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”Data without a model is just noise”

– unknown –
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Abstract

The aerodynamics of a racebike is a relatively young field in professional motorcycle
racing and in the field of aerodynamics itself. In recent years, aerodynamics has
become more and more the focus of racing factories.

In motorcycle racing the rider plays an important role in terms of its riding style
– the relative position of the rider in different riding situations on the racetrack.
From an engineering point of view the riding style has a huge impact on the center
of gravity position of the overall racebike and rider system. The different rider
positions also have a strong impact on the aerodynamics of the overall racebike
and rider system.

Additional changes during a race or test day due to external influences or internal
signs of wear and tear must be considered – this applies to the rider as well as to
components of the motorbike.

For a proper development process, a solid data analysis of the individual influences
is enormously important. Data analysis needs models to understand and evaluate
individual effects. The aim of the present work is to show a new approach to assess
aerodynamic characteristics of a racebike and rider system for real-world racetrack
riding situations. The approach is shown for race measurement data of a Moto2
world championship race.

A motorcycle model was built to replicate the influences of the tire, the aerody-
namics and the dynamics of the rider’s movement at the dynamic riding limits of
the vehicle. The model was built as a multi-body system using Jourdain’s prin-
ciple. All transformation matrices as well as position and velocity vectors of the
individual bodies were solved analytically. Thus the model computes very fast.
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The unknown influence of the aerodynamics and the rider dynamics on the dy-
namic riding limit was determined by segmenting an average race lap from the
measurements using the multibody model. This means that changes to the race-
bike can now be objectively evaluated for specific riders and specific racetracks.

With the very fast calculating, specific ”motorcycle-dynamic-riding-limit-model”
a tool has been developed, which can be used in the racing development process –
which differs significantly from series vehicle development. The tool can be used
to support from pre-development to single race days as well as to analyse the
motorcycle development, ongoing adaptations and setup changes.

Keywords: Aerodynamics, Racing, Mechanics of Solid Bodies, Jourdains Prin-
ciple, Operational Domain, Tire Model, Real World Racetrack Scenarios, Race
Track Validation



Kurzfassung

Die Aerodynamik eines Rennmotorrades ist ein relativ junges Feld im profes-
sionellen Motorradrennsport und im Bereich der Aerodynamik selbst. In den let-
zten Jahren ist die Aerodynamik mehr und mehr in den Fokus der Rennsportwerke
gerückt.

Im Motorradrennsport spielt der Fahrer in Bezug auf seinen Fahrstil eine wichtige
Rolle – die relative Position des Fahrers in verschiedenen Fahrsituationen auf der
Rennstrecke. Aus technischer Sicht hat der Fahrstil einen großen Einfluss auf
die Schwerpunktlage des Gesamtsystems Rennmotorrad und Fahrer. Die unter-
schiedlichen Fahrerpositionen haben ausserdem einen starken Einfluss auf die Aero-
dynamik des Gesamtsystems Rennmotorrad und Fahrer.

Zusätzliche Veränderungen während eines Renn- oder Testtages durch äußere Ein-
flüsse oder Verschleißerscheinungen müssen berücksichtigt werden – das gilt für
den Fahrer ebenso wie für Komponenten des Motorrads.

Für einen strukturierten Entwicklungsprozess ist eine solide Datenanalyse der
einzelnen Einflüsse enorm wichtig. Die Datenanalyse benötigt Modelle, um die
einzelnen Einflüsse zu verstehen und zu bewerten. Ziel der vorliegenden Arbeit
ist es, einen neuen Ansatz zur Bewertung der aerodynamischen Eigenschaften des
Systems Rennmotorrad und Fahrer für reale Fahrsituationen auf der Rennstrecke
aufzuzeigen. Der Ansatz wird für Messdaten eines Moto2-Weltmeisterschaftslaufs
gezeigt.
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Ein Motorradmodell wurde gebaut, um die Einflüsse des Reifens, der Aerody-
namik und der Bewegungsdynamik des Fahrers im fahrdynamischen Grenzbere-
ich nachzubilden. Das Modell wurde als Mehrkörpersystem nach dem Jourdain-
schen Prinzip aufgebaut. Alle Transformationsmatrizen sowie die Positions- und
Geschwindigkeitsvektoren der einzelnen Körper wurden analytisch gelöst. Dadurch
rechnet das Modell sehr schnell.

Der unbekannte Einfluss der Aerodynamik und der Fahrerdynamik im Fahrdy-
namischen Grenzbereich wurde aus dem Mehrkörpermodell ermittelt, indem eine
durchschnittliche Rennrunde aus den Messungen segmentiert wurde. Damit kön-
nen Änderungen am Rennmotorrad nun objektiv für bestimmte Fahrer und bes-
timmte Rennstrecken bewertet werden.

Mit dem sehr schnell rechnenden, spezifischen ”Motorrad-Grenzbereich-Modell”
wurde ein Werkzeug entwickelt, das im Rennsport-Entwicklungsprozess – der sich
deutlich von der Serienfahrzeugentwicklung unterscheidet – eingesetzt werden kann.
Das Werkzeug kann von der Vorentwicklung bis zu einzelnen Renntagen sowie zur
Analyse der Motorradentwicklung, laufenden Anpassungen und Setup-Änderungen
eingesetzt werden.

Keywords: Aerodynamik, Rennsport, Festkörpermechanik, Prinzip von Jour-
dain, Einsatzumgebung, Reifenmodell, reale Rennstreckenszenarien, Rennstreck-
envalidierung
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Chapter 1

Introduction

”If everything seems under
control, you’re just not going
fast enough.”

Mario Andretti

The very famous statement of Mario Andretti [39] counts for all types of race
vehicles, whether with two, four or more wheels. The Ride on the physical limits
of man and machine distinguishes a racebike from a roadbike. The roadbike is
of course also designed for maximum riding performance and riding pleasure, but
also must consider riding comfort and the compliance with road traffic regulations.
The introductory and some other general sections refer to previous work by the
author [21] and [23].

1.1 A Racebike on the Racetrack
A racebike is made for the competition against others. The crucial criteria for suc-
cess are the fastest time or the crossing of the finish line in front of the competitors.
On the way to the success, athletes and engineers must improve their own physical
performance and the performance of the bike, respectively. The use of a racebike
on a racetrack is a complex combination of bike and rider movements in a wide
lean angle and speed range. Therefore, the riders must understand the function-
ality and technology of the bike, the engineers have to understand the needs and
demands of the riders. Beside working on their physical fitness, professional race
riders also must work on their optimum racing line, on their race strategy and on
their mental strength.

Race engineers and racebike factories must understand every little detail of the
racebike and its influence on the performance. This is the mandatory requirement
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to improve the performance of the racebike. In this context it is important to
understand that every rider has its own riding style. Two different riders with
different riding styles could do the same lap time with different setups of the same
racebike. This means that there is no golden rule of how a motorbike must be
designed and operated to reach the fastest lap time. Nevertheless, there are some
general design guidelines how a typical racebike is realized, or how it is realized
currently. The way to success is to understand the specific rider and racebike
combination in every detail. Only then both can show their best performance.

Optimizing every little detail on a racebike means intensive detailed work in
simulation, on test benches and on test- and racetracks. Every little detail, whether
if it is a physical part, a specific mechanical setting or an electronic setting, has
to be tested and has to show its benefit if it should be used in the final racebike
specification. In an ideal world every small detail should be tested independent
of all the others, resulting in a clear outcome about the performance from a per-
spective of time or speed. Fig. 1.1 shows recordings of a Moto2 lap section for
the bike speed, the lean angle and the bike acceleration signal. It shows the per-
manent change of the lean angle φbike reaching maximum lean angle values of up
to 56◦. Assuming a point contact between the road and the tire, without any tire
geometry shape and the center of gravity in the same location as the center of the
apparent forces, and constant speed, the lean angle can be calculated using the
following mathematical description

tanφ = µlat , (1.1)

where φ is the lean angle and µlat is the required lateral tire friction coefficient.
The equation shows that racebike tires must have road tire friction coefficients of
greater than 1 to realize lean angles of up to 56◦. The recordings from Fig. 1.1
show, that the racebike is operated at the physical limit from a lateral point of view.
The same counts for the longitudinal dynamic of the racebike. The acceleration
signal abike shows acceleration peaks of up to 10m/s2 and deceleration peaks of
−10m/s2.

The simplified relation between the representative acceleration of the racebike
abike and the required longitudinal road tire friction coefficient µlong is denoted as

abike = µlong g , (1.2)

with g as the gravitational acceleration which is ≈ 9.81m/s2. Using Eq. 1.2 the
longitudinal road tire friction coefficient for acceleration and braking is around
1, indicating the physical limit of a racebike in longitudinal direction. Typical
for racebike track data is, that there are nearly no steady-state situations with
constant speed or constant lean angle. The racebike is in permanent, highly dy-
namic movement. In simulation or on test benches the conditions are normally

2



set constant to get reproducible results. Fig. 1.1 shows a horizontal line with a
constant wind tunnel speed of 60m/s. A wind tunnel is one of the common tools
for aerodynamic racebike development, as it allows to assess the effect of single
changes. In Fig. 1.1 there are five points of the speed signal intersecting the race-
track data and the constant wind tunnel speed. All five points indicate different
riding situations with totally different rider positions on the racebike. This shows
the importance of a holistic development approach which uses all tools available
to evaluate racebike modifications and assess their influence on the performance.
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Figure 1.1: Racetrack data with identification of longitudinal and lateral riding
limits. The figure shows also a typical, constant wind tunnel speed of 60m/s and
the intersecting points with the bike speed measurement signal.

Testing on racetracks is mandatory as it is the only place where the rider can
operate the racebike in its real operational domain. Simulation and test benches
have advantages for single functionalities or subassemblies of the racebike, but
they cannot replace a real racetrack test. Tests on racetracks have a multitude
of additional challenges. The first challenge is the permanently changing environ-
mental conditions on a racetrack. Taking a typical track test day, like shown in
Fig. 1.2, there are a lot of different influences which change permanently during
one day. A big group of them are influenced by the weather and the time of day.
The environmental conditions include the ambient temperature, the humidity, the
air pressure, and the prevailing wind.

They are normally recorded at one point on the racetrack by a stationary
weather station. One measurement point is not representative for the environ-
mental conditions on the racetrack. Especially the wind can be completely differ-
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ent on different points on the racetrack due to the architecture of the racetrack.
Additionally, other riders on the racetrack have an influence on the wind field in
front of the racebike as well. Regardless of what is being tested, the boundary

track-/road

conditions

windspeed

mental 

strength of

the rider

air-

temperature
humidity

NOT DIRECTLY

MEASURABLE

MEASURABLE

laptime

A B

time

Figure 1.2: Typical track test day (by Christoph Feichtinger – own work).

conditions are never the same at two different times. To still get a valid result
of the tested configurations the single sensitivities of the changing environmental
conditions must be known. The approach of the work is to combine all measured
data of a racebike and the environmental conditions, combine them with a racebike
model and derive describable riding situations for the holistic system. A typical
riding situation could be for example the acceleration out of a corner on a long
straight until reaching the breaking point.

1.2 Aerodynamics of the Racebike and the Rider
Within the present work the focus will be on the interaction of riding and aerody-
namics of the racebike and the rider. Aerodynamics is a discipline of dynamics that
deals with the motion of air and other gaseous fluids and with the forces acting
on bodies in motion relative to such fluids [42]. There are different characteristics
for the motion of air as well as for the motion of these bodies. The combination of
different air and body motion characteristics lead to complex cases, like a moving
racebike in windy on-track conditions.

The numerical modelling or measurement of such complex cases is a major
challenge for engineers in motorbike, cycling and various sports industries. They
all want to develop products to increase efficiency in terms of time (lap time, seg-
ment time) or speed (top speed, acceleration). The best known representatives
of aerodynamics in terms of efficiency are the drag force and the drag coefficient
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[51]. Additional aerodynamic characteristics are lift and side forces. Depending on
where they act on the body the full aerodynamic characteristics need the descrip-
tion of the resulting aerodynamic acting point, hereinafter called the aerodynamic
center AC. The aerodynamic center is the point where the total sum of the pres-
sure and viscous forces acts on the body. Depending on the ratio of pressure to
viscous forces the aerodynamic center is the point where the total sum of flow field
forces acts on a body.

Alternatively, an artificial aerodynamic moment reference point, hereinafter
called the moment reference point M0, could be chosen in a convenient place on the
body of interest. The usage of the moment reference point requires the specification
of three acting moments as representative of the drag, lift and side force with
respect to the lever between the moment reference point and the aerodynamic
center. Fig. 1.3 shows a typical position of both characteristic points. Grün et
al. [27] used the mid-wheel base at ground level as moment reference point, which
is conventionally used for cars. Within the present work an alternative reference
point in the pivot point of the rear wheel swing arm is chosen, as it has less
movement with respect to the large range of bike pitch and roll movements. The
conventional, car reference point on the ground level is completely outside of the
racebike geometry for lean angle cases. Modern racebikes can reach lean angles
of up to 65◦. The third reference point in terms of aerodynamics is the upstream
reference point. This point is mandatory for the measurement and evaluation
of the upstream flow conditions. The measurements in the upstream reference
point are required for the input values of numerical flow simulations as well as for
the load cases in the wind tunnel and the validity criteria for on-road tests and
validations.

On real racebikes the upstream reference point can be for example the ram-
air intake or additionally mounted flow probes in the front area of the racebike.
Depending on the field of application the aerodynamic forces and moments are
acting as a resistance or a thrust force. For a car or a motorbike, the drag force,
which is acting against the direction of movement, by definition, is a pure resistance
force, while for a sailing boat the vector sum of side force and drag acting in the
direction of movement is the only thrust force driving the boat. Therefore, the
aerodynamic models are classified regarding to (1) the body motion itself, (2) a
gust field, in generalized form the environmental wind conditions and (3) a body
deformation, e.g., in the form of a waving sail.

Body Motion (vbike, ωbike) The body motion itself covers a riding situation
without any wind. This case hardly ever occurs. Nevertheless, even a ride in
completely windless environment can generate a dynamic wake area by the physics
of the aerodynamic flow field. In this case the wake is a gust field for the following
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Figure 1.3: The operational domain of a racebike showing the aerodynamic model
classification components (1) body motion, (2) gust field and (3) body deformation
(by Christoph Feichtinger – own work).

riders.

Gust Field (vwind) The gust field represents all kinds of wind conditions which
occur. Depending on the operational domain the gust field is a combination of
environmental wind effects and a gust field induced by other road users or road-
side obstacles. This leads to a gust field defined by different wind speeds, wind
directions and turbulence levels. A test in a wind tunnel or a numerical flow sim-
ulation is a special case of a gust field, where the test body under investigation is
stationary while the wind is blown against the test body.

Body Deformation (ṙ) The body deformation is divided into a stiff and a
flexible component. The stiff body deformation for its part covers all movements
of internal elements like suspension and steering components, the wheels, and the
human rider. The flexible part considers elastic movements of add-on parts like
the fairing, high-frequency helmet movements or the clothing of the rider which is
in permanent contact with the air in motion.

The above defined classification of aerodynamic models covers all types of tools
like numerical flow simulations, wind tunnel tests and racetrack tests. Actual
aerodynamic models cover mainly single criteria for varying characteristics. For
example, incident flow angles at a constant oncoming wind speed for a fixed body
orientation measured in a wind tunnel test. For the variation of a single criterion,
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this is quite easy. If a second criterion, like the body orientation is included in the
aerodynamic model, the input is already a two-dimensional matrix. If all the input
criteria would have a linear effect on the aerodynamic forces and moments acting
on the body, a variety of different criteria would be no problem as they could be
easily added by the principle of superposition. Unfortunately, aerodynamic effects
are anything but linear. Even the drag coefficient for a bluff body like a car or a
truck has a non-linear characteristic against the oncoming incident flow angle. If
the aerodynamic models are extended by additional input parameters like the pitch
angle or the driving speed, the combination of the single effects within the model
needs special calculations and interpolations between the single characteristics.
The effort to build and parameterize such kind of models is very high, as it needs
the measurement and prediction of single effects and a model validation of the
combined effects.

1.3 Research Aims
The research aim of the present work are tailored aerodynamic models. The mod-
els should be derived for defined riding situations at defined racetrack segments.
Therefore, the tailored aerodynamic models must cover different complexities like

• the relative racebike positions on the racetrack and

• the relative rider positions on the racebike.

The focus of the present work is on a generalized aerodynamic drag model, where
the lift and side force as well as the three aerodynamic moments are not neglected.

It is not a goal of the present work to develop new computational fluid dy-
namic models. It is also not planned to split the components of the generalized
aerodynamic models into a pressure, frictional, induced and interference part.

The present work aims to improve and simplify the handling and understanding
of complex body movements of a racebike with the involvement of aerodynamics.

Although motorsport is not the most important and sustainable thing in the
world, in motorsport people still compete with the aim of winning. This is pushing
athletes and engineers to peak performances. Therefore, motorsport applications
are still well suited to test new developments and show their full potential. A faster
motorcycle will not solve basic human problems, but a better understanding of real-
world aerodynamics can, in the long term, contribute to increase the efficiency of
private transport.
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Chapter 2

State of the Art

The state of the art gives a review on motorcycle racing with the evolvement of
racetracks and racebikes. The chapter gives an overview of motorsports aerody-
namics with special focus on racebike aerodynamics. Finally, aerodynamic devel-
opment tools and methodologies are presented.

2.1 Motorcycle Racing
There are many different types of motorcycle racing. The main types are road
racing, motocross, rally, trials, drag racing, ice racing, hill climbs and sidecars.
Road races are held on specially built racetracks or closed off road courses. In the
early beginnings of motorcycle racing specially built racetracks were not existing.
In 1904 the Fédération Internationale du Motocyclisme (renamed the Fédération
Internationale Motocycliste [FIM] in 1949) created the international cup, uniting
five nations: Austria, Denmark, France, Germany, and Britain (see Encyclopaedia
Britannica [59]). The races were held under the name Tourist Trophy, hereinafter
called TT. The first TT race took place in 1907 on the Isle of Man. After the first
world war many new road racing courses were defined and tourist trophies were
held all over the world. One of them was the Dutch Tourist Trophy in Assen. The
different racetrack courses of the Dutch TT are shown in Fig. 2.1.

The history of the Dutch TT started 1925 with a 28.4 km long street circuit
in the shape of a triangle between the towns of Borger, Schoonloo and Grolloo.
From 1926 the races were held on a 16.536 km rectangular shaped street circuit
through the towns of De Haar, Hooghalen, Laaghalen and Laaghalerveen. In 1955,
a new 7.705 km circuit was created which still used public roads but more closely
resembled a modern racetrack. From 1984 on the racetrack was again shortened
to a track length of 6.100 km. In 1992, the racetrack became a permanent enclosed
circuit. Since the last track layout change in 2006 the Dutch TT is held on the
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Figure 2.1: Different race track courses of the Dutch Tourist Trophy (by Christoph
Feichtinger – own work).

4.555 km long racetrack. The evolvement of the racetrack in Assen is a good indi-
cator of the increasing requirements to safety of the Motorcycle Federation FIM.
Motorcycle Grand Prix are nowadays exclusively held on closed road racetracks.

The most famous public road races on which people are still racing today are the
North West 200 or the Isle of Man. The death statistics between public road races
and races on closed road racetracks show two major things. First, that motorcycle
racing is still very dangerous and second, that nearly double the people have died
on public road racecourses in comparison to closed racetracks during official races.

Grand Prix Motorcycle Racing Grand Prix Motorcycle Racing marks the
premier class of motorcycle road racing events with purpose-built racing machines,
mainly prototypes. The premier class is split into three divisions: MotoGP, Moto2
and Moto3. All classes use four-stroke engines with a limited engine displacement
of 1000 cc (cubiccentimeter), 765 cc and 250 cc, respectively. The most successful
rider in Grand Prix history to date (2021) is Giacomo Agostini with 15 titles and
122 race wins. In the top-flight series, Agostini holds the title record with eight,
followed by active riders Valentino Rossi with seven and Marc Márquez with six.
The early years of Grand Prix racing saw several races at each event for various
classes. The classes were based on engine size, ranging from 50 cc up to 500 cc, and
extra classes for sidecars. Up till the end of the 1960s four-stroke engines dominated

10



Figure 2.2: The 1967 Suzuki 50 cc, 14 speed Grand Prix racebike ’Suzuki RK67’.

in all classes. In the late 1960s two-stroke engines began to take over the lead due
to advances in engine design and technology. The technological race has produced
several amazing developments like the Suzuki RK67, a 50 cc 14-speed racebike,
shown in Fig. 2.2. Therefore, in 1969 the FIM introduced new rules, restricting
all classes to six gears and to a maximum number of cylinders. This led to the
exit of numerous factory teams. Until the re-entry of Yamaha and Suzuki in 1973
and 1974, MV Augusta was the only remaining factory team in the premier class
of Motorcycle Grand Prix racing. Giacomo Agostini won seven consecutive 500 cc
championships with MV Augusta in that Period. Over the next years the smaller
classes were sorted out or replaced by new classes. The top class of Grand Prix
racing allowed a maximum displacement of 500 cc between the mid-1970s through
2001, regardless of whether the engine was a two-stroke or a four-stroke engine.
Consequently, all championship winning racebikes were two-strokes in this period.
In 2002 the rules change to ban two-stroke engines in the premier class, while the
smaller classes still allowed two-strokes with 125 cc and 250 cc, respectively. The
year 2010 marks the last major rule change, resulting in the actual race classes
MotoGP, Moto2 and Moto3.

Moto2 class The Moto2 class is the middle class of the FIM motorcycle Grand
Prix world championship. Engines are exclusively supplied by Triumph. The 765 cc
inline-three cylinder, four-stroke engine has a peak power of around 140 bhp. The
bikes have a power to weight ratio of approximately one kg/bhp, reaching a top
speed of up to 300 km/h. The electronics and the tires are limited und supplied
by FIM-sanctioned producers Magneti-Marelli and Dunlop, respectively. German
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motorcycle manufacturer KALEX engineering GmbH is the most successful man-
ufacturer of the Moto2 class, winning nine of the last ten Moto2 world champi-
onships, with nowadays successful MotoGP riders Johann Zarco, Stefan Bradl, Pol
Espagaro, Tito Rabat, Franco Morbidelli, Francesco Bagnaia, Alex Marquez and
Enea Bastianini. KALEX supported the present work with measurement data
from the 2019 Moto2 race in Aragon. For reasons of secrecy, the name of the rider
is not mentioned here.

2.2 Motorsport Aerodynamics
In the early years of the automobile, aerodynamics played a minor role. Due to
bad roads and low speeds, the benefits of aerodynamics were simply not needed.
Only the expansion and improvement of the road network brought aerodynamics
into the interest of vehicle developers. The goal was to improve the top speed for
a given, limited engine power. In other words, the goal was a drag reduction of
the bulky shapes of these times. Early attempts to apply aerodynamics to road
vehicles were carried out by Kamm [33] and Klemperer [34] between 1922 and
1934. They transferred shapes from aeronautical and marine projects, resulting
in unusual vehicle shapes compared to the state of the art at these times. The
aerodynamic vehicle shapes were not accepted by the buying public. Perhaps these
forms were ahead of their time, the revolutionary aerodynamic vehicles could not
achieve a breakthrough. Therefore, it took until the two oil crises of the 1970s to
bring aerodynamics back into the public interest of the automotive world. This
time with the great pressure of improving fuel economy. Since then, the drag
coefficients of production cars have been significantly reduced. The aerodynamic
drag coefficient is defined as

cD =
D

qdynAx
, (2.1)

with the drag force D, the dynamic pressure qdyn = ρ/2 v2 and the projected area
Ax. Driven by a customer demand of ever larger vehicles, the projected surface
area has also grown considerably. This results in lower drag values, although the
crucial drag force is growing. Therefore, a better comparable measure is the drag
area, denoted as

cD Ax =
D

qdyn
, (2.2)

which contains the size of the vehicles. Other aerodynamic measures like the
lift or cross wind behaviour are of importance for production vehicles as well.
The aerodynamic focus of lift forces in series development is largely on safety
and stability. The focus of the drag force in series development is related to fuel
economy and top speed.
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Downforce in Motorsports In car racing the major criteria to increase the
corner speed is downforce. In 1970 Formula One teams experimented with first
downforce generating devices in the form of high mounted wings above the front
and the rear axle. In 1977 the Lotus ’78 was the first Formula One racing car that

Airflow
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Nozzle area

Diffuser area

Rubber side skirt

Rubber side skirt

decreases
Air pressure

increases← →

Front Wing

Rear Wing
Ground Effect Section

Ground Effect Section

Figure 2.3: Downforce generation on the Lotus ’78 (by Christoph Feichtinger –
Own work, according to MagentaGreen [40]).

uses ground effect to generate downforce. This was achieved by integrating an
inverted wing profile into the overall vehicle concept. Additionally, mounted front
and rear wings helped to increase the downforce even more. The wings were also
used to change the aerodynamic balance – the equilibrium between the downforce
on the front wheels and the downforce on the rear wheels.

In a simplified case, without brake or drive torques, the influence of downforce
to the corner speed can be estimated by the equilibrium of forces, denoted as

µlat (mg − L) =
mv2

rc
, (2.3)

where µlat is the required lateral tire friction coefficient, L is the lift force, m is the
mass of the vehicle and rc the actual turning radius. The lift force is defined as

L =
ρ

2
cLAxv

2 , (2.4)

where cL is the lift coefficient. The lift is pointing upwards. The term downforce
used here means a downward acting force. Thus, the downforce coefficient is the
negative lift coefficient.

The Performance Envelope of a Racecar The acceleration capacity of a
racecar in longitudinal and lateral direction can be visualized in the performance
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Figure 2.4: The performance envelope or g–g–v diagram for a racecar a) with and
b) without downforce (by Christoph Feichtinger – own work).

envelope or g–g–v diagram. Fig. 2.4 shows the performance envelope with and
without downforce. The performance envelope without downforce has approxi-
mately a cylindrical shape except the decreasing longitudinal acceleration capac-
ity due to increasing driving resistance forces. The performance envelope with
downforce has the shape of a funnel. The limitation is the lateral and longitudinal
tire friction coefficient. The best performance can be reached when the racecar is
operated on the boundaries of the performance envelope.

Downforce on Four– and Two–Wheelers Fig. 2.5 shows concepts of down-
force generation on four- and two-wheelers and the resulting maximum speeds
for constant velocity cornering. Subfigure d shows the maximum possible corner
speed, based on Eq. 2.3, for a varying turning radius rc and for lift coefficient values
cL between 0 and −2. In any case, the maximum possible corner speed increases
with the turning radius. For higher downforce coefficients, the maximum corner-
ing speed increases steeply, especially for larger turning radii. At a turning radius
of 300m the maximum corner speed with a lift coefficient of cL = −2 is nearly
double the corner speed for the zero-downforce case. The corner speed turning ra-
dius relation holds for a four-wheeler shown in subfigure a, and a two-wheeler with
a tilting wing displayed in subfigure b. A tilting wing assumes an always road-
parallel wing, and therefore a downforce generation normal to the road surface
plane. This is more a theoretical consideration than a practical development.

The more practical and allowed approach for a racebike is a fixed wing, shown
in subfigure c. The wing leans with the bike, splitting up the downforce into a
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Figure 2.5: Downforce generation for (a) a four-wheeler, for (b) a two-wheeler
with tilted wing and for (c) a two-wheeler with fixed wing concept. (d) shows the
maximum possible corner speed vs. the turning radius rc for different lift coefficients
cL = 0, −1 and − 2 for the concepts (a) and (b). (e) shows the possible corner
speed vs. the lean angle φ for the fixed wing concept. (f) and (g) show the influence
of real tire geometry and the rider in hanging off. (h) shows a zoom section of
(e) with the positive and negative influence of lean angle changes (by Christoph
Feichtinger – own work).

vertical and a lateral component. For the fixed wing, Eq. 2.3 have to be extended
by the lean angle components of the downforce, written as

µlat
(
mg−L cosφ︸ ︷︷ ︸

vertical

)
=
mv2

rc
−Lsinφ︸ ︷︷ ︸
lateral

. (2.5)

The vertical component −L cosφ still increases the tire contact force and allows
higher lateral tire forces and therefore, corner speeds. The lateral component
−Lsinφ pushes the bike outwards. With reference to Eq. 1.1, the maximum
lean angle can be calculated for a given lateral tire friction coefficient. Fig. 2.5 e
shows the corner speed needed for the racebike in equilibrium cornering conditions
against the lean angle.

Subfigure f shows the influence of a real tire geometry shape on the lean angle,
where φ is the lean angle of the racebike, φi is the lean angle through the real road
tire contact point and ∆φ is the lean angle increase. Considering the lean angle
increase due to the real tire geometry, subfigure h shows a negative effect on the
corner speed.
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Subfigure g shows the influence of the rider in hanging-off on the effective lean
angle φ. φi is the lean angle through the real road tire contact point and the
center of gravity position of the overall racebike and rider system. The lean angle
decrease is denoted by ∆φ. The effective lean angle decrease has a positive impact
on the corner speed, as can be seen in subfigure h on the upper left side. The
rider can easily control the effective lean angle by body movements. A fixed wing
cannot do that. Therefore, a low wing position is advantageous, as this generates
downforces with less disturbing roll torque.

In reality both effects, the real tire geometry and the hanging-off, appear su-
perimposed. To achieve an overall positive effect of a fixed wing on the corner
speed, the rider has to overcome at least the lean angle decreases due to the tire
geometry. In the shown lean angle range in subfigure h, the positive impact on
the corner speed is in the range of 2 to 4m/s.

The lean angle decreases due to hanging-off increases the vertical component of
the downforce and reduces the lateral component at the same corner speed. This
increases the vertical tire force. Therefore, the tire has more potential to transfer
longitudinal forces for acceleration or braking at the same corner speed.

Early attempts in the 1970s and 1980s to establish aerodynamic wings to race-
bikes can be seen in Fig. 2.6 b and d. Due to unknown reasons they were not
permanently used on racebikes – The assumptions are that

• the power was too low,

• the tire was able to transmit all longitudinal and lateral forces in more riding
situations than today, and

• that the aerodynamic devices generated too much drag.

There might have been an advantage in corner acceleration potential, but the top
speed loss was bigger. Thus, the wings obviously did not improve the overall
performance of the racebike at these times.

Over the years the engine power in the premier class of Grand Prix racing
increased up to 270 bhp. This results in the fact, that the winning factor for the
top speed of a MotoGP racebike on the limited straights of road racetracks is not
just the drag. Rather, the acceleration is important.

Ducati was a pioneer in modern racebike aerodynamics. In 2016 they reintro-
duced perfectly designed wings into the MotoGP world championship. The result
was that they were nearly unbeatable in acceleration throughout the whole sea-
son. Nevertheless, an overall advantage on the lap time was not always visible.
Thus, Marc Marquez with a Honda, without wings won the world championship
this year. Andrea Dovizioso finished 5th in the world championship as best Ducati
rider.

16



a

Copyright © 2020 KTM Sportmotorcycle GmbH

Copyright © DORNA 2020. All Rights Reserved

b

c d

Figure 2.6: Examples of Grand Prix racing motorcycle downforce devices. a)
Honda RC213V and Ducati GP19 from 2019 [14], b) Rodger Freeth and his concept
’Aerofoil Vitko TZ750A’ from 1977 [61], c) KTM RC16 from 2019 [35] (aerody-
namic design by the author) and d) Barry Sheenes’ Suzuki RG500 from 1979 [58].

In motorcycle racing, a lot happens in the mental performance of the riders.
Professional racebike riders always want to be at the pulse of time and want to try
out new things. So, it happened that all the teams entered the pre-season tests
2017 with wings. Wings have not triggered a revolution in motorcycle racing like
the one in automobile racing in 1977 at this time. But nevertheless, they are a
fixed part of the premier class of motorcycle racing since 2017. Actual downforce
generating devices on racebikes are shown in subfigures 2.6 a and c.

Soon after, the smaller classes wanted to transfer the generation of downforce
to their racebikes. The FIM immediately banned all kinds of downforce gener-
ating devices for the smaller classes to save development costs and to keep the
competition simple.

Longitudinal Racebike Aerodynamics The biggest challenge of modern Grand
Prix racing bikes is to put the engine power on the road. An effect when too much
power is applied to the rear wheel is the lifting of the front wheel – a so called
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Wheely. From a performance point of view the lifting of the front wheel during
acceleration, means that available engine power is transferred into a vertical ac-
celeration instead of a wanted longitudinal acceleration. Wings mounted in the
front area of the racebike help to keep the front wheel on the track and improve
the acceleration. Additional advantages of the wings are a better stability in high-
speed sections and therefore, a better preparation for braking manoeuvres. To
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Figure 2.7: Longitudinal racebike aerodynamics (by Christoph Feichtinger – own
work).

understand the principles of downforce on a racebike Fig. 2.7 shows a simplified
representation of the aerodynamic forces acting on a racebike. The drag force and
the overall lift force are acting in the aerodynamic center AC. They generate a
pitching moment about the rear wheel contact point which is lifting the front of
the racebike. Therefore, when talking about downforce on racebikes it means front
lift avoidance. Front lift can be reduced by the general shape of the racebike or
by Add-on parts like wings.

The wing position is quite sensitive to the overall performance in terms of front
wheel lift and overall drag. Additional restrictions for the wing positions and shape
are design space limitations as well as the necessary lean angle freedom. Saying
this, the reduction of the front wheel lift by an optimization of the general racebike
layout and design would be also an efficient way from an overall performance point
of view.

Influence of the Rider The riding style describes the specific riding technique
of racebike rider. This means the specific movement of the rider on the racebike in
different riding situations. Fig. 2.8 shows different riding situations. They show
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Figure 2.8: Racebike riding situations. a) braking with left foot facing out, b)
change of direction, c) cornering situation, d) acceleration with body moved for-
ward, e) top speed position and f) various riders during a change of direction.

the permanent movement of the rider on the racebike. The pictures illustrate
the fact that the rider has an enormous influence on the riding dynamics of the
racebike. The following list briefly describes the most important riding situations.

• On a long straight line the rider tries to make himself as small as possible
to keep the aerodynamic drag as low as possible (see Fig. 2.8 e). The aim is
maximum top speed.

• During straight line braking, the rider lifts himself up to give the air the
maximum possible surface area to attack. This increases the drag force.
A high drag force in the braking phase supports the deceleration and thus
ensures a shorter braking phase. This means the motorcycle can go faster
for a longer time.

• During braking into a corner, the rider lifts himself up and stretches the
foot facing to the curve outwards (see Fig. 2.8 a). This gives the rider an
additional braking drag force and helps him to go into the corner.
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• During cornering the rider is leaning his body into the curve to move the
center of gravity in lateral direction into the center of the curve – This riding
situation is called hanging-off (see Fig. 2.8 c and f). With this the resulting
center of gravity of the racebike and rider system is also moving into the
direction of the center of the curve. This results in a lean angle which is
bigger than the lean angle of the racebike itself. Thus, the tires can transform
more longitudinal forces for the same cornering radius. This improves the
longitudinal acceleration and deceleration capability and therefore the corner
segment time.

• During acceleration out of a corner, the rider tries to bring the racebike as
soon as possible into an upright position. The rider is using his own weight
to change the balance between the front and the rear wheel to avoid wheely
(see Fig. 2.8 d).

Aerodynamic related Areas There are some aerodynamic related areas which
are mandatory for the operation of a racebike, like the cooling and the engine air
intake. Some lower priority areas like the exhaust gas flow, the ergonomics or
local flows and turbulences around the rider are important for the operation of the
racebike as well, but they are not safety critical. The relation between the cooling
air flow and the drag area is shown in Fig. 2.9 b. It shows two different cooling
inlet openings. The small cooling inlet has a lower air volume flow, resulting in
a lower drag but a higher coolant temperature. The bigger inlet increases the
air volume flow, resulting in a lower coolant temperature but a higher drag area.
Fig. 2.9 a shows the positive impact to the engine performance, by using the total
pressure of the oncoming upstream speed as Charger. This type of engine charging
is called the Ram Air Effect.

2.3 The Racebike State on a Racetrack
The lean angle and the speed of the racebike are the leading quantities to de-
scribe the racebike state on a racetrack. Therefore, the speed – lean angle plot is
introduced here.

Speed – Lean Angle Plot Fig. 2.10 shows a generic speed – lean angle plot
with the speed range of up to 300 km/h for Moto2 racebikes. The plot contains
the following information.

• Maximum possible lean angle (tanφbike = µlat) as limitation of the
lateral tire friction coefficient – horizontal blue lines.
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• Design space limitation for the lean angle – horizontal green lines. This is
the mechanical limit where any part of the racebike is touching the ground.
Usually this is the footrest or the lower part of the swingarm. The maxi-
mum lean angle from the design space limitation must be bigger than the
maximum lean angle from the lateral tire friction coefficient. Only then,
the racebike can be moved at the dynamic riding limit without touching the
ground – which normally results in a crash.

• Iso-lines for constant cornering radii between rc = 10 · · · 500m for a
given, constant lateral tire friction coefficient of µlat = 1. The Iso-lines are
calculated using the simple relation between the lean angle and the racebike
speed tanφbike = v2bike/(rc g). They show the maximum possible lean angle
φbike for a given corner radius rc and a given racebike speed vbike.

• The motion profile of a track segment when the racebike is accelerating
out of a left-hand corner onto a long straight is shown in the lower right
corner of the plot – red line. The marked points A, B and C are also marked
in the main plot. The motion profile shows the individual speed – lean angle
states along this track segment.

• In the shown motion profile the racebike starts at a lean angle of −55◦. In
the first part the racebike is raised at moderate longitudinal speed changes.
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Figure 2.10: Speed – lean angle plot with lean angle limits of the lateral tire friction
and by the available design space. The diagram shows Iso–lines for a constant
cornering radius relation between the lean angle and the racebike speed. The red
line shows a typical motion profile on a track segment when accelerating out of a
left-hand corner onto a long straight (by Christoph Feichtinger – own work).

Then the racebike is rolling slightly in the opposite direction (+20◦ point
B), before bringing the racebike in the final upright position. The section
between points B and C shows mainly a longitudinal acceleration with small
lean angle changes.

• The derivative of the lean angle according to the speed, is defined here. It is
denoted with the quantity chi χ, just that χ = dφ/dv. The new introduced
derivative quantity χ shows the slope of the motion profile in the speed
– lean angle plot.

– Chi values of χ = ±∞ show a pure lateral movement of the racebike
– Rolling of the racebike without any speed change.

– Chi values of χ = 0 show a pure longitudinal movement of the
racebike – Accelerating or braking without any lean angle change.

• It is task of the rider to optimize chi χ, such that the combination of side
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forces and longitudinal forces on the grip level leads to a minimum lap time.

2.4 Aerodynamic Development Tools
Actually, there are three main aerodynamic development tools which are used in
the automotive industry and in various sports and motorsports applications:

• numerical flow simulations,

• wind tunnel testing and

• road or track experiments.

In the past, alternative experimental methods were carried out by towing a model
in still water. The so-called towing-tank technique was used among others by
d’Alembert [3] in 1752. Another experimental method to determine the resistance
of a body moving in a fluid was e.g. a swirling arm as used by Robins [54]. The
method of the swirling arm was still used in modern times. The biggest disadvan-
tage is that after a certain time the air begins to rotate and therefore the relative
speed can no longer be clearly determined. Further interesting experimental meth-
ods at the beginning of the twentieth century were carried out by Newton [44] and
Eiffel [18]. They dropped spheres and flat plates from the dome of St. Pauls’
Cathedral and the Eiffel tower, measuring the time as a function of the displace-
ment. The derived acceleration adrop was compared with the acceleration due to
gravity g. The drag force was then calculated using the following equation

D = m (g − adrop) , (2.6)

with m as the mass of the dropped body. Some of these methods are still in use,
but not widely applied or used by the aerodynamic community.

In the next paragraphs, the current tools are explained in more detail. The
description of the numerical flow simulation is mainly adapted from previous work
by Feichtinger [19].

Numerical Flow Simulations Numerical flow simulations or computational
fluid dynamic methods, hereinafter called CFD methods, are based on solving
the fundamental equations of fluid motion. The basic equations of fluid motion
describe the conservation of mass, momentum, and energy. Assuming isother-
mal flow, the conservation of energy can be disregarded, so that the flow is only
governed by the differential balance equations of mass and momentum, generally
termed Navier-Stokes equations. The conservation principle follows the axiom:
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Mass cannot neither be generated nor destroyed.

This implies that the temporal change of mass inside a given volume must be
balanced by the mass fluxes across the volumes surface. The corresponding balance
equation reads in index notation

∂ρ

∂t
+
∂(ρui)

∂xj
= 0 , (2.7)

where ρ is the density, and ui represents the component of the velocity vector into
the direction xi, wheras xj denotes the derivative in the directions j = x, y, z for a
cartesian coordinate system. The conservation of momentum basically represents
Newtons’ second law stating the axiom:

The time rate of change of the momentum of a body is equal to the sum
of all applied surface and body forces.

The corresponding differential conservation equation reads

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ρfi +

∂τij
∂xj

, (2.8)

where fi is the body force per unit mass into the direction xi, p is the pressure
acting in all directions, and τij is the viscous stress tensor. The viscous stresses
are induced by the deformation of the fluid elements in motion. To solve the
fluid motion equations two basic concepts can be distinguished: The Large Eddy
Simulation method (LES), and the statistical model generally termed Reynolds-
Averaged Navier-Stokes (RANS) models. The third possibility, a model-free ap-
proach of direct numerical simulation, which directly resolves all relevant scales of
turbulent motion, is discarded in current applications due to its prohibitively high
computational costs.

CFD methods are used to simulate the acting forces on single parts or the
complete system as well as for a detailed analysis of the local flow fields, e.g., by
visualization with streamlines or turbulence quantities. CFD methods have the
advantage to replicate the same boundary conditions. Therefore, CFD methods
are well suited to sort out general design principles by parameter studies. To
ensure the meaningfulness and validity of the simulation forecasts, various vali-
dation, and verification setups for typical geometries like a sphere [37] or generic
vehicle shapes like the Ahmed body [2] are well established. Most of the validation
and verification projects were carried out against wind tunnel measurements. In
general, no numerical flow simulation covers a generic flow situation for all types
of geometries and for the complete Reynolds number und turbulence level range
which might occur. Therefore, the CFD models always need a preliminary de-
scription of the operating environment of the test body, including the important
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upstream flow conditions. Depending on the expected flow field and vortex shed-
ding behaviour the simulation must be set up based on best practice examples like
presented by Drage et.al. [15], or by the experience of the simulation engineer.
There are many possibilities for tuning the model, like different grid sizes, different
turbulence models and different solver settings. The tuning parameters are usually
chosen to replicate the occurring flow effects and the measured flow variables from
the wind tunnel.

Wind Tunnel Testing The wind tunnel is the classical test rig for air flow
experiments. In contrast to most real-life conditions, the test body stands still,
and the fluid moves along the test body. The fluid is generally driven by a blower
to obtain a certain flow velocity. For aerodynamic measurements of road vehicles,
this implies that the reference system of the test body has changed, because the
fluid is moving and the test body stands still, while the test body is moving.
The wind tunnel design should always guarantee well controlled test conditions
in the test section to ensure reliable results. There are several approaches to
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Nozzle

Test section

(open/closed)

Diffuser

Fan Buffle plate

Fan FanAnti-turbulence screen

Filter

Test section

(open/closed)

Nozzle Diffusera b

c

Filter

Figure 2.11: Wind tunnel types (Nitsche [46])

design a wind tunnel. Fig. 2.11 shows three different types of wind tunnels and
their basic elements. Subfigure a show an open jet channel, subfigure b an Eiffel
channel, and subfigure c a closed loop facility, often also called a Göttingen type
wind tunnel. Latter one is used most nowadays, as this design has advantages
in terms of energy consumption and flow quality with the drawback of higher
installation costs and space requirements by the return channel. It is important
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to be aware that also the wind tunnel is not the reality. The main reason for
that is the turbulent flow regime, characterized by scale providing quantities like
the turbulence intensity and the turbulence length scale. Details on the scale
providing quantities are given in the Appendix C. The turbulence intensity and
the turbulence length scale of the flow in the test section can be influenced by
different anti-turbulence screens. The anti-turbulence screens divide the large-scale
vortices generated by the fan into small ones. Nowadays wind tunnels are mainly
designed towards low turbulence levels of Tu ∼ 0.1 · · · 0.2%. Wordley et. al. [62]
presented on-road measurements of the turbulence intensity for a freeway with
road obstacles. The on-road measurement shows turbulence intensities up to Tu =
18%. Thus, the on-road measurements show much higher turbulence intensities
compared to the turbulence intensities in actual wind tunnels. Therefore, the
operational domains are generally different, although the upstream flow angles
and the velocity magnitudes are similar. This must be taken into account for the
validation of wind tunnel results with real track measurements.

Track Experiments Wind tunnel measurements deliver directly forces and mo-
ments, while real racetrack riding situations deliver various measurement quanti-
ties, but generally not the aerodynamic forces and moments. Additional measure-
ments on the test object can help to correlate real track measurements to wind
tunnel measurements or CFD simulations.

Common tools are surface pressure tapings or a flow visualization with fluores-
cent paint, colloquially called flow-vis. It is a mixture of a fluorescent powdered
dye suspended in paraffin/kerosine oil. The oil has a low viscosity allowing it to
flow over the surfaces before drying and revealing the direction and state of flow
on the surface. The pictures captured after a constant speed drive with flow-vis
or the surface pressure readings for defined test speeds can be used for a detailed
correlation between track and wind tunnel measurements as well as for surface
streamline pictures from numerical flow simulations.

2.5 Aerodynamic Development Methodology
Classical development methodologies in the engineering world are:

• Agile development methodologies like Scrum or Kanban. They are based
on iterative development steps. The requirements and solutions are worked
on by self-organizing cross-functional teams.

• Rapid prototyping development methodology. It is based on an iterative
development and the rapid construction of prototypes. This method delib-
erately avoids long advance planning.
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• Waterfall development is a sequential development approach. The devel-
opment phases are requirements analysis, system design, implementation,
testing, integration, deployment and maintenance. The development phases
are sequential phases with some overlap and feedback control loops.

• Spiral development methodology combines some key aspects of the waterfall
methodology and the rapid prototyping methodology. The focus of this
methodology is on the risk assessment. The project risks are minimized by
breaking a project down into smaller segments. Therefore, changes are easier
to implement during the development process. This also reduces the risk of
the overall project.

• V-Model is a graphical representation of a systems development lifecycle
with reference to VDI [32], shown in Fig. 2.12. The left side of the ’V’
represents the project definition. The right side of the ’V’ represents the
project test and integration. The verification and validation is done at the
different system levels (list from low level to high level).

– Integration tests against detail design.
– System verification and validation against the system requirements and

architecture.
– Operation and maintenance against the concept of operations.
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Requirements and 

Architecture

Detailed

Design
Integration, Test 

and Verification

Implementation

Operation and 
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and 
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Time

System Verification

and Validation

Figure 2.12: The V-Model of the systems engineering process (VDI [32]).

The development of a racebike is most like the rapid prototyping development
methodology – The constant search for the smallest improvements and the im-
mediate realization. Fig. 2.13 shows the aerodynamic development process of a
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Figure 2.13: Aerodynamic development process of a MotoGP factory racing team
from author experience (by Christoph Feichtinger – own work).

MotoGP factory racing team from author experience. New design ideas are first
drawn with Computer Aided Design (CAD) Methods. The CAD geometry of the
whole racebike and the rider is then prepared for the following CFD simulation.
The CFD simulation is used for pre-selections and detail-studies of the design
ideas. The best designs are built as prototypes for windtunnel tests. The wind-
tunnel is used for a check of the pre-selected design ideas. The wind tunnel is also
used for the optimization of the racebike geometry to the rider and vice versa. The
final check of new design ideas is made on the racetrack before the new parts are
released for racing.

In racing, the straight forward development process from Fig. 2.13 is a loop
or, if adding the development progress, a spiral. Fig. 2.14 shows the aerodynamic
development loop and spiral.

Validation The development process needs a permanent validation between
CFD, windtunnel and racetrack. A major challenge in the validation of the single
development steps is that every development tool calculates or measures different
quantities.

• In CFD simulations aerodynamic forces and moments acting on the racebike
and rider are calculated.

• In windtunnel test aerodynamic forces and moments acting on the racebike
and rider are measured.

• On racetracks lap times, speeds, suspension strokes and some more quan-
tities of the racebike are measured. Forces can be measured on selected
components (e.g. the wheel forces and torques).
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Therefore, the forces and moments must be converted into lap times and speeds
or vice versa for comparability. A common approach are vehicle dynamics models
which use the forces and moments from CFD simulations and windtunnel tests for
lap time simulations. This approach is well established in car racing. Lap time
simulations for car racing have a high validity and can accurately predict the lap
time. Lap time simulations for racebikes do exist, but they are not as accurate
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Figure 2.14: Aerodynamic development tools – bike aero tool (by Christoph Fe-
ichtinger – own work)

as for racing cars. This is mainly due to the great influence of the rider and the
much higher complexity of the riding dynamics.

• The rider can make a lap time difference of 1− 2 s through its willingness to
take risks.

• The rider position on the racebike constantly changes and has a big impact
on the acting weight, inertia and aerodynamic forces.

• The vehicle is stabilized by gyroscopic forces and includes lean angle dynam-
ics.

• The center of gravity is typically much higher, leading to large wheel force
variations and pitching dynamics.

The present work aims at a development tool, which is used in the center of the
aerodynamic development loop and which directly covers all disciplines. The tool
is named bike aero tool. The tool should be used

• to validate CFD simulations and windtunnel tests against each other,

29



• to validate CFD simulations and windtunnel tests against racetrack mea-
surements,

• to check the plausibility of racetrack measurements and

• to monitor and track the development progress.

For future applications, the complex vehicle dynamics model of the racebike from
the bike aero tool can be used for vehicle dynamic simulations. In the long term,
the model and the tool can be the base for lap time simulations of racebikes.
The bike aero tool is not a replacement of a single aerodynamic development tool.
Rather, it is a meaningful and necessary addition.
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Chapter 3

Theoretical Framework

The theoretical framework gives an overview of the mechanics of solid bodies,
describes the operational domain of a racebike and gives a more detailed insight
into motorbike aerodynamics. Finally, the theoretical framework for tire modelling
is presented.

3.1 The Mechanics of Solid Bodies
The mechanics of solid bodies is a branch of mechanics that deals with the investi-
gation of movements of bodies and with the forces resulting from those movements.
A body is defined as a continuum filled with matter (mass).

3.1.1 Frames of Reference and Axis Systems
Frames of Reference The description of kinematic quantities like the position
of a body, the velocity or the angular velocity requires a frame of reference. The
choice of the frame of reference is initially completely arbitrary. For a racebike,
two distinct frames of reference are useful:

• An inertial Earth frame of reference, which is fixed to the Earth (Tab. 3.1
a). Knowing that also the earth itself is in permanent motion around the
sun, nevertheless the earth fixed frame of reference is handled as a inertial
frame of reference.

• The non-inertial body frame of reference, which is fixed to the racebike (Tab.
3.1 c). Moving frames of reference are used for different observation views.
Especially the treatment of the environmental wind conditions on a body in
motion requires a change of the frame of reference.
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Axis Systems The orientation of the axis system is used to quantify any vector
or tensor. The choice of the axis system orientation is arbitrary. If the body has a
huge movement range and is rotating around different axis, then two axis systems
are naturally obvious:

• Earth or inertial axes Iex, Iey, Iez fixed to the ground (Tab. 3.1 b). The
Earth axes are non-rotating, assuming that the earths’ rotation is neglected.

• Body axes bex, bey, bez fixed to the body (Tab. 3.1 d). These axes translate
and rotate along with the body relative to the inertial axes.

Tab. 3.1 shows that the frame of reference and the axis system are two distinct
concepts. The index of an arbitrary vector on the lower left denotes the axis
system. The frame of reference is not specified separately in the vector notification.

Table 3.1: Racebike moving on a racetrack at velocity vbike as seen in the earth and
body frame of reference and the stationary and moving axis systems.

(a) Observer in earth frame of
reference

(c) Observer in body frame of
reference

𝒗𝑏𝑖𝑘𝑒 𝒗𝑢𝑠=−𝒗𝑏𝑖𝑘𝑒

(b) Earth axis system I (d) Body axis system b

𝐼𝑒𝑥𝐼𝑒𝑦

𝐼𝑒𝑧

𝐼𝒗𝑏𝑖𝑘𝑒
𝑏𝑒𝑧

𝑏𝑒𝑦
𝑏𝑒𝑥

𝑏𝒗𝑏𝑖𝑘𝑒

The velocity Ivbike of the racebike is defined in the earth frame of reference, in
the earth axis system. The angular velocity vector bωC of the chassis is defined in
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the earth frame of reference, in the body axis system. The upstream flow vector
bvus = −bvbike which equals the racebike reference speed for completely wind-
free conditions is defined in the body frame of reference and in the body axis
system. All relative vectors e.g., the position of the wheel points with respect to
the racebike reference point C1 are expressed in the body frame of reference in
body axes.

3.1.2 Kinematics of Relative Motion
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Figure 3.1: Kinematics of relative motion of a) a generic body and b) a racebike
(by Christoph Feichtinger – own work).

Referring to Fig. 3.1 a, the absolute position vector of a point of interest on the
body P is defined as

rP = rC + rCP , (3.1)

with rC as the absolute position vector of the body reference point C and rCP
the relative position vector of the local point P . Typically, the absolute position
vector is defined in the inertial frame of reference I whereas the relative position
vector is often defined in the moving frame of reference b. In this case the local
position vector brCP has to be transformed into the inertial frame of reference I
as follows

rCP = AIb brCP , (3.2)

with the transformation matrix AIb defining the orientation of the body. If no
indexing is specified, the frame of reference here and in the following is the inertial
frame of reference.

In the context of a racebike, the local position vector (see Fig. 3.1 b) is used
in different ways, e.g.
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• The local position vector CrC1R is for example a fixed geometric position of
the point R in the chassis axis system.

• The local position vector CrRP is the simplified representation of the front
suspension stroke.

• Therefore, the local position vector CrC1P = CrC1R + CrRP contains the
relative movement of the front suspension stroke.

The transformation matrix for the Euler angles according to the common automo-
tive standard axis notation (DIN ISO 8855) from the inertial frame of reference I
into the body fixed frame of reference b, is defined as

AIb = RT
x (φ)R

T
y (θ)R

T
z (ψ) , (3.3)

where the order of rotations is x − y − z with φ as the lean angle, θ as the pitch
angle and ψ as the yaw angle. Using the elementary rotations, the transformation
matrix can be written as

AIb =

cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ
cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ
−sθ sφ cθ cφ cθ

 . (3.4)

The angular functions sinφ, cosφ, sinθ, cosθ and sinψ, cosψ were abbreviated
by sφ, cφ, sθ, cθ and sψ, cψ. The transformation matrix is converted into the
corresponding unit quaternion representation using the method of Bar-Itzhack [4],
written as qIb = rotm2quat(AIb). A quaternion number is a four-part hyper-
complex number represented in the form of

q = e0 + e1 i+ e2 j + e3 k , (3.5)

where e0···3 are real numbers, also called the Euler parameters and i, j, k are the
basic elements, satisfying the equation

i2 = j2 = k2 = ijk = −1 . (3.6)

Thus, the four Euler parameters can be written in vector notation as

pE =
{
e0 e1 e2 e3

}T . (3.7)

The transformation matrix AIb can be alternatively represented as product of two
matrices

AIb = GIb L
T
Ib , (3.8)
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where GIb and LIb are defined according to Nikravesh [45] as

G =

−e1 e0 −e3 e2
−e2 e3 e0 −e1
−e3 −e2 e1 e0

 and L =

−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

 . (3.9)

There is an excellent textbook on the derivation of the angular velocity vector
using Euler parameters by Rill [53]. Without any further explanation here, the
angular velocity vector can be written as

Iωb = 2GIb ṗE and bωb = 2LIb ṗE , (3.10)

for the inertial frame of reference I and the body fixed frame of reference b, re-
spectively. With this the time derivative of the position vector rP is written as

vP =
drP
dt

= vC + vCP + ωb × rCP , (3.11)

with vC as the velocity vector of the moving body, vCP the relative velocity of
the local point P and ωb as the rotation-rate vector of the body. The latter term
ωb×rCP results from the rotation of the body around the body reference point C.
Alternatively, the velocity of the moving body and the velocity resulting from the
rotation of the body are often summarized into the guidance velocity vF . With
this, the velocity of the point P can be written as

vP = vF + vCP . (3.12)

The time derivative of Eq. 3.11 leads to the acceleration of the point P denoted
as

aP =
dvP
dt

= aC +
dωb

dt
× rCP + ωb × (ωb × rCP )︸ ︷︷ ︸

Guidance

+ aCP︸︷︷︸
Relative

+2ωb × vCP︸ ︷︷ ︸
Coriolis

, (3.13)

where the first term is the guidance acceleration, covering the acceleration of the
moving body, the acceleration due to angular velocity change and the centrifugal
acceleration of the local point. The second term covers the relative acceleration of
the local point P . The third term is the Coriolis acceleration.

3.1.3 Types of Constraints
There are different types of constraints for mechanical systems. Without con-
straints, a three-dimensional body in three-dimensional space can move without
any limitation of its position or velocity. One speaks of a body with 6 degrees of
freedom. As soon as only one of these degree of freedoms is restricted, the body is
called a constrained mechanical system. There are different types of constraints,
which can be formally expressed by mathematical equations or inequalities:
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• Geometric constraints are restricting the position in one or more directions.
An example for this is a pendulum, which has only one geometrical degree
of freedom, the swing angle.

• The freedom of movement of a body can be restricted by a velocity constraint.
An example for a Kinematic constraint is a skate blade on ice.

• A constraint without explicit time dependency is called a fixed or Sceleronom
constraint. The corresponding example is a pendulum.

• A constraint with explicit time dependency is called a floating or Rheo-
nomous constraint. An example is a sphere rolling down a moving inclined
plane.

• Holonomic constraints can be expressed as geometric constraints or as in-
tegrable kinematic constraints. An example is a rigid wheel rolling on a
two-dimensional plane (see Fig. 3.2 a).

• Non-holonomic constraints are not integrable kinematic constraints or
single-sided constraints. An example is a rigid wheel rolling in three- di-
mensional space on a plane (see Fig. 3.2 b).

Non-holonomic constraints are often constraints which are defined by mathemati-
cal inequalities. These forced-constraints often lead to differential-algebraic equa-
tions (DAE) when describing multibody systems. DAE means that in addition to
the differential equations, algebraic constraint equations must be fulfilled. Often
this leads to numerical difficulties. Within the present work this topic is especially
important for the kinematically correct description of the road-tire contact.

3.1.4 Forces and Force Groups
Newtons first law states that in an inertial frame of reference, an object either
remains at rest or continues to move at a constant velocity, unless acted upon by
a force [10]. The foundation of the mechanics of a single particle k is Newtons
second law of motion

Fk =
dpk

dt
= ṗk , (3.14)

where Fk is the total force acting on the particle and pk is the linear momentum of
the particle. The dot on pk indicates the time derivative of the linear momentum
of the particle. The linear momentum of the particle is denoted by

pk = mk vk , (3.15)
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Figure 3.2: (a) Holonomic constraint of rigid wheel rolling in a two-dimensional
plane. (b) Non-holonomic constraint of a rigid wheel rolling in three-dimensional
space on a plane.

with the mass mk and the velocity vk. A solid body is a system of N particles k.
When applying this law to a solid body, it is necessary to distinguish the acting
forces into external and internal forces acting on the particles k. The external
forces F

(e)
k are forces acting from outside to the system boundaries. The internal

forces F
(i)
k are forces between the particles of the system within the boundary.

Thus, the equation of motion for the kth particle is written as
N∑
j=1

′
Fkj + F

(e)
k = F

(i)
k + F

(e)
k = ṗk (k = 1, 2, · · ·, N) , (3.16)

where Fkj is the internal force on the kth particle due the jth particle. Under the
assumption that Fkj (like F

(e)
k ) is subject to the third Newtonian law, the forces of

the two particles k and j have the same magnitude and act in opposite directions.
The prime over the summation sign indicates that the term j = k must be excluded
from the sum. By summing the equation of motion Eq. 3.16 of all particles of the
system, it can be shown corresponding to Fung [24] that:

• The mass moves as if the sum of all external forces act on the whole mass
at the center of gravity.

• The time derivative of the total angular momentum around a defined center
of rotation is equal to the moment of the sum of the external force around
the same point.
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In the same way the kinetic energy of the system consists of two parts: the kinetic
energy concentrated at the center of mass plus the kinetic energy of motion around
the center of mass. The center of mass coincides with the center of gravity (COG).
One could say that any force applied to the body in the center of gravity results
in a linear acceleration of the body without an angular acceleration. An easy-
to-understand example is a falling sphere. The gravity force acts in the center
of gravity resulting in an acceleration of the body which equals the gravitational
acceleration g. Such a punctiform point of action is rarely occurring in nature.
There are rather spatially distributed forces, volume forces and area-distributed
forces, surface forces [49]. For engineering applications volume and surface forces
of single solid bodies are usually expressed by forces and moments in and around
a fixed point.

A classification of body forces can be done by

(1) internal and external forces,

(2) active and reactive forces and

(3) forces that do work and forces that do no work.

Internal forces are forces which are acting between single bodies of a multibody
system. External forces are applied from outside to the multi-body system. The
mechanisms of internal and external forces on a body within a multibody system
can be directly compared to a particle within a system from Eq. 3.16. Therefore,
the distinction between internal and external forces depends on the choice of the
system boundaries. A favourable choice of system boundaries can reduce model
complexity.

The active forces denotes all forces and moments from physical interactions
like springs, dampers, sliding friction, air resistance and electrical or magnetic
fields. Active forces tend to set a body in motion, that means these are mostly
external forces. The other type of forces are the reactive forces. They tend to
prevent the motion of the body due to constraints or supports.

The reactive forces between two rigidly connected bodies i and j do perform
mechanical work, Fijδri on the body i and Fjiδrj on the body j. Due to the
rigid connection Fijδri = −Fjiδrj holds and confirms that reactive forces do not
perform mechanical work from a overall system point of view. Nevertheless, the
reactive forces need to be calculated in some connections to calculate the active
forces, like for example the calculation of any friction forces with Amontons [8]
second law, written as FR = µFN , where µ is the coefficient of friction and FN the
reactive or contact force.
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Generalized Forces In practical applications the system usually consists of
several connected bodies (e.g. chain, motorbike multibody model, ...) as well as
different connecting elements (e.g. ball joints, linear bearing, pivot bearing, ...)
and force elements (e.g. springs, dampers, friction, aerodynamic drag, electrical
and magnetic fields, ...). The forces of constraints between the single bodies within
a multibody system are the reactive forces. They are not known a priori. There-
fore, they are unknown quantitates which increase the modelling and calculation
effort. In some cases, they are of no direct interest (e.g. the bearing forces of a
pivot joint). To overcome these problems, the Lagrangian formulation (see e.g.
Lanczos [36]) uses the principle of virtual work. The Lagrangian formulation uses
independent coordinates to calculate the virtual work at force or moment acting
points. Therefore, the active forces do perform work. The forces of constraint do
not perform any work and do not appear in the virtual work of the overall system.
The independent coordinates are used as generalized displacement coordinates.
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Figure 3.3: Generalized forces on a generic body and forces acting on a racebike
(by Christoph Feichtinger – own work).

The generalized displacement di is the result of the acting generalized force qi, just
that

di ∼ qi . (3.17)
Fig. 3.3 a show a generic body with linear (q1, q2) and angular (q3, q4) generalized
forces resulting in linear and angular displacements d1 · · · d4. In a general case the
generalized displacements can be expressed by the sum of the generalized forces
multiplied with the corresponding influence coefficients cij, written as

di =
n∑
j=1

cijqj (i = 1, 2, · · ·, n) . (3.18)

The influence coefficients cij define the magnitude of the generalized displacement
at i due to a generalized force at j. Fig. 3.3 b shows exemplary forces acting on a
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racebike. The aerodynamic lift force (L), the aerodynamic drag force (D) and the
aerodynamic pitch moment (N ) are acting in the defined reference point C1. The
weight force (mg) acts in the center of gravity (cog). These forces are not a priori
generalized forces. The forces must first be transferred to a generalized view. This
is done by using Jourdain’s principle, explained in the following section.

3.1.5 Equation of Motion
The equation of motion is derived based on Jourdains principle [53] as

M(y)ż = q(y,z) , (3.19)

where M(y) is the generalized mass matrix, ż the generalized acceleration vector
and q(y,z) denotes the generalized forces and moments vector. The mass matrix
depends on the generalized coordinate vector y and is defined as the sum of the
translational and rotational mass and inertias of the single bodies b as follows

M(y) =
n∑
b=1

{
∂Iv

T
0b

∂z
mb

∂Iv0b

∂z︸ ︷︷ ︸
translation

+
∂bω

T
0b

∂z
bTSb

∂bω0b

∂z︸ ︷︷ ︸
rotation

}
, (3.20)

where Iv0b is the velocity of the center of gravity, indicated by the index 0, defined
in the inertial axis system I and bω0b is the angular velocity vector defined in the
body axis system b. Both velocity vectors and their transposed vectors are derived
over the generalized velocity vector z. The mass of the body mb and the inertia
tensor bTSb contain the mass and inertia properties. The generalized forces and
moments include the active forces and moments as well as the apparent forces and
moments and the gyroscopic moments. The vector of the generalized forces and
moments is written as

q(y,z) =
n∑
b=1

{
∂Iv

T
0b

∂z

[
IF

(a)
b −mb I v̇

S
0b

]
+
∂bω

T
0b

∂z

[
bM

(a)
Sb − bTSb bω̇

S
0b − bω0b × bTSb bω0b

]}
,

(3.21)

with the active force IF
(a)
b in the inertial frame of reference and the active moments

bM
(a)
Sb in the body frame of reference. The last term in 3.21 denotes the gyroscopic

moments. The apparent accelerations I v̇
S
0b and bω̇

S
0b are calculated from the di-

rectional derivates of the translational and rotational velocity over the generalized
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coordinates and the time derivate of the generalized coordinate ẏ as follows

I v̇
S
0b =

∂Iv0b(y,z)

∂y
ẏ ,

bω̇
S
0b =

∂bω0b(y,z)

∂y
ẏ .

(3.22)

With the generalized mass matrix and the generalized force vector the generalized
acceleration state of the multibody system can be calculated from Eq. 3.19.

3.2 The Operational Domain of a Racebike
The racebike must deal with two external impact factors. The contact to the
ground, which is the mandatory requirement for the drive of a wheel driven object.
And the air environment that is generating pressure and friction forces on all
surfaces which are in contact with the air in any manner.

3.2.1 Racetrack Representation
The macroscopic racetrack is represented by a three-dimensional surface. An ex-
emplary racetrack is shown in Fig. 3.4. The racetrack is defined by the spine curve
ξ with the arc length s and the normal lateral offset n. The position of the spine
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Figure 3.4: Exemplary racetrack representation with local road surface patches εpi
(by Christoph Feichtinger – own work).

curve in the inertial frame of reference is given by the position vector rpi. The
position vector marks the position of the rear wheel contact point H4 on the race-
track surface in chapter 5 (From Measurement to Model). The x- and y-position
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of the racebike in the inertial frame of reference is taken from GPS measurements
of the racebike. The altitude information (z-coordinate in the inertial frame of
reference) is taken from OpenStreetMap® [47].

The orientation of the local racetrack surface patch is needed for the positioning
of the racebike on the racetrack. The task of the racetrack representation is to
deliver the orientation of the local racetrack surface patch for each point on the
racetrack. This is realized by an accompanying tripod, represented by the tangent
(t̂), normal (n̂) and binormal (b̂) unit vectors. They form an orthonormal basis.

The tangent vector t̂ or pexi is calculated by the central difference quotient at
the discrete point i of the spine curve ξ, written as

t̂ = pexi =
dξi
ds

≃ ξi+1 − ξi−1

2∆s
. (3.23)

The normal vector is assumed to be horizontal. With this, the normal vector n̂ or
peyi is rectangular to the inertial z-axis Iez, denoted as

n̂ = peyi = pexi × (−Iez) . (3.24)

The binormal vector b̂ or pezi is defined as the cross product of the tangent and
the normal vector, written as

b̂ = pezi = pexi × peyi . (3.25)

A banking angle φroad of the racetrack surface is considered with a rotation of the
accompanying tripod around the pexi vector. At this point it should be mentioned
that the representation of the local moving track axis system is similar to the
Frenet-Serret formulas introduced by Bartels et. al. [5], Piegl [50] and Shen [56].
The major difference is the definition of the normal vector n̂ which is pointing
in the center of the local curvature in the osculating plane for the Frenet-Serret
formulas, while within the present work it is defined in reference to the inertial
z-axis Iez.

3.2.2 Environment Model
The environment model defines the ambient air conditions of the operational do-
main. These can be split into two main groups:

(1) Wind- and weather-related influences like temperature, ambient pressure,
humidity, precipitation, wind speed, wind direction and turbulences, here-
inafter called the ambient state conditions.

(2) The ambient conditions related to the competitors or surrounding obstacles
which are changing the ambient conditions in different ways.
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The temperature and the ambient pressure are relatively uniformly distributed
in the limited operational domain of a racetrack. They are needed to derive the
density ρair and the kinematic viscosity νair. The US Standard Atmosphere [26]
defines the following values for air at sea level:

• Temperature: tair = 15◦C

• Pressure: pair = 1.0132× 105 Pa

• Density: ρair = 1.225 kg/m3

• Viscosity: νair = 1.79× 10−5 kg/m− s

Environmental Wind The environmental wind can be completely different at
different locations on the racetrack. The environmental wind field is in general a
turbulent wind field. Thus, for a complete description of the wind conditions a
three-dimensional representation of the environment is needed. Feichtinger et. al.
[21] showed the influence of the environmental wind conditions on the top speed of
a racebike. They modelled a three-dimensional turbulent wind field for a straight-
line acceleration of a racebike. The simulations carried out show a big effect of the
wind speed and the wind direction on the top speed. Influences of environmental
turbulence (1) show no worth mentioning effect on the straight-line performance.

The author is convinced that turbulence has an influence on the performance
of a racebike as well, especially when caused by (2), like competitors or obstacles.
Nevertheless, the effects on the driving performance of a racebike have not yet
been proven or found. It is expected that the influence of turbulence will be easier
to analyse with the here presented aerodynamic models. Further details of the
research on turbulence carried out by the author to date can be found in the
Appendix C. Turbulent flow conditions are not considered further in the context
of this work.

3.2.3 Upstream Flow Condition Model
The upstream flow velocity vector vus is the vector sum of the direct opposite of
the bike velocity vbike and the ambient wind speed vector vwind, such that

vus = −vbike + vwind . (3.26)

Fig. 3.5 shows the upstream flow velocity vector in the upstream reference point U
of a racebike in leaning conditions. The upstream flow vector can be represented
by a vector with the corresponding three velocity components in the body frame
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Figure 3.5: Subfigure (a) shows the upstream flow velocity vector as the vector
sum of the racebike velocity vector vbike and the environmental wind speed vector
vwind. Subfigure (b) shows the upstream flow velocity vector with its three velocity
components in the xyz-direction of the chassis axes and the aerodynamic flow angles
α and β (by Christoph Feichtinger – own work).

C of reference in body axis, just that

Cvus =


uus
vus
wus

 . (3.27)

Alternatively, the upstream flow vector can be expressed by the magnitude |vus|
often used as v∞, and the two aerodynamic flow angles α and β, denoted as

Cvus = v∞


−cos α cos β

sin β
−sinα cos β

 , (3.28)

v∞ = |Cvus| =
√
u2us + v2us + w2

us , (3.29)

α = arctan
−wus
uus

and β = arctan
vus√

u2us + w2
us

. (3.30)

Thereby α is the angle of attack – from the racebike point of view this means if the
upstream flow velocity is coming from above or below. The second aerodynamic
flow angle β means the incident flow angle – this means whether the upstream
flow velocity is coming from left or right. For completely windless conditions
(vwind = 0), the upstream flow vector simplifies to

Cvus = −Cvbike . (3.31)

44



3.3 Elementary Aerodynamics
The word Aerodynamic is derived from the two Greek words for air (aerios) and
force (dynami). Aerodynamics is a subfield of fluid dynamics that deals with
moving, gaseous fluids. A fluid, like air, in general is viscous and compressible.
Depending on the flow velocity, some aerodynamic flows can be considered incom-
pressible. The air speed of interest from an aerodynamic perspective is the relative
flow velocity v∞. The Mach number is the ratio of the flow velocity to the speed
of propagation of sound c, just that

Ma =
v∞
c
. (3.32)

With a maximum flow velocity which is actually achievable for racebikes, of v∞ ∼
100m/s and the speed of propagation of sound at 20◦C of c = 343m/s, the Mach
number results in

Ma =
100

343
= 0.29 < 0.3 . (3.33)

In normal cases, compressible effects do not play a role for Ma < 0.3, which is
why the flows considered in the present thesis can be treated as incompressible.

Fig. 3.6 shows the upstream flow velocity and the flow around a body. The
flow field around a body can be divided into two main regions.

• The region close to the solid walls of the body which is called the boundary
layer or the near-wall region, and

• the far field or free-stream region, where the air can be considered as
non-viscous.

Within the boundary layer the air must be accelerated from zero velocity at the
wall to the surrounding far field air speed. In this region viscosity plays a major
role. The total aerodynamic forces and moments acting on the body are the sum
of the surface pressure p and the wall shear stress τw. As sketched in Fig. 3.6, p
acts normal to the surface and τw acts tangential to the surface. No matter how
complex the body shape may be, the basic mechanisms of the acting aerodynamic
forces and moments are due to the pressure and shear stress distribution over the
body surface. The pressure p and the shear stress τw have the dimensions of a
force per unit area. The pressure is a scalar point quantity of the fluid which is by
definition directionless – or in other words: acting in all directions. The pressure
should not be interpreted in the same way as the generally accepted understanding
of the pressure force, which turns into a directional vector quantity when projected
on a surface element. Using the example of the drag force, the total drag of a profile
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Figure 3.6: Aerodynamic mechanisms for the flow around a bluff body with cor-
responding streamlines. The figure shows the pressure p and shear stress τw for a
surface element dA on the body. The boundary layer is attached at the forefront
part of the body and separates at the rear edges of the body resulting in the wake
area (by Christoph Feichtinger – own work).

or a body is obtained as the sum of the projections of both drag forces into the
direction of the oncoming flow velocity v∞ written as

Fd = Fdp + Fdf , (3.34)

with the pressure force component Fdp and the friction force component Fdf . They
are defined as

Fdp =

∮
p cosφ dA and Fdf =

∮
τw sinφ dA , (3.35)

where dA denotes an infinitesimal surface element area on the body and φ is the
angle between the surface normal direction and the direction of the upstream flow
velocity v∞. The contribution of each component strongly depends on the shape
of the considered body and the body orientation relative to the direction of the
free stream velocity. Fig. 3.7 exemplary shows the contributions of the pressure
drag and the viscous drag for six different types of bodies.

The jagged geometry of a racebike is shown in Fig. 3.8. With the rider on it,
the overall racebike and rider system has rarely smooth surfaces to generate viscous
forces. Thus, it is mainly causing pressure forces. Therefore, a racebike (subfigure
b) could be classified between the transverse flow on a flat plate (subfigure a) and
a sphere (subfigure c) shown in Fig. 3.7.

For the use of aerodynamic forces in mechanical analyses, a dimensionless rep-
resentation of the forces has become widely accepted. The forces depend on the
geometry of the body and its orientation relative to the oncoming flow. The geo-
metric representatives are the projected area Ax or a reference length lref , which
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Figure 3.7: Contributions of the pressure drag and the viscous drag for different
bodies (a, c, d, e and f by Hucho [31], racebike b added by Christoph Feichtinger –
own work).

is typically the wheelbase for ground-based vehicles. The aerodynamic forces are
strongly influenced by the acting pressure at the rear surface area as a result of the
oscillations of the wake area due to separations and mixing mechanism between
the low-pressure wake region, the boundary layer and the free-stream speed. The
wake areas of two distinct riding situations are shown in the lower pictures in Fig.
3.8. For a straight upstream flow, the wake area tends to be small. For an incident
flow angle β the wake area is getting bigger, as the flow separates on the outer
edges of the racebike and the rider.

A characterization for the nonstationary features and the oscillation mecha-
nisms is the vortex shedding frequency fv. Therefore, the force experienced by a
solid body may be written in dependence of the following variables:

Ax, lref , v∞, α, β, ρair, νair, fv . (3.36)

These variables are used to define dimensionless quantities for the characterization
of the aerodynamic forces and moments (see Eq. 4.50). The flow field itself can be
characterized by the Reynolds number and the Strouhal number. The Reynolds
number is the ratio of inertial forces to viscous forces within a fluid defined as

Re∞ =
v∞ lref
νair

...
Inertial Forces
Viscous Forces . (3.37)
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work).

For comparability with literature values the Reynolds number can be used as
representative of the bike speed for a defined reference length lref and kinematic
viscosity of the air νair. A sphere is a good analogy in terms of the generally
bad aerodynamic characteristics of a racebike. Fig. 3.9 shows the drag coefficient
of a sphere presented by Hoerner [30] for varying Reynolds numbers. The figure
shows the so called drag crisis, the characteristic drop of the drag coefficient when
reaching the critical Reynolds number, see Fung [24]. This corresponds to the
point where the flow pattern changes, leaving a narrower turbulent wake. The
behaviour is highly dependent on small differences in the condition of the surface
of the sphere.

The drag crisis on a sphere goes along with a rise of the vortex shedding
frequency fv. The dimensionless frequency is called the Strouhal number [57],
denoted as

Sr =
fv lref
v∞

...
Local Acceleration Forces

Convective Forces . (3.38)

The Strouhal number is useful for analysing unsteady, oscillating flow problems.
The principle of the vortex shedding can be for example observed behind a stone in
a river. For a racebike the vortex shedding in straight line motion is mainly driven
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Figure 3.9: Drag coefficient and Strouhal number versus Reynolds number for a
long cylinder or a sphere. Data from Hoerner [30], Lienhard [37], Achenbach and
Heinecke [1] and Roshko [55]. The grey box shows overlayed the Reynolds number
range of a racebike (by Christoph Feichtinger – own work).

by the separation edges of the fairing and the rider. Different flow situations can
occur under varying lean angles or incident flow angles, where the vortex shedding
can occur on the smooth shapes of the top fairing and the lower fairing, see Fig.
3.8. Fig. 3.9 additionally shows measurements of the Strouhal number on spheres,
carried out by Hoerner [30]. For most applications, a Strouhal number value of
Sr = 0.2 can be used to estimate the vortex shedding frequency fv for a given ref-
erence length and upstream speed. This is often used to define the simulation time
for unsteady, numerical flow simulations (e.g. Large Eddy Simulations), to capture
at least one complete period of vortex shedding, see Feichtinger [19]. For racebikes
there are no Strouhal number measurements available. The Reynolds numbers
of the racebike can be calculated with a speed range of vbike = 0 · · · 100m/s, the
wheelbase of the racebike as reference length (lref = 1.5m) and the kinematic vis-
cosity νair = 1.5 ·10−5m2/s. The Reynolds number range of a racebike is displayed
in the grey box in Fig. 3.9. The drag characteristic of a racebike is expected to be
similar to that of a sphere, as the ratio of pressure and frictional drag is in a similar
range. Using this assumption, the red lines in Fig. 3.9 should make it clear that
the drag characteristics and the vortex shedding behaviour varies significantly in
the Reynolds number range shown for racebikes.
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3.4 Tire Model
The tire provides the only contact to the ground. Therefore, it is responsible to
drive the motorbike, to transfer side forces and to transmit road unevenness.

3.4.1 Tire Geometry and the Position of the Contact Patch
The road-tire contact point W is the idealized connection between the road and the
tire, and respectively, the racebike. The tire geometry is shown in Fig. 3.10 with
the tire velocities and the tire lean angle φ. The rotational velocity is denoted
as ω. The longitudinal and lateral velocities in the road-tire contact point W
are indicated by vx and vy. The slip angle λ is the angle between vx and vy.
The effective tire radius of the free rolling wheel can be approximated by (see
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Figure 3.10: Tire geometry and tire velocities.

Eichberger [17])

re ≈
2

3
r0 +

1

3
rs , (3.39)

where r0 is the undeformed tire radius and rs is the static tire radius. With the
relation r0 = rs +∆z, the effective tire radius results in

re ≈ r0 −
1

3
∆z , (3.40)

where ∆z is the radial deflection.
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3.4.2 Wheel slip calculation
Longitudinal slip For a rolling wheel without brake or drive torques, the rela-
tion between the longitudinal and rotational speed can be written as

vx = re ω . (3.41)

For a driven wheel, the statement of Eq. 3.41 is no longer valid. Instead, the
following applies:

vx < re ω . (3.42)
With this the longitudinal drive slip is denoted as

sx drive =
re ω − vx
re |ω|

= 0 · · · 1 . (3.43)

For a rolling wheel, the drive slip results in a value of sx drive = 0 by using Eq.
3.41. For a spinning wheel, the longitudinal velocity vx = 0. Thus, the drive slip
has a value of sx drive = 1.

For a braked wheel the longitudinal velocity is bigger than the rotational ve-
locity, just that

vx > re ω . (3.44)
Therefore, the longitudinal brake slip is defined as

sx brake =
re ω − vx

|vx|
= −1 · · · 0 . (3.45)

For a blocked wheel, the rotational speed ω = 0. This results in a brake slip value
of sx brake = −1.

Lateral slip In principle, the frictional connection in the transverse direction
behaves in a similar way to that in the longitudinal direction. For a driven wheel,
the lateral slip is written as

sy drive =
vy

re |ω|
, (3.46)

with the lateral velocity of the tire vy. In the same way, the lateral slip for a braked
wheel is denoted as

sy brake =
vy
|vx|

. (3.47)

The lateral slip can be alternatively represented by the lateral slip angle λ, just
that

λ = arctan sy , (3.48)
by using the corresponding lateral drive or brake slip.
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3.4.3 Contact Forces between the Tire and the Road
The interaction of the tire with the road can be represented by a system of three
forces and three moments. Fig. 3.11 shows the following acting forces and moments
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Figure 3.11: Contact forces and moments between the tire and the road acting in
the road-tire contact point W.

acting in the idealized road-tire contact W:

• a longitudinal force Fx = pFx in x-direction, responsible to transmit drive
and brake forces through the road surface patch;

• a lateral force Fy = pFy in y-direction, orthogonal to the longitudinal force
in y-direction;

• a vertical force Fz = pFz orthogonal to the road surface patch along the
z-axis;

• an overturning moment Mx = pMx around the x-axis;

• the wheel torque My = pMy around the y-axis;

• a restoring moment Mz = pMz around the z-axis.

The longitudinal and lateral tire forces are acting in the road surface patch plane.
They are often normalized by the vertical force Fz, just that

Fxnorm =
Fx
Fz

and Fy norm =
Fy
Fz

. (3.49)
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3.4.4 Tire modelling in vehicle dynamics
For the use in vehicle dynamics, the tire forces and moments have to be calculated
based on the kinematic input parameters of the tire. The following Tab. 3.2 shows
the necessary kinematic input parameters and the calculated dynamic tire forces
and moments as output of handling tire models, with respect to Eichberger [17].

Table 3.2: Input and output parameters of the tire model (see Eichberger [17])

input (kinematic) output (dynamic)
radial deflection ∆z

⇒

Fx longitudinal force
longitudinal velocity vx Fy lateral force
lateral velocity vy Fz contact/vertical force
rotational speed ω Mx overturning moment
effective tire radius re My wheel torque
local lean angle φ Mz restoring torque

Additional effects like tire temperature and tire pressure are not considered
within the present work. In general, there are two main types of tire models
available:

• physical tire models and

• mathematical tire models.

Physical tire models approximate the contact force mechanisms by a physical mod-
elling of the adhesion and deformation effects. Although, physical models can give
a deep insight into the physical mechanisms, they are mainly used in tire research.
Mathematical tire models approximate measured forces and moments by suitable
approximation functions. For vehicle dynamics, mainly mathematical tire models
are used.

Longitudinal Tire Forces Fig. 3.12 shows a typical normalized longitudinal
force characteristics Fxnorm plotted against the longitudinal slip sx with reference
to Eichberger [17]. The longitudinal tire force characteristic shows three areas.

a) The linear force-slip area,

b) the transition area, where the longitudinal force reaches its maximum and
the tire increasingly starts to slide, and

c) the saturation area which is characterized by a sliding of the tire on the road.
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Figure 3.12: Mathematical approximation function of the normalized longitudinal
tire force Fxnorm plotted against the longitudinal slip sx with reference to Eichberger
[17].

The most widely used tire model is the Magic Formula model from Pacejka [48].
The approach of Pacejka is based on a empirical fit of approximation functions
to tire force measurements. The Model was named Magic Formula, because there
is no particular physical basis existing for the structure of the equations. The
popularity of the model is because it is available for a wide range of automotive
tires. No sufficient Pacejka model parametrization exists for motorbike tyres at
high lean angles.

Alternative tire models are TMeasy by Rill [25] and TMsimple presented by
Hirschberg [29]. Both models are mathematical models. In contrast to the Magic
Formula, these models are based on easier and simpler to understand tire param-
eters. With reference to Fig. 3.12 the physical tire parameters are:

• the initial gradient dFx,

• the maximum longitudinal tire force Fxmax and

• the longitudinal saturation force Fx∞.

The parameters are used to calculate the coefficients of the tire model TMsimple

Fx = K sin

[
B

(
1− e

−|sx|
A

)
sign sx

]
. (3.50)
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With

K = Fxmax, B = π − arcsin
Fx∞
Fxmax

, A =
1

dFx
KB; (Fx∞ ≤ Fxmax) . (3.51)

Lateral Tire Forces The lateral tire force of a motorcycle tire depends on both
the lateral slip angle λ and the lean angle φ. Cossalter [12] provides a deep insight
into the lateral dynamics of motorcycle tires. He investigated the effects of lateral
tire forces separately. Fig. 3.13 shows measurements of the normalized lateral
force carried out by [12] for a superbike front tire (SBK 120/75R17) and rear tire
(SBK 190/65R17).

• left subfigure: Lateral force as a function of the lateral slip angle at a lean
angle φ = 0.

• right subfigure: Lateral force as a function of the lean angle φ at a lateral
slip angle λ = 0.
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Figure 3.13: Lateral tire force as a function of the lean angle φ (right) and of the
lateral slip angle λ (left) for a front and a rear tire. Measurements carried out
by Cossalter [12] for a superbike front tire (SBK 120/75R17) and rear tire (SBK
190/65R17).

Furthermore, Cossalter investigated the lateral tire force needed for motorcycle
equilibrium in a curve. Without any further details, the key message for the
present work is that:

The tire’s ideal behaviour occurs when the slip angle is zero, that is,
when the lateral force necessary for equilibrium is produced by the lean
angle alone (Cossalter [12] page 54).
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It is assumed that a racebike, ridden by a professional racerider, is always close to
the optimum or at the limit of the tires.

Within the present work, the lean angle is used for the calculation of the lateral
tire force. The measurements of Cossalter for superbike tires are like the Dunlop
tires used in Moto2. Assuming a linear relation like shown in Fig. 3.13, the
normalized lateral force can be written as

Fy norm = Ky φ . (3.52)

Ky is the slope of the lateral tire force over the lean angle.

Combined longitudinal and lateral tire forces The combined tire forces can
be displayed in the tire friction ellipse, see Fig. 3.14. It shows the longitudinal and
lateral tire force limits. The resultant of the longitudinal and lateral tire forces
must be within the friction ellipse. The maximum values of the longitudinal force
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Figure 3.14: Tire friction ellipse.

Fx0 and of the lateral force Fy0 show the maximum tire forces when they act alone
in longitudinal and lateral direction. To take the friction ellipse limit into account
the maximum admissible lateral force is obtained by a scaling coefficient. With
reference to Cossalter [12], the correction coefficient depends on the longitudinal
force applied, just that

CLat =

√
1−

(
Fx
Fx0

)2

. (3.53)

With this the maximum available lateral tire force is denoted as

Fy = Fymax = CLat Fy0 . (3.54)
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This ensures that the resulting force vector lies on the friction ellipse.
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Chapter 4

Physical Racebike Model

4.1 Racebike and Rider Description
The racebike is modelled as a multibody system of six rigid bodies. Fig. 4.1
shows the physical racebike model with the single bodies. The bodies have mass

Front Axle

Chassis 

with Rider

Steering Axle /

Steering Head Bearing

Lower Front

Assembly

Front Wheel

Swingarm

Rear Axle

C1

C

S

G

H V

L

Rear Wheel

Upper Front

Assembly

Swing Arm Axle

Pivot Point

Figure 4.1: The Components of the physical racebike model (by Christoph Fe-
ichtinger – own work).

and inertia and are connected with massless coupling elements (springs, dampers,
active elements) as well as idealized connections (joints, guides). The six mass
bodies are:

Chassis (C) The chassis is the main part of the motorbike, which holds the en-
gine, the airbox, the fairing, the cooling system, and the seat together via a frame.
The rider is attached to the chassis. The dynamic influence of the rider movement
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on the racebike is modelled by specific parameters for different, segmented riding
situations.

Swingarm (S) The swing arm is mounted to the chassis in the pivot point
C1 and is additionally connected to the chassis with a suspension system. The
simulation model of the swingarm considers the swingarm, the suspension system
and the rear brake calliper from a mass and inertia point of view. The reaction
moments from braking and engine torques on the swingarm are not considered.

Upper Front Assembly (G) The upper front assembly is the part which is
mounted to the chassis by the steering head bearing. The steering head bearing
also holds the lower and upper triple clamp which is the connection to the fork
and the handlebars. The fork is split up into the fork tubes and the slider tubes.
The common fork type in racebikes is the upside-down fork [9] where the upper
fork tubes (fixed to the triple clamp), have a larger diameter than the lower slider
tubes. Therefore, the fork tubes, the triple clamps and the steering head bearing
are the parts of the upper front assembly.

Lower Front Assembly (L) The lower front assembly are the slider tubes of
the fork, the fork fists, and the front brake callipers.

Wheels (V,H) The wheel assemblies include the axles, the rims, the tires, and
the brake discs. The front and rear wheel are mounted to the swingarm and the
fork fists with the axles.

Stiffness Modelling of the individual Bodies The flexibility and stiffness
of single components is essential for the race rider to get the right feeling for its
individual riding style. Small changes of the stiffness of single components can
have a big influence for professional race rider from a lap time point of view.

Previous works of Cossalter [12] and Limembeer [38] modelled the single com-
ponents as flexible elements. Cossalter [12] presented numbers for torsional and
lateral stiffness of rear and front assemblies of a motorcycle. The lateral and
torsional stiffness, are defined by the ratios

Klat =
F

△y
and Ktors =

F

α
, (4.1)

where F is the lateral load in the wheel point, △y the lateral deformation of the
wheel point and α the wheel plane deflection. The measurements on the rear
assembly were carried out with a locked steering head and a lateral and torsional
load on a stiff rear wheel.
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• The lateral load is a force acting in y-direction.

• The torsional load is a moment applied around the x-axis.

The measurements on the front assembly were carried out with a blocked steering
head, with a lateral and torsional load applied to a stiff front wheel. The stiffness
measurements on the swingarm were made with a locked swingarm pivot axle
and a lateral and torsional load applied to the rear wheel axle. The stiffness
measurements of the front fork were carried out with a locked steering head and a
lateral and torsional load applied to the front wheel axle. Tab. 4.1 shows stiffness
value ranges for a modern motorcycle (sport 1000 cc), without the compliance of
the tire.

Table 4.1: Stiffness value ranges for assembly groups of a modern motorcycle (sport
1000 cc), without the compliance of the tire (Cossalter [12]).

assembly lateral stiffness torsional stiffness
Klat in kN/mm Ktors in kN/◦

rear assembly 0.10− 0.20 1.50− 3.00
front assembly 0.08− 0.16 0.70− 1.40
swingarm 0.80− 1.60 1.00− 2.00
front fork 0.07− 0.18 0.10− 0.30

The influence of the flexibility on the position and orientation of the single racebike
components is assumed to be much smaller than the position and orientation values
itself. The focus of the present work is on the aerodynamics of the racebike in
real riding situations. Therefore, the single mass bodies are modelled as rigid
components with defined mass and inertia properties.

4.2 Racebike Orientation and Position
Fig. 4.2 shows the racebike orientation and position in the inertial frame of refer-
ence I. The orientation of the chassis-fixed axis system C in the inertial frame of
reference I is defined by the transformation matrix AIC or ACI . The transforma-
tion matrix can be formed as the product of three simple rotation matrices for the
individual Euler angles (Eqs. 3.4 and 3.8). A transformation matrix with Euler
angles can have singular values for specific combinations of the single Euler angles.
Therefore, a problem-free description of any three-dimensional rotary movement
is not possible with the Euler angles.

Singularities do not occur when using Euler parameters of the quaternion rep-
resentation (Eq. 3.5). The four Euler parameters in vector notation are given
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Figure 4.2: Racebike orientation and position. Euler angles define the transforma-
tion matrix AIC or ACI between racebike (C) and inertial (I) axis system. The
translational and rotational velocity vectors IvC1 and ωIC . Racebike velocities and
relative position vector of a local point P are also shown (by Christoph Feichtinger
– own work).

by
pTEIC =

{
e0IC e1IC e2IC e3IC

}T . (4.2)
By using Eq. 3.9 and Eq. 3.8, the transformation matrix with the Euler parameters
results in

AIC =

e20 + e21 − e22 − e23 2 e1 e2 − 2 e0 e3 2 e0 e2 + 2 e1 e3
2 e0 e3 + 2 e1 e2 e20 − e21 + e22 − e23 2 e2 e3 − 2 e0 e1
2 e1 e3 − 2 e0 e2 2 e0 e1 + 2 e2 e3 e20 − e21 − e22 + e23

 . (4.3)

The position of the racebike reference point C1 with respect to the inertial frame
of reference is defined by the longitudinal, lateral, and vertical position, just that

IrC1 =
{
xC yC zC

}T
. (4.4)

An arbitrary point on the racebike (P ) is known in the chassis axis system C. The
position of the point P in the inertial frame of reference needs to be evaluated as

IrP = IrC1 +AIC CrC1P . (4.5)

4.3 Racebike Velocities
The angular velocity vector of the racebike reference axis system C with respect
to the inertial frame of reference is defined by three angular velocities, written as

ωIC =
{
ωxC ωyC ωzC

}T . (4.6)
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The angular velocity vector in the body frame of reference can be calculated from
the time derivative of the Euler parameter vector ṗEpC and the Euler parameter
matrix LIC(pEIC) with reference to Eq. 3.9, just that

ωIC = 2LIC(pEIC) ṗEIC . (4.7)

The velocity vector of the reference point C1 in the inertial frame of reference
is defined by the three velocity components in longitudinal, lateral, and vertical
direction. Thus, the velocity vector can be denoted as

IvC1 =
{
uC vC wC

}T . (4.8)

The velocity of point P in the inertial frame of reference is defined as

IvP = IvC1 + ωIC × IrC1P . (4.9)

4.4 Racebike Geometry and Kinematic
Fig. 4.3 shows the physical racebike model geometry and the kinematic relations.
There is no flexibility within the single bodies. A body-fixed axis system is attached
to each rigid body. The movements are represented by the following coupling
elements and connections:

• The swingarm and the chassis are connected via a bearing in the pivot point
C1 with the rear shock and linkage, represented by a torsion spring and a
torsion damper unit around the swing arm axis Cey. The swing arm axis
system is rotated around the y-axis Cey by the angle θS.

• The rear wheel is attached to the swingarm in the rear wheel axle Sey through
the point H1.

• The rear wheel axis system F is rotated around the rear wheel axle Sey by
the angel θH .

• The rear wheel road normal axis system H is rotated around the x-axis F ex
by the local lean angle φH .

• The rear wheel deflection normal to the road surface in the contact point is
defined by sH .

• The steering head bearing is placed in the chassis fixed point C2. The
steering head bearing axis system L is rotated by the angle κ around the
y-axis of the chassis Cey.
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Figure 4.3: Racebike model geometry and kinematic (by Christoph Feichtinger –
own work).

• The upper front assembly is mounted to the chassis with the steering head
bearing in point C2 and is rotating with the angle δL around the steering
axis Lez. The front assembly axis system is denoted by G.

• The lower front assembly is attached to the upper front assembly via the
front fork. The front fork length defines the point G3 – This is the fully
extended front fork.
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• The front suspension stroke sG defines the compression of the front fork
acting in the z-direction Gez.

• The front wheel is attached to the lower front assembly in the point V 1 and
is rotating around the front wheel axle Gey. The front wheel axis system U
is rotated around the front wheel axle Gey by the angle θV .

• The front wheel road normal axis system V is rotated around the x-axis Uex
by the local lean angle φV .

• The front wheel deflection normal to the road surface in the contact point is
defined by sV .

4.5 Equation of Motion – Jourdain Principle
The equation of motion of the racebike model was developed using Jourdains
principle [53]. Jourdains principle is using generalized coordinates, generalized
velocities and generalized accelerations.

Generalized Coordinate Vector The generalized coordinate vector for the
racebike model is denoted as

y = {xC yC zC︸ ︷︷ ︸
position

e0IC e1IC e2IC e3IC︸ ︷︷ ︸
orientation

θS δL sG θV θH︸ ︷︷ ︸
kinematic

}T , (4.10)

with the position, the orientation, and the kinematic quantities.

Generalized Velocity Vector The generalized velocity vector of the racebike
model reads

z = {uC vC wC︸ ︷︷ ︸
translation

ωxC ωyC ωzC︸ ︷︷ ︸
rotation

θ̇S δ̇L ṡG ωV ωH︸ ︷︷ ︸
kinematic

}T . (4.11)

Time Derivative of the Generalized Coordinate Vector The time deriva-
tive of the generalized coordinate vector reads

ẏ = {uC vC wC︸ ︷︷ ︸
translation

ė0IC ė1IC ė2IC ė3IC︸ ︷︷ ︸
rotation

θ̇S δ̇L ṡG ωV ωH︸ ︷︷ ︸
kinematic

}T . (4.12)

Although ẏ is a generalized velocity vector, it has a different length than the
generalized velocity vector. This is through the fact, that the three-dimensional
orientation of the racebike is represented by four Euler parameters, while the
three-dimensional rotation is represented by three angular velocities.
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Generalized Acceleration Vector The generalized acceleration vector of the
racebike model reads

ż = {aCx aCy aCz︸ ︷︷ ︸
translation

ω̇xC ω̇yC ω̇zC︸ ︷︷ ︸
rotation

θ̈S δ̈L s̈G ω̇V ω̇H︸ ︷︷ ︸
kinematic

}T , (4.13)

with the translational, rotational, and kinematic acceleration quantities.

4.5.1 Center of Gravity Position Vectors
The center of gravity position vector of every single body is calculated using Eq.
4.5. The single center of gravity position vectors in the inertial frame of reference
are denoted in the following paragraphs.

Chassis The chassis center of gravity position in the inertial frame of reference
is denoted as

IrC0(y) = IrC1 +AIC CrC1C0 . (4.14)

CrC1C0 is the center of gravity position of the chassis in the chassis axis system,
written as

CrC1C0 =


xC1C0

0
zC1C0

 . (4.15)

Swingarm The swingarm center of gravity position in the inertial frame of ref-
erence is given by

IrS0(y) = IrC1 +AIS SrS1S0 . (4.16)

SrS1S0 is the center of gravity position of the swingarm in the swingarm axis
system, written as

SrS1S0 =


xS1S0
0

zS1S0

 . (4.17)

The transformation matrix AIS reads

AIS = AIC ACS , (4.18)

where ACS is defined by a y-rotation around the swing arm axle just that

ACS =

 cos θS 0 sin θS
0 1 0

− sin θS 0 cos θS

 . (4.19)
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Rear Wheel It is assumed that the rear wheel is balanced and therefore the
center of gravity is in the middle of the axle. Thus, the rear wheel center of
gravity position is denoted as

IrH0(y) = IrC1 +AIS SrS1S2 . (4.20)

SrS1S2 is the rear wheel axle position in the swingarm axis system, written as

SrS1S2 =


xS1S2
0
0

 , (4.21)

where xS1S2 is called the swingarm length.

Upper and Lower Front Assembly, Front Wheel The center of gravity
positions of the upper and lower front assembly as well as for the front wheel are
complicated mathematical expressions. Therefore, they are not listed here.

The single vectors are defined as symbolic functions using the Matlab Symbolic
Toolbox [41]. For further use, the position vectors are derived as functions of
the generalized coordinate vector, written as:

• IrC0(y) = f_rC0I(y) – Chassis (C)

• IrS0(y) = f_rS0I(y) – Swingarm (S)

• IrG0(y) = f_rG0I(y) – Upper Front Assembly (G)

• IrL0(y) = f_rL0I(y) – Lower Front Assembly (L)

• IrH0(y) = f_rH0I(y) – Rear Wheel (H)

• IrV 0(y) = f_rV0I(y) – Front Wheel (V)

4.5.2 Center of Gravity Velocity Vectors
The velocity vector of every single body is calculated using Eq. 4.9. For the
chassis, the center of gravity velocity vector is denoted as

Iv0C(y,z) = Iv0C1 +AIC (CωIC × CrC1C0) . (4.22)

The center of gravity velocity vectors of the other bodies are complicated mathe-
matical expressions. Therefore, they were derived symbolically using the Matlab
Symbolic Toolbox [41]. For further use, the velocity vectors are derived as
functions of the generalized coordinate and velocity vectors. Thus, the single cen-
ter of gravity velocity vectors in the inertial frame of reference are denoted as:
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• Iv0C(y,z) = f_vC0I(y, z) – Chassis (C)

• Iv0S(y,z) = f_vS0I(y, z) – Swingarm (S)

• Iv0G(y,z) = f_vG0I(y, z) – Upper Front Assembly (G)

• Iv0L(y,z) = f_vL0I(y, z) – Lower Front Assembly (L)

• Iv0H(y,z) = f_vH0I(y, z) – Rear Wheel (H)

• Iv0V (y,z) = f_vV0I(y, z) – Front Wheel (V)

4.5.3 Body Angular Velocity Vectors
The angular velocity vector of the chassis is denoted as

CωIC(y,z) =


ωxC
ωyC
ωzC

 . (4.23)

The angular velocity vectors of the single bodies are derived as symbolic functions
as well. The single angular velocity vectors in the respective body reference system
are denoted as:

• CωIC(y,z) = f_omICC(y, z) – Chassis (C)

• SωIS(y,z) = f_omISS(y, z) – Swingarm (S)

• GωIG(y,z) = f_omIGG(y, z) – Upper Front Assembly (G)

• LωIL(y,z) = f_omILL(y, z) – Lower Front Assembly (L)

• HωIH(y,z) = f_omIHH(y, z) – Rear Wheel (H)

• VωIV (y,z) = f_omIVV(y, z) – Front Wheel (V)

4.5.4 Partial Derivatives (Jacobi Matrices)
Jourdains principle includes partial derivatives for the calculation of the gener-
alized mass matrix as well as for the calculation of the generalized forces and
moments. The result of the partial derivatives is called the Jacobi matrix Jf , just
that

Jf :=

(
∂fi
∂xj

)
i=1,...,m; j=1,...,n

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn... ... . . . ...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 . (4.24)
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The Jacobi matrix has a size of m×n, where m is the length of the function vector
fi and n is the length of the derivative vector xj. The specific Jacobi matrices for
the racebike model are:

∂v/∂y: The partial derivative of the center of gravity velocity vector with respect
to the generalized coordinate vector, just that

Jvy b(y,z) =
∂Ivb0(y,z)

∂y
· · · for b = C, S,G, L,H, V . (4.25)

∂v/∂z: The partial derivative of the center of gravity velocity vector with respect
to the generalized velocity vector, just that

Jvz b(y,z) =
∂Ivb0(y,z)

∂z
· · · for b = C, S,G, L,H, V . (4.26)

∂ω/∂y: The partial derivative of the body angular velocity vector with respect
to the generalized coordinate vector, just that

Jωy b(y,z) =
∂bω0b(y,z)

∂y
· · · for b = C, S,G, L,H, V . (4.27)

∂ω/∂z: The partial derivative of the body angular velocity vector with respect
to the generalized velocity vector, just that

Jωz b(y,z) =
∂bω0b(y,z)

∂z
· · · for b = C, S,G, L,H, V . (4.28)

The Jacobi matrices are derived as symbolic functions with the Matlab Sym-
bolic Toolbox for further use.

4.5.5 Apparent Accelerations
The translational and angular apparent acceleration vectors with reference to Eq.
3.22 are denoted for the single bodies as

I v̇
S
0b = Jvy b(y,z) ẏ and bω̇

S
0b = Jωy b(y,z) ẏ , (4.29)

for b = C, S,G, L,H, V .
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4.5.6 Generalized Mass Matrix
The generalized mass matrix for the motorbike, according to Eq. 4.30 is denoted
as

M(y,z) =
∂Iv

T
0C

∂z
mC

∂Iv0C

∂z
+
∂Cω

T
0C

∂z
CTSC

∂Cω0C

∂z

+
∂Iv

T
0S

∂z
mS

∂Iv0S

∂z
+
∂Sω

T
0S

∂z
STSS

∂Sω0S

∂z

+
∂Iv

T
0G

∂z
mG

∂Iv0G

∂z
+
∂Gω

T
0G

∂z
GTSG

∂Gω0G

∂z

+
∂Iv

T
0L

∂z
mL

∂Iv0L

∂z
+
∂Lω

T
0L

∂z
LTSL

∂Lω0L

∂z

+
∂Iv

T
0H

∂z
mH

∂Iv0H

∂z
+
∂Hω

T
0H

∂z
HTSH

∂Hω0H

∂z

+
∂Iv

T
0V

∂z
mV

∂Iv0V

∂z
+
∂Vω

T
0V

∂z
VTSV

∂Vω0V

∂z
,

(4.30)

where mC , mS, mG, mL, mH and mV are the masses of the six bodies and CTSC ,
STSS, GTSG, LTSL, HTSH and VTSV are the inertia tensors represented in the re-
spective body-fixed axis system in relation to the respective centers of mass. The
generalized mass matrix is symbolically derived with the Matlab Symbolic
Toolbox and is represented for further use as function of the generalized co-
ordinates and velocities. The 11 × 11 matrix is almost full, and can be written
as

M(y,z) =


mAll 0 0 · · ·
0 mAll 0 · · ·
0 0 mAll · · ·
... ... ... . . .

 , (4.31)

where mAll is the sum of the masses of the six bodies. Just the first part, related
to the position of the racebike reference point is a 3 × 3 unity matrix with mag-
nitude mAll. The other elements are composed of complicated multiplications of
generalized coordinates and angular functions of them.

4.5.7 Generalized Forces and Moments
With reference to Eq. 3.21, the generalized forces can be written as the sum of
the following three components

q(y,z) = qact(y,z) + qapp(y,z) + qgyro(y,z) , (4.32)

where qact are the generalized active forces, qapp are the generalized apparent forces
and qgyro are the generalized gyroscopic forces.
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Generalized Active Forces The generalized active forces are denoted as

qact(y,z) =
∑
b

{
JTvz b(y,z) IF

(a)
b + JTωz b(y,z) bM

(a)
Sb

}
, (4.33)

with the Jacobi matrices Jvz b(y,z) and Jωz b(y,z) and the active forces and moments
IF

(a)
b and bM

(a)
Sb for the six bodies b = C, S,G, L,H, V . The external active

forces and moments of the racebike model are:
• The weight forces of all single bodies acting in the respective center of gravity

positions.

• The tire forces and moments from Fig. 3.11 acting in the wheel contact
points of the front and the rear wheel (b = V,H).

• The aerodynamic forces and moments of the whole racebike which are as-
signed to the chassis (b = C) in the present model.

The following active forces and moments act inside the racebike model:
• The front fork force acts between the upper and lower front assembly (b =
L,G). The spring force is a function of the front suspension stroke sG. The
damping force is a linear function of the front suspension travel rate ṡG.

• The rear suspension moment is acting between the chassis (b = C) and the
swingarm (b = S). The rear suspension spring moment is a function of the
swing arm angle θS. The rear suspension damping moment is a function of
the swing arm angle velocity θ̇S.

• The racebike has a rear wheel drive. The drive torque of the engine is acting
in the rear wheel center H1 around the y-axis of the swingarm Sey.

• The engine supporting torque is acting in the chassis fixed point C4 around
the y-axis of the chassis Cey. The influence of the chain is not considered in
the present work.

• The racebike has disc brakes at both wheels. The braking torques are acting
in the front and rear wheel centers V 1 and H1 around the corresponding
y-axis Sey and Gey.

• The steering forces of the rider are applied to the handlebars. The forces on
the the handlebars are acting as steering moment around the steering axis
Lez.

• The steering damper moment is acting in the steering head around the steer-
ing axis Lez. The damping moment is a function of the steering angle velocity
δ̇L.
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Generalized Apparent Forces Apparent forces like centrifugal and Coriolis
forces include the effects of an accelerating frame of reference in the equation of
motion. In a generalized way they are defined in accordance with Eqs. 3.21 and
3.22 as

qapp(y,z) =
∑
b

{
− JTvz b(y,z)mb I v̇

S
0b − JTωz b(y,z) bTSb bω̇

S
0b

}
, (4.34)

with the Jacobi matrices Jvz b(y,z) and Jωz b(y,z) and the mass and inertia properties
mb and bTSb for the six bodies b = C, S,G, L,H, V . I v̇

S
0b and bω̇

S
0b denote the

apparent accelerations.

Generalized Gyroscopic Forces The generalized gyroscopic forces are defined
by the angular velocity vectors in the body frame of reference and by the inertia
tensors of the single bodies, denoted as

qgyro(y,z) =
∑
b

{
JTωz b(y,z) [−bω0b × bTSb bω0b]

}
, (4.35)

for the six bodies b = C, S,G, L,H, V . Simply explained, gyroscopic forces are a
result of any spinning masses that tends to keep the spinning axis in place. It acts
like additional inertia, if the orientation of the axis wants to be changed. For the
racebike this applies especially for the engine crankshaft (not considered in the
model) and the rotating wheels.

4.5.8 Generalized Inertial Forces
With reference to Eq. 3.19, the term mass times acceleration denotes the general-
ized inertial forces, just that

qinert(y,z) = M(y)ż , (4.36)

with the generalized mass matrix M(y) and the generalized acceleration vector ż.

4.6 A new Approach for the Assessment of Aero-
dynamic Characteristics from Racetrack Mea-
surement Data

The equation of motion derived in section 4.5 covers a racebike model with rigid
bodies and a rigidly attached rider. Real riding situations of a racebike on a
racetrack are strongly driven by rider movements on the racebike.
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For a better understanding, the influence is explained by means of a typical
riding situation. A good example is a hanging-off riding situation (see Fig. 2.8 b,
c and f) – the rider is leaning his body into the curve to move the center of gravity
in lateral direction into the center of the curve.

The rider body in hanging-off or any other riding position on the racebike has
a great influence on all elements of the equation of motion.

• The generalized active forces are changed by a different center of gravity
position of the cassis-rider body (b = C).

• The generalized active forces are influenced by changing aerodynamic forces
and moments acting on the rider in hanging-off position.

• The generalized apparent forces are affected by varying Jacobi matrices as a
result of a changed center of gravity position.

• The generalized gyroscopic forces are influenced by a changing Jacobi matrix
and a changed moment of inertia of the chassis-rider body (b = C).

• The contact forces between the rider and the chassis on the seat, footrests
and handlebars are active forces that act on the chassis body.

The single influences are difficult or impossible to describe for a rider-racebike
system on a racetrack.

4.6.1 Aerodynamic Racebike Model – The AIM Approach
The approach presented here combines all influences which are difficult or impos-
sible to describe in one model. The approach is called the AIM (=acronym for
Aerodynamic, Inertia and Mass) approach. The AIM model process, shown in
Fig. 4.4 combines:

• the aerodynamic forces and moments of the racebike-rider system,

• the inertia changes due to rider movements and

• the center of gravity change (mass) due to rider movements.

The AIM approach is implemented by introducing a new term qaim(y,z) into the
equation of motion with reference to Eq. 3.19, just that

M(y)ż = qact(y,z) + qapp(y,z) + qgyro(y,z)︸ ︷︷ ︸
physical racebike model with rigidly attached rider

+qaim(y,z)︸ ︷︷ ︸
New

. (4.37)
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Figure 4.4: A new approach for the assessment of aerodynamic characteristics
from racetrack measurement data including inertia and mass property changes due
to rider movements on the racebike – The AIM approach (by Christoph Feichtinger
– own work).

Transformed according to qaim(y,z), the equation of motion can be written as

qaim(y,z) = M(y)ż− qact(y,z) − qapp(y,z) − qgyro(y,z) . (4.38)

The terms on the right side of the equation can be calculated from the vectors of the
generalized coordinates, velocities, and accelerations (y, z and ż). These quantities
are known from measurement data of the racebike. The available measurement
data and the data preparation are described in chapter 5.

4.6.2 AIM Forces and Moments
The aim forces and moments are active forces in the context of Jourdains principle.
With reference to Eq. 4.33, the generalized AIM forces can be written as

qaim(y,z) =
6∑
b=1

{
JTvz b(y,z) IF

(a)
aim + JTωz b(y,z) bM

(a)
aim

}
. (4.39)

The AIM forces and moments are exclusively assigned to the chassis body (C)
acting in and around the racebike reference point C1 in the chassis coordinate
system (C). Therefore, Eq. 4.39 simplifies to one body, just that

qaim(y,z) = JTvz C(y,z) IF
(a)
aim + JTωz C(y,z) CM

(a)
aim . (4.40)
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With the assumption of assigning the aerodynamic forces and moments to the
chassis, the Jacobi matrices for the translational and angular speed derivative
after the generalized velocity vector simplify.

The Jacobi matrix for the translational velocity derivative, according to the
center of gravity velocity vector (Eq. 4.22), reads

JTvz C(y,z) =

 1 0 0 a14 a15 a16 0 0 0 0 0
0 1 0 a24 a25 a26 0 0 0 0 0
0 0 1 a34 a35 a36 0 0 0 0 0

 , (4.41)

where the factors aij (i, j = 1, 2, 3) are placeholders for the complicated mathe-
matical expressions.

In the same way, the Jacobi matrix for the angular velocity derivative with
respect to Eq. 4.23 is denoted as

JTωz C(y,z) =

 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

 . (4.42)

The AIM force and moment vector in the chassis axis system are shown in Fig.
4.5. The AIM force vector in the chassis axis system is denoted as
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Figure 4.5: Aerodynamic/AIM forces and moments acting in the racebike reference
point C1 in the chassis axis system (by Christoph Feichtinger – own work).

CFaim =

CD

CY

CL

 . (4.43)
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The AIM force vector is transformed into the inertial frame of reference, using the
rotation matrix AIC , just that

IFaim = AIC CFaim . (4.44)
The AIM moment vector acting around the racebike reference point C1 in the
chassis axis system reads

CM
(C1)
aim =

 CL
CM
CN

 . (4.45)

The AIM moment vector acting in the chassis center of gravity C0 in the chassis
axis system is given by

CM
(C0)
aim = CM

(C1)
aim + CrC0C1 × CFaim . (4.46)

The generalized force vector has 11 elements according to the elements of the gen-
eralized velocity vector. Inserting the Jacobi matrices and the forces and moments
in Eq. 4.40, the generalized aerodynamic forces in component notation reads

q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11



=



ID

IY

IL

CL+ a14 ID + a24 IY + a34 IL+ ILyC1C0 + IY zC1C0

CM+ a15 ID + a25 IY + a35 IL− ILxC1C0 + ID zC1C0

CN + a16 ID + a26 IY + a36 IL+ IY xC1C0 − IDyC1C0

0
0
0
0
0



. (4.47)

Due to the zero elements of the Jacobi matrices (Eqs. 4.42 and 4.42), the general-
ized forces with index 7 to 11 are zero. Using the Matlab Symbolic Toolbox,
the AIM force and moment vectors can be calculated. The AIM force vector results
in ID

IY

IL

 =


q1
q2
q3

 . (4.48)

The AIM moment vector becomes CL
CM
CN

 =


q4 − a14 q1 − a24 q2 − a34 q3 − yC1C0 q3 + zC1C0 q2
q5 − a15 q1 − a25 q2 − a35 q3 + xC1C0 q3 − zC1C0 q1
q6 − a16 q1 − a26 q2 − a36 q3 − xC1C0 q2 + yC1C0 q1

 . (4.49)

With this the AIM characteristics can be calculated as function of the generalized
coordinate, velocity, and acceleration vectors, y, z and ż.
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4.6.3 Dimensionless Coefficients
Aerodynamic characteristics are mainly defined, described, or provided as dimen-
sionless force and moment coefficients. They are derived from the dimensional
forces and moments by dividing them through the dynamic pressure q∞ = qdyn, a
reference area Ax and a reference length lref , denoted as

cD =
D

q∞Ax
cL =

L
q∞Ax lref

cY =
Y

q∞Ax
cM =

M
q∞Ax lref

cL =
L

q∞Ax
cN =

N
q∞Ax lref

.

(4.50)

All the reference quantities are arbitrary. The traditional choice for the reference
area Ax is the projected area in longitudinal direction. The projection area of
a racebike depends strongly on the actual position of the rider. The projected
area has its minimum when the rider is in top speed position, completely fitted
to the racebike. For hanging-off riding situations, where the rider is leaning out
of the racebike or in braking situations, where the rider is in upright position,
the projected area can increase by up to 50%. As the real projected area cannot
be measured directly on the racetrack the projected area is hereinafter taken to
be Ax = 1m2. Therefore, the dimensionless force and moment coefficients are
equal to the force and moment areas. The reference length lref for the moment
coefficients is the wheelbase of the racebike, which varies depending on the riding
situation.
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Chapter 5

From Measurement to Model

5.1 Measurement Environment and Data Acqui-
sition

The motorcycle manufacturer KALEX has provided data of one rider from the
Moto2 race in Aragon 2019 for the calculation of aerodynamic characteristics using
the new approach presented here. The data were handed over in tabular form for
every single lap with a sampling rate of 100Hz. The following Tab. 5.2 shows
the measurement channels with the descriptive channel names, a short description
and the corresponding channel units. The data were recorded during an official
race event. The electronics, the sensors and the tires are limited in Moto2. They
are supplied by FIM-sanctioned producers Magneti-Marelli and Dunlop.

Table 5.1: Moto2 measurement channels with description, unit and measurement
ranges

channel description unit min max
Time race time s 0 2431
NTime lap time s 0 159.14
NLap lap counter # 1 21
vWhF front circumf. wheel speed km/h 0 281.9
vWhR rear circumf. wheel speed km/h 0 299.5
aLean lean angle ◦ -61.88 56.72
cWheelFn angular front wheel speed 1/s 0 40.93
cWheelRn angular rear wheel speed 1/s 0 40.64
xSuspF front suspension stroke mm 0 129
xSuspR rear suspension stroke mm 0 32
TPMS_FrontPres tire pressure front tire bar 2.23 2.48

...to be continued on next page
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Moto2 measurement channels with description, unit and measurement ranges -
continuation

channel description unit min max
TPMS_RearPres tire pressure rear tire bar 1.29 1.51
TEng engine cooling temperature ◦C 72 89
nEngine720 engine speed U/min 2861 14840
MRiderTrq engine torque Nm -27.1 81.9
rThrottle1 throttle position % -1.5 102
pBrakeF brake pressure front bar -0.48 16.36
pBrakeR brake pressure rear bar -0.62 33.81
aSteer steering angle ◦ -10.45 14.97
X2_Pub_LastID SectionID # 20 34

The time and lap channels are self-explanatory. The wheel speeds vWhF and
vWhR of the front and rear wheel are calculated quantities from the angular wheel
speeds cWheelFn and cWheelRn of the front and rear wheel. The lean angle aLean
is derived from the inertial measurement unit (IMU) and is calculated in real time
in the electronic control unit (ECU). The algorithm to calculate the lean angle in
the ECU is not public available. The IMU is mounted fixed to the chassis, 100mm
above the pivot point C1 in z-direction.

The suspension travel strokes xSuspF and xSuspR of the front fork and the rear
shock are directly measured by fork and shock mounted linear potentiometers. The
tire pressures TPMS_FrontPres and TPMS_RearPres are measured directly with
rim mounted pressure sensors. The engine cooling temperature TEng is measured
at the inlet of the radiator, where the highest temperature is found. The engine
speed nEngine720 is measured on the crankshaft of the engine. The engine torque
MRiderTrq is calculated in real-time in the ECU depending on:

• the throttle position rThrottle1,

• the engine speed nEngine720,

• the barometric pressure in the airbox and much more. These influences are
used for internal purposes by exclusive engine supplier Triumph [60] only
and cannot be viewed by the race teams.

The brake pressures pBrakeF and pBrakeR are measured with pressure transducers
at the brake cylinders. The front brake cylinder is mounted on the right handlebar
lever. The rear brake cylinder is mounted on the right footrest assembly. The
steering angle aSteer is calculated from the linear potentiometer mounted on the
steering damper.
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Normalized Measurement Quantities The measurement quantities are here-
inafter shown as dimensionless, normalized quantities, derived using the following
computation

q̂meas =
qmeas

max(|qmeas|)
, (5.1)

where qmeas denotes any quantity. Therefore, quantities like the bike speed ranges
from 0 to +1, while measured quantities with negative components range from −1
to +1.

Leading Measurement Quantities Racebike The lean angle and the speed
of the racebike are the leading measurement quantities for the analysis and seg-
mentation of the measurement data (see section 2.3). With reference to Tab. 5.2,

• the lean angle φbike is the measurement channel aLean,

• the racebike reference speed vbike is the front circumferential wheel speed
vWhF .

Moto2 Race Aragon 2019 The Aragon racetrack map is shown in Fig. 5.1.
The course is driven counterclockwise. The map shows numbered points from 1
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Figure 5.1: Aragon racetrack acceleration (uneven numbers) and braking points
(even numbers) for a Moto2 racebike and the time shares of the single longitudinal
dynamics’ segments.

to 20. The uneven numbers show the points where a Moto2 racebike starts to
accelerate. The even numbers mark the points where a Moto2 racebike starts to
brake. The data recording on the racebike is started at the starting grid short
before the riders start into the warm-up lap. The warm-up lap is not included
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in the measurements. The normalized racebike speed v̂bike is shown in Fig. 5.2
against the normalized race time t̂race. The racebike speed is the ground speed
of the racebike with respect to the racetrack. The first part shows the racebike
standing in the starting grid at zero speed v̂bike = 0. The remaining recordings
show the 21 laps of the complete Moto2 race in Aragon 2019. With a track length
of 5.078 km the overall race distance was 106.6 km. The Moto2 race 2019 was won
by Brad Binder with a racetime of 39′45.177, which is an average speed of 160.9
km/h.
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Figure 5.2: Normalized racebike speed v̂bike raw data readings against the normal-
ized race lap time t̂race.

Measurement Data Readings Additional measurement raw data readings are
presented in Fig. 5.3 for the time range before the start and the first race lap.
The following, normalized raw measurement data are shown with reference to the
channels from Tab. 5.2 in brackets:

• the steering angle δ̂steer (aSteer),

• the front and rear suspension strokes x̂suspF and x̂suspR (xSuspF , xSuspR),

• the engine speed n̂eng (nEngine720),

• the engine torque M̂eng (MRiderTrq) and

• the front and rear brake pressures p̂brakeF and p̂brakeR (pBrakeF , pBrakeR).

The steep rise of the engine torque M̂eng marks the race start. The recordings show
the highly dynamic movements of the racebike on the racetrack. There is nearly
no steady section in any measured quantity visible. If then perhaps on the long
back-straight (t̂race ∼ 0.05) before reaching the top speed of the racetrack. In this
area the lean angle tends to be zero in the last part, the rear suspension strokes
settle down to a near constant value, while the front suspension stroke slightly
increases. This can be an indication for a kind of downforce generation at higher
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Figure 5.3: Measurement raw data readings with normalized quantities plotted
against the normalized race time t̂race, showing the time before the start and the
first full race lap.

speeds. For a more precise analysis the raw measurement data are segmented and
classified in the next sections.

5.2 Data Analysis and Preparation
The aim of the data analysis is to find a meaning in the measurement raw data
readings so that the knowledge can be used to make decisions. Therefore, the
raw data readings of the whole race are sorted in a first step by the single laps.
Afterwards the lap sorted readings are segmented according to the longitudinal
acceleration and deceleration of the racebike.
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New Lap Counter The original lap length starting point at the start finish line
is not ideal for the further segmentation according to the acceleration signal, as
the start finish line is traditionally inside an acceleration segment. The top-speed
peaks per lap were used to split the complete race data into the single laps. In the
case of the Aragon racetrack, the top speed is reached on the backstraight before
the last corner, shown in Fig. 5.1. Fig. 5.4 shows the normalized racebike speed
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Figure 5.4: Normalized racebike speed v̂bike raw data readings against the normal-
ized lap time t̂lap of the second lap.

v̂bike raw data readings against the normalized lap time t̂lap of the second lap of
one rider during real race traffic conditions.

Longitudinal Dynamics Segmentation For every single lap, the normalized
lap is further subdivided into acceleration and deceleration segments. This is
done by an identification of the local speed minima and maxima. For the present
Moto2 race data 10 local bike speed maxima and 10 local bike speed minima were
identified, see Fig. 5.5. Therefore, the 20 extrema split each lap into 20 acceleration
or deceleration segments with different segment times. The single segments for
the different laps, slightly differ in terms of segment time and segment length.
The normalized times per segment were used to average the raw measurement
recordings over all race laps. Fig. 5.6 shows the procedure of filtering and averaging
for the segment between the points 19 to 20 for all race laps.

• The left subfigure in Fig. 5.6 shows the normalized racebike speed v̂bike raw
data readings against the raw normalized segment time t̂seg.

• The middle subfigure shows the normalized racebike speed v̂bike raw data
readings against the new, normalized segment time t̂seg. Both subfigures
show a degressive deflection of the speed signal.

• The right subfigure shows the normalized, cleaned up speed signal v̂bike−cleaned up.

The deflection in the left and middle subfigures is linked to the front wheel coming
off the ground (a so called Wheelie or wheel-stand) due to too much torque being
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Figure 5.5: Normalized bike speed v̂bike and normalized lean angle φ̂bike plotted
against the normalized lap time t̂lap. This is the representative lap for the physical
model derivation.
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Figure 5.6: The three subfigures show the segment between the points 19 to 20 for
all race laps. The left subfigure shows the normalized racebike speed v̂bike raw data
readings against the raw normalized segment time t̂seg. The middle subfigure shows
the normalized racebike speed v̂bike raw data readings against the new, normalized
segment time t̂seg. The right subfigure shows the normalized, cleaned up speed
signal v̂bike−cleaned up.

applied to the rear wheel, or due to a rider motion relative to the racebike – We
remember that the bike speed is the front wheel circumferential speed. The laps
with Wheelie are excluded for the representative race laps.

The single averaged segments were afterwards combined to an averaged lap for
the whole race. Fig. 5.5 shows the normalized bike speed v̂bike and the normalized
lean angle φ̂bike plotted against the normalized lap time t̂lap.
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This averaging procedure was repeated for all raw measurement recordings
from Tab. 5.2. The lap and segment averaged measurement channels are stored
in a Matlab table with a sampling rate of 100Hz. The data table also includes
the time and a path signal for further time or path-based use of the race data.
The path signal was calculated by integrating the speed signal with time. The raw
measurement channels are available in a generic way denoted as

qmeas = qmeas(t,s) , (5.2)

with t as the time signal and s as the path length. The lap and segment averaged
race data is the basis for the analysis of the racebike dynamics.

5.3 Model Data Preparation
The lap averaged measurement data from chapter 5.2 are used to prepare the
generalized coordinates, velocities and accelerations. This is the input for the
AIM approach, presented in chapter 4.6. Fig. 5.7 shows the scheme for processing
the lap averaged measurement data into input data for the AIM approach. The
single steps are further explained in the following paragraphs.

The Racebike Position on the Racetrack The racebike position on the race-
track is given by the three-dimensional position vector of the rear wheel road-tire
contact point, denoted as

IrH4(t) =
{
IxH4 IyH4 IzH4

}T
. (5.3)

The x- and y-position of the racebike in the inertial frame of reference is taken
from GPS measurements of the racebike. The altitude information (z-coordinate
in the inertial frame of reference) and the orientation of the racetrack surface
patch is taken from OpenStreetMap® [47]. The orientation is denoted by the
transformation matrix AIp(t). The three-dimensional trace of the vector is shown
in Fig. 5.8 with the braking and accelerating points.

The Relative Racebike Position on the Racetrack The relative racebike
position on the racetrack is mainly defined by the lean angle. The relative position
vector CrH4C1(t) contains a complicated calculation of the local tire angles θH and
θV . The angles are calculated using the Matlab Symbolic Toolbox [41].
With this, the relative position vector can be calculated as function of the raw
measurement readings, namely

• the lean angle φbike,
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Lap Averaged Moto2 Racebike Measurement Data

Generalized

Coordinates

Generalized

Velocities

Generalized

Accelerations

Reference Racebike

Position on the

Racetrack

OpenStreetMap®

𝐼𝑥𝐻4

𝐼𝑦𝐻4

𝐼𝑧𝐻4

Relative Racebike

Position on the

Racetrack

Relative Racebike

Kinematic

Absolute Racebike

Velocity ( 𝐼𝒗𝐶1)

Absolute Racebike

Acceleration ( 𝐼𝒂𝐶1)

𝜑𝑏𝑖𝑘𝑒

Racetrack

Orientation

𝑨𝐼𝑝 𝑨𝑝𝐶

Absolute Racebike

Position ( 𝐼𝒓𝐶1)

𝐼𝒓𝐻4

Racebike Angular

Velocity (𝝎𝐼𝐶)

Wheelpoint

Calc

sG, 𝛿𝐿, 𝜃𝑆

Absolute Racebike

Orientation (𝒑𝐸𝐼𝐶)

Racebike Angular

Acceleration ( ሶ𝝎𝐼𝐶)

Relative Racebike

Kinematic –

Velocities

Relative Racebike

Kinematic –

Accelerations

𝜃𝑉, 𝜃𝐻

𝑣𝑏𝑖𝑘𝑒 𝜔𝑉 ,
𝜔𝐻

Input for AIM Approach

Figure 5.7: Model data preparation – From Moto2 racebike measurement data to
generalized coordinates, velocities, and accelerations.

• the front suspension stroke sG = xSuspF ,

• the steering angle δL = aSteer and

• the rear suspension stroke θS ∼ xSuspR. The rear suspension stroke is con-
verted into a angular signal using a kinematic relationship given by KALEX.

The transformation matrix ApC(t) between the road tire contact patch p and the
chassis axis system C, is calculated in the same way as a symbolic representation.

Fig. 5.9 shows the normalized, relative racebike quantities and the relative ve-
locities for the representative race lap. It shows that the front and rear suspension
is permanently working, except for a small settling section at the end of the lap.
The steering angle signal δ̂L shows the permanent rider input during a race lap.

The Absolute Racebike Position on the Racetrack The orientation of the
racetrack patch together with the relative rotation between the racetrack patch and
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Figure 5.8: Rear wheel road-tire contact point trace of the representative lap. The
three-dimensional coordinates are given in m.

the chassis axis systems delivers the transformation matrix between the inertial
axis system and the chassis axis system as follows

AIC(t) = AIp(t) ApC(t) . (5.4)

The transformation matrix AIC(t) is converted into a quaternion representation
for the handover to the generalized coordinate vector. The Euler parameters in
vector notation are denoted as

pTEIC(t) =
{
e0IC e1IC e2IC e3IC

}T
= rotm2quat(AIC(t)) . (5.5)

The position vector of the racebike reference point C1 is given as

IrC1(t) =
{
xC yC zC

}T
= IrH4(t) +AIC(t) CrH4C1(t) , (5.6)

where CrH4C1(t) is the relative position of the racebike on the racetrack.

The Racebike Angular Velocity Vector The racebike angular velocity vector
can be calculated with reference to Eq. 3.10 from the Euler parameters, just that

ωIC =
{
ωxC ωyC ωzC

}T
= 2LIC(pEIC) ṗEIC . (5.7)
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Figure 5.9: Normalized, internal racebike state quantities for the representative
race lap.

The angular velocity components are normalized with the maximum magnitude of
the vector, just that

ω̂iC =
ωiC

max(|ωIC |)
for i = x, y, z . (5.8)

The lower subfigure in Fig. 5.10 shows the three normalized angular velocity
components and the normalized lean angle signal. The plot shows mainly leaning
movements around the x-axis. The y- and z-components are comparable small,
but nevertheless meaningful as they are influenced strongly by relative movements
of the racebike bodies.

The Absolute Racebike Velocity Vector The absolute velocity vector of the
racebike with reference to Eq. 3.11 is denoted as

IvC =
{
uC vC wC

}T
= IvH4 +AIC

(
CvH4C1 + ωIC × IrH4C1

)
. (5.9)
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The relative velocity vector CvH4C1 is the time derivative of the relative posi-
tion vector CrH4C1. The velocity components are normalized with the maximum
magnitude of the vector, just that

I v̂Ci =
vCi

max(|IvC |)
for i = x, y, z . (5.10)

Fig. 5.10 shows the reference bike speed in the upper subfigure and the three
velocity components in the middle subfigure. The y-component of the velocity
vector is similar to the bike speed in the last part of the lap (t̂Lap = 0.9 · · · 1), as
the orientation of the inertial frame of reference axis goes into the direction of the
backstraight in riding direction – counter clockwise. The z-velocity component is
relatively small compared to the x- and y-components. Therefore, the z-velocity
component is displayed with a scaling factor of 10.
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Figure 5.10: Normalized, absolute racebike translational and angular velocity com-
ponents for the representative race lap.

The Absolute Racebike Acceleration The acceleration vector of the racebike
is calculated with reference to Eq. 3.13. Fig. 5.11 shows the translational and
angular acceleration components of the racebike. The upper subfigure shows the
magnitude of the acceleration vector. The angular acceleration in the lower sub-
figure shows high values for the lean angle direction changes and moderate values
for the y- and z-angular accelerations.

90



-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5
0

0.5
1

Figure 5.11: Normalized, absolute racebike acceleration quantities for the repre-
sentative race lap.

Wheel Slip Calculation The local wheel slip quantities in the tire contact
points are calculated with reference to section 3.4.2. Fig. 5.12 shows the racebike
speed and the normalized engine speed in the upper subfigure. The lower subfigure
shows the rear wheel slip and the normalized and scaled rear wheel drive torque.
The figure shows drive slip values of up to 0.1 (10%) and brake slip values of up to
−0.2 (−20%). In the last part of the lap (t̂Lap = 0.9 · · · 1), the acceleration on the
backstraight, the drive slip has high values in the beginning when the maximum
torque is applied, and then settles down to constant values around 0.04 (4%) until
reaching the top speed at the end of the lap.

Wheelbase Calculation The wheelbase is calculated as the magnitude of the
distance vector between the front and the rear wheel road-tire contact points, just
that

lref = wb = |IrV 4 − IrH4| . (5.11)

Fig. 5.13 shows the normalized reference length for the representative race lap. It
has its minimum value in the straight-line acceleration at the end of the represen-
tative lap and larger values for the unsteady riding situations during the remaining
lap.
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Figure 5.12: Normalized engine speed and bike speed. Rear wheel longitudinal slip
and normalized drive torque at the rear wheel for the representative race lap.
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Figure 5.13: Normalized, reference length (wheelbase) for the representative race
lap.

Racebike Measurement Table All raw measurements and all calculated vari-
ables are stored with a sampling rate of 100Hz in a Matlab table. With a lap
time of 113.52 s the table has 11352 rows. The tabular presentation enables easy
segmentation and further use of all measurement data and derived variables.

5.4 Measurement Data Segmentation
The physical racebike model from chapter 4 aims to cover as many influences as
possible. However, there will be no specific racebike and rider model which is able
to cover the whole highly dynamic range of motion of a racebike. Therefore, the
prepared model data are split into meaningful segments. The segmentation is done
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by the following measurement and computational channels.

• racebike speed vbike,

• racebike lean angle φbike,

• lean angle speed derivative χ,

• acceleration and braking segments.

Thresholds of the channels are furthermore used to exclude certain areas from the
measurements.

The speed-lean angle plot for the representative lap of the Moto2 race is shown
in Fig. 5.14. The plot shows the colour coded motion profiles for the acceleration
and deceleration segments corresponding to Fig. 5.5. The circled numbers show
the related starting points of acceleration and braking segments. The racebike is
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Figure 5.14: Normalized speed v̂bike – normalized lean angle φ̂bike plot for the
representative lap.

never at rest. The corresponding time shares are 59.3% for acceleration and 40.7%
for deceleration. The main part of the acceleration segments starts from a neg-
ative, maximum lean angle. This corresponds to the counter clockwise racetrack
with mostly left-hand corners. The acceleration segments starting from left-hand
corners are displayed in Fig. 5.1 by the circled, uneven numbers 1, 3, 7, 11, 13,
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15 and 19. Only the points 5, 9 and 17 indicate an acceleration starting from a
right-hand corner.

The combined movements in longitudinal and lateral direction are analysed by
the lean angle derivative after the racebike speed, denoted as

χ =
dφ

dv
in rad

m/s
. (5.12)

The lean angle speed derivative χ is plotted in Fig. 5.15 together with the normal-
ized lean angle and speed signal. The peaks of χ are related to direction changes,
while a longitudinal acceleration at constant lean angle shows smooth, small val-
ues around zero. Smaller χ peaks are furthermore visible in braking regions. The
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Figure 5.15: Normalized speed and lean angle, and chi signal for the whole repre-
sentative race lap.

calculated χ signal can be also visualized as the gradient in the speed–lean angle
plot. The χ value helps in analysing the dynamics of a racebike.

Looking for example at time t̂race = 0.7 in Fig. 5.15, the speed signal shows the
racebike accelerating and decelerating. The normalized lean angle shows constant
values of φ̂bike ∼ −0.5. The derived χ value shows values close to zero, which means
a pure longitudinal movement, although the racebike is in leaning conditions.

Chi Groups The value ranges of the magnitude of χ are used to subdivide the
acceleration segments. The following three χ-groups are introduced and displayed
in Fig. 5.16.
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Table 5.2: Chi groups with value ranges, descriptions, interpretations, and the link
to figures with corresponding riding situations.

group |χ| description interpretation
a 0 · · · 0.3 acceleration segments

with little or no
change of the lean

angle

longitudinal dynamics at
constant lean angles; see

Fig. 2.8 d & e

b 0.3 · · · 1 moderate lean angle
changes during

acceleration

lifting up the bike from
maximum lean angle into
an upright position; see

Fig. 2.8 c
c 1 · · ·∞ rapid changes of the

lean angle during
acceleration

flipping of the racebike; see
Fig. 2.8 b & f

The time shares of the single groups for the acceleration segments are shown
in Fig. 5.16.
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Figure 5.16: Speed–lean angle plot for acceleration segments with three groups a, b
and c. Showing small, moderate, and rapid lean angle changes during acceleration.

Absolute Lean Angle Subdivision The χ criterion segmentation from the
previous sections, however, does not provide information about the absolute lean
angle position. This can be easily seen in Fig. 5.16 a. The subplot shows seg-
ments with minor lean angle changes during acceleration at different lean angles.
Therefore, the measurement data are subdivided into three absolute lean angle
groups:
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• Index 1 for: |φbike| < 20◦,

• Index 2 for: 20◦ < |φbike| < 40◦ and

• Index 3 for: 40◦ < |φbike|.

With this, the three χ subgroups are further divided into the absolute lean angle
groups. The resulting, 9 riding segments (i1,2,3 for i = a, b, c) are shown in Fig.
5.17. The left subfigure shows steady lean angle riding situations. These segments
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Figure 5.17: Subdivided chi acceleration segments into lean angle subgroups with
the shown limits i1 < 20◦ < i2 < 40◦ < i3 (for i = a · · · c).

can be used for the analysis of the racebike acceleration performance at different
constant lean angles. The chi subgroups b and c are mainly driven by lean angle
changes from left to right maximum lean angles or from maximum lean angles
to zero. For this groups, the absolute lean angle subdivision does not give much
added value.

5.5 Riding Segments for Derivation of Aerody-
namic Racebike Characteristics

The final assessment of the riding segments for the derivation of the aerodynamic
racebike characteristics was carried out with the following criteria.

• Racebike acceleration abike > 0m/s2.

• Racebike speed vbike > 30m/s.
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• Magnitude of lean angle – speed derivative, |χ| < 1.3 rad s/m. This criterion
excludes the rapid lean angle changes which are mainly caused by the rider.

This value range covers 75% of the acceleration time shares. The corresponding
time shares of the racebike speed, the lean angle, and the lean angle – speed
derivative is visualized in Fig. 5.18 by the filled areas. Fig. 5.19 shows the riding
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Figure 5.18: Chosen riding segments. The filled areas mark the regions of the
racebike speed, lean angle, and lean angle - speed derivative which are inside the
defined criteria.

segments within the criteria ranges in the Aragon track map. The chosen riding
segments covers the two long straights:

• the start-finish line (points 1 · · · 2) and

• the backstraight (points 19 · · · 20).

It furthermore covers the shorter, straight segments like between points 9 · · · 10 as
well as the long-drawn curves where the racebike is accelerating.

5.6 Straight-Line Acceleration Segments
The two longest acceleration segments are described and compared in more detail
below. Fig. 5.20 shows the speed-lean angle plot for these acceleration segments.
It is interesting to see that although the corner radius in point 1 is much bigger
than in point 19, the lifting of the racebike from high lean angles is done over a
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Figure 5.19: Chosen riding segments. The thick orange line indicates the chosen
riding segments on the racetrack map.
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Figure 5.20: Normalized speed v̂bike – normalized lean angle φ̂bike plot for the two
longest acceleration segments.

similar speed range – both have similar chi values in the beginning of the segment
(χ ∼ −0.3).

Start-Finish Line (Points 1–2) Fig. 5.21 shows a short section of constant
speed in the beginning. In this area the racebike is under a high lean angle. The
front fork is compressed half way down, the rear shock is nearly fully compressed.
For completeness, the brake is not actuated over the whole acceleration segment.
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At ŝseg ∼ 0.1 the rider opens the throttle. The racebike accelerates and both the
front fork and the rear shock expand. The bike is still under a high lean angle.
The area of ŝseg ∼ 0.2 shows the rider steering. Beginning from ŝseg ∼ 0.3 the rider
lifts the bike up into an upright position. The front fork and the rear suspension
strokes settle to a constant level over the last part of the acceleration segment. The
figure illustrates once again that there are practically no straight riding situations
for a racebike. An interesting fact is that the rider is already beginning to lean
the bike before start braking.
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Figure 5.21: Measurement readings of the acceleration segment between points 1
and 2 – start-finish line.

Backstraight (Points 19–20) The second acceleration segment starts out of
a tight curve onto the longest straight of the racetrack. The racebikes accelerates
from a low speed and reaches the top speed of the whole lap at the end of this
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segment. The lean angle is close to zero over the largest part of the segment. This
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Figure 5.22: Measurement readings of the acceleration segment between points 19
and 20 – backstraight.

segment is most likely to be quasi-stationary, at least from ŝseg ∼ 0.2 onwards.
Both acceleration segments will be used at the end of the next chapter to

show the direct comparison with literature data to emphasize the soundness of the
results.
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Chapter 6

Results and Discussion

The aerodynamic characteristics are calculated with reference to chapter 4 for the
prepared and segmented measurement data from chapter 5.

6.1 Calculated AIM Forces and Moments
The AIM forces and moments can be calculated for the complete representative
lap with reference to Eqs. 4.48 and 4.49. The forces and moments are presented
with reference to Fig. 3.4 in the moving racetrack patch axis system, indicate by
p. In this axis system the x-direction is the direction of motion. The y-direction is
the lateral motion, and the z-direction is the vertical movement. The calculated,
normalized AIM forces and moments are shown in Fig. 6.1 together with the
normalized bike speed and lean angle signal for the representative lap.

Forces The AIM force in x-direction consists, among other influences, of the drag
resistance force (= acting against the direction of motion). Therefore, the x-force
is negative over the largest range of the lap. Some positive values of the x-force are
related to braking manoeuvre with a weight transfer of the rider. The force in z-
direction shows negative values, which means a downward pointing force. The side
force in y-direction shows a direct correspondence with the change of direction from
the lean angle signal. It is assumed that the large y-force deflections are caused
by the shifting of the rider’s weight during changes in lean angle. A good check of
the side force validity is the fact, that the side force is zero for the zero lean angle
part at the end of the representative lap. This area is a straight line, where the
racebike is in upright position.

Moments The lower subplot in Fig. 6.1 shows a dominating roll moment (x-
moment) characteristic. The yaw moment (z-moment) and the pitch moment
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Figure 6.1: Normalized, AIM force and moment characteristics for the represen-
tative race lap.

(y-moment) show only small magnitudes in this overall picture.

Dimensionless Coefficients With reference to Eq. 4.50, the dimensionless
force and moment coefficients are calculated from the AIM forces and moments.
The following sections focus on the x-force. The x-force coefficient is used in the
following as drag coefficient.

6.2 Drag Coefficient vs. Racebike Speed
The derived drag coefficients pcD are displayed for the three χ subgroups a, b and
c in Fig. 6.2 against the normalized racebike speed v̂bike. The subfigures show the
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derived raw data and a user defined regression curve of the form

pcD = d+ k eb vbike , (6.1)

where k is a scale for the exponential function, b is a measure for the sharpness
of the exponential function and d marks the saturation value of the regression
curve. In other words, this is the constant drag coefficient part (pcD const = d). The
coefficient of determination of the regression curve R2 is displayed in the subfigures
as statistical measure of how close the data are fitted to the user defined regression
curve. The high R2 values indicate a good fit of the chosen regression curve.
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Figure 6.2: Drag coefficients pcD vs. reference racebike speed vbike for the χ
acceleration subgroups a, b and c.

The results shown contradict the widely used assumption, that the drag coeffi-
cient is constant and independent of the racebike speed. The reasons for the speed
dependency shown here are multifaceted and a superimposition of several effects.
Known or already discussed effects are:

• Reynolds number effects with reference to Fig. 3.9,

• higher drag area values for riding situations at lower speeds during cornering
due to the rider in hanging-off positions,

• lower drag area for higher speeds due to the rider in aerodynamically optimal
low drag position and

• much more, highly dynamic effects, which are not yet known or researched
in detail.
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6.3 Drag Coefficient vs. Racebike Lean Angle
Here and in the following, only acceleration segments are discussed. The calculated
drag coefficients pcD are displayed for the three χ subgroups a, b and c in Fig. 6.3
against the normalized lean angle φ̂bike. The subfigures show the derived raw data
and a user defined regression curve of the form

pcD = a eb φbike + c e−b φbike , (6.2)

where a and c are scales of the exponential functions and b is the measure of the
sharpness of the exponential functions. The sum of a and c for the case of zero
lean angle φbike = 0 describes the drag coefficient pcD0, just that

pcD0 = pcD(φbike=0) = a+ c . (6.3)

The drag coefficient for zero lean angles pcD0 is displayed in the subfigures for
the three χ subgroups. The drag coefficient characteristics against the racebike
lean angle looks at first sight quadratic. The quadratic shape was not able to
cover the asymmetric characteristics of the drag coefficient in a sufficient way. An
asymmetric drag characteristic is the result of a non-symmetric racebike due to
packaging reasons and due to a never fully symmetrical rider behaviour in left and
right-hand corners. Additionally, the non-aerodynamic effects of the AIM force
can be responsible for the shown characteristics. The lean angle – drag coefficient
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Figure 6.3: Drag coefficients pcD vs. racebike lean angle φbike for the χ acceleration
subgroups a, b and c.

plots show a high coefficient of determination R2 for the chi group a and c. A
closer look at the raw data nevertheless shows a large scatter of values, which is
why the high coefficient of determination is somewhat misleading. For chi group
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b, the regression curve was not able to cover the drag characteristics. The reasons
therefore are superimposed effects of rider movements and racebike speeds.

Therefore, the regression curve with reference to Eq. 6.2 cannot cover the drag
coefficient – lean angle dependency for all single chi groups. For a more accurate
modelling, the measurement data must be further segmented and subdivided.

6.4 Drag Coefficient for Chi and Lean Angle Sub-
groups

The drag coefficients are analysed for the 9 riding segments from Fig. 5.17. The
corresponding drag coefficients are displayed in Fig. 6.4 against the normalized
racebike speed. The regression curves are based on Eq. 6.1. To recap, the letters
denote the χ groups (a, b, c), the indices (1, 2, 3) denote the absolute lean angle
ranges.
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Figure 6.4: Drag coefficients pcD vs. reference racebike speed v∞ for the χ accel-
eration subgroups a, b and c.

• Riding segments a1, b1 and c1 show independent of the χ range a high degree
of certainty and similar saturation values pcD0. In this small lean angle range
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(index 1), the dynamic of the racebike is mainly the longitudinal dynamic. In
any case, the dependence of the drag coefficient on the speed, is also evident
here.

• The medium lean angle range case for small χ values a2 shows a mainly
constant drag coefficient and therefore, a good coefficient of determination.

• The other subgroups show high drag coefficients for low velocities and small
or no saturation areas. This implies, that the dynamic in this riding segments
is high, and that the rider movement has a major effect in these segments.

6.5 Force and Moment Coefficients for Acceler-
ation Riding Segments

The detailed analysis of the drag coefficient in the previous sections showed, that
there are partially meaningful relations to the racebike speed and the lean angle.
No segmentation and modelling of the drag coefficients could present a satisfactory
picture for the overall acceleration segments.

Based on the conclusions of the previous segmentation, the following criteria
were used for the final modelling of the acceleration segments with reference to
section 5.5. As a reminder the segmentation criteria are:

• abike > 0m/s2

• vbike > 30m/s

• |χ| < 1.3 rad s/m

With this, the aerodynamic force and moment coefficients for the selected racedata
set are calculated. The results are presented as function of the racebike lean angle
in Fig. 6.5.

The curves in the single subfigures show the regression curves with the related
measure of determination R2. After careful examination of various types of regres-
sion curves, three types have emerged as particularly suitable to cover the lean
angle characteristics of all six aerodynamic coefficients.

The lean angle force characteristics are represented by a user-defined func-
tion, written as

cf = a ebφbike + c e−bφbike for f = D,Y, L , (6.4)

where a and c are scales of the exponential functions and b is the measure of the
sharpness of the exponential functions.
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The lean angle roll- and pitch-moment characteristics is represented by a
third order Polynom written as

cm = p1 φ
3
bike + p2 φ

2
bike + p3 φbike + p4 for m = L,M , (6.5)

where p1, p2, p3 and p4 are the coefficients of the polynom.
The lean angle yaw-moment characteristics is represented by a linear re-

gression curve written as

cm = p1 + p2 φbike for m = N , (6.6)

where p1, p2 are the coefficients of the curve.
The complete set of the parameters for the aerodynamic force and moment

characteristics is given in Appendix B. A detailed discussion of the single aero-
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Figure 6.5: Aerodynamic force and moment coefficients vs. racebike lean angle for
the defined acceleration segments.

dynamic force and moment coefficients from Fig. 6.5 is given in the following
paragraphs.

Drag Coefficient (pcD) The drag coefficient characteristics shows a high co-
efficient of determination R2 = 96.1% for the chosen riding segment. For the
racebike in upright position, the drag coefficient from the regression curve shows
minimum values of pcD = 0.5020. Looking at the raw calculated drag coefficients,
the drag coefficient for zero lean angles is somewhat smaller. This region corre-
sponds to subplot a1 in Fig. 6.3. Considering the speed dependency from there,
the minimum drag coefficient for small lean angles is pcD = 0.3727.
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For higher lean angles, the drag coefficient reaches values of up to pcD = 1.2
for maximum lean angles. The calculated raw data show peaks at maximum lean
angles of 1.5 and higher. A plausibility check of the high drag coefficients is made
in paragraph 6.6.

Side Force Coefficient (pcY ) The side force coefficient shows a flat character-
istic for small lean angles and a sharp increase towards maximum lean angles. The
characteristics is asymmetric showing positive side forces for positive lean angles
and vice versa, like expected.

Lift Coefficient (pcL) The lift coefficient is zero or negative over the whole lean
angle range, which would mean a downforce in the aerodynamic context. For the
racebike in upright position φ ∼ 0, the overall lift coefficient is close to zero. This
fits together with the experience of the author.

For higher lean angles, the lift coefficient reaches high values of up to −4. Lift,
or downforce coefficients with a magnitude of 2 · · · 4 are not explainable by known
aerodynamic mechanisms. Therefore, it is suspected that the high downforce co-
efficients are related to center of gravity and moment of inertia changes due to the
rider in cornering situations.

Roll Moment Coefficient (pcL) The roll moment coefficient characteristics
shows a close to linear behaviour over a wide lean angle range between −0.5 <
φ̂bike < 0.5. For larger lean angles, the roll moment characteristics flatten out,
reaching a maximum value of pcL = ±4 at normalized lean angles of φ̂bike = ±0.75.
The roll moment at higher lean angles is a result of the rider in hanging-off and
the related aerodynamic, mass and inertial forces.

Pitch Moment Coefficient (pcM) The pitch moment coefficient is next to
the drag and the lift force the important measure for the longitudinal racebike
dynamics. The pitch moment is negative for small lean angles and positive for
higher lean angles, crossing zero at lean angle values of φ ∼ 45◦.

• For small lean angles, the pitch moment is acting as a backward rotating
moment which tends to lift the racebike at the front.

• For higher lean angles, the pitch moment is acting as a forward rotating
moment which tends to press the front of the racebike down.

The pitch moment characteristics is close to symmetric with respect to the lean
angle.

108



Yaw Moment Coefficient (pcN ) The yaw moment characteristics shows a lin-
ear behaviour over the whole lean angle range. For positive lean angles, the yaw
moment shows negative values. Positive lean angles indicate a right-hand corner.
Looking from top onto a riding situation in a right-hand corner, a negative yaw
moment is acting as a left turning moment. This means, the yaw moment is trying
to rotate the racebike out of the corner. The small offset of the regression line is
caused by the unequal weighting of left- and right-hand corners.

6.6 Straight-Line Acceleration Drag Areas
For a final validation of the results with literature the straight-line acceleration
segments from section 5.6 are used. Fig. 6.6 shows drag coefficients plotted against
the racebike lean angle. The two solid lines are the derived drag coefficients from
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Figure 6.6: Aerodynamic drag coefficient vs. racebike lean angle. Calculated data
for the start-finish line and the backstraight. Reference data from Van Dijk [13]
and Dubey [16].

the AIM methodology for the two longest acceleration segments.

Comparison with Literature Results There is very few literature data avail-
able for racebike aerodynamic characteristics. Selected comparative measurements
have been made for the drag area – reminder, in the present work, the drag coeffi-
cient is equivalent to the drag area. Van Dijk [13] did numerical flow simulations
for the evaluation of aerodynamic forces on a racebike during cornering. The base-
line simulations for the racebike in upright position at zero lean angle show a good
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match to the results from the AIM methodology at zero lean angle. Simulations
carried out by Dubey [52] confirm valid drag coefficients for zero lean angle.

Comparison with Lean Angle Results Fig. 6.6 shows drag coefficients from
numerical flow simulations for high lean angles carried out by Van Dijk [13]. There
is a large discrepancy between the results. The difference comes through the fact
that the flow simulations deliver just aerodynamics drag forces while the AIM
derived drag coefficient also include the inertia and the mass of the rider and the
racebike in the lean angle riding situations. The AIM methodology would just
deliver pure aerodynamic forces if there would be no dynamic movement by the
racebike or the rider itself.

Plausibility Check of the Drag Coefficient Taking the worst-case shape
of a body, a cross-flow plane plate (shown in Fig. 3.7) or the concave half of a
sphere, the theoretical drag coefficient is between 1 and 1.33, respectively. The
projected area of a racebike with rider is between 0.5m2 for the rider in top speed
position and up to 1m2 for the racebike rider combination in hanging-off or braking
situations. Thus, the theoretical achievable drag areas cD Ax for a racebike rider
combination are between 0.5 · · · 1.33m2.

With the defined reference area of 1m2 for the analysis, the presented drag
coefficients pcD can be also interpreted as drag area. Therefore, the initial state-
ment, that the high drag coefficient values are related to rider movements and
changed geometry shapes can be confirmed with the values of the theoretically
achievable drag coefficients. To recap, the individual components included in the
here calculated drag coefficient are:

• the drag coefficient itself,

• the projected area,

• the center of gravity change due to rider movements and

• the change of the moment of inertia due to rider movements.

Although the effects cannot be resolved in detail, the presented drag coefficients
are plausible based on the above explanations.

In summary it can be said that the AIM methodology shows a good match with
literature results for zero lean angle case. For higher lean angles, the dynamic of
the racebike and rider itself does not allow a direct comparison.
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Chapter 7

Conclusions and Outlook

Within the framework of the thesis, a physical racebike model was created. The
model was used to determine aerodynamic forces and moments in combination
with mass- and inertia changes due to the highly dynamic rider movements of the
racebike. The analyses is based on real racetrack measurements of a complete
Moto2 world championship race.

The new approach was able to show plausible aerodynamic characteristics for var-
ious racetrack segments and rider positions. The aerodynamic force and moment
coefficients were presented as function of the racebike speed and lean angle.

The approach allows the assessment of aerodynamic characteristics and rider dy-
namics relative to the racebike from real racetrack riding situations. The initial
stated bike aero tool (see Fig. 2.14 and Fig. 4.4) helps engineers in the aerodynamic
development of racebikes:

• to validate CFD simulations and windtunnel tests against each other,

• to validate CFD simulations and windtunnel tests against racetrack mea-
surements,

• to check the plausibility of racetrack measurements and

• to monitor and track the aerodynamic development progress.

The bike aero tool can do much more. It can be used as bike aim tool – AIM:
Aerodynamic, Inertia, Mass – for the analysis of aerodynamics and rider dynamics
of a racebike riding on a racetrack. The tool can help engineers in the development
and on racetracks to analyse and understand highly dynamic riding situations on
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racetracks. Thus, it supports in the permanent development of the racebike and
in the optimization for minimum lap time.

In the course of the work, the new size χ = dφ/dv was introduced, which proved
to be particularly practical in the representation and segmentation of real-world
racetrack riding situations. This quantity is a measure for the dynamic of the
racebike. It helps in identifying situations like changes of direction or quasi-steady
riding situations.

To get a deeper insight into the individual components of the aerodynamic forces
and moments for future work, additional measurement parameters would be help-
ful. Information about the exact rider position and the resulting center of gravity
and inertia change can be gathered with rider motion capturing systems. With
this information an extended multibody model can be built up and used for an
enhanced model approach.

Additional measurements of the upstream flow conditions on the racebike can
be used to validate the influence of the environmental wind conditions on the
aerodynamic characteristics of the racebike. Feichtinger [20] presented a novel
approach for the direct upstream flow measurement on moving objects, which can
be used for aerodynamic measurements on racebikes in the future.

A deeper understanding of the aerodynamics of a racebike and combined rider-bike
dynamics will be a major task for future developments. The present work provides
a model basis for this and supports the development of future innovative concepts
in the field of motorcycle racing.
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Appendix A

Motorcycle Model Parameter

The following paragraphs show the geometric, mass and inertia parameters for the
six bodies of the racebike multibody model in SI Units.

Chassis (C) Parameters

Table A.1: Chassis (C) Parameters)

parameter value unit parameter value unit
mC 180 kg κF -22 ◦

ΘCxx 11 kgm2 ΘCxy 0 kgm2

ΘCyy 22 kgm2 ΘCyz 0 kgm2

ΘCzz 15 kgm2 ΘCzx -4 kgm2

xC10 0.102 m zC10 0.203 m
xC12 0.542 m zC12 0.404 m

With κF as the steering head angle.
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Swingarm (S) Parameters

Table A.2: Swingarm (S) Parameters)

parameter value unit parameter value unit
mS 8 kg θS0 -12 ◦

ΘSxx 10 kgm2 ΘSxy 0 kgm2

ΘSyy 20 kgm2 ΘSyz 0 kgm2

ΘSzz 10 kgm2 ΘSzx 0 kgm2

xS10 -0.202 m zS10 -0.050 m
xS12 -0.570 m zS12 0.000 m

With θS0 as the swingarm angle in static position.

Upper Front Assembly (L) Parameters

Table A.3: Upper Front Assembly (L) Parameters

parameter value unit parameter value unit
mL 5 kg lG0 0.135 m
ΘLxx 1.5 kgm2 ΘLxy 0 kgm2

ΘLyy 1.5 kgm2 ΘLyz 0 kgm2

ΘLzz 1 kgm2 ΘLzx 0 kgm2

xL10 0.050 m zL10 -0.200 m
xL13 0.050 m zL13 -0.580 m

With lG0 as the fully extended front fork length.

Lower Front Assembly (G) Parameters

Table A.4: Lower Front Assembly (G) Parameters

parameter value unit parameter value unit
mG 4 kg
ΘGxx 1 kgm2 ΘGxy 0 kgm2

ΘGyy 1 kgm2 ΘGyz 0 kgm2

ΘGzz 0.5 kgm2 ΘGzx 0 kgm2

xL10 0.025 m zL10 -0.020 m
xL12 0.000 m zL12 -0.033 m

Rear Wheel (H) Parameters
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Table A.5: Rear Wheel (H) Parameters

parameter value unit parameter value unit
mH 15 kg
ΘHxx 0.2 kgm2 ΘHxy 0 kgm2

ΘHyy 0.5 kgm2 ΘHyz 0 kgm2

ΘHzz 0.2 kgm2 ΘHzx 0 kgm2

xH10 0.000 m zH10 0.000 m
xH12 0.000 m zH12 -0.215 m
xH23 0.000 m zH23 -0.114 m

With the tire geometry of the Dunlop 200/75R17 Moto2.

Front Wheel (V) Parameters

Table A.6: Front Wheel (V) Parameters

parameter value unit parameter value unit
mV 12 kg
ΘV xx 0.15 kgm2 ΘV xy 0 kgm2

ΘV yy 0.40 kgm2 ΘV yz 0 kgm2

ΘV zz 0.15 kgm2 ΘV zx 0 kgm2

xV 10 0.000 m zV 10 0.000 m
xV 12 0.000 m zV 12 -0.215 m
xV 23 0.000 m zV 23 -0.082 m

With the tire geometry of the Dunlop 125/75R17 Moto2.
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Appendix B

Aerodynamic Force and Moment
Model Parameter

Model parameters for the aerodynamic force and moment coefficients from section
6.5 for segmentation criteria:

• abike > 0m/s2

• |χ| < 1.3 rad s/m

• vbike > 30m/s

Drag Coefficient
pcD = a eb x + c e−b x (B.1)

R2 = 0.96104
Coefficients (with 95% confidence bounds):
a = 0.23403 (0.23172, 0.23634)
b = 1.6511 (1.6378, 1.6643)
c = 0.26795 (0.26539, 0.2705)

Side Force Coefficient
pcY = a eb x + c e−b x (B.2)

R2 = 0.96674
Coefficients (with 95% confidence bounds):
a = 1.9505e− 05 (1.6663e− 05, 2.2347e− 05)
b = 11.5619 (11.3962, 11.7276)
c = −2.1464e− 05 (−2.4768e− 05, −1.816e− 05)
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Lift Force Coefficient
pcL = a eb x + c e−b x (B.3)

R2 = 0.78616
Coefficients (with 95% confidence bounds):
a = −0.0202 (−0.022792, −0.017608)
b = 5.0371 (4.8879, 5.1863)
c = −0.02892 (−0.032709, −0.025131)

Roll Moment Coefficient

pcN = p1 x
3 + p2 x

2 + p3 x+ p4 (B.4)

R2 = 0.94742
Coefficients (with 95% confidence bounds):
p1 = −3.5106 (−3.69, −3.3312)
p2 = 0.2424 (0.17516, 0.30964)
p3 = 7.3654 (7.2473, 7.4836)
p4 = −0.096583 (−0.12916, −0.064007)

Pitch Moment Coefficient

pcM = p1 x
3 + p2 x

2 + p3 x+ p4 (B.5)

R2 = 0.71925
Coefficients (with 95% confidence bounds):
p1 = 0.20366 (0.17023, 0.23709)
p2 = 0.7109 (0.69837, 0.72343)
p3 = −0.087883 (−0.10991, −0.065856)
p4 = −0.30586 (−0.31193, −0.29979)

Yaw Moment Coefficient
pcL = p2 + p1 x (B.6)

R2 = 0.79982
Coefficients (with 95% confidence bounds):
p1 = −0.62749 (−0.63629, −0.61869)
p2 = 0.041773 (0.036444, 0.047103)
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Appendix C

Upstream Flow Conditions on a
Racetrack

A racebike on a racetrack is exposed to a variety of environmental conditions.
The wind environment and the flow conditions induced by the wake areas of other
riders on the racetrack. Therefore, the upstream flow conditions of a racebike are
influenced by the same conditions. These conditions are mainly turbulent flow
conditions which are subject to great fluctuations.

Turbulent Flow Regime For a turbulent wind field, respectively the turbulent
flow regime, Batchelor [6] stated three principal difficulties by a solution to the
problem of homogeneous turbulence:

• The three-dimensional character of the velocity field,

• The non-linearity of the equation of motion, and

• The random variation of the velocity and the need for statistical methods.

This leads to a higher effort for the modelling of a turbulent environment, compared
to the modelling of a uniform wind field. Fig. C.1 shows the three-dimensional
velocity components of a given fluid element B in a turbulent flow field. The
most common approach for turbulent flow modelling is the so-called Reynolds
decomposition, which splits the instantaneous flow variables into an averaged and
a fluctuating component, written as

u = ū+ u′, v = v̄ + v′, w = w̄ + w′, p = p̄+ p′ , (C.1)

with the velocity components u, v, w in x, y and z direction. The first component
is the averaged value, the second the fluctuating term. The derivatives of the
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fluid element B
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Figure C.1: Velocity components at a given point in a turbulent flow field with
respect to Herwig [28].

fluctuating component lead to the scale providing quantities like the turbulent
kinetic energy

k =
1

2
u′k u

′
k , (C.2)

and the turbulent energy dissipation, written as

ε = ν
∂u′

∂xk

∂u′

∂xk
. (C.3)

Both quantities are used as scale variables for the description of the turbulent flow
field. The turbulent kinetic energy and the turbulent energy dissipation are used
for the calculation of the turbulent velocity scale

Uturb ≈
√
k , (C.4)

and the turbulent length scale

Lturb =
3
√
k

ε
, (C.5)

respectively. Another scale providing quantity is the characteristic frequency, de-
fined as

ωturb =
ε

k
. (C.6)

Using this quantity, the turbulent length scale can be alternatively calculated by

Lturb =
√
k

ωturb
. (C.7)
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The turbulence intensity of the environmental wind field

Tuwind =
1

|vwind|

√
2

3
k , (C.8)

is a normalized turbulence quantity which describes the turbulent kinetic energy
with reference to the magnitude of the oncoming wind speed |vwind|. For a general
definition of the turbulence intensity the magnitude of the upstream flow vector is
used as reference velocity as follows

Tuus =
1

|vus|

√
2

3
k . (C.9)

The turbulence intensity with reference to the upstream flow conditions Tuus is
therefore different compared to the turbulence intensity of the environmental wind
field Tuwind.

Turbulent Flow Field The turbulent flow field is three-dimensional, non-linear
and has a random variation. Therefore, the flow field can be modelled for the com-
plete three-dimensional operational domain using Taylors’ hypothesis of ’frozen
turbulence’, mentioned by Cooper [11]. The wind velocity at a fixed point has
components in x, y and z direction (see Fig. C.1) for the averaged wind vector
and the fluctuation velocity components. The whole turbulent wind velocity vector
is defined as

vwindi = vwindi + v′
windi

, (C.10)
with vwindi as the averaged wind vector and v′

windi
as the absolute value of the

fluctuation velocity. The fluctuation velocity can be defined as

v′
windi

= 2v′
windi(max)

(
LHSi −

1

2

)
, (C.11)

with the maximum absolute value of the fluctuation velocity and the LHS-Function
(Latin Hypercube Sampling) implemented in Matlab. The LHS is a statistical
method to generate near-random samples between 0 and 1. The fluctuating wind
component is an absolute value, therefore 0.5 must be subtracted in Eq. C.11 to get
a positive and negative fluctuating component. For each grid point in the turbulent
flow domain the scale providing quantities can be calculated using equations C.2 to
C.8. To understand the effects of turbulence, Bearman [7] proposed to differentiate
between passive and active parts of the turbulence spectrum.
The passive parts are related to large-scale eddies, large compared to the size of
the vehicle. The large-scale eddies have a quasi-steady effect on the aerodynamics
as they change the magnitude and direction of the approaching wind.
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Figure C.2: Turbulent length scale versus turbulence intensity. The boxes show
reference values from on-road turbulence measurements carried out by Wordley
[62]. The dashed line shows the reference length lref of the racebike, which is the
wheelbase.

The active parts represent the smaller scales of turbulence which can interact
with the flow field directly, due to a high content of kinetic energy. Therefore,
they have large influence on the overall flow as these high energy eddies may
affect boundary layer separation and reattachments, like published by Newnham
[43]. He showed drag coefficients over Reynolds numbers for different turbulence
intensities, highlighting the effect on the critical Reynolds number. Fig. C.2
shows the turbulent length scale versus turbulence intensity with reference values
for city canyon, smooth terrain, roadside obstacles and freeway traffic measured
by Wordley [62]. Furthermore, it shows the wheelbase of the racebike as reference
length. The reference length splits the turbulent flow regime into the active and
passive parts.
Though there is a strong, known influence of the active parts and the corresponding
critical Reynolds number they are not considered within the present thesis. A
deeper insight into the effect of the upstream flow conditions is given by Feichtinger
[22] and [21].
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