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Due to its high lethality among older people, the safety of nursing homes has
been of central importance during the COVID-19 pandemic. With test pro-
cedures and vaccines becoming available at scale, nursing homes might relax
prohibitory measures while controlling the spread of infections. By control we
mean that each index case infects less than one other person on average. Here,
we develop an agent-based epidemiological model for the spread of SARS-
CoV-2 calibrated to Austrian nursing homes to identify optimal prevention
strategies. We find that the effectiveness of mitigation testing depends critically
on test turnover time (time until test result), the detection threshold of tests and
mitigation testing frequencies. Under realistic conditions and in absence of vac-
cinations, we find that mitigation testing of employees only might be sufficient
to control outbreaks if tests have low turnover times and detection thresholds.
If vaccines that are 60% effective against high viral load and transmission are
available, control is achieved if 80% or more of the residents are vaccinated,
even without mitigation testing and if residents are allowed to have visitors.
Since these results strongly depend on vaccine efficacy against infection, reten-
tion of testing infrastructures, regular testing and sequencing of virus genomes
is advised to enable early identification of new variants of concern.
1. Introduction
Nursing homes and other long-term care facilities are the ground zero of the
COVID-19 pandemic [1]. Around the globe, a disproportionate number of con-
firmed deaths has been attributed to nursing home residents. For instance, as of
July 2020, nursing homes accounted for 37% of the 719 confirmed COVID-19
deaths in Austria [2]. With 923 confirmed cases in nursing homes during this
period of time, this results in a case fatality rate of 28%, in line with reported
high case fatality rates in the age group above 80 years old [3].

Owing to this extreme severity, in most countries stringent non-pharma-
ceutical interventions have been suggested for nursing homes, such as bans
on visitors, individual movement restrictions and other quarantine policies
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[4,5]. COVID-19, therefore, severely affects the quality of life
of all nursing home residents, not just the infected ones [6].

The widespread availability of rapid testing procedures,
e.g. antigen tests [7] or tests based on the RT-LAMP pro-
cedure [8] enable ‘testing for mitigation’ strategies. The aim
of mitigation testing is to use testing within a specific setting
to quickly identify and isolate infectious individuals but, in
contrast to diagnostic testing, not necessarily infected indi-
viduals which do not have a high enough viral load to
infect others. As vaccines become available, nursing homes
naturally have become priority targets for the vaccination of
as many employees and residents as possible [9,10].

At the moment, non-pharmaceutical measures, testing strat-
egies and vaccines exist side-by-side. In the intermediate future,
vaccines will most likely replace non-pharmaceutical measures
and reduce the need for testing. Yet, at this point in time, it is
unclear how to design optimal mitigation strategies involving
testing and vaccination. Moreover, a transition from purely
non-pharmaceutical interventions over a mix of vaccines and
interventions towards widespread vaccine proliferation is
expected to occur for potential future immune escape variants
of SARS-CoV-2 and any other pandemic threat yet to emerge.

The design of optimal mitigation testing strategies for a
specific facility like nursing homes is challenging due to the fol-
lowing and sometimes interrelated factors that determine the
effectiveness of a given strategy [11]: next to the epidemiological
contagion dynamics, the optimal testing strategy also depends
on the structure of the co-location networks of the employees
and residents, personal protective and physical distancing
measures already in place, as well as the characteristics of the
test, namely (i) the turnover time (time span between test and
availability of test result) and (ii) the detection threshold (viral
load necessary for a positive result). For instance, RT-PCR tests,
the current gold standard, have a turnover time of 1 or 2 days
with a detection threshold much lower than the threshold
above which an individual becomes infectious. Antigen tests
have a turnover of less than an hour but a substantially higher
detection threshold. Finally, RT-LAMP tests combine a
same-day turnover with a low detection threshold. For all these
tests, sensitivity and specificity are close to 100% above the
corresponding detection thresholds [12–14].

First evidence shows that vaccinations can be highly effec-
tive in preventing severe courses of the disease [15], infection
[16–20] and in reducing onward transmission [21,22]. Given
the impact of measures such as a reduction in visits and phys-
ical distancing on the mental and emotional wellbeing of
residents [23], ethical questions concerning the necessity of
non-pharmaceutical interventions alongside vaccinations
arise. In the context of substantial vaccine hesitancy among
employees [24,25], an assessment of the necessary level of
non-pharmaceutical intervention measures given different
levels of vaccination prevalence and effectiveness is crucial.

Here, we aim to design optimal mitigation testing and
vaccination strategies for nursing homes for different testing
technologies and levels of vaccination prevalence by means
of network-based epidemiological modelling [26]. In particu-
lar, we use an SEIRX model that is calibrated with individual-
level data from Austrian nursing homes. Individuals start
susceptible (S). After exposure (E), they turn infectious (I)
and recover after some time (R). Depending on the test tech-
nology, individuals can be tested positive either before or
after becoming infectious. Vaccinations lower both the
chance of infection and transmission. If infected individuals
are identified by a test, they are isolated (X). Individual-
based epidemiological models with a similar structure have
already been used to investigate the spread of SARS-CoV-2
in nursing homes under different prevention measures such
as routine testing [27–30], and the combination of testing
with vaccination strategies [31–34]. Overall, these previous
studies have shown that routine testing needs to be frequent
enough to mitigate outbreaks and that this frequency can be
reduced in proportion to vaccination rates in employees and
residents. Contagions occur on a network of social contacts
[35] that is modelled after the actual living conditions in a
nursing home (figure 1). We consider residents and employ-
ees with different types of social interaction such as shared
rooms or living and working in the same ward of a nursing
home. We use empirical data from four outbreaks to calibrate
the transmission risk associated with different types of inter-
actions (see electronic supplementary material, note S3).
Simulations were calibrated using data of outbreaks invol-
ving the wild-type SARS-CoV-2 strain that was dominant
in Austria in spring 2020. Since then, the B.1.1.7 (alpha) var-
iant has become dominant, which is reported to have a 50%
increased transmissibility [37–41]. We model this variant in
all results presented in this work by increasing the transmis-
sibility that was calibrated using wild-type outbreak data by
50%. For results of outbreaks with the wild-type strain, see
electronic supplementary material, note S6.

Mitigation testing strategies are parametrized by test tech-
nology and testing frequency. We consider RT-PCR and
antigen tests with their specific turnover times and detection
thresholds. Additional results for RT-LAMP tests are shown
in electronic supplementary material, note S8. Furthermore,
the strategies are determined by the frequencies by which
all residents and employees are tested, respectively. Vacci-
nation prevalence is parameterized by the ratio of
vaccinated employees and residents. We assume that vacci-
nations are 60% effective in preventing infection and 30%
effective in preventing transmission. These are conservative
estimates of the vaccine efficacies reported three or more
weeks after the first dose of the BNT162b2 (Biontech-Pfizer)
and ChAdOx1 nCOV-19 (AstraZeneca) vaccines, which
are currently most prevalent in Austrian nursing homes
[16–19,21,22].

Here, we investigate the effectiveness of different testing
and vaccination strategies in preventing infections in nursing
homes given the presence of an infected resident or
employee. For a given set of prevention measures, we com-
pute the expected distributions of outbreak sizes amongst
the residents, i.e. the average number of infected residents
after introducing a single index case into the home and simu-
lating the ensuing outbreak. In particular, we assume that
index cases are introduced either through an employee or a
resident from outside the home. The former reflects a situ-
ation where visitors are not allowed and residents’ contacts
with individuals from outside the nursing home are limited.
The latter reflects a situation where residents can introduce
an infection into the home, for example through contact
with visitors. In the absence of vaccinations, the optimal test-
ing strategy is then identified as the test technology and test
frequency for residents and personnel that minimizes the out-
break size for a given number of tests being performed. If an
index case causes fewer than one infection among residents,
we label the situation as ‘controlled’. For scenarios in which
a number of employees and residents are vaccinated, we



resident rooms
common areas
staff facilities

(a) (b)

(c)
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Figure 1. Living conditions in a ward of an Austrian nursing home. (a) Simplified floor plan of the ward with resident rooms (red), common areas (orange) and staff
facilities (blue). The ward houses up to 42 residents (red figures), is staffed by 18 employees (blue figures) and corresponds to the homes described in case studies 2
and 3 (see electronic supplementary material, note S5). Contact networks for the simulations were extracted from such floor plans and information about shared
tables in the canteen. (b) Rooms: up to two residents share a room and up to two rooms share a bathroom. (c) Shared table: up to six residents share a table during
joint meals. (d ) Shared common areas: residents living in the same ward of the home can move freely within the hallways, canteen and other common areas and
regularly meet other residents. Spread of the virus by means of aerosols [36] is indicated as red clouds.
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investigate how much testing is necessary to achieve the same
level of security as the optimal testing strategy.
2. Methods
We simulate the infection dynamics using an agent-based model.
The model includes two types of agents (residents and employees)
that live and work in nursing homes, respectively. Infections are
introduced from outside the home either through an employee
or a resident (see electronic supplementary material, note S1
‘Index cases’).

Residents have individual networks of social contacts. The
co-location network defines interactions between residents in
one of two ways, in decreasing order of infection transmission
risk: two residents might have social contacts due to a shared
room, a shared meal table, or a shared ward. While occasional
contacts between different wards of the same facility are possible,
we assume wards to function independently from each other.
The co-location network used in our simulation is a model of
social contacts in a nursing home ward, based on data about
occupancy and staffing during a number of observed outbreaks
in homes, and information from practitioners (see electronic sup-
plementary material, note S1 ‘Co-location networks’). One ward
includes 35 residents and 18 employees, resembling a typical
ward in an Austrian nursing home (see electronic supplementary
material, note S5 for details).

At the first day of a simulation, a random resident or
employee is chosen to become the index case and the agent’s
state is set to ‘exposed’. At every step (day) of the simulation,
agents interact according to their interaction rules and infectious
agents can transmit the virus to susceptible individuals. Depend-
ing on an agent’s individual exposure duration, incubation
duration, infection duration and probability to develop symp-
toms (see electronic supplementary material, note S1 ‘Agents’),
each agent is in one of 12 states: susceptible (S), exposed (E),
infectious presymptomatic (I ), infectious asymptomatic (I1),
infectious symptomatic (I2) or recovered (R) (depicted in elec-
tronic supplementary material, figure 6B). Each of these states
also exists in an isolated/quarantined (X ) version). States S, E,
I and R also translate to viral load, as depicted in electronic sup-
plementary material, figure 6A, which is important for the ability
of different test technologies to detect an infection (see electronic
supplementary material, note S1 ‘test technologies’). Once an
agent has become infected, the agent stays exposed for an
average of 5 days, matching the latent time reported for SARS-
CoV-2 [42,43]. After 5 days on average, agents become infectious
and stay infectious for on average 11 days [44,45].

The risk of transmission to a contact person is particularly
high during the first days of the infectious phase and then
decreases as the infection progresses [44,46]. Not all agents
develop symptoms and the probability to develop symptoms
depends on age [47]. We assume that the age of employees is
uniformly distributed between 20 and 59 years. Therefore,
employees have an average probability to develop symptoms
of 26.46% [47]. For residents, we assume a probability to develop
symptoms of 64.52%, corresponding to the value reported by
Poletti et al. for people aged 80 and above. We do not consider
age to be a relevant factor for susceptibility, since evidence for
this effect is still inconclusive [48]. If an agent develops a symp-
tomatic course of the disease, symptoms start to appear shortly
after becoming infectious [46]. Transmissibility of asymptomatic
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agents is reduced by 40% [49]. Vaccinations reduce the suscepti-
bility by 60% [16–19], and the transmissibility by 30% [21,22].
These are conservative estimates of the values reported in the lit-
erature for the vaccines BNT162b2 and ChAdOx1 nCOV-19 that
are predominantly used in Austrian nursing homes.

In our model, each time-step (day) of the simulation is associ-
ated with an independent Bernoulli trial for disease transmission
between susceptible and infectious agents given a contact [50,51]:

P ¼ 1� ½1� b(1� q1(c))(1� q2(t))(1� q3)(1� q4)(1� q5)�,

where β is the transmission probability per person per day, cali-
brated to reflect the secondary attack rate for household contacts
between adults of 28.3% [48] (see electronic supplementary
material, note S3). The modifier γ = 1.5 reflects the 50% increase
in transmissibility reported for the alpha virus variant [37–41].
The qi are reductions of transmission risk due to the various fac-
tors described above: q1(c) modifies transmission risk depending
on contact type c, q2(t) reflects the reduction of transmission risk
due to lower viral loads as the infection progresses, q3 reflects
reduced transmissibility due to asymptomatic presentation, and
q4 and q5 represent reduced susceptibility and transmissibility
due to vaccinations (see also electronic supplementary material,
note S1 ‘Transmission probability’). We consider the use of
masks by employees in a separate model described in electronic
supplementary material, note S1 ‘Other intervention measures’.

We calibrate β and q1 by means of an iterated grid search such
that the transmission risk for close contacts reflects the household
secondary attack rate, and such that outbreak sizes produced by
our model correspond to observed outbreak sizes in nursing
homes. All other qi are chosen to correspond to values reported
in the literature. See electronic supplementary material, note S1
for details of model design, implementation and assumptions,
electronic supplementary material, note S2 for an overview of all
model parameters and their sources and electronic supplementary
material, note S3 for details about the calibration.

Exposed or infectious agents can be testable and return a
positive result when tested, depending on the period of time
they have already been infected and the test being used (elec-
tronic supplementary material, figure 6A). For sake of
simplicity, we model the time-dependent sensitivity of all simu-
lated tests by assuming that there is a limited time window
within which they detect an infection (or its absence) with cer-
tainty and by varying the onset and duration of this time
window between different types of test (see electronic sup-
plementary material, note S1 ‘Test technologies’ for details). In
the baseline scenario, only diagnostic testing takes place: sympto-
matic cases are immediately isolated and tested using a PCR test
with a 2-day turnover time. Once a positive test result is
returned, all close and intermediate contacts of the positive
agent are immediately quarantined but not tested. We summar-
ize this strategy as ‘test–trace–isolate’ (TTI) (details in electronic
supplementary material, note S1 ‘Intervention measures’). In
addition, nursing homes can implement a ‘mitigation testing
strategy’ where they test all their employees and/or residents
with a given testing frequency, regardless of symptomatic
cases, i.e. a symptomatic case still triggers the TTI process but
the mitigation testing is not influenced by it. Simulations start
at a random day with respect to the time interval until the first
mitigation test is performed, i.e. a maximum of 6 days, if mitiga-
tion testing is performed once every 7 days. Both TTI and
mitigation testing are performed irregardless of the vaccination
state of an agent.

To model vaccinations, for a given vaccination ratio in an
agent group, a number of agents from that group corresponding
to the ratio are picked at random at the start of the simulation
and assigned a vaccination state. Being vaccinated reduces both
the probability for a successful transmission to a vaccinated
and susceptible agent (q4), and from a vaccinated but infected
agent to another susceptible agent (q5). We also model protective
equipment for employees; see electronic supplementary material,
note S1 ‘Other intervention measures’) for details.
3. Results
We simulate epidemic spread in a nursing home in a range of
different scenarios: (i) introduction of index cases through
either employees or residents, (ii) different testing technol-
ogies used for mitigation testing, (iii) different intervals for
the mitigation tests, (iv) different prevalence of vaccinations
and (v) combinations of different testing strategies and
vaccinations.

Next to the average outbreak size, we report the average
number of transmissions from the index case, the reproduction
number Reff, [52] and the total number of tests per day per
person needed to implement the testing strategy (test rate).

3.1. Effectiveness of test–trace–isolate
In the absence of non-pharmaceutical interventions or contain-
ment measures and infection with the alpha variant, we find
Reff = 2.25 [0; 7] (mean [2.5% quantile; 97.5% quantile]) if an
employee is the index case and Reff = 2.97 [0; 8] if a resident is
the index case. Mean outbreak sizes are 25.2 ± 13.9 if an
employee is the index case and 26.8 ± 11.7 if a resident is the
index case. In a scenario in which only TTI is implemented,
our model yields reproduction numbers of Reff = 1.90 [0; 6]
if an employee is the index case, andReff = 1.82 [0; 6] if a resident
is the index case andmean outbreak sizes of 13.8 ± 11.9 and 12.6
± 11.7 for employee and resident index cases, respectively.

3.2. Effectiveness of different testing strategies
Mean outbreak sizes range between 0.1 ± 0.5 and 14.0 ± 11.9.
Higher testing frequencies and lower test turnover times
always reduce the size of outbreaks. Intuitively, prioritizing
the agent group that is more likely to introduce index cases
in the mitigation testing strategy considerably reduces the
size of outbreaks. The lowest outbreak sizes of 0.1 ± 0.5 are
achieved if index cases are predominantly introduced by
employees and residents and employees are tested three
times a week with PCR tests with same-day turnover. The
highest outbreak sizes of 14.0 ± 11.9 are recorded if no regular
mitigation testing happens and an employee is the index case.
Nevertheless, it is noteworthy that a TTI strategy using PCR
tests with a 2-day turnover is sufficient to contain outbreak
sizes (i.e. the infection is stopped in the majority of cases
before all 35 residents are infected) in these scenarios.

We report the main results for a realistic scenario where
index cases are introduced by employees (because residents
are not allowed to have visitors), employees are tested twice
per week while residents are not tested at all, and PCR tests
achieve a turnover time of 1 day. Mean outbreak sizes (infected
residents) and their standard deviation for this scenario for
both resident and employee index cases are shown in
figure 2. The results for different testing strategies are reported
in electronic supplementary material, figures A7 and A8 in the
appendix PCR tests clearly outperform antigen tests, with out-
break sizes of 1.5 ± 4.7 for an employee index case and 6.1 ± 7.6
for a resident index case (PCR), and 3.1 ± 6.3 and 7.1 ± 8.3 for
employee and resident index cases, respectively (antigen). If
the logistics around PCR tests are optimized such that a
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Figure 2. Testability and agent states of the agent-based epidemiological model. (a) Illustration of viral load over time and detection thresholds of PCR, RT-LAMP
and antigen tests reproduced after Kellner et al., [13]; Larremore et al., [53]; Wölfel et al., [45]: in our model, PCR tests can detect an infection 1 day before an
agent becomes infectious, RT-LAMP tests on the day an agent becomes infectious and antigen tests 1 day after an agent becomes infectious. Individuals with greater
than 103 virus copies per microlitre swab are considered infectious [45]. (b) Agents in the epidemiological model can be in the states (circles) susceptible (S),
exposed (E), infectious presymptomatic (I), infectious asymptomatic (I11), infectious symptomatic (I2) and recovered (R). Possible state transitions are shown by
arrows. Each of these states also exists in an isolated/quarantined version (X), preventing an agent from interacting with other agents. Transitions between
states follow the individual agent’s exposure durations, incubation times and infection durations.
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same-day turnover can be achieved, PCR perform even better
with outbreak sizes of 0.9 ± 3.7 (employee) and 5.6 ± 7.3 (resi-
dent). If employees are tested only once a week, outbreak
sizes increase to 3.0 ± 6.6 and 7.0 ± 8.4 (PCR, same-day turn-
over) and 5.8 ± 9.0 and 8.9 ± 9.5 (antigen) for employee and
resident index cases, respectively. Reff for each scenario is
shown in electronic supplementary material, figure A9. For
mean and median outbreak sizes alongside the 10th and 90th
percentile of the outbreak size distribution, Reff, and test rates
for each of the three test technologies with same-day turnover,
as well as 1-day and 2-day turnover for PCR tests, testing of
employees never, once, two times or three times a week and
testing of residents never or once a week, see electronic sup-
plementary material, note S4.1 If, in addition to the testing,
employees wear protective equipment, this offsets the increased
transmissibility of the alpha variant and reduces outbreak sizes
to sizes comparable to the ones observed for the wild-type
(see electronic supplementary material, notes S6 and S7).

The base rate of tests needed for TTI in all scenarios
is approximately 0.003 ± 0.002 tests per day per person.
Implementation of regular mitigation testing of only employ-
ees two times a week increases this rate to 0.09 ± 0.013,
independent of test technology and index case. Implemen-
tation of regular testing twice per week for only residents
increases the rate to 0.18 ± 0.02. Implementation of tests three
times a week increases the rate to 0.27 ± 0.03. The test rate
for each scenario is visualized in electronic supplementary
material, figure A10.

In figure 3, we investigated different test turnover times
between same-day and 2 days for PCR tests in the same
model setting as described above. In the same scenario as
described above (employee testing twice per week, employee
as index case), and in case of PCR tests with a turnover rate of
2 days, mean outbreak sizes increase significantly to 3.0 ± 6.5
(employee index case) and 6.9 ± 8.2 (resident index case) –
very similar to the performance of the less accurate antigen
tests. Only if employees are tested three times a week and
residents are tested at least twice a week, outbreak sizes
drop to 0.5 ± 1.4 (employee index case) and 0.9 ± 1.9 (resident
index case). PCR tests with same-day turnover are obviously
the best option and reduce outbreak sizes to 0.8 ± 2.0
(employee index case) and 0.9 ± 2.0 (resident index case),
even if employees and residents are tested only once a
week. Reff and test rates for different PCR test turnover
times are visualized in electronic supplementary material,
figures A11 and A12.
3.3. Effectiveness of vaccinations
To assess the impact of vaccination prevalence on outbreak
sizes, we simulate scenarios with different vaccination rates
for employees and residents. Additionally, nursing homes
implement only TTI, i.e. testing and isolating symptomatic
agents and their contacts, but no mitigation tests. For a scen-
ario in which vaccinations are scarce and employees are
prioritized for vaccinations (50% of employees are vacci-
nated), outbreak sizes range from 9.4 ± 9.8 (employee index
case) to 7.0 ± 9.3 (resident index case). If residents are prior-
itized instead, outbreak sizes are reduced to 3.1 ± 4.1 and
3.1 ± 4.0, respectively. In a situation in which the vaccine
is broadly available but employees are hesitant to get vacci-
nated (50% of employees and 90% of residents vaccinated),
outbreak sizes are reduced to 0.2 ± 0.5, independent of the
index case. Interestingly, further increasing the ratio of vacci-
nated employees only slightly reduces the number of follow-
up cases among residents, compared to the scenario in
which employees show vaccine hesitancy: if 90% of residents
and employees are vaccinated, outbreak sizes are 0.1 ± 0.5,
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cases for five different test technology and test turnover combinations. Outbreak sizes for each combination are averages over 5000 randomly initialized simulation
runs each. In addition to mitigation testing, the model also implements TTI.
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royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210608

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 F

eb
ru

ar
y 

20
22

 

independent of the index case. In figure 4, we show out-
break sizes for a wide range of vaccination rates. In
general, if 80% or more of the resident population is vacci-
nated, outbreak sizes stay less than 1, independent of the
number of vaccinated employees and outbreaks are con-
trolled. In electronic supplementary material, note S6 we
report similar simulation results for the strain thatwas domi-
nant in Austria during data collection. For this less infectious
strain, it is sufficient if 60% or more of the resident popu-
lation is vaccinated to keep outbreak sizes below one. In
electronic supplementary material, note S7, we report the
same results for a scenario in which B1.1.7 is introduced to
the nursing home and employees are required to wear pro-
tective gear. We find that in this scenario a vaccination rate
of 70% amongst employees is sufficient to control the spread
of the more transmissible variant. If a high number of resi-
dents is vaccinated, vaccinating an increasing number of
employees is still beneficial, since it further lowers the
number of infected residents towards zero (see electronic
supplementary material, figure A13).

To assess the impact of vaccination rates on the merits of
different testing strategies, we simulate scenarios in which
parts of the nursing home population are vaccinated while
different testing strategies are employed at the same time.
We specifically analyse three scenarios: (i) employees are sub-
ject to frequent mitigation testing (two times per week) with
cheap, fast but insensitive antigen tests on top of TTI,
(ii) employees are subject to frequent mitigation testing
with expensive, fast and very sensitive PCR tests on top of
TTI and (iii) there are no mitigation tests and homes rely
solely on vaccines and TTI to prevent the spread of infections.

If 50% of the resident population is vaccinated, same-day
turnover antigen and PCR tests perform similarly well, with
outbreak sizes of 0.5 ± 1.6 (antigen, employee index case) and
1.6 ± 2.5 (antigen, resident), and 0.9 ± 3.7 (PCR, employee)
and 1.3 ± 2.1 (PCR, resident). If no residents are vaccinated,
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only mitigation testing with highly sensitive tests with a fast
result turnover can keep outbreak sizes in check: if employees
are not vaccinated as well, we observe outbreak sizes of 0.9 ±
3.7 (employee) and 5.6 ± 7.3 (resident) if employees are tested
twice a week with same-day turnover PCR tests. Using the
same test setup, if 50% of employees are vaccinated, outbreak
sizes are only mildly reduced, with 0.8 ± 3.3 and 5.2 ± 6.9 for
employee and resident index cases, respectively. If 50% of
employees and 90% of residents are vaccinated, additional
testing only slightly reduces outbreak sizes further, since
outbreak sizes are already very low: no testing yields
outbreak sizes of 0.2 ± 0.5 (independent of the index case),
testing employees twice a week with antigen tests yields
outbreak sizes of 0.0 ± 0.3 and 0.1 ± 0.4 and testing employees
twice a week with PCR tests yields outbreak sizes of 0.0 ± 0.2
and 0.1 ± 0.5 for employee and resident index cases, respect-
ively—ensuring almost a complete stop of any transmissions.
We show outbreak size distributions for all three selected test-
ing strategies and all four vaccination scenarios in figure 5.
In electronic supplementary material, figure A14 results for
all previously discussed testing frequencies and vaccination
scenarios are shown.
4. Discussion
In this study, we aimed to design optimal prevention
measures for nursing homes by means of an agent-based
epidemiological model. The model reflects individual-level
co-location networks modeled after the living conditions in
a nursing home. Epidemic dynamics have been calibrated
to recorded outbreak events. By considering three different
testing technologies, we identified testing frequencies for resi-
dents and employees that result in the minimal average
outbreak size at a given maximal capacity to perform tests.
By considering three realistic vaccination scenarios together
with various testing strategies, we identify the optimal
prevention strategy depending on vaccine availability.

In brief, our simulations confirm that diagnostic testing of
residents and employees combined with quarantine of close
contacts of positive cases (TTI) according to current rec-
ommendations for nursing homes [54] limits outbreak sizes
in nursing homes to approximately 13 follow-up cases per
index case in situations where the more transmissible alpha
variant is dominant. Compared to the baseline TTI scenario,
more frequent testing, faster turnover of the test results, and a
lower detection threshold for the tests are always beneficial to
reduce the average outbreak size. However, the extent to
which these individual factors contribute to an outbreak
size reduction is non-trivial.

For scenarios in which contacts between residents and visi-
tors or other external people are drastically reduced and we
can assume that infections are introduced into the home
solely through employees, we find that the marginal effective-
ness (outbreak size reduction per performed test) of personnel
testing strongly outperforms the marginal effectiveness of resi-
dent testing. This means that testing only the personnel two or
three times per week can have an equal or even higher protec-
tive effect than testing all residents once per week. However, in
cases where infections can be introduced through residents, i.e.
residents frequently have visitors, these visits take place with-
out other precautionary measures and the visitors have a high
risk to be infected themselves, also testing of residents
becomes increasingly important.

All of our results are strongly sensitive to the turnover
time between the test being performed and the arrival of
the test result. Reducing this timespan from 2 days to a
same-day turnover might reduce the average outbreak size
from around 3.0 ± 6.5 follow-up cases per index case to
0.9 ± 3.6 cases, in a scenario where personnel is regularly
tested twice a week with PCR tests and index cases are intro-
duced by employees. Such a strategy becomes increasingly
feasible as point-of-care PCR tests become available [55].
Depending on the scenario, antigen tests yield between 0.1
± 0.3 and 0.4 ± 0.8 false-negative tests (per outbreak), which
has dramatic consequences, since the false-negative person
is not isolated and is able to freely spread the infection.

In our model, we do not consider how convenient it is to
be tested with a given method. Many PCR and antigen tests
require a throat swab that can become quite a nuisance, par-
ticularly if employees have to undergo this procedure twice a
week. In addition, staff in Austrian nursing homes report that
older people, often living with dementia, do not respond well
to the often-painful testing. PCR tests can be performed by
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gargling a tasteless liquid which might be beneficial for long-
term compliance with the testing regimen.

To simulate the effect that varying amounts of vaccinated
residents and employees have on the infection dynamics in
homes, we assumed vaccine efficacies of 60% to prevent infec-
tion and of 30% to prevent transmissions. Given these rather
conservative estimates of vaccine efficacy, if 80% of residents
are vaccinated an index case in a nursing home leads to less
than one follow-up case, even if no employees are vaccinated
and homes only perform TTI. In a scenario where 90% of resi-
dents are already vaccinated, further increasing the ratio of
vaccinated employees is still beneficial, as it further reduces
the average number of infected residents: if 90% of employees
are vaccinated, the number of infected residents is reduced to
0.13 ± 0.39, as compared to 0.17 ± 0.46 if only 50% of employees
are vaccinated (employee index case).

If high numbers of residents are vaccinated, mitigation test-
ing only slightly reduces outbreak sizes further and there is no
significant difference between the introduction of the index
case by an employee or resident. This means that if the resident
population is vaccinated to a high degree (more than 80%),
expensive and logistically complex mitigation testing schemes
at scale can be discontinued without risking large outbreaks,
and there is no justification to further disallow visits in nursing
homes. Nevertheless, this result depends on the efficacy of vac-
cines next to our other modelling assumptions. We therefore
strongly advise to retain testing capacities at scale, even if
they are not needed at a given point in time. In addition, vac-
cines are highly effective in reducing severe and symptomatic
courses of the disease [15,56,57]. Therefore, in situations in
which high numbers of employees and residents are vacci-
nated, purely symptomatic testing within a TTI strategy
might lead to a very low number of tests. A point can be
made to keep up voluntary mitigation testing in nursing
homes, combined with sequencing of samples from positive
tests to facilitate the identification of and reaction to novel var-
iants of concern. In addition, regular testing of (partly)
vaccinated populations in nursing homes would help to moni-
tor vaccine effectiveness in this cohort in almost real time.
Nursing homes lend themselves for such testing and sequen-
cing activity, since they already have established testing
infrastructure and medically trained personnel, and new var-
iants of concern are likely to quickly find their way into
nursing homes. As such, our results and recommendations
are consistent with a recent report by SAGE on the easing of
intervention measures in nursing homes [58].

Our model has several limitations: the co-location net-
works are based on the architecture of nursing home
wards, insights of practitioners, and data about occupancy,
shared rooms and shared lunch tables at the time of out-
breaks and therefore not based on empirical measurements
of contacts. We assume that the contact patterns do not
change depending on the testing strategy (e.g. contacts to
take swab samples). While these assumptions are based on
insights from practitioners, these contact patterns are not
based on observational data. We do not model the potential
replacement of isolated employees by new employees.
Neither do we include the possibility of dying from the dis-
ease. Therefore, the number of agents in the simulation
stays constant throughout the simulation. As simulation dur-
ations are short (not longer than six weeks), these
simplifications seem warranted. In addition, as the number
of agents is small, finite size effects will occur, limiting the
size of larger outbreaks. Furthermore, though most model
parameters have been calibrated using individual-level obser-
vational data, some simplifying assumptions had to be made:
all contacts of a given type (e.g. roommates) are assumed to
have the same transmission probability, independent of
other environmental factors. The viral load dynamics
reported in the literature that are translated into a time-
dependent transmission risk in the model are approximated
in a piece-wise linear way. One could think of test strategies
in which the time resolution of our model would need to be
increased from days to hours to more accurately assess their
effectiveness. We also do not differentiate between agents
that have received a single or several vaccination doses and
we do not consider the time-dependence of vaccination effi-
cacy. Furthermore, adherence rates to voluntary testing
schemes can depend on the test technology used [59,60].
We do not model different adherence rates to voluntary test-
ing and assume a 100% adherence rate in all scenarios.
Finally, there are first reports from Austrian nursing homes
(J.Z., 2021, unpublished results) that indicate a potentially
lower immune response in older people. If these results are
substantiated, our already conservative assumptions regard-
ing vaccine efficacy in nursing home residents might have
to be reconsidered. It might be interesting to consider differ-
ent degrees of vulnerability in the residents (e.g. because of
comorbidities) to develop ‘personalized’ mitigation testing
strategies for specific subgroups, in particular as these resi-
dents would be likely to require a level of emergency care
that might not be available in a care facility.

In summary, our results indicate that personnel testing
twice a week with PCR tests can severely reduce outbreak
sizes even without testing of residents and vaccines, provided
that other precautionary measures are taken for social inter-
actions of the residents. Antigen tests provide less
protection than PCR tests due to their higher detection
threshold. On the other hand, vaccines that are moderately
effective in preventing infection and transmission render
other prevention measures obsolete if at least 80% of resi-
dents are vaccinated. Nevertheless, retainment of testing
infrastructure, voluntary testing and regular sequencing of
positive cases is still beneficial and is advised, in case novel
virus variants emerge.
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