that φ|ΓN = 0. We thus get φ ≡ 0, that is, our modified system also enforces incompress-
ibility. With mass conservation proved, the equivalence between the reduced momentum
equation (7.1) and the standard one (3.1) is straightforward, concluding the proof. �

As we have seen before, the most challenging aspect when dealing with a non-Newtonian
pressure Poisson equation is the treatment of the viscous term. Fortunately, all the effort
done in Chapter 5 to design a C0-compatible weak formulation can be directly transferred
to the present setting. The corresponding weak PPE is

〈∇q,∇p〉L2(Ω) =
〈
∇q, f − (ρ∇u)u+ 2(∇u)>∇µ

〉
L2(Ω)

+ 〈n × ∇q, µ∇ × u〉Γ − 〈q, ρ∂t (n · g)〉ΓD

with the acceleration term reduced to a boundary integral depending only on the normal
velocity datum. Mind that the time derivative of g is often known a priori. For instance,
it is common practice to fit patient-specific inflow data using Fourier series [57], which
allows an analytical computation of ∂tgh. When this is not possible, finite differences can
be used to approximate the time derivative.

Lemma 7.2. For v ∈ [L2 (Γ)]d and q such that n × ∇q ∈ L2 (Γ) and q |ΓN = 0, there holds

〈n × ∇q,v〉Γ = 〈n × ∇q,v〉ΓD . (7.15)

Proof. The gradient ∇q on Γ can be decomposed into normal and tangential parts:

∇q =

(
∂q
∂n

)
n+∇τq = (n · ∇q)n+ (n × ∇q) × n .
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Since q |ΓN = 0, the tangential derivative ∇τq will also be zero on ΓN . Thus, taking the left
cross product with n and restricting the result to ΓN gives us

(n × ∇q) |ΓN =

[(
∂q
∂n

)
n × n

] �����ΓN + (n × ∇τq) |ΓN = 0 .

Hence,

〈n × ∇q,v〉Γ = 〈n × ∇q,v〉ΓD + 〈n × ∇q,v〉ΓN = 〈n × ∇q,v〉ΓD ,

as we wanted to prove. �

Thus, we can further simplify the right-hand side of the PPE to〈
∇q, f − (ρ∇u)u+ 2(∇u)>∇µ

〉
L2(Ω)

+ 〈n × ∇q, µ∇ × u〉ΓD − 〈q, ρ∂t (n · g)〉ΓD .

Another distinct aspect with respect to the pressure Poisson formulations from Chapters 5
and 6 is the Dirichlet BC for the pressure. When enforcing (7.7) on a certain section of the
outflow boundary ΓN , the quantity ζ := (1+α)µ∇u : (n⊗n− I)−h ·n will be discontinuous
in the discrete case and, thus, not well defined at the pressure nodes we want to fix. The
solution proposed by Liu [71] and also used by Plasman et al. [124] is to project ζ onto
ΓN such that the resulting quantity ζ̂ is continuous on each section of ΓN . The cost of this
projection on ΓN is negligible in comparison to the other steps of the overall scheme. On
the other hand, if an ultra-weak framework is considered for the pressure Poisson problem,
then the Dirichlet BCs are enforced weakly and, therefore, the discontinuity of ζ is not an
issue. In other words, the double integration by parts leads to

−

∫
Ω

p∆q dΩ+

∫
ΓN

∂q
∂n

p︸︷︷︸
= ζ (u)

dΓ−
∫
ΓD

q
∂p
∂n︸︷︷︸

= λ(u)

dΓ

with the test functions q taken in Y =
{
q ∈ H1

∆
(Ω) : n · ∇q = 0 on ΓD and q = 0 on ΓN

}
.

7.2 Efficient iteration-free split-step schemes

We are interested here in decoupling velocity and pressure in order to enable efficient
solutions, and therefore the pressure term in the momentum equation will be treated ex-
plicitly. Moreover, to further improve efficiency, we will focus on schemes that decouple
also the velocity components. In the Newtonian case, this can be achieved by simply treat-
ing convection explicitly, whereas the viscous term can be kept implicit [72]. This results
in problems which are not only smaller but also linearised, so that there is no need for
iterative methods. However, in the presence of nonlinear viscosity, it is necessary to treat
the viscous term appropriately in order to keep the velocity components decoupled, as we
will show next.
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7.2.1 A first-order scheme

Let us start by considering a first-order backward differentiation formula (BDF1) in time.
In order to include both stress-divergence and generalised Laplacian formulations in one
framework, let us write the viscous trilinear form as

〈∇w, µ∇u〉L2(Ω) + (α − 1)
〈
w,(∇u)>∇µ

〉
Ω

+α
〈
µ∇w,(∇u)>

〉
L2(Ω)

,

where the last term vanishes for the generalised Laplacian form (α = 0), while the mid-
dle one vanishes in the stress-divergence case (α = 1). Whichever term remains would
end up coupling the velocity components even with a linearised viscosity. Therefore, we
treat such terms explicitly, whereas for the weak Laplacian term µ∇u : ∇w we use a lin-
earised viscosity and the current velocity. When it comes to convection, there are two
approaches that allow the decoupling: one is to treat the convective term explicitly [72],
and the other one is to use a linearised convective velocity with the current velocity gradi-
ent. In the (temporally) first-order case, this leads to the problem of finding un+1 ∈

[
Xu

h

]d
,

with un+1 |ΓD = gn+1
h , such that〈

w,(ρ∇un+1)un +
ρ

∆t
un+1

〉
Ω

+
〈
∇w, µn∇un+1

〉
L2(Ω)

= −α
〈
µn∇w,(∇un)>

〉
L2(Ω)

+〈
w, f n+1 +

ρ

∆t
un + (1−α)

(
∇un)>∇µn

〉
Ω

+
〈
∇ ·w,pn〉

L2(Ω) + 〈w,hn+1〉ΓN

for all w ∈
[
Xu

h

]d
, with w |ΓD = 0. We drop the subscript h to easen the notation. Notice

that this equation, along with the PPE and the viscosity projection, are linear algebraic
systems, so that there is no need to iterate in order to find the solution. The overall first-
order algorithm can be summarised as follows:

1. Initialisation:
Compute the initial viscosity from u0, then the initial pressure using the PPE.

2. Convection-diffusion steps:
For each of the d velocity components, solve the convection-diffusion problem of
finding un+1

i ∈ Xu
h , with un+1

i |ΓD = gn+1
i , such that

〈
w, ρun · ∇un+1

i +
ρ

∆t
un+1

i

〉
Ω

+
〈
∇w, µn∇un+1

i

〉
L2(Ω)

=

〈
∂w

∂xi
,pn

〉
L2(Ω)

+〈
w, f n+1

i +
ρ

∆t
un

i + (1−α)
∂un

∂xi
· ∇µn

〉
Ω

−α

〈
∇w, µn ∂u

n

∂xi

〉
L2(Ω)

+
〈
w,hn+1

i

〉
ΓN

(7.16)

for all w ∈ Xu
h , with w |ΓD = 0.
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3. Viscosity projection:
Find µn+1 ∈ X µ

h such that〈
υ,µn+1

〉
L2(Ω)

=
〈
υ,η

(
γ̇
(
∇sun+1

))〉
L2(Ω)

(7.17)

for all υ ∈ X µ
h .

4. Pressure BC projection (only if ΓN , ∅):
Project ζn+1 := (1+α)µn+1∇un+1 : [n⊗n− I]−n ·hn+1 such that the resulting quan-
tity ζ̂ n+1 is continuous on ΓN .

5. Pressure Poisson step:
Find pn+1 ∈ X p

h , with pn+1 |ΓN = ζ̂n+1, such that〈
∇q,∇pn+1

〉
L2(Ω)

=
〈
∇q, f n+1 − (ρ∇un+1)un+1 + 2(∇un+1)>∇µn+1

〉
L2(Ω)

+
〈
n × ∇q, µn+1∇ × un+1

〉
ΓD
−

〈
q, ρn · ∂tg

n+1
h

〉
ΓD

(7.18)

for all q ∈ X p
h , with q |ΓN = 0.

Note that the pressure Poisson step is fully implicit, which is crucial for accuracy and
stability [71]. When normal acceleration data are not analytically available, we can ap-
proximate 〈

q, ρn · ∂tg
n+1
h

〉
ΓD
≈

〈
q,
ρ

∆t

(
gn+1 − gn

)
·n

〉
ΓD

, (7.19)

or using higher-order finite differences matching the temporal order of the overall scheme.

Matrix problem

Let us denote by un
k the vector of nodal values of the k-th velocity component at the n-th

time step – and analogously for pn and µn. The main steps of the first-order marching
scheme we just described can be written in matrix form as[

Mu + C(un) + Ku(µn)
]

un+1
k = f n+1 + Muun

k +
[
(1−α)Ak (un) −αDk (un)

]
µn + (Bk )>pn

for k = 1,...,d ,

Mµµn+1 = r (un+1) ,

Kppn+1 = gn+1 +

S(un+1) + 2

d∑
k=1

Ãk (un+1)

µn+1 −

d∑
k=1

[
C̃k (un+1)

]
un+1

k ,
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where the vectors f and g appropriately include the effects of body forces and BCs, and
the remaining matrices are given as

Mu
i j =

1
∆t

〈
ψu

i , ρψ
u
j

〉
Ω
, M µ

i j =
〈
ψ
µ
i ,ψ

µ
j

〉
Ω
,

Ku
i j (µ) =

〈
∇ψu

i , µ∇ψ
u
j

〉
Ω
, K p

i j =
〈
∇ψ

p
i ,∇ψ

p
j

〉
,

Ci j (u) =
〈
ψu

i , ρu · ∇ψ
u
j

〉
Ω
, C̃k

i j (u) =

〈
∂ψ

p
i

∂xk
, ρu · ∇ψu

j

〉
Ω

,

Ak
i j (u) =

〈
ψu

i ,
∂u

∂xk
· ∇ψ

µ
j

〉
Ω

, Ãk
i j (u) =

〈
∂ψ

p
i

∂xk
,
∂u

∂xk
· ∇ψ

µ
j

〉
Ω

,

Dk
i j (u) =

〈
∇ψu

i ·
∂u

∂xk
,ψ

µ
j

〉
Ω

, Si j (u) =
〈
n × ∇ψ

p
i ,ψ

µ
j ∇ × u

〉
ΓD
,

Bk
i j =

〈
ψ

p
i ,
∂ψu

j

∂xk

〉
Ω

.

Therefore, all we need to solve at each time step are d scalar convection-diffusion prob-
lems, one scalar mass matrix and one Poisson problem. Also note that not only are the
velocity components decoupled, but their system matrices are all identical. This simplifies
computations and reduces assembling costs. Furthermore, one may further improve effi-
ciency by lumping the mass matrix Mµ in the viscosity projection step. This essentially
eliminates the cost due to introducing the viscosity as an additional unknown, without
jeopardising stability and accuracy.

7.2.2 Improving the conservation of mass

It is clear that when the direct incompressibility constraint is replaced by the PPE, in the
discrete case the resulting velocity will not be divergence-free, which is in principle not
an issue. Yet, as observed by Liu et al. [102], in problems with non-smooth solutions
one can considerably improve stability by performing a standard Leray projection, as done
in classical pressure correction methods [120, 122]. After computing the velocity field u
from Eq. (7.16), we can solve the Poisson problem

−∆ϕ = ∇ ·u in Ω , (7.20)
∂ϕ

∂n
= 0 on ΓD , (7.21)

ϕ = 0 on ΓN , (7.22)
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so that the modified velocity û := u+∇ϕ satisfies

∇ · û = 0 in Ω ,
û ·n = u ·n on ΓD ,
û · s = u · s on ΓN ,

for any tangential vector s on ΓN . In other words, we would end up with one velocity field
u that is not divergence-free but fully satisfies the Dirichlet BCs, and another field û that is
divergence-free but only partially satisfies the prescribed BCs. As discussed by Guermond
et al. [122], both velocity fields are expected to converge with the same rates, such that
from an accuracy standpoint there is no objective reason to pick one over the other. The
reason for performing the projection here is to keep divergence errors from potentially
building up in time due to spatial discretisation errors (see Ref. [102] for details). Also
notice that when using standard Lagrangian finite element spaces for ϕ, the resulting û
will be discontinuous. Therefore, the modified velocity has to be further projected onto a
continuous space before it can be used in subsequent steps. This requires the additional
solution of d scalar mass matrix problems and renders the resulting projected velocity only
weakly divergence-free.

Remark 7.1. A key difference between the present framework and standard pressure cor-
rection methods is that here the projection step does not induce any artificial pressure
boundary conditions, since we compute the pressure directly via the PPE instead of using
ϕ to update it.

In light of the shortcomings regarding the Leray projection, we use an approach that offers
a compromise between the two variants discussed so far. As noted by Liu [71], if we apply
the Leray projection always to the previous velocity un and use the modified velocity ûn

only in the acceleration term of the momentum equation, we can eliminate the computa-
tional overhead due to the projection. More precisely, for the first-order scheme in time
we write

∂tu |t=tn+1 ≈
1
∆t

(
un+1 − ûn

)
,

which leads to
ρ

∆t

[
un+1 −

(
un +∇ϕn)] +∇pn + rn+1,n = f n+1,

where in rn+1,n we group the nonlinear terms, for concision. We can combine pn and ϕn

appropriately to yield

ρ

∆t

(
un+1 −un

)
+∇p̂n + rn+1,n = f n+1, (7.23)

with
p̂n := pn −

ρ

∆t
ϕn. (7.24)
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Notice that this circumvents the need for projecting ûn onto a continuous space, since
the acceleration term has no spatial derivatives. We can further eliminate the additional
Poisson step by combining Eqs. (7.20)–(7.22) with the original pressure Poisson problem
(7.2)–(7.8) into a Poisson equation for the modified pressure p̂:

−∆p̂n =
[
∇ ×

(
∇ × un)] · ∇µn −∇ ·

[
2∇sun∇µn − (ρ∇un)un] −∇ · f n −

ρ

∆t
∇ ·un, (7.25)

with the same boundary conditions as in the original PPE, since ϕ has zero Dirichlet and
Neumann BCs. It is also worth remarking that, since ϕ is zero for the exact solution, the
quantity p̂ is still a consistent approximation for the pressure. Therefore, for the first-order
scheme the only modification needed with respect to the basic algorithm (7.16)–(7.18) is
to add to the right-hand side of the PPE the term (−ρ/∆t)∇ ·un+1 , which on the matrix
level becomes

−
ρ

∆t

d∑
k=1

Bkun+1
k .

This technique is sometimes referred to as divergence damping [105, 108, 127], as it can
be seen as penalising the PPE with nonzero values of the velocity divergence. This sim-
ple approach considerably improves mass conservation and temporal stability. In the next
subsection we present the generalisation to higher-order, potentially adaptive temporal dis-
cretisations.

7.2.3 Higher-order schemes with variable time step

It can be desirable, especially when using higher-order finite element spaces, to also in-
crease the temporal order of discretisation, and in particular allowing variable time steps
∆tn = tn+1 − tn, for efficiency. This can be attained by using a combination of higher-order
backward differentiation schemes

∂tu |t=tn+1 ≈ αm
0 u

n+1 +

m∑
j=1

αm
j û

n+1− j

and suitable extrapolation formulas

un+1 ≈ u? :=
m∑

j=1

βm
j u

n+1− j (7.26)

of order m with coefficients αm
j and βm

j exemplarily given in Table 7.1 for m = 2. The
modified pressure is now defined as

p̂? := p?+ ρ

m∑
j=1

αm
j ϕ

n+1− j , (7.27)
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Table 7.1: Backward differentiation and extrapolation coefficients of order m = 2 [128].
j 0 1 2

αm
j

2∆tn+∆tn−1

∆tn (∆tn+∆tn−1) −∆tn+∆tn−1

∆tn∆tn−1
∆tn

∆tn−1(∆tn+∆tn−1)
βm

j − 1 + ∆tn
∆tn−1 − ∆tn

∆tn−1

incorporating both the extrapolated pressure and projection contribution to past velocities.
Let us write the discretised right-hand side of the weak PPE at time tn+1 as

l (un+1, µn+1,q) =
〈
∇q, f n+1 − (ρ∇un+1)un+1 + 2(∇un+1)>∇µn+1

〉
L2(Ω)

+
〈
n × ∇q, µn+1∇ × un+1

〉
ΓD
−

〈
q, ρn · ∂tgh

〉
ΓD
.

We can insert the definition (7.27) and linearly combine PPEs similarly to Eq. (7.25) to
obtain an equation for the modified pressure p̂? to be used in the next time step:〈

∇q,∇p̂?
〉

L2(Ω)
=

〈
∇q,∇


p?+ ρ

m∑
j=1

αm
j ϕ

n+1− j



〉

L2(Ω)

=

m∑
j=1

βm
j l (un+1− j , µn+1− j ,q) +

〈
q, ρ

m∑
j=1

αm
j ∇ ·u

n+1− j
〉

L2(Ω)

.

(7.28)

The final higher-order scheme is initialised by first computing the initial viscosity from the
initial velocity, then the initial pressure through the PPE. The resulting algorithm reads

1. Initialisation:
Use lower-order schemes with increasing order (m̂ = 1,2,...,m) until having all the
quantities required to proceed with the m-th order scheme.

2. Convection-diffusion steps:
For each of the d velocity components, solve the convection-diffusion problem of
finding un+1

i ∈ Xu
h , with un+1

i |ΓD = gn+1
i , such that〈

ρw,u? · ∇un+1
i +αm

0 un+1
i

〉
Ω

+
〈
∇w, µ?∇un+1

i

〉
L2(Ω)

=〈
∂w

∂xi
, p̂?

〉
L2(Ω)

+

〈
w, f n+1

i + ρ

m∑
j=1

(
αm

j un+1− j
i

)
+ (1−α)

∂u?

∂xi
· ∇µ?

〉
Ω

−α
〈
∇w,(µ?∇u?)>

〉
Ω

+
〈
w,hn+1

i

〉
ΓN

(7.29)

for all w ∈ Xu
h , with w |ΓD = 0.

3. Viscosity projection:
Find µn+1 ∈ X µ

h such that〈
υ,µn+1

〉
L2(Ω)

=
〈
υ,η

(
γ̇
(
∇sun+1

))〉
L2(Ω)

for all υ ∈ X µ
h . (7.30)
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4. Time-step update:
If using adaptive stepping, compute ∆tn and update the coefficients αm

j and βm
j .

5. Pressure BC projection (only if ΓN , ∅):
Project ζ? :=

∑m
j=1 β

m
j

[
(1 +α)µn+2− j∇un+2− j : (n ⊗ n− I) − n ·hn+2− j

]
such that the

resulting quantity ζ̂? is continuous on ΓN .

6. Pressure Poisson step
Update the modified pressure for the next time step by finding p̂? ∈ X p

h , with p̂?|ΓN =

ζ̂?, such that for all q ∈ X p
h , with q |ΓN = 0, we have

〈
∇q,∇p̂?

〉
L2(Ω)

=

m∑
j=1

βm
j l (un+2− j , µn+2− j ,q) +

〈
q, ρ

m∑
j=1

αm
j ∇ ·u

n+2− j
〉

L2(Ω)

. (7.31)

7.3 Numerical examples

In this section, we assess the accuracy and stability of our non-Newtonian time-splitting
framework by tackling simple problems with manufactured solutions and also some clas-
sical benchmarks. One of the main advantages of the present approach with respect to
conventional split-step methods is the possibility to use finite element pressure-velocity
pairs that are not LBB-compatible. We consider first-order simplicial and tensor-product
elements, as well as Taylor–Hood elements. The space chosen for the viscosity is the same
as the pressure space in each case. We remark that several stability tests with elements
and BDFs of first and second order were performed, in two and three dimensions, and our
scheme has always been found stable under a standard CFL condition in all cases. This
indicates that keeping the grad-grad part of the viscous term on the left-hand side (while
treating the remaining part explicitly) is enough to avoid a diffusive step constraint, as in
the Newtonian case (see Refs. [71, 72] for details).

Manufactured solutions

Let us start by tackling simple examples with manufactured solutions and a pure Dirichlet
boundary, that is, ΓN = ∅. While in most numerical examples we apply the divergence
damping introduced in Subsection 7.2.2, here the term is dropped in order to yield a clearer
convergence study. In the unit square Ω = (0,1)2, we consider solutions of the type

p = 2sin(2− 2x1) f (t), u1 = f (t) sin(2x2) sin2(x1), u2 = − f (t) sin(2x1) sin2(x2) ,

under the shear-thinning rheological law η(γ̇) = [1 + (10γ̇)2]−1/4.
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The solution is “ramped up” with different functions f (t), and the resulting Dirichlet datum
g and body force f are computed accordingly. First, to measure the spatial accuracy of our
method, we choose f (t) = 1− e−2t , so that the solution tends to a steady state as t →∞.
Starting with a coarse mesh containing four identical square elements, several levels of
uniform spatial refinement are applied. The spatial approximation errors are computed
through the norms

‖p− ph‖T :=
(
‖p− ph‖L2(Ω)

‖p‖L2(Ω)

) �����t=T
and ‖∇u −∇uh‖T =

(
‖∇u −∇uh‖L2(Ω)

‖∇u‖L2(Ω)

) �����t=T
.

The final time is selected as T = 10, at which 1 − f ≈ 2 × 10−9. We use the first-order
temporal discretisation (BDF1) with a fixed time step ∆t = 10−2. Since this solution has
an extremely small time residual at t = T , the temporal error should not contaminate the
spatial order of accuracy, even when using a large (but still stable) time step and a low-
order stepping scheme. The results of the spatial convergence study are shown in Figure
7.1. As expected, the Q1Q1 pair yields linear spatial convergence, whereas the Taylor–
Hood elements converge quadratically.
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Figure 7.1: Manufactured solution: spatial convergence study.

We also assess the effects of lumping the viscosity projection on the spatial accuracy. The
comparison between the standard and lumped versions of the first-order splitting scheme
with Q2Q1 elements is shown in Figure 7.2. The velocity convergence experiences only a
mild degradation at the finest levels, and the pressure is virtually unaffected. This indicates
that using a lumped projection can be a simple way to improve efficiency in practice.
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Figure 7.2: Manufactured solution: effect of lumping the viscosity projection.

To assess also the temporal accuracy of the first- and second-order stepping schemes, we
now use a periodic function f (t) = sin2(t) in the interval t ∈ [0,10] and consider the maxi-
mum error in Q :=Ω × (0,T], that is, using the L∞(Q) norm. In this case we use the finest
spatial mesh considered in the previous study, and refine the time step uniformly by halv-
ing it from ∆t = 0.16 all the way down to ∆t = 0.00125. The first-order temporal scheme is
combined with the Q1Q1 elements, whereas for the second-order stepping scheme (BDF2)
we use the Q2Q1 elements. The results are shown in Figure 7.3, where the expected orders
of convergence are verified. It is worth noting that in these examples the CFL number has
ranged from 0.1 to almost 15, which speaks to the good stability properties of the present
schemes.

Carreau fluid past a backward-facing step

We now consider the classical backward-facing step setup proposed by Choi and Barakat
[129]. They used the Carreau rheological model with the hemodynamic parameters ρ =

1060 kg/m3, µ∞ = 3.5 mPa·s, µ0 = 250 mPa·s, n = 0.25 and λ = 25 s. The geometric
dimensions (see Figure 7.4) are L2 = 2L1 = 20H , s = 0.9423H and H = 5.2 mm. In order
to compare our results to the reference stationary solutions, we use a parabolic inlet profile
with flow rate Q(t) ramped up smoothly from zero to Qmax so that Q(t)/Qmax = ξ (t),
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Figure 7.3: Manufactured solution: temporal convergence study.

according to

ξ (t) =

{
sin2

(
πt
2τ

)
, for 0 ≤ t < τ,

1, for τ ≤ t ≤ T,
(7.32)

with τ = 0.3 s and T = 2 s. On the outlet we set the usual zero pseudo-traction condition
(µ∇u − pI)n = 0. We have employed a first-order method in both space and time, using
triangular elements for the spatial discretisation. The mesh is structured, with the element
length equal to H/40 in the horizontal direction. The elements above and below the step’s
corner have a vertical length equal to H/40 and s/40, respectively. This results in a total
of 160,000 elements and 81,281 nodes. The time step is set as ∆t = 5 × 10−4 s for all
cases. Choi and Barakat [129] considered several values for the Reynolds number, which
they define as Re = 2ρQmax/µ∞. The comparison between the reference results and ours
for Re ∈ [50,300] is depicted in Figure 7.5, in terms of the reattachment length r . The
comparison shows in general very good agreement. For Re = 300 there is a 5% difference,
which might indicate the need for some further refinement close to the re-circulation zone
(mind that we are not using any convective stabilisation).

Carreau fluid flow through idealised aneurysm

As a final numerical example inspired by challenging hemodynamic applications, we con-
sider the pulsatile flow of a shear-thinning fluid through a three-dimensional idealised



92 7 Non-Newtonian split-step methods

Figure 7.4: Backward-facing step benchmark: problem setup and reattachment length.
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Figure 7.5: Backward-facing step benchmark: reattachment length vs. Reynolds number,
in comparison to reference results [129].

aneurysm. The fluid parameters are chosen in the physiologically relevant range, con-
sidering a Carreau fluid with µ0 = 50 mPa·s, µ∞ = 5 mPa·s, n = 0.25, λ = 5 s and ρ =

1000 kg/m3. To generate a suitable mesh, we start from a straight circular cylinder with
central axis from (x1,x2,x3) = (0,0,0) to (0.2,0,0), resulting in a length of L = 0.2 m
between inlet and outlet circular cross-sections of radius R = 0.01 m. This simple ge-
ometry is easily meshed and afterwards deformed by mapping the radial coordinate r of
each nodal point via r̃ =

[
1 + 2sin10(πx1/L)

]
r . The final mesh consists of around half a

million Q1Q1 elements with approximately half a million nodes. The second-order step-
ping is chosen, with ∆t = 0.5 × 10−3 s. We prescribe an inlet velocity profile given by
uin = [1− (r/R)2][1− 0.3cos(πt/τ)]ξ (t) m/s, with ξ (t) as in (7.32) and τ = 0.5 s. Then,
the resulting Reynolds number considering the inlet diameter and mean inlet velocity is
2600. In Figure 7.6 we show the normalised viscosity (cf. Eq. (4.18)) at the apex point (A)
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located at (L/2,R,0), another apex point (B) at (L/2,R/
√

2,R/
√

2), and the outlet centre
point (C). The curves indicate periodicity in time and axisymmetry in space, showing a
very intense variation of the viscosity within a pulsation period. Not only the temporal
but also the spatial gradients of the viscosity are very large, as seen in Figure 7.7. This
behaviour, which one expects to be even more pronounced in smaller vessels with lower
Reynolds numbers, highlights the importance of accounting for non-Newtonian rheology.
The spatial distribution of µ also reveals axisymmetry and a large recirculation zone. The
pressure field depicted in Figure 7.8 shows a steep drop downstream of the aneurysm,
caused by the severe radial narrowing.
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Figure 7.6: Idealised aneurysm flow: normalised viscosity at selected locations. The vis-
cosity at the outlet’s centroid (C) varies rather mildly, whereas the two appex
points A and B experience a tenfold variation within a pulsation period.
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Figure 7.7: Idealised aneurysm flow: selected viscosity contours at t = 5.83 s, revealing
high gradients and complex flow pattern inside the aneurysm.

Figure 7.8: Idealised aneurysm flow: pressure field at t = 5.37 s, revealing a large, steep
decrease right past the aneurysm.



8 STABLE SPACE-TIME FINITE ELEMENT METHODS

In time-dependent flow problems, the time interval and the spatial domain are typically
treated in very different manners. The most popular approach is to use finite differences in
time and finite elements or volumes for the spatial discretisation, as done in the previous
chapter. Despite simple and very efficient in several applications, those methods have an
important limitation when it comes to high-performance computing: the temporal discreti-
sation can be adaptive in time but must be uniform in space. This means that a temporal
refinement that would perhaps be needed only locally is instead applied to the entire spa-
tial domain, thereby unnecessarily increasing the global number of degrees of freedom.
Space-time methods aim to overcome the limitations of such time-stepping schemes by
offering a unified approach where time and space are treated in an equal – or at least sim-
ilar – manner. The vast majority of works dealing with space-time finite element methods
for fluid flows employ a discontinuous Galerkin (DG) method in time [37, 130–132] and
sometimes also in space [133–135]. This enables sequential solution procedures where
the space-time domain is divided in the time direction into slabs: the solution obtained in
the first time slab is weakly transmitted onto the second one, and so on. The main short-
comings of DG methods are the increased number of degrees of freedom and the need for
face-based data structure and implementation. In this chapter, we consider a continuous
finite element discretisation in both space and time.

The original results presented here have been partially published. First numerical results
using space-time Taylor–Hood elements are published in Ref. [136], whereas the corre-
sponding FETI method are reported in Ref. [137]. An article on the analysis of the space-
time Stokes system in Bochner spaces is currently in preparation [138].

8.1 Variational problem and discretisation

For simplicity of presentation, let us consider the time-dependent model problem with zero
initial and boundary conditions:

ρ [∂tu+ (∇u)u]−∇ ·
(
2µ∇su

)
+∇p = f in Q , (8.1)
∇ ·u = 0 in Q , (8.2)

u = 0 on Σ , (8.3)
u = 0 at t = 0 , (8.4)

95
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with the pressure scaling ∫
Ω

p dΩ = 0 for all t , (8.5)

where Q := Ω × (0,T ) is the space-time cylinder and Σ := ∂Ω × (0,T ). Of course, if the
spatial domain Ω varies in time, then Q will in general be a non-tensor-product domain in
Rd+1, which can be handled very naturally by space-time methods [134, 139]. Equation
(8.5) presents one of many possible scaling conditions to uniquely define the pressure;
such conditions are only necessary in the pure Dirichlet problem.

Remark 8.1. As done so far, we use the symbol ∇ to denote spatial differentiation. Alter-
native notations such as ∇x are sometimes found in the space-time literature [140].

The space-time variational formulation in Bochner spaces reads: given f ∈ Z′, find (u,p) ∈
X × Y such that for all (w,q) ∈ Z × Y we have∫

Q

ρw · [∂tu+ (∇u)u]dQ +

∫
Q

2µ∇su : ∇sw dQ−
∫
Q

(∇ ·w) p dQ =

∫
Q

w · f dQ , (8.6)

∫
Q

q∇ ·u dQ +

T∫
0



∫
Ω

q dΩ
∫
Ω

p dΩ


 dt = 0 , (8.7)

with the second term in Eq. (8.7) enforcing the pressure scaling (8.5). Since no time
derivative is applied to the velocity test function w, we get a Petrov–Galerkin formulation
with Y = L2(Q), Z :=

[
L2

(
0,T ; H1

0 (Ω)
)]d

, Z′ =
[
L2

(
0,T ; H−1(Ω)

)]d
and

X :=
{
u ∈ Z : [∂tu+ (∇u)u] ∈ Z′ and u |t=0 = 0

}
. (8.8)

Although the continuous problem is posed as a Petrov–Galerkin formulation, in the dis-
crete case we will employ a mixed Bubnov–Galerkin method, i.e., the same finite element
spaces will be used for test and trial (Ansatz) functions. It is worth noting that, when
µ = µ(∇su), the velocity trial space as defined in Eq. (8.8) might not be regular enough.

In most – if not all – of the literature on space-time finite element methods for flow prob-
lems, stabilised rather than LBB-stable formulations are considered. The main reason for
that is perhaps the simplicity and reduced computational cost offered by first-order finite el-
ement discretisations. As in the stationary case, the most common stabilisation techniques
employed in space-time applications are VMS, PSPG and GLS methods [37, 132, 141]. Of
course, the stabilisation methods presented in Chapter 6 are also applicable to the space-
time problem. Nevertheless, this chapter focus on LBB-stable elements and, in fact, we
introduce space-time Taylor–Hood elements: globally continuous second- and first-order
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(in both space and time) spaces for velocity and pressure, respectively. Figure 8.1 illus-
trates a prismatic Taylor–Hood element in two spatial dimensions. Notice that the velocity
nodes are formed by a “quadratic extrusion” in time. For d = 3 the elements are con-
structed analogously: for instance, by appropriately extruding (spatial) tetrahedral Taylor–
Hood elements in time. Alternatively, more flexibility in the space-time discretisation can
be attained via simplicial Taylor–Hood elements (tetrahedra for d = 2 or pentatopes for
d = 3). Such elements are more appropriate for unstructured mesh generation and adaptiv-
ity [38, 39, 134, 139], although adaptive methods are not our current focus. As we shall
demonstrate through various numerical examples, these space-time Taylor–Hood elements
are not only stable but also optimally convergent.

Figure 8.1: Prismatic space-time Taylor–Hood element for d = 2.

8.2 Space-time finite element tearing and interconnecting methods

When solving large-scale problems, modern high-performance computing relies heavily
on parallelisation and often on domain decomposition methods (DDMs). This is espe-
cially important in the space-time setting, since abandoning the standard structure of time
slabs/steps leads to very large algebraic systems to be solved at once. Therefore, decom-
posing the space-time domain into smaller subdomains that can be handled efficiently is
key to making space-time methods competitive. Although the use of DDM is very well-
established in computational engineering in general, in space-time methods they have only
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recently started to gain momentum [142–147]. In this context, we present an approach that
is, to the best of our knowledge, the first finite element tearing and interconnecting (FETI)
method for space-time problems – in fact, for parabolic problems in general.

8.2.1 Basic setup

FETI methods were originally introduced by Farhat and Roux [148] for elliptic problems,
the most popular of which being solid elasticity. The goal is to create smaller subprob-
lems that can be efficiently solved in parallel. Let us consider a decomposition of the
space-time cylinder Q into s non-overlapping subdomains Qi, i = 1,...,s. The idea behind
FETI methods is to tear the global problem into local problems in the subdomains, and
then interconnect them all back using discrete Lagrange multipliers λ. Although the mul-
tipliers can be given physical interpretations in different problems [149], the method is
algebraically motivated and can be derived from a discrete skeleton formulation [150]. For
simplicity, we take here the Stokes system as our model problem. On the discrete level,
the algebraic system has the form[

A −C>
C D

]
︸       ︷︷       ︸

K

(
u
p

)
︸︷︷︸
q

=

(
f u

fp

)
︸︷︷︸
f

, (8.9)

or, more compactly, Kq = f . When using continuous pressure elements, two options are
possible in the FETI approach. The first is to use a set of Lagrange multipliers λu for the
velocity interface degrees of freedom and another set λp for the pressure ones. The other
possibility is to take advantage of the fact that the mixed variational formulation allows
p ∈ L2(Q) and relax the (interface) continuity of the pressure [151]. Both approaches
will be considered and compared herein. Let us assume, for clarity of presentation, a
decomposition of Q into two subdomains Q1 and Q2. In this case, the discrete FETI system
for fully continuous pressure has the form



A1 −C>1 0 0 Bu
1
> 0

C1 D1 0 0 0 Bp
1
>

0 0 A2 −C>2 Bu
2
> 0

0 0 C2 D2 0 Bp
2
>

Bu
1 0 Bu

2 0 0 0
0 Bp

1 0 Bp
2 0 0






u1
p

1
u2
p

2
λu

λp




=




f u
1

fp
1
f u

2
fp
2
0
0




,

where subscript i indicates matrices and vectors arising from the Stokes system restricted
to subdomain Qi, and Bu

i and Bp
i are boolean matrices interconnecting the velocity and

pressure fields, respectively. Then, grouping pressure and velocity into a vector q and con-
sidering again the general setting with s subdomains, the system can be written compactly
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as


K1 0 . . . 0 B>1
0 K2 . . . 0 B>2
...

...
. . .

...
...

0 0 . . . Ks B>s
B1 B2 . . . Bs 0






q
1

q
2
...
q

s
λ




=




f
1

f
2
...
f

s
0



, (8.10)

in which

Bi :=
[
Bu

i 0
0 Bp

i

]
, λ :=

(
λu

λp

)
, (8.11)

and similarly for the other matrices and vectors. If the interface continuity of the pressure
is to be relaxed, we simply take Bi =

[
Bu

i 0
]

and λ = λu. Unless where otherwise stated,
in the numerical examples we consider fully continuous pressure.

8.2.2 Global problem and floating subdomains

If we assume that Qi ∩Σ , ∅ for all i, so that all local stiffness matrices Ki ∈ R
ni×ni are

invertible, then the local problems can be written as

Kiqi
= f

i
−B>i λ, i = 1,...,s , (8.12)

and the local degrees of freedom q
i

are “glued" back together by enforcing

s∑
i=1

Biqi
= 0 . (8.13)

This results in a saddle point problem usually handled via the Schur complement approach,
in which the Lagrange multipliers are found by solving the global problem




s∑
i=1

BiK−1
i B>i


 λ =

s∑
i=1

BiK−1
i f

i
. (8.14)

Once λ has been found, the local problems (8.12) are effectively decoupled and can be
solved independently. Differently from standard elliptic FETI applications, our problem is
not symmetric, therefore conjugate gradient methods cannot be applied to solve Eq. (8.14).
Our method of choice is the generalized minimal residual method (GMRES) [152], as done
for instance by Toselli [153] and Kučera et al. [154].

When a certain subdomain Qi does not intersect ∂Q, or only intersects the “lid” of the
space-time domain (t = T), the local stiffness matrix Ki will be singular. In that case, we
write the solution of the local problem as

q
i
= K+

i

(
f

i
−B>i λ

)
+ Riαi , (8.15)
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where K+
i is a generalised inverse (or pseudo-inverse) of Ki, αi ∈ R

ki is a vector of (un-
known) linear coefficients, ki = dim[N (Ki)] and Ri ∈ R

ni×ki is a matrix whose columns
form a basis of N (Ki), which is the null-space (or kernel) of Ki.

We shall turn our attention to the solution of Eq. (8.15) soon, but what it already tells
us is that the space N (Ki) is a necessary component for the solver. Fortunately, for the
Stokes system, this information can be retrieved from the continuous case. Differently
from the strong Stokes operator, the weak variational operator has a finite-dimensional
kernel, namely, the space of constant (in space and time) velocities and null pressures (see
Remark 8.2). Although the terms “rigid-body modes” and “floating subdomains" have
a structural mechanics background, they are often employed in the FETI literature in a
more general sense [150]. We shall henceforth say that Qi is a floating subdomain if Ki
is singular, and denote by rigid-body modes of Ki its eigenvectors associated with null
eigenvalues.

Remark 8.2. If the Laplace form of the Stokes operator is replaced by the elasticity (stress-
divergence) form, then the kernel will additionally contain 2d − 3 rigid rotation modes
[155, 156]. Another disadvantage of using the elasticity form is the dependence of N (Ki)
upon the number of nodes in Qi ∩Σ [157].

Since we know the kernel of the continuous operators, matrices Ri can be straightforwardly
constructed. Now, denoting the range (or image) of Ki by R(Ki), it is known that system
(8.15) is solvable if, and only if [158]

f
i
−B>i λ ∈R(Ki) . (8.16)

Since the fundamental theorem of linear algebra gives [159]

Rni = R(Ki) ⊕N (K>i ) ,

we can rewrite the solvability condition (8.16) as

R̃>i
(
f

i
−B>i λ

)
= (0, . . . ,0︸  ︷︷  ︸

ki times

)>, (8.17)

where R̃i ∈ R
ni×ki is such that its columns form a basis of N (K>i ). Here we must be

careful so as not to try and apply standard procedures devised for the usual (symmetric)
FETI setting. In such cases, one simply takes R̃i = Ri, that is, the same basis is used for
Eqs. (8.15) and (8.17). Yet, since the problem under consideration here is not symmetric,
different solution procedures must be employed, as discussed later on. Note that condition
(8.17) gives us ki linearly independent equations that compensate for the ki additional
unknown coefficients in αi.

Substituting the local problems (8.15) into the interconnecting condition (8.13) leads to

Sλ −Gα = d , (8.18)
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in which S =
s∑

i=1
BiK+

i B>i , d =
s∑

i=1
BiK+

i f i
,

G =
[
B1R1 . . . BsRs

]
and α =



α1
...
αs


 .

Similarly, the compatibility condition (8.17) can be reformulated as

G̃>λ = e , (8.19)

where

G̃ =
[
B1R̃1 . . . BsR̃s

]
and e =




R̃>1 f 1
...

R̃>s f s



.

Of course, when a certain subdomain Q j is not floating, then K+
j = K−1

j and there is no α j

to be found, that is, Q j will not contribute to either G, G̃ or α. Alternatively, when using
the so-called all-floating approach, Dirichlet and initial conditions are also enforced via
Lagrange multipliers and all local problems are singular [160, 161].

The global problem can finally by stated as[
S −G

G̃> 0

] (
λ
α

)
=

(
d
e

)
. (8.20)

Since G̃ , G due to the asymmetry of the space-time variational formulation, standard
techniques normally used in the context of symmetric FETI methods cannot be applied
straightforwardly. We will therefore introduce a suitable procedure for the present case.

Generalised inverse

In order to assemble the global problem, we need to compute the generalised inverses
K+

i and the bases for N (Ki) and N (K>i ). As previously discussed, for most common
problems we can construct matrices Ri trivially since the rigid-body modes are known
a priori. On the other hand, R̃i must be computed numerically since the kernel of K>i
is generally discretisation-dependent – but that does not necessarily incur computational
overhead. For instance, when using a singular value decomposition (SVD) algorithm to
find K+

i , we get an orthonormal basis for N (K>i ) as a subproduct. Let us consider the
classical SVD of a matrix Ki ∈ R

n×n with rank r:

Ki = UWV>,
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where U and V are orthogonal matrices and W is a diagonal matrix containing the singular
values of Ki in descending magnitude order (see Ref. [162] for details). A pseudo-inverse
of Ki is given by K+

i = VW̃U>, in which W̃ is a diagonal matrix whose entries are

W̃kk =

{
1/Wkk , if 1 ≤ k ≤ r,
0, otherwise,

and R̃i can be constructed simply with the last n − r columns of U. Yet, performing a
full SVD may be prohibitive in practical situations when the local problems are large. For
such cases, an efficient technique for computing both the pseudo-inverse and the kernel of
a matrix with known nullity was proposed by Farhat and Géradin [157], combining LU
and singular value decompositions. This is possible in the present case, since the nullity
of K>i is known (dim[N (K>i )] = dim[N (Ki)] = ki). Thus, applying the method to matrix
K>i will give us (K+

i )> and R̃i at once.

Solving the global problem

With all ingredients at hand for assembling the global problem (8.20), we turn our attention
to its solution, which will be performed using a projected GMRES approach. In order to
decouple the Lagrange multipliers λ from the rigid-body coefficients α, we introduce a
projection operator P :Rm→N (G̃>) constructed as

P := I−G(G̃>G)−1G̃>, (8.21)

where m is the dimension of λ and I is the m × m identity matrix. Notice that G̃>G is a
small matrix and can be inverted directly. Applying P to Eq. (8.18) leads to the projected
equation

(PS)λ = Pd , (8.22)

which must be solved under the constraint G̃>λ = e. To do that, we use a similar approach
to that employed by Toselli [153], homogenising Eq. (8.22) through the splitting

λ = λ0 + λ̃ , (8.23)

with λ̃ ∈ N (G̃>) and G̃>λ0 = e. It is easy to verify that the choice λ0 := G(G̃>G)−1e
fullfils the requirement. Thus, we are left with the problem to find λ̃ ∈N (G̃>) such that

(PS)λ̃ = P
(
d −Sλ0

)
. (8.24)

As long as we start the GMRES algorithm with a vector in N (G̃>) (e.g., the null vector),
the subsequent iterates will also meet the constraint, up to round-off error [150, 154].
We refer the reader to the works of Kučera et al. [154, 163] for excellent discussions
on both theoretical and algorithmic aspects of projected Krylov methods for asymmetric
systems. Once we have found λ̃ and rebuilt λ, it remains to find α. This can be done by
premultiplying Eq. (8.18) by (G̃>G)−1G̃>, which leads to

α = (G̃>G)−1G̃>
(
Sλ − d

)
. (8.25)
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8.3 Numerical examples

We now present various numerical examples to showcase the accuracy of our stable space-
time elements, as well as the performance of the present FETI-based solver. In the New-
tonian examples, we consider the non-dimensionalised version of the Navier–Stokes prob-
lem:∫

Q

{
wh · [∂tuh + (∇uh)uh] +

1
Re
∇wh : ∇uh + (∇ ·wh) ph

}
dQ =

∫
Q

wh · f dQ , (8.26)

∫
Q

qh∇ ·uh dQ +

∫
s0

qhph dt = 0 , (8.27)

with s0 :=
{
(x,t) ∈ Rd+1 : x = 0

}
. The line integral in Eq. (8.27) enforces the pressure

scaling p(0,t) ≡ 0. This is possible when we employ a finite element discretisation in
which (qhph) |x=0 is well-defined, which is not necessarily the case when p ∈ L2(Q). The
advantage of this pressure scaling is that it produces a highly sparse matrix, whereas the
somewhat more standard scaling in Eq. (8.7) leads to a dense one.

8.3.1 Convergence study

Manufactured Stokes flow solution in two spatial dimensions

We first consider the linear Stokes problem in the unit cube Q = (0,1)3 with Re = 1, homo-
geneous initial and (Dirichlet) boundary conditions and body force f = f p + f t + f x:

f p =

(
t2 (

x2te−x1 x2t + 1
)

t3x1e−x1 x2t

)
,

f t =




e−t
(
4x2

3 − 6x2
2 + 2x2

)
[x1 (x1 − 1)]2

−e−t
(
4x1

3 − 6x1
2 + 2x1

)
[x2 (x2 − 1)]2


 ,

f x =



(
1− e−t ) (4− 8x2)

(
3x1

4 − 6x1
3 − 6(x1x2)2 + 3x1

2 − 6x1x2
2 + 6x1x2 + x2

2 − x2
)(

e−t − 1
)

(4− 8x1)
(
3x2

4 − 6x2
3 − 6(x1x2)2 + 3x2

2 − 6x2x1
2 + 6x1x2 + x1

2 − x1
) .

The corresponding analytical solution is

p =
(
1 + x1 − e−x1 x2t

)
t2, u =



(
1− e−t ) (

4x2
3 − 6x2

2 + 2x2
)

[x1 (x1 − 1)]2(
e−t − 1

) (
4x1

3 − 6x1
2 + 2x1

)
[x2 (x2 − 1)]2


 .

For the discretisation we use tetrahedral Taylor–Hood elements, starting with the coarse
mesh shown in Figure 8.2 (top) and performing four levels of uniform refinement. The
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fifth and finest mesh, depicted in Figure 8.2 (bottom), has approximately 4 × 105 ele-
ments and 1.2 × 106 degrees of freedom. As we can see in Table 8.1, the convergence
study reveals very interesting results. While the pressure and the spatial velocity gradient
convergence quadratically, as in stationary cases, the temporal derivative of the velocity
converges linearly. Although a priori error estimates are – to the best of our knowledge
and at the moment of writing – still an open problem, we can conjecture that the different
convergence rates of the spatial and temporal gradients are due to the different regularity
requirements in space and time (see (8.8)). Error estimates in H1,0(Ω) := L2(0,T ; H1(Ω))
for the heat equation, which is closely related to the Stokes system, have been proven by
Steinbach [140] and are in agreement with our current numerical results. Following the
same analysis, we can assert that a CFL-like condition is not to be expected here, at least
when considering the linear Stokes problem. On the other hand, using similar space-time
finite elements for hyperbolic problems such as the wave equation does incur a CFL con-
dition [164]. Note that the observed convergence rates can be seen as optimal not only
from a theoretical point of view, but also from a practical standpoint. Firstly because all
the terms present in the strong residual of the momentum equation, namely ∂tuh, ∆uh and
∇ph, shall converge with the same order. Secondly, ph and ∇uh converging quadratically
leads to quadratic convergence of the Cauchy stress tensor, which is of critical importance
in FSI and hemodynamic applications.

Table 8.1: Stokes problem in two spatial dimensions: mesh convergence study.
Mesh ‖∇u −∇uh‖0 eoc ‖∂tu − ∂tuh‖0 eoc ‖p− ph‖0 eoc

1 5.93e-1 – 2.21e-0 – 2.37e-1 –
2 1.82e-1 1.70 8.15e-1 1.43 6.36e-2 1.90
3 4.85e-2 1.90 3.32e-1 1.29 1.61e-2 1.98
4 1.23e-2 1.97 1.55e-1 1.10 3.99e-3 2.01
5 3.10e-3 1.99 7.78e-2 1.00 9.77e-4 2.03

Two-dimensional Taylor–Green vortex

Taylor–Green vortices in two spatial dimensions are among very few analytical time-
dependent solutions of the Navier–Stokes system with zero body force. In a normalised
space-time domain Q = (0,1)3, the dimensionless solution represents a decaying system of
vortices described by

p = −
f 2(t)

2

(
sin2 2πx1 + sin2 2πx2

)
, u =

(
f (t) sinπx1 cosπx2
− f (t) sinπx2 cosπx1

)
, with f (t) = e−2π2t/Re .

While this problem is typically simulated considering periodic BCs, for simplicity we
assume a standard Dirichlet setting, computing the boundary and initial data from the
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known analytical solution. This time we use prismatic elements for the uniform refinement
study, the coarsest and finest meshes being depicted in Figure 8.3. The results for Re =

100, shown in Table 8.2, are similar to the ones obtained for the Stokes problem. The
quadratic convergence observed for the temporal velocity gradient is probably only an
initial higher-order convergence which should eventually turn linear again. When setting
Re = 2000 to simulate a more convective flow regime, the results in Table 8.3 show that the
quadratic rates are not reached within the refinement levels considered. This is somewhat
expected, since we are not using any kind of convective stabilisation such as SUPG or
VMS. Therefore, once the element Reynolds numbers are low enough and the flow is
sufficiently resolved, the quadratic convergence should be attained.

Table 8.2: Taylor–Green vortex: convergence study for Re = 100.
Mesh ‖∇u −∇uh‖0 eoc ‖∂tu − ∂tuh‖0 eoc ‖p− ph‖0 eoc

1 3.06e-1 – 6.05e-1 – 9.45e-2 –
2 2.72e-1 0.17 5.65e-1 0.10 7.10e-2 0.41
3 7.83e-2 1.80 1.17e-1 2.26 2.48e-2 1.52
4 2.16e-2 1.86 2.46e-2 2.25 6.87e-3 1.85
5 5.63e-3 1.94 5.67e-3 2.12 1.77e-3 1.95

Table 8.3: Taylor–Green vortex: convergence study for Re = 2000.
Mesh ‖∇u −∇uh‖0 eoc ‖∂tu − ∂tuh‖0 eoc ‖p− ph‖0 eoc

1 6.31e-1 – 22.6 – 7.75e-2 –
2 9.59e-1 -0.6 33.1 -0.5 9.30e-2 -0.2
3 2.83e-1 1.76 8.04 2.04 2.00e-2 2.21
4 8.52e-2 1.73 1.45 2.47 5.84e-3 1.78
5 3.18e-2 1.42 0.421 1.78 1.76e-3 1.73

Stokes flow in a moving domain

Although space-time methods can be highly competitive to tackle flows in fixed spatial
domains as well as FSI problems, a scenario where a unified treatment of space and time
is particularly advantageous lies somewhat inbetween: transport problems with prescribed
motion of the spatial domain. In a rotary pump, for instance, the periodic angular motion
of the gears leads the topology of the spatial domain to constantly change, which ren-
ders the simulation of fluid or heat flow by standard methods virtually unfeasible. In a
space-time framework, on the other hand, provided that an appropriate triangulation of the
“non-cylindrical” space-time domain is available, nothing else changes in comparison to
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a standard problem with Ω(t) ≡ Ω0 and Q = Ω0 × (0,T ). That is, there is no need to em-
ploy expensive remeshing procedures or modify the conservation laws to include boundary
motion terms à la arbitrary Lagrangian-Eulerian methods.

To test the accuracy of our space-time elements in a problem with moving spatial domain,
we use once again a problem with analytical solution. To construct such a solution we
will consider, in a moving annular domain Ω(t) ∈ R2, a laminar flow driven by the radial
motion of the inner wall. Let us first introduce the radial coordinate r =

√
x12 + x22 and

the radial velocity ur (r,t), in the usual way. The spatial domain is initially an annulus Ω0
with inner and outer radii equal to r0 and R, respectively. The outer boundary is fixed,
while the inner one moves radially according to a given function ri (t). Modelling the inner
boundary as an impermeable wall yields

ur |r=ri = [ri (t)]′. (8.28)

Moreover, conservation of mass and circumferential symmetry (purely radial motion) leads
to

ur (r,t) = R
V (t)

r
, (8.29)

where V (t) is the radial velocity on the outer boundary r = R. Therefore, the balance of
linear momentum in the radial direction reduces to

1
ρ

∂p
∂r

= χ
R2

r3 V 2(t) −
R
r

V ′(t) , (8.30)

in which χ = 1 and χ = 0 correspond to the Navier–Stokes and Stokes systems, respec-
tively. Integration with respect to r leads to

p(r,t) = P(t) + χ
ρ

2

(
1−

R2

r2

)
V 2(t) + ρR log

(
R
r

)
V ′(t) , (8.31)

with P(t) denoting the pressure on the outer boundary. Combining (8.28) and (8.29) then
yields

V (t) =
1

2R
d
dt

{
[ri (t)]2

}
, (8.32)

so that the analytical solution is determined by choosing ri (t) and P(t).

For the numerical example we set R = ρ = µ = 1 and a pulsatile inner wall motion

ri (t) = [1 + Asin(2πt/T )]r0 ,

where r0 = R/2, A = 1/4 and T = 2 is the time horizon of the simulation. As for the pressure
scaling, we enforce p = 0 at (x1,x2) = (R,0), which leads to P(t) ≡ 0. Five tetrahedral
meshes are considered, the finest of which is depicted in Figure 8.4. As shown in Table
8.4 for the Stokes solution (χ = 0), the convergence follows the same trends observed for
fixed spatial domains.
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Table 8.4: Stokes problem in a pulsating annulus: mesh convergence study.
Mesh ‖∇u −∇uh‖0 eoc ‖∂tu − ∂tuh‖0 eoc ‖p− ph‖0 eoc

1 1.84e-1 – 1.05e-1 – 3.71e-0 –
2 4.61e-2 1.99 2.90e-2 1.86 4.33e-1 3.10
3 1.16e-2 2.00 9.74e-3 1.57 9.14e-2 2.24
4 2.87e-3 2.01 3.65e-3 1.41 2.08e-2 2.13
5 7.10e-4 2.01 1.58e-3 1.20 5.05e-3 2.04

Carreau fluid past a two-dimensional backward-facing step

Benchmark solutions for time-dependent non-Newtonian problems are extremely scarce
in the literature. We therefore consider a ramped-up solution based on the stationary BFS
problem tackled in Section 4.3, and compare the final solution to that of Siebert and Fodor
[165]. The space-time setup and mesh are illustrated in Figures 8.6 and 8.5. We use a
parabolic inlet profile with flow rate Q(t) ramped up smoothly from zero to Qmax as in
Eq. (7.32), with τ = 0.4 s, T = 0.6 s and Qmax = 25 mm2/s. The qualitative comparison de-
picted in Figure 8.5 reveals very good agreement. We see once again the spurious outflow
behaviour caused by real traction BCs.

Manufactured Stokes flow solution in three spatial dimensions

We finally tackle a problem in a four-dimensional space-time domain Q = (0,1)4. The
settings are Re = 1, homogeneous initial and boundary data and a body force f = f t + f x ,
with

f t =




x2ye−t (x − 1)2(z2 − z)(2y2 − 3y+ 1)
2xy2e−t (y − 1)2(z − z2)(2x2 − 3x + 1)

0


 ,

f x =



4(e−t − 1)(2y − 1){(z2 − z)[3(x2 − x)2 + (6(x2 − x) + 1)y2 − 6(x2 − x)y − y] + (y2 − y)(x2 − x)2}

4(1− e−t )(2x − 1){(z2 − z)(3(y2 − y)2 + (6(y2 − y) + 1)x2 − 6(y2 − y)x − x) + (x2 − x)(y2 − y)2}

e−t (1− 2z)


 ,

where (x1,x2,x3) are denoted as (x,y,z) to shorten the expressions. We then get

p = z(1− z)e−t , u =



(e−t − 1)x2(x − 1)2(4y3 − 6y2 + 2y)(z2 − z)
(1− e−t )y2(y − 1)2(4x3 − 6x2 + 2x)(z2 − z)

0


 .

For this example we construct four-dimensional prismatic elements by extruding tetrahe-
dral elements in time. At the coarsest level, the mesh is generated from the tetrahedral
mesh shown in Figure 8.2 (top), with the time interval divided into two equal segments.
Then, due to memory limitations, only two levels of uniform refinement are applied (the
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next level would result in over 7.5 million degrees of freedom). The results of the refine-
ment study, shown in Table 8.5, reveal similar trends as in the two-dimensional examples.

Table 8.5: Stokes problem in three spatial dimensions: mesh convergence study.
Mesh ‖∇u −∇uh‖0 eoc ‖∂tu − ∂tuh‖0 eoc ‖p− ph‖0 eoc

1 1.49e-0 – 1.61e-0 – 5.80e-0 –
2 5.80e-1 1.36 5.23e-1 1.62 1.42e-1 2.02
3 1.73e-1 1.75 1.69e-1 1.63 3.55e-2 2.00

8.3.2 Solver performance

To demonstrate important aspects of our FETI solver, we use the first numerical example
in this chapter as a test case. A family of four uniformly refined meshes is considered, the
coarsest and finest of which are illustrated in Figure 8.8. Figure 8.9 depicts the different
decompositions adopted, and Table 8.6 shows the corresponding number of Lagrange mul-
tipliers for the cases with continuous and discontinuous interface pressure. Note that the
floating case (decomposition e) is not possible on the coarsest mesh. A relative of 10−6 is
set for the iterative solver.

Table 8.6: Number of interface unknowns for various decompositions and refinement lev-
els, with continuous (left) and discontinuous (right) interface pressures.

Mesh \DD a) b) c) d) e)
1 95 | 82 95 | 82 141 | 122 149 | 128 –
2 331 | 290 331 | 290 495 | 434 508 | 444 383 | 338
3 1235 | 1090 1235 | 1090 1851 | 1634 1874 | 1652 1483 | 1314
4 4771 | 4226 4771 | 4226 7155 | 6338 7198 | 6372 5843 | 5186

We first consider the fully continuous setting without preconditioning. Those results are
then compared to test cases where the Jacobi preconditioner (JPD) is used in Eq. (8.22).
The comparison shown in Table 8.7 reveals important trends. We can see how the direction
of the cut affects the performance of the iterative solver. When the interface is normal to
the temporal direction, the number of iterations is considerably lower. The solver performs
similarly whether the interface is parallel or oblique to time. The hardest cases to solve
seem to be those in which the interface changes direction. Also remarkable is the consid-
erable effect that a simple preconditioner can have on the solver’s performance: we attain
a reduction not only in the number of iterations, but also in the rate at which it grows with
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the refinement. These observations highlight the need for appropriate preconditioners in
space-time domain decomposition methods.

Table 8.8 and Figure 8.10 exhibit, respectively, the number of iterations and the residual
evolution for the approach with discontinuous interface pressure, also using the Jacobi
preconditioner. The comparison with the fully continuous case reveals a very similar per-
formance for almost all configurations. The slightly smaller iteration count for the discon-
tinuous approach can be associated to the reduced number of interface unknowns.

Table 8.7: FETI with continuous pressure: iterations without (left) and with (right) JPD.
Mesh \DD a) b) c) d) e)

1 15 | 11 26 | 13 31 | 15 36 | 19 –
2 25 | 13 54 | 17 57 | 20 79 | 29 72 | 28
3 36 | 17 94 | 22 105 | 27 165 | 44 181 | 50
4 55 | 22 180 | 34 206 | 39 374 | 66 325 | 83

Table 8.8: FETI with discontinuous interface pressure: iterations with a Jacobi precondi-
tioner.

Mesh \DD a) b) c) d) e)
1 8 11 12 16 –
2 9 16 16 22 28
3 13 21 22 35 47
4 18 33 34 60 66
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(a) Mesh 1 (coarsest).

(b) Mesh 5 (finest).

Figure 8.2: Stokes problem: coarsest and finest meshes used in the convergence study.
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(a) Mesh 1 (coarsest).

(b) Mesh 5 (finest).

Figure 8.3: Taylor–Green vortex: coarsest and finest meshes used in the convergence study.
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Figure 8.4: Stokes problem in a pulsating annulus: discretisation of the space-time domain
with tetrahedral elements.
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Figure 8.5: Backward-facing step: space-time mesh.
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Figure 8.6: Backward-facing step: space-time problem setup.

Figure 8.7: Backward-facing step: qualitative comparison between present results (top)
and the reference solution by Siebert and Fodor [165] (bottom).
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(a) Mesh 1 (192 elements).

(b) Mesh 4 (98304 elements).

Figure 8.8: Coarsest and finest meshes used in the FETI study.
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Figure 8.9: Different domain decompositions considered in the FETI study.
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Figure 8.10: FETI with discontinuous interface pressure: residual evolution at the finest
mesh for the diagonally preconditioned solver.



9 OUTLOOK AND OPEN PROBLEMS

In this final chapter, we summarise the various parts of this work and outline open prob-
lems and possible extensions. We began this investigation by setting ourselves the goal
of developing accurate, efficient, reliable numerical methods for generalised Newtonian
computational fluid dynamics. In highly applied fields such as biomedical engineering,
the need for quick, simple solutions often leads to the use of techniques that are readily
available but might not always be suitable or ideal for the desired application. In particular,
when investigating the state of the art in finite element methods for blood flows, we ended
up finding considerable room for improvement with respect to the techniques employed
for solving non-Newtonian problems. In that context, relevant gaps which we took upon
ourselves to fill include various aspects such as boundary conditions, pressure stabilisation
methods and temporal discretisation schemes.

After introducing the background for our investigation in Chapters 1 and 2, we presented
in Chapter 3 the standard variational formulation for quasi-Newtonian fluid flow problems.
A major issue in those problems is the presence of natural boundary conditions not suitable
as outflow data. In fact, the standard approach in the non-Newtonian case is to prescribe
zero or constant outflow traction, which is widely known to produce nonphysical oscil-
lations. We have then shown how pseudo-tractions can be used to appropriately enforce
outflow conditions and presented two techniques for enforcing such data. Several numer-
ical examples were provided to qualitatively and quantitatively showcase the accuracy of
the formulations we introduced.

Chapter 5 is dedicated to the so-called pressure Poisson equation (PPE), which is a clas-
sical mathematical tool in inverse hemodynamics. This boundary value problem, derived
directly from the Navier–Stokes momentum equation, is typically used for computing pres-
sure fields from measured/given flow velocities. Our first contribution there was to extend
the formulation to a very general framework allowing non-Newtonian and even compress-
ible flow behaviour. Furthermore, we have introduced an ultra-weak finite element method
allowing discontinuous pressure spaces, which is not possible in standard weak formula-
tions. As a trade-off, test functions with continuous derivatives must be constructed, as
we have presented for the case of piecewise constant pressure approximations in tensor-
product meshes. The main open problem here is devising a robust framework that does
not require Cartesian meshes, so that realistic domains can be considered. A promising
idea for realising this is to use unfitted discretisations in which a geometry-independent
background mesh is used, while the actual domain is implicitly described (see Figure 9.1).
Unfitted finite element methods have very recently been used in problems where smooth

117
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basis functions are required [166]. Mind that not only can ultra-weak formulations profit
from unfitted methods, but the latter can also benefit from the former. In the unfitted frame-
work, Dirichlet boundary conditions must be enforced weakly, which is in most cases done
via Nitsche-type methods that add artificial terms to the variational formulation [167]. In
the ultra-weak framework, on the other hand, Dirichlet data can be weakly enforced via
boundary terms arising naturally from integration by parts. The combination of ultra-weak
and unfitted methods has thus great potential to increase robustness of discretisations for
challenging applications such as fluid-structure interaction and multi-phase flow problems.

Figure 9.1: Illustration of fitted (left) and unfitted (right) meshes for a circular domain.

As it turns out, pressure Poisson problems can be used not only in computing pressure
from given velocities, but also to design accurate flow solvers. In Chapter 6, we intro-
duced a family of fully consistent PPE-based stabilisation methods for the equal-order
discretisation of pressure and velocity in generalised Newtonian problems. This solves a
major issue of standard residual-based pressure stabilisation methods, namely, the pres-
ence of numerical boundary layers when first-order elements are used. Although our new
framework has a very similar structure, implementation and cost as standard stabilisation
methods, it not only eliminates spurious pressure boundary layers, but also improves mass
conservation and parameter-robustness. Several numerical examples have been provided
to demonstrate that our approach consistently outperforms existing residual-based pressure
stabilisation methods, not only for linear but also for higher-order elements.

As another extension of the generalised PPE framework developed in Chapter 5, we pre-
sented in Chapter 7 a split-step framework decoupling pressure, velocity and viscosity in
time-dependent problems. The idea there is to use a slightly modified pressure Poisson
problem with suitable boundary conditions to write pressure in terms of velocity and en-
force incompressibility in an indirect way. This results in highly efficient time-stepping
schemes that require only the solution of scalar convection-diffusion and Poisson prob-
lems and allow discretisations of both equal or compatible orders. An interesting exten-
sion will be to consider non-Newtonian fluid models with pressure-dependent viscosity, as
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appearing for instance in dense granular flows [33]. When that is the case, the unique solv-
ability of the resulting boundary value problem may be dependent on the pressure range
[168, 169]. Hence, stability properties that we herein took for granted – due to having a
linear Poisson equation for the pressure – may no longer hold, and appropriate regulari-
sation and linearisation methods must be employed to guarantee accuracy and efficiency.
Other relevant and challenging applications to which our pressure Poisson framework can
be extended include viscoelastic fluids [29] and variable-density (but still incompressible)
flows [170, 171].

At last, providing an alternative to the still dominant trend of equal-order time-stepping
solvers, we have introduced a family of stable space-time finite elements for general in-
compressible flow problems. These elements are extensions of the famous (spatial) Taylor–
Hood elements and, as such, yield stable and optimally convergent approximations. This
is what our extensive numerical experiments indicate, yet theoretical stability and error
estimates for this mixed finite element method are, at the moment of writing, still an open
problem. We have further presented a new domain decomposition method for the result-
ing space-time algebraic system, which allows easy parallelisation in both space and time.
This is important especially when handling realistic three-dimensional flows leading to
large space-time systems. The main open task there is the development of appropriate pre-
conditioners for the iterative solvers used for the global problem. Another current topic
of intense investigation by the space-time community is the robust, automatic generation
of adaptive four-dimensional meshes. Although time-stepping schemes such as the ones
presented in Chapter 7 offer an efficient, simple way to handle large problems without
the need for great processing and memory capacity, we believe that parallel space-time
methods have the potential to be real game changers in next-generation high performance
computing.

In order to cover the very different gaps mentioned in the beginning of this chapter, it
was necessary to move through different areas of computational fluid dynamics rather than
focusing on a single method, framework or application. This is why we have dealt with
stable and stabilised formulations, time-stepping and space-time methods, weak and ultra-
weak problems, Newtonian and non-Newtonian models. We believe that labelling a single
method or model as “superior” would be, if nothing else, naive. Selecting the best suited
approach for a specific application always depends on the availability of computational
resources, the quality of data and the final goals – among other factors.

For instance, inf-sup-stable and higher-order elements are often excellent choices, but
sometimes in biomedical applications one has no alternative but to work with very rough,
non-smooth meshes coming from image segmentation. In such cases, stabilised first-
order elements are often the (pragmatic) way to go. Another example is the time-stepping
vs. space-time discussion. When all which is available are standard computers and soft-
ware, split-step methods such as presented in Chapter 7 can be powerful tools, as they
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allow one to easily turn simple “heat equation solvers” into efficient incompressible non-
Newtonian flow solvers. On the other hand, it is a known fact that the algebraic systems
arising from time-stepping schemes are often too small to fully benefit from the capabilities
of modern supercomputers, so that parallel space-time methods become a very attractive
option. Also when it comes to rheological modelling, in some cases there may be so much
uncertainty in experimental or patient-specific data that the efforts in building and imple-
menting sophisticated non-Newtonian models might eventually not pay off in comparison
to a standard Newtonian approach.

In this context, we sincerely believe to have presented herein robust, reliable techniques
that improve or extend relevant features in the state of the art of (incompressible) com-
putational fluid dynamics, especially for quasi-Newtonian fluids. Although the numerical
examples we provided are in most cases simple manufactured or benchmark problems, we
are confident that they provide a clear picture of the issues and features we meant to show
and make a strong case for the improvements we achieved.
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[163] R. Kučera, T. Kozubek, and A. Markopoulos. On large-scale generalized inverses in
solving two-by-two block linear systems. Linear Algebra Appl., 438(7):3011–3029,
2013.

[164] O. Steinbach and M. Zank. A stabilized space–time finite element method for the
wave equation. In Lect. Notes Comput. Sci. Eng., pages 341–370. Springer, 2019.

[165] M. Siebert and P. Fodor. Newtonian and non-Newtonian blood flow over a
backward-facing step – a case study. In Proceedings of the COMSOL Conference,
2009.

[166] E. Burman, P. Hansbo, and M.G. Larson. Cut Bogner-Fox-Schmit elements for
plates. Adv. Model. Simul., 7(1):27, 2020.

[167] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s
method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng., 191
(47-48):5537–5552, 2002.



134 References

[168] F. Gazzolad. A note on the evolution Navier-Stokes equations with a pressure-
dependent viscosity. Z. Angew. Math. Phys., 48(5):760, 1997.

[169] J. Hron, J. Málek, and K.R. Rajagopal. Simple flows of fluids with pressure–
dependent viscosities. Proc. Math. Phys. Eng. Sci., 457(2011):1603–1622, 2001.

[170] J.-L. Guermond and L. Quartapelle. A projection FEM for variable density incom-
pressible flows. J. Comput. Phys., 165(1):167–188, 2000.

[171] J.-L. Guermond and A. Salgado. A splitting method for incompressible flows with
variable density based on a pressure Poisson equation. J. Comput. Phys., 228(8):
2834–2846, 2009.



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 1 Steffen Alvermann 

 Effective Viscoelastic Behavior 
of Cellular Auxetic Materials 

2008 

ISBN 978-3-902465-92-4 

  

Vol. 2 Sendy Fransiscus Tantono 

 The Mechanical Behaviour of a Soilbag 
under Vertical Compression 
2008 
ISBN 978-3-902465-97-9 

  

Vol. 3 Thomas Rüberg 

 Non-conforming FEM/BEM Coupling in Time Domain 
2008 
ISBN 978-3-902465-98-6 

  

Vol. 4 Dimitrios E. Kiousis 

 Biomechanical and Computational Modeling of 
Atherosclerotic Arteries 
2008 
ISBN 978-3-85125-023-7 

  

Vol. 5 Lars Kielhorn 

 A Time-Domain Symmetric Galerkin BEM 
for Viscoelastodynamics 
2009 
ISBN 978-3-85125-042-8 

  

Vol. 6 Gerhard Unger 

 Analysis of Boundary Element Methods 
for Laplacian Eigenvalue Problems 
2009 
ISBN 978-3-85125-081-7 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 7 Gerhard Sommer 

 Mechanical Properties of Healthy and Diseased 
Human Arteries 
2010 
ISBN 978-3-85125-111-1 

  

Vol. 8 Mathias Nenning 

 Infinite Elements for  
Elasto- and Poroelastodynamics 
2010 
ISBN 978-3-85125-130-2 

  

Vol. 9 Thanh Xuan Phan 

 Boundary Element Methods for 
Boundary Control Problems 
2011 
ISBN 978-3-85125-149-4 

  

Vol. 10 Loris Nagler 

 Simulation of Sound Transmission through 
Poroelastic Plate-like Structures 
2011 
ISBN 978-3-85125-153-1 

  

Vol. 11 Markus Windisch 

 Boundary Element Tearing and Interconnecting 
Methods for Acoustic and Electromagnetic 
Scattering 
2011 
ISBN 978-3-85125-152-4 

  

Vol. 12 Christian Walchshofer 

 Analysis of the Dynamics at the Base of a Lifted 
Strongly Buoyant Jet Flame Using Direct Numerical 
Simulation  
2011 
ISBN 978-3-85125-185-2 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 13 Matthias Messner 

 Fast Boundary Element Methods in Acoustics 

2012 
ISBN 978-3-85125-202-6 

  

Vol. 14 Peter Urthaler 

 Analysis of Boundary Element Methods for Wave 
Propagation in Porous Media 

2012 
ISBN 978-3-85125-216-3 

  

Vol. 15 Peng Li 

 Boundary Element Method for Wave Propagation in 
Partially Saturated Poroelastic Continua 

2012 
ISBN 978-3-85125-236-1 

  

Vol. 16 Andreas Jörg Schriefl 

 Quantification of Collagen Fiber Morphologies in 
Human Arterial Walls 
2013 
ISBN 978-3-85125-238-5 

  

Vol. 17 Thomas S. E. Eriksson 

 Cardiovascular Mechanics  

2013 
ISBN 978-3-85125-277-4 

  

Vol. 18 Jianhua Tong 

 Biomechanics of Abdominal Aortic Aneurysms 
2013 
ISBN 978-3-85125-279-8 

 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 19 Jonathan Rohleder 

 Titchmarsh–Weyl Theory and Inverse Problems 
for Elliptic Differential Operators 
2013 
ISBN 978-3-85125-283-5 

  

Vol. 20 Martin Neumüller 

 Space-Time Methods 
2013 
ISBN 978-3-85125-290-3 

  

Vol. 21 Michael J. Unterberger 

 Microstructurally-Motivated Constitutive Modeling of 
Cross-Linked Filamentous Actin Networks 
2013 
ISBN 978-3-85125-303-0 

  

Vol. 22 Vladimir Lotoreichik 

 Singular Values and Trace Formulae for Resolvent 
Power Differences of Self-Adjoint Elliptic Operators 
2013 
ISBN 978-3-85125-304-7 

  

Vol. 23 Michael Meßner 

 A Fast Multipole Galerkin Boundary Element Method 
for the Transient Heat Equation 
2014 
ISBN 978-3-85125-350-4 

  

Vol. 24 Lorenz Johannes John 

 Optimal Boundary Control in Energy Spaces  
2014 
ISBN 978-3-85125-373-3 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 25 Hannah Weisbecker 

 Softening and Damage Behavior of Human Arteries 
2014 
ISBN 978-3-85125-370-2 

  

Vol. 26 Bernhard Kager 

 Efficient Convolution Quadrature based Boundary 
Element Formulation for Time-Domain 
Elastodynamics 

2015 
ISBN 978-3-85125-382-5 

  

Vol. 27 Christoph M. Augustin 

 Classical and All-floating FETI Methods with  
Applications to Biomechanical Models  

2015 
ISBN 978-3-85125-418-1 

  

Vol. 28 Elias Karabelas 
 Space-Time Discontinuous Galerkin Methods for 

Cardiac Electromechanics 
2016 
ISBN 978-3-85125-461-7 

  

Vol. 29 Thomas Traub 

 A Kernel Interpolation Based Fast Multipole Method  
for Elastodynamic Problems 

2016 
ISBN 978-3-85125-465-5 

  

Vol. 30 Matthias Gsell 

 Mortar Domain Decomposition Methods for 
Quasilinear Problems and Applications 
2017 
ISBN 978-3-85125-522-5 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 31 Christian Kühn 

 Schrödinger operators and singular infinite  
rank perturbations 
2017 
ISBN 978-3-85125-551-5 

  

Vol. 32 Michael H. Gfrerer 

 Vibro-Acoustic Simulation of Poroelastic Shell 
Structures  
2018 
ISBN 978-3-85125-573-7 

  

Vol. 33 Markus Holzmann 

 Spectral Analysis of Transmission and Boundary 
Value Problems for Dirac Operators 
2018 
ISBN 978-3-85125-642-0 

  

Vol. 34 Osman Gültekin 

 Computational Inelasticity of Fibrous Biological 
Tissues with a Focus on Viscoelasticity, Damage 
and Rupture 
2019 
ISBN 978-3-85125-655-0 

  

Vol. 35 Justyna Anna Niestrawska 

 Experimental and Computational Analyses of 
Pathological Soft Tissues – Towards a Better 
Understanding of the Pathogenesis of AAA 
2019 
ISBN 978-3-85125-678-9 

 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 36 Marco Zank 

 Inf-Sup Stable Space-Time Methods for Time-
Dependent Partial Differential Equations 
2020 
ISBN 978-3-85125-721-2 

  

Vol. 37 Christoph Irrenfried 

 Convective turbulent near wall heat transfer 
at high Prandtl numbers 
2020 
ISBN 978-3-85125-724-3 

  

Vol. 38 Christopher Albert 

 Hamiltonian Theory of Resonant Transport Regimes 
in Tokamaks with Perturbed Axisymmetry  
2020 
ISBN 978-3-85125-746-5 

Vol. 39 Daniel Christopher Haspinger 

 Material Modeling and Simulation of Phenomena at 
the Nano, Micro and Macro Levels in Fibrous Soft 
Tissues of the Cardiovascular System  
2021 
ISBN 978-3-85125-802-8 

Vol. 40 Markus Alfons Geith  

 Percutaneous Coronary Intervention  
2021 
ISBN 978-3-85125-801-1 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 

Vol. 41 Dominik Pölz  

 Space-Time Boundary Elements for  
Retarded Potential Integral Equations   
2021 
ISBN 978-3-85125-811-0 

 

Vol. 42 Douglas Ramalho Queiroz Pacheco 

 Stable and stabilised finite element methods  
for incompressible flows of generalised  
Newtonian fluids   
2021 
ISBN 978-3-85125-856-1 

 


	Abstract
	Kurzfassung
	CONTENTS
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Basic definitions
	2.2 Finite element discretisation

	3 STRONG AND VARIATIONAL PROBLEMS
	3.1 Problem statement
	3.2 Standard elasticity formulation
	3.3 Outflow boundary conditions
	3.4 A generalised Laplacian formulation

	4 STABLE FINITE ELEMENT FORMULATIONS FORSTATIONARY FLOWS
	4.1 Stress-divergence formulation
	4.2 Generalised Laplacian formulation
	4.3 Numerical examples

	5 THE PRESSURE POISSON EQUATION
	5.1 Strong problem
	5.2 Weak formulation
	5.3 Ultra-weak formulations
	5.3.1 Unique solvability
	5.3.2 Generalised Newtonian fluids
	5.3.3 Compressible flows
	5.3.4 Discretisation

	5.4 Numerical examples

	6 STABILISED FINITE ELEMENT FORMULATIONS
	6.1 Some classical methods and their limitations
	6.2 A fully consistent stabilisation method for elements with continuous pressure
	6.3 An ultra-weak stabilisation method allowing discontinuous pressure
	6.4 Numerical examples
	6.4.1 Elements with continuous pressure
	6.4.2 Elements with discontinuous pressure

	6.5 On the pressure convergence of equal-order methods

	7 NON-NEWTONIAN SPLIT-STEP METHODS
	7.1 Strong problem and weak formulation
	7.2 Efficient iteration-free split-step schemes
	7.2.1 A first-order scheme
	7.2.2 Improving the conservation of mass
	7.2.3 Higher-order schemes with variable time step

	7.3 Numerical examples

	8 STABLE SPACE-TIME FINITE ELEMENT METHODS
	8.1 Variational problem and discretisation
	8.2 Space-time finite element tearing and interconnecting methods
	8.2.1 Basic setup
	8.2.2 Global problem and floating subdomains

	8.3 Numerical examples
	8.3.1 Convergence study
	8.3.2 Solver performance


	9 OUTLOOK AND OPEN PROBLEMS
	REFERENCES



