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Abstract: Pneumatic conveying is a standard transportation technique for bulk materials in various
industrial fields. Flow metering is crucial for the efficient and reliable operation of such systems
and for process control. Capacitive measurement systems are often proposed for this application. In
this method, electrodes are placed on the conveyor systems transport line and capacitive signals are
sensed. The design of the sensor with regard to the arrangement and the number of electrodes as well
as the evaluation of the capacitive sensor signals can be divided into two categories. Calibration-based
flow meters use regression methods for signal processing, which are parametrized from calibration
measurements on test rigs. Their performance is limited by the extend of the calibration measure-
ments. Electrical capacitance tomography based flow meters use model-based signal processing
techniques to obtain estimates about the spatial material distribution within the sensor. In contrast
to their calibration-based counterparts, this approach requires more effort with respect to modeling
and instrumentation, as typically a larger number of measurement signals has to be acquired. In
this work we present a comparative analysis of the two approaches, which is based on measurement
experiments and a holistic system model for flow metering. For the model-based analysis Monte
Carlo simulations are conducted, where randomly generated pneumatic conveying flow patterns are
simulated to analyze the sensor and algorithm behavior. The results demonstrate the potential benefit
of electrical capacitance tomography based flow meters over a calibration-based instrument design.

Keywords: capacitive sensing; pneumatic conveying; flow measurement; mass concentration; process
tomography; uncertainty

1. Introduction

The transportation of bulk materials by means of pneumatic conveying is widespread
in a variety of industrial fields. Examples are steel making, power generation, agriculture
and food industries as well as pharmaceutical and chemical industries [1,2]. A pneumatic
conveyor uses pressurized gas in order to transport bulk materials such as powders or
granulates through a closed pipe system. Flow metering is crucial for the control and
optimization of the conveying processes and hence also for the efficient utilization of
energy, conveying gas and transport good [3,4]. Since control systems rely on accurate
measurements, there is a high demand for reliable flow-meters for pneumatically conveyed
solids [5].

However, flow measurement of pneumatic conveying flows is a difficult measurement
problem, in particular within horizontal pipes. Different flow regimes occur, which refers
to the spatial and temporal distributions of the particles within the transport process and
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the corresponding velocity profiles. A current and comprehensive classification about
several flow conditions, which can occur in pneumatic conveying can be found in [6].
A summarizing overview of flow regimes in horizontally aligned pneumatic conveying
systems is depicted in Figure 1 [7]. The variety of flow regimes is reaching from dispersed
flow conditions to dense flow regimes, where distinct bottom layers and dense slugs occur,
which can fill the whole cross-section of the pipe.

Figure 1. Flow regimes in horizontal pneumatic conveying processes [7].

The mass concentration as well as the particle velocity of horizontal pneumatic flows
are in general inhomogeneous and show a spatial dependency. Hence, the mass flow rate
ṁ in kg s−1 has to be calculated by [4]:

ṁ(t) =
∫∫
Γ

βs,spat.(x, y, t)vspat.(x, y, t)dx dy. (1)

Hereby, βs,spat refers to the spatial solid mass concentration in kg m−3, vspat. is the
spatial particle velocity in m s−1, Γ is the cross section of the conveying pipe in m2, x and y
are Cartesian coordinates and t is the time. Due to the spatial dependency of the quantities
of interest, mass flow metering in pneumatic conveying is in general a challenging task.

Capacitive sensing technology has been suggested and used for flow measurement
in pneumatic conveying [8–10]. Figure 2 depicts an exemplary scheme of a capacitive
flow meter. The sensor is given by two or more electrodes, which are arranged at the
circumference of a non-conductive pipe section. The electrodes are surrounded by a
grounded shield to avoid external influences and guard rings are used reduce fringe effects.
The dielectric properties of the transport good, as well a the properties of the flow process,
i.e., the flow regime, influences the inter-electrode capacitances of the sensor and hence the
capacitive sensing signals, from which the mass flow rate ṁ has to be determined. Hereby,
two different research directions can be found:

Figure 2. Scheme of a capacitive flow meter for pneumatically conveyed solids.



Sensors 2022, 22, 856 3 of 22

1.1. Calibration-Based Approach

The first approach is based on an empirical determination of the relationship between the ca-
pacitive measurement data and the average mass concentration βs = Γ−1

∫∫
Γ βs,spat(x, y)dx dy

in the sensor, e.g., by means of regression analysis. Suitable function prototypes are,
e.g., polynomial functions [11,12]. The calibration of the models is based on reference
measurements, which cause an increased experimental effort. To estimate the mass flow
rate ṁ, Equation (1) is simplified to ṁ = βsvΓ, where v is an average velocity. Informa-
tion about the particle velocity can be obtained from the time series of the measurement
signals. Hereby, frequency analysis of the capacitive signals from dedicated electrode struc-
tures [13,14] or correlation analyses of signals from multiple sensors are applied [15]. The
calibration-based approach is often limited to a subset of possible flow regimes. Measure-
ment systems using this approach often state a comparatively small number of electrodes,
e.g., a single electrode pair [11,16] for the determination of βs.

1.2. ECT-Based Approach

The second approach is based on model-based signal processing techniques from the
field of electrical capacitance tomography (ECT). Hereby, the spatial dielectric material
distribution within the sensor is estimated from the capacitive measurements [17,18].
The sensors used for this approach typically offer a larger number of sensing electrodes.
Afterwards the spatial mass concentration is determined based on material models [19,20].
ECT techniques also enable the estimation of the spatial velocity field [21,22], wherewith
Equation (1) can be approximately evaluated from the measurement data, in order to deter-
mine ṁ. The model-based approach offers a potential advantage as it performs a more accu-
rate evaluation of Equation (1), while reducing the calibration effort. However, this benefit
also comes with higher effort in terms of signal processing [23], modeling of the measure-
ment process [24], as well as measurement hardware [25]. Furthermore, prior knowledge
about the conveying process is an essential element for the signal evaluation [26,27].

The different nature of the approaches raises fundamental technical questions, e.g.,

• How does the number of electrodes influence the performance of the flow meter, or
• What is the potential benefit of the ECT-based approach with respect to the calibration-

based approach.

The list of questions is not yet exhausted and could easily be extended to include other
technical aspects like the signal quality etc. Yet, the presented two questions should be
addressed first in order to point out the potential advantages of the two approaches.

Due to the variety of flow regimes, which can occur in horizontally aligned pneumatic
conveying systems (see Figure 1) a metrological validation/comparison of the different
approaches based on test rig measurements alone would be of limited value. Apart from the
high experimental effort, it is unlikely to reproduce all relevant scenarios for an industrial-
scale pneumatic conveying system on laboratory test benches to the extent required for a
complete uncertainty assessment of capacitive flow meters. For this reason a simulation
based approach is required.

In [28], the authors have presented a simulation model for capacitive flow meters,
which offers the potential to study the different capacitive instruments. Figure 3 shows a
sketch of the simulation model. It comprises the elements of the measurement system (sen-
sor and instrumentation and signal processing), but also includes a model for the pneumatic
conveying process and its material properties. This is essential for a conclusive analysis of
all relevant flow regimes [26]. The simulation model is therefore of holistic nature.

In this paper, we present an analysis of the two flow measurement approaches using
the proposed model. Hereby, we consider the determination of the mean mass concentration
βs since it is a crucial parameter for flow metering in pneumatic conveying processes in
horizontal pipes. The analysis is based on an ECT sensor, which is part of a test rig for
pneumatic conveying experiment, i.e., the model is parametrized for this sensor. We
discuss the validation of the model for the laboratory sensor and demonstrate the correct
behavior using selected experiments with the test rig. These comparisons are performed
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for different signal processing techniques. Additionally, the influence of the number of
electrodes is demonstrated. This is possible by combining, i.e., adding up, individual
measurements from the laboratory ECT sensor to emulate a capacitive sensor with a
smaller number of electrodes. Based on the validated model we then provide a simulation
based comparison covering all flow regimes for pneumatic conveying. Hereby, we again
investigate different signal processing techniques and sensors with different numbers of
electrodes. These studies are performed by means of Monte Carlo simulations, providing
access to a statistical evaluation and comparison. In particular, the root mean square error
(RMSE) for βs can be examined, allowing qualitative validation of the different approaches
for flow measurement.

Figure 3. Sketch of a holistic simulation model for capacitive mass concentration measurement in
pneumatic conveying processes.

The main contributions of the results and approaches presented in this article there-
fore are

• An analysis of the influence of the number of electrodes of the sensor,
• An analysis of different signal processing methods for capacitive flow metering and
• Reference measurement procedure to parametrize/validate the model for specific

sensor evaluations.

Thus, the paper contributes to the research questions raised for the two instruments
types. The demonstration of the holistic model for this analysis provides a novelty for this
field, as it allows a comprehensive analysis for the whole range of flow regimes.

This paper is structured as follows. Section 2 addresses the holistic simulation model.
Hereby, the main focus lies on the modeling of the conveying process, as it is essential for
the proposed analysis. Due to the technical depth of the model, additional information on
standard elements, e.g., sensor modeling and signal processing, is addressed more briefly.
However, specific details are provided in the Appendices A–C. In Section 3, the lab setup for
the analysis and the measurement approach for model validation is presented. In Section 4,
measurement and simulation based analyses including uncertainty quantifications of
capacitive mass concentration measurement systems are demonstrated and discussed.

2. Holistic Modeling of the Measurement Process

In this section, the holistic modeling of the measurement chain of a capacitive mass
concentration measurement system for pneumatically conveyed solids is discussed. The
scheme of the simulation model is depicted in Figure 4. The model is based on Figure 3,
but shows the relevant elements in more detail. In the following subsections details about
the individual elements are provided. The focus lies on the modeling of the flow process
due to its relevance for the analysis.
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Figure 4. Holistic model of the measurement process of a capacitive mass concentration measurement
system for pneumatic conveying systems.

2.1. Statistical Process Model

The aim of the statistical process model is to generate random samples of mass
concentration distributions as they occur within pneumatic conveying processes. As shown
in Figure 1, stationary as well as non-stationary flow patterns can occur in pneumatic
conveying processes. The latter show mass concentration variations in axial direction of
the conveying pipe. For the following modeling of the different flow patterns it is assumed,
that the electrodes of the capacitive sensor are sufficiently short, so that the effect of axial
mass concentrations variations within the sensor becomes negligible [29]. Therefore, cross-
sectional representations of the material distributions are considered. The different flow
regimes can be summarized by two cross-sectional cases, which are

1. A homogeneous mass concentration over the whole cross-section of the pipe corre-
sponding to the dispersed and slug flow regimes and

2. A dense lower phase with a certain height and a dispersed upper phase corresponding
to flow regimes with a distinct material layer at the bottom of the pipe. Hereby, the
mass concentration of the lower phase is not necessarily the bulk density of the
material since the gas stream can aerate the transport good [30].

For the first case random samples are generated by applying a constant random mass
concentration βs to the whole cross-section of the pipe. For the second case, the material
distributions are parametrized as it is depicted in Figure 5. In [26], it was shown, that
the boundary between the lower phase and the upper phase is not necessarily even. To
describe an uneven boundary between the phases, three heights h1 to h3 are defined at
certain grid points x1 to x3. Between the grid points, the height is interpolated by a second
order polynomial h(x) = a1 + a2x + a3x2, whereby the coefficients of the second order
polynomial depend on h1 to h3. βs,l and βs,u are the mass concentrations of the lower phase
and the upper phase, respectively, whereby βs,u ≤ βs,l holds. The transition between the
lower phase and the upper phase is modeled by the Gaussian error function erf(·), where
an additional scaling parameter γ is used to adjust mass concentration gradient dβs/dh
between the phases. Hence, samples are generated by the function

βs(x, y) = βs,u +
βs,l − βs,u

2

(
erf
(

h(x)− y
γ

)
+ 1
)

, (2)
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with the parameters h1 to h3, βs,l, βs,u and γ. To generate samples, firstly the cross-sectional
case is selected randomly. Subsequently, the parameters, which describe the respective case
are drawn. For a further processing of the random samples, a finite element (FE) discretiza-
tion is applied [23]. Therefore, the resulting material distributions are mapped on the FE
mesh. To describe the spatially discretized material distribution the mass concentration
vector βs ∈ RN is defined, which holds the mass concentration values of the individual
elements. N is the number of FEs used for the discretization of the inner region of the pipe.
Exemplary random samples of PP pellets with a bulk density of ρbulk ≈ 587 kg m−3 are
depicted in Figure 6 for both cross-sectional cases.

Figure 5. Parametrization of flow patterns [26].

Figure 6. Exemplary random samples for both cross-sectional cases of horizontal pneumatic convey-
ing flow patterns. The different mass concentrations result from the different aerated states of the
transport good caused by the gas stream of the pneumatic conveying process.

2.2. Material Model

The purpose of the material model is to describe the relationship between the mass
concentration and the relative permittivity of aerated bulk materials, as they occur within
pneumatic conveying processes. A suitable model, which describes this relationship is
the Landau–Lishitz–Looyenga (LLL) Equation [19,20]. For a two component particle gas
mixture, the LLL equation is given by:

3
√

εr =
3
√

εr,s − 3
√

εr,g

ρs
βs + 3

√
εr,g. (3)

Hereby, εr is the mixtures relative permittivity, εr,s and εr,g are the relative permittivity
of the solid material and the relative permittivity of the gas phase, respectively. ρs is the
density of the solid material in kg m−3. In [20], a wide applicability of LLL equation to
various bulk materials was demonstrated. However, information about the permittivity and
the density of the solid material is required. This information is not necessarily available
for various materials and for the application of the LLL equation in capacitive sensing also
the frequency dependency of the relative permittivity of the materials has to be considered.

In [31], a dedicated coaxial probe was demonstrated with the feature to aerate the
material sample by means of an axial gas stream. Based on this probe a measurement
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methodology was presented in [19] to characterize the βs-εr relationship for aerated pow-
ders. Hereby, Equation (3) is simplified to:

3
√

εr = λβs + 1, (4)

where λ is a model parameter, which is determined from impedance measurements of
the coaxial probe. The offset of one originates from the relative permittivity of most gases
being εr,g ≈ 1 in good approximation. For PP pellets the parameter was determined to be
λ = 3.9× 10−4 m3 kg−1. Details about the coaxial probe and the measurement procedure
to determine λ can be found in [19,31].

Applying the model Equation (4) to the individual elements of the mass concentration
vector βs yields the permittivity vector ε ∈ RN , which represents the discrete version of the
dielectric material distribution within the sensor.

2.3. Sensor Model, Noise Model and Sensor Calibration

Given the dielectric material distribution represented by the vector ε, the aim of
the following model elements is to compute the capacitive measurement data d̃ ∈ RM,
where M = (Nelec − 1)Nelec/2 is the number of independent inter-electrode capacitances
of a sensor assembly with a number of Nelec electrodes. The individual models used for
these computations are the FE-based sensor model and the additive white Gaussian noise
model, which incorporates the behavior of the measurement electronics. The modeling and
simulation of these elements is done by standard approaches and does not require a more
detailed description at this point. Specific details are provided in Appendix A.

Before the measurements are provided to the estimator for βs a sensor calibration
strategy is applied. For this purpose often offset/gain corrections are applied to the capac-
itive measurements, whereby reference measurements are acquired for an empty sensor
and a sensor completely filled with the transport good [28,32]. In the holistic simulation
framework the calibration is applied to reduce deviations between the sensor model and a
coarse estimation model, which is used to implement estimators for βs. In this work, a finely
discretion 3D FEM model is used to implement the sensor model as indicated in Figure 4,
whereas the estimation model is based on a coarse 3D FEM model with approximately
one tenth of the FEs of the sensor model. For the real measurement system discussed
in Section 3 the calibration is applied to reduce deviations between the behaviour of the
measurement system and the estimation model. The calibration is applied to the raw data
d̃ and yields the calibrated data vector d̃cal ∈ RM. Details about the calibration are again
stated in Appendix A.

2.4. Estimation Algorithm for the Average Mass Concentration

The last element of the holistic model is the estimation of βs from the calibrated
measurements d̃cal. Formally the estimator can be denoted as:

β̂s = f
(
d̃cal

)
. (5)

2.4.1. Calibration-Based Approach

For the data evaluation in calibration-based capacitive flow meters it is common
to select a suitable function set for f (·) and parametrize this function from calibration
measurements obtained on a test rig [11,12]. E.g., polynomial approximations have been
commonly reported. The quality of the approach depends on the availability of calibra-
tion measurements. In this work we generate the reference data for the parametrization
of f (·) from samples of the statistical process model. Details are given in Appendix B.
This approach also has the potential to be adopted for future flow meter developments
maintaining the empirical approach, as it can be used to generate reference data.



Sensors 2022, 22, 856 8 of 22

2.4.2. ECT-Based Approach

For the ECT-based flow meter approach image reconstruction algorithms are applied
to estimate the spatial dielectric material distribution and subsequently β̂s is evaluated
by means of the material model. For the solution of the inverse problem of ECT several
algorithms are available. An overview about available algorithms can be found in [23,24].
For the online determination of the mass concentration within the conveying process non-
iterative back projection (BP) type estimators are of particular interest. BP type estimators
can be evaluated sufficiently fast and are no limitation for the online capability of flow
meters [26]. Details about the fundamental algorithms are provided in Appendix C, which
also lists further techniques to improve the basic algorithms specifically for the application
in pneumatic conveying processes. These improvements can be obtained from the holistic
simulation model.

3. Laboratory Setup and Measurement Procedure for Model Validation

In this section, the measurement setup for the parametrization of the holistic simulation
model is presented. The comparative analysis of the two different instrument approaches
are later based on this setup. Furthermore, reference measurements for the validation of
the system model are discussed.

3.1. Laboratory Test Rig and Measurement Setup

Figure 7 depicts a capacitive flow measurement system used within a pneumatic
conveying test rig. The capacitive sensor has two sensor planes, with the structure schemat-
ically depicted in Figure 2. Each sensor consists of eight electrodes with a width of 19 mm
and a length of 80 mm. The electrodes are equidistantly arranged on the outer circumfer-
ence of a PVC pipe with an inner and outer diameter of 119 and 125 mm, respectively. The
diameter of the shield is 154 mm and guard rings with a width of 19 mm are attached with
a distance of 11 mm to the electrodes.

Figure 7. Capacitive measurement system for the determination of flow parameters in a pneumatic
conveying laboratory test rig, which uses two sensors with eight electrodes each.

The sensors are connected to the front-end circuitry by means of coaxial cables. The
front-end circuitry is given by a displacement current based low-Z measurement sys-
tem [25,33,34]. Hereby, an AC voltage is applied to one electrode, while the displacement
currents at the remaining grounded electrodes are acquired. The displacement currents
are proportional to the capacitance between the electrodes. This procedure is repeated
for each electrode to obtain capacitive measurements for all electrode combinations. The
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measurement setup achieves a signal to noise ratio (SNR) of around 70 dB as demonstrated
in [28]. The SNR is defined by SNR = 20 log(∆C/σV). Hereby, σV denotes the standard
deviation of the measurement noise, which was determined from measurements with an
empty sensor where measurement data was acquired for one minute with a sampling fre-
quency of fs = 100 Hz. ∆C denotes the calibration range of the system given by the signal
change between the empty sensor and the sensor completely filled with polypropylene
(PP) pellets. PP pellets is the material used for the experiments.

Emulation of Sensors with Different Numbers of Electrodes

In order to analyze different sensor designs and also to validate the results by means of
measurement experiments we propose the emulation of sensors with different numbers of
electrodes by combining the measurements of the existing sensor assembly with eight elec-
trodes. This procedure is schematically depicted in Figure 8. A sensor with four electrodes
is emulated by combining adjacent electrodes of the sensor assembly with eight electrodes
and a sensor with two electrodes is emulated by combining three electrodes each. The mea-
surements of the emulated electrodes are obtained by superposition of the measurements.
For example, the capacitance between the emulated electrodes 1′ and 3′ can be computed
by C1′ ,3′ = C1,4 + C1,5 + C8,4 + C8,5 and the capacitance between the emulated electrodes
1′′ and 2′′ is given by C1′′ ,2′′ = C1,4 + C1,5 + C1,6 + C2,4 + C2,5 + C2,6 + C8,4 + C8,5 + C8,6.
Hereby, the indices coincide with the electrode designations depicted in Figure 8. With
this procedure, the same measurement experiments can be evaluated by emulated sensors
with different numbers of electrodes. Note that the holistic simulation model discussed in
Section 2 is implemented with the sensor assembly with eight electrodes as it is available in
the laboratory. The same procedure to emulated sensor designs with different numbers
of electrodes is applied to the simulated capacitive data. This allows a direct comparison
between the measurement experiments and the simulation studies, which are presented in
Section 4.

Figure 8. Combining measurements to emulate sensor designs with different numbers of electrodes.
Adjacent electrodes are combined to emulate a sensor assembly with four electrodes and a sensor
with two electrodes is emulated by combining three electrodes each.

3.2. Measurement Experiments

For the validation of the proposed holistic simulation model a measurement procedure
is discussed, which uses stationary material inclusions. For this purpose, the material
holder depicted in Figure 9 is used, which is made of two 3D printed caps and PET foil [28].
The material holder fits exactly in the sensor pipe. Different heights h of PP granulate
are filled within the material holder to produce horizontal material layers comparable to
distinct bottom layers of horizontal flow patterns (compare Figure 1). PP is chosen for
the measurement experiments since it is a representative material for low permittivity
transport goods commonly used in pneumatic conveyors [1].

Since the material inclusions are constant in axial direction, reference cross-sectional
average mass concentration data is calculated by:

βs = ms/V, (6)
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where V = r2πl denotes the volume of the material holder and ms is the mass of the filling.
r and l are the radius and the length of the material holder, respectively. The radius of the
material holder is equal to the inner diameter of the sensor r = 59.5 mm and the length is
l = 400 mm. The mass ms is determined with a balance with a resolution of 1× 10−4 kg.

Figure 9. Sketch and a photo of the material holder, which is used to carry out measurement
experiments with stationary material distributions [28].

For demonstration Figure 10 depicts exemplary relative signal changes for exemplary
capacitances, which were acquired at different mass concentrations βs corresponding to
different filling heights h of the material holder. The relative signal change is stated with
respect to the empty sensor and the filling height is stated with respect to the inner diameter
of the sensor. Note the non-linear relationship between the βs-axis and the h-axis. The
measured capacitance C1,5 and the capacitances C1′ ,3′ and C1′′ ,2′′ for emulated sensors
with four and two electrodes, respectively, are shown. Hence, each depicted capacitance
corresponds to exemplary opposite electrode pairs of different sensor designs. Starting
from the empty material holder ms = 0 kg, the filling was increased by ∆ms = 0.1 kg steps
to a maximum filling of ms = 2.2 kg. The measurements show an increasing capacitance
for increasing mass concentrations within the sensor for each depicted capacitance. The
capacitance C1,5 shows a significant non-linear behavior, starting with a high sensitivity
when the surface of the material layer is close to the electrode at the bottom of the pipe. The
sensitivity of C1,5 decreases with increasing heights of the material layer due to the reduced
sensitivity of the sensor in the center of the pipe. The superposition of the measurements
form the sensor assembly with eight electrodes emulates larger electrodes, which cover
a wider area around the outer circumference of the sensor. This results in an increased
sensitive area within the sensor, which in turn leads to an more homogeneous sensitivity of
the measurements over the range of h with respect to the capacitance C1,5.

Figure 10. Relationship between the relative signal change off the measured capacitances and the
mass concentration within the sensor. Additionally, the corresponding filling height h of the material
holder is shown.
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For model validation the repeatability of the measurement experiments is considered
by means of Monte Carlo simulations and repeated measurement experiments. The main
reasons for a variation of multiple measurements are uneven surfaces of the material
layer and a varying bulk density of the material layer due to the manual filling of the
material holder and manual placement of the material holder within the sensor. Detailed
informations about the assessment of the repeatability of the experiments and the Monte
Carlo simulations are discussed later in Section 4.

4. Analysis and Comparison of Capacitive Flow Meters

In this section, comparative analysis results for calibration-based capacitive flow
meters and ECT-based flow meters are presented. We hereby focus on the initial questions
raised in the introduction. For the validation of the holistic simulation model comparative
measurements are presented.

For the analyses, the relative estimation error

e =
β̂s − βs

βs
(7)

or its corresponding root mean square (RMSE) value is evaluated, where β̂s and βs are
the estimated and the reference cross-sectional average mass concentration values, respec-
tively. Hence the results provide an uncertainty quantification of the different flow meter
approaches. The relative error e as well as the RMSE are used as measure for a comparison
of capacitive flow metering approaches.

4.1. Setup and Procedure of the Analysis

The analysis presented in the following sections consists of verification measurements
using the test rig and simulation based analysis for the two flow metering approaches using
the validated model. In the following the details for this analysis are addressed.

4.1.1. Validation Measurements on the Test Rig

For the verification of the holistic model the measurement procedure described in
Section 3 is used. In the experiments the lab sensor is filled with even layers of PP pellets
of different heights h, whereby the mass concentration of the layers is βs,layer = ρbulk. The
corresponding mass concentration βs is evaluated from balance measurements ms and the
known volume V. The experiments are performed 10 times to access the repeatability of the
experiment. The min/max range in which the experiments are dispersed will be expressed
by error bars.

To validate the simulation model, comparative simulations are carried out. To consider
the repeatability of the measurement experiments for a comparison between the simula-
tions and the measurement experiments Monte Carlo simulations are performed. Hereby,
1× 104 random material inclusions are generated and simulated with the holistic model.
The material inclusions are parametrized as it is depicted in Figure 5 and Equation (2) is
used to generate the material distributions. The parameters and their respective distribu-
tions for the Monte Carlo simulation are summarized in Table 1.

Table 1. Parameters and their respective distributions for the Monte Carlo simulation for model validation.

Parameter Distribution

h U (0 m, 2r)
hi U (h− 0.05r, h + 0.05r)

βs,l U (0.975ρbulk, 1.025ρbulk)

Hereby, r is the inner radius of the sensor and ρbulk = 587 kg m−3 is the bulk density
of the PP pellets. The distribution of βs,l was estimated from a repeated weighting of PP
pellet fillings with known volume and the distribution of the heights hi for i = 1 . . . 3 was
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conservatively estimated from the manual placement of the material holder. The mass
concentration of the upper phase is set to βs,u = 0 kg m−3 and the parameter γ is set to
a small value, i.e., 1× 10−6 m, which results in a sharp transition between the upper and
the lower phase comparable to the horizontal material layers used for the measurement
experiments (see Figure 9).

The relative estimation error is computed for the measurement experiments as well as
for the comparative simulations. Finally, for the verification it is analyzed if the average
trend of the measurement experiments is reproduced by the simulations. In addition, it
is examined if the min/max error bounds of the measurements, which are indicated by
errorbar plots lie within the dispersion of the simulated samples. In addition, the root
mean square (RMS) of the differences between the average trend of the simulated estimates
β̂s,sim and the estimates β̂s,meas of the measurement experiments are computed in order
to provide a quantitative measure for the fit between the measurement system and the
simulation framework. Hereby, the average trend of the simulated βs estimates is computed
for segmented data.

4.1.2. Simulation-Based Uncertainty Quantification for Pneumatic Conveying

After the simulation model has been validated, it is used for a comprehensive analysis
of different sensor designs and signal processing algorithms. This study is carried out by
means of simulations. Hereby, random samples of the flow conditions are generated for all
possible flow regimes, which can occur in pneumatic conveying systems. For this purpose,
the statistical process model described in Section 2 is used. Firstly, the cross-sectional case
of the flow patterns is chosen with equal probability. The parameters, which describe the
respective cross-sectional cases are then drawn from the distributions listed in Table 2.
The range of the parameter γ was chosen experimentally, such that samples with sharp
as well as smooth transitions between the lower and the upper phase are generated (see
Figure 6, case 2). To analyze and compare different approaches the relative error stated in
Equation (7) is evaluated and the corresponding RMSE error will be plotted for segmented
data over the range of mass concentration values βs.

Table 2. Parameters and their respective distributions for the Monte Carlo simulation for uncertainty
quantification for both cross-sectional cases of the flow regimes.

Cross-Sectional Case 1 Cross-Sectional Case 2

Parameter Distribution Parameter Distribution

βs,l U (0 kg m−3, ρbulk)
βs,u U (0 kg m−3, βs,l)

βs U (0 kg m−3, ρbulk) h U (0 m, 2r)
hi U (h− 0.2r, h + 0.2r)
γ U (2r, 20r)

4.2. Analysis of the Influence of the Number of Electrodes

In this subsection the analysis of the influence of different numbers of electrodes is demon-
strated. First, the measurement results for model validation are shown. Then, the simulation-
based uncertainty analysis for the flow regimes of pneumatic conveying is performed.

4.2.1. Number of Electrodes: Measurement-Based Model Validation

Figure 11 shows a comparative analysis between the holistic system model and mea-
surement experiments. In this case the number of measurements, or measurement elec-
trodes, has been varied. The electrode combinations depicted in Figure 8 are applied.
Therefore the study provides a direct comparison between calibration-based capacitive
flow meters and ECT-based flow meters. The calibration-based approach uses the emulated
sensor with two electrodes and a second order polynomial approximation as it is discussed
in the Appendix B. Since measurement from sensor assemblies with multiple electrodes
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enable tomographic signal evaluations, ECT-based algorithms are applied when using the
sensor assemblies with four and eight electrodes. The ECT-based results are obtained with
the enhanced MAP estimator discussed in Appendix C (stated in Equation (A3)). Hence,
the following analysis not only shows the influence of the number of electrodes but also
illustrates the potential benefit of tomographic signal evaluations.

Figure 11 shows the relative estimation error e over the range of βs. The trend of the
measurements follows the average of the simulated samples. The min/max error bounds
of the measurements, which are indicated by errorbar lie within the dispersion of the
simulated samples. The dispersion of the simulations is larger than the error bounds of the
measurements due to the conservative but reasonable choice of the parameters of the Monte
Carlo simulation. In addition, the RMS values of the differences between the average trend
of the simulated estimates β̂s,sim and the estimates β̂s,meas of the measurement experiments
are stated in Table 3. The RMS values are stated with respect to the calibration range of the
measurement system, which is the bulk density of the PP pellets ρbulk. The RMS values are
in the range of 1 % or even below for each considered case. Therefore, we conclude, that
the holistic system model can be used for further simulation-based analysis. The results
directly illustrate the potential improvement of using more measurement electrodes. For
larger number of electrodes the behavior of the measurement error is almost flat over the
whole measurement range of βs, whereas the result for two electrodes exhibits a significant
oscillation. This behavior can be attributed to the varying spatial sensitivity within the
sensor as only a single electrode pair is used, whereby the electrodes are located at the
top and the bottom of the pipe as it is illustrated in Figure 8. The reduced oscillations
for increased numbers of electrodes illustrates the improved sensitivity of the sensors
when multiple electrodes are arranged around the whole circumference of the sensor. The
results indicate, that even linearized back projection type ECT algorithms can outperform
non-linear calibration-based approaches due to the improved spatial resolution of sensors
with multiple electrodes. Beside this insight for the design of capacitive flow meters, the
results verify the holistic simulation model. A potential application would be the design of
tailored electrode configurations, as it has been demonstrated in [35].

Figure 11. Comparison between the holistic model and measurement experiments for sensors with
different numbers of electrodes.

Table 3. Quantitative comparison between the average trend of the simulated estimates β̂s,sim and the
estimates β̂s,mean of the measurement experiments (see Figure 11) for sensors with different numbers
of electrodes.

Approach RMS (β̂s,meas− β̂s,sim)/ρbulk

%

2 elec. cal.-based 0.94
4 elec. ECT-based 1.07
8 elec. ECT-based 0.71
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4.2.2. Number of Electrodes: Uncertainty Quantification for Pneumatic Conveying

The even PP layers used for the measurement experiments exhibit sharp transitions
between the lower and the upper phase resulting in relatively large estimation errors. This
can be attributed to the soft field nature of ECT, which causes a blurring of sharp bound-
aries [32]. In actual pneumatic conveying systems however, the transport good will be
aerated due to the gas stream. Hence, the validated model is used to carry out a simulation-
based uncertainty quantification and comparison for sensors with different numbers of
electrodes for all possible flow regimes, which can occur in pneumatic conveying systems.
Again, the calibration-based approach uses the emulated sensor with two electrode and a
second order polynomial approximation as it is discussed in Appendix B. The ECT-based
results are again obtained with the enhanced MAP estimator discussed in Appendix C
(stated in Equation (A3)) and sensor assemblies with four and eight electrodes.

Figure 12 show an analysis of the RMSE for sensors with a different number of
electrodes. Note the logarithmic scale on the vertical axis. The calibration-based approach,
which uses measurements from a single electrode pair shows the largest RMSE over the
range of βs. The increased error is due to the high intrinsic uncertainty when using only
a single electrode pair. Different flow regimes with varying mass concentrations are not
distinguishable from the information provided by two electrodes. Increasing the number
of electrodes reduces the RMSE over all possible flow conditions even with linearized back
projection type ECT-based algorithms. A comparison between the ECT-based results with
four and eight electrodes show RMSEs in a similar scale for low (βs < 75 kg m−3) and high
(βs > 400 kg m−3) average mass concentration values. This behavior can be attributed to
the reduced variation of the flow regimes which can cause average cross-sectional mass
concentrations with low or high values. The sensor has to be almost empty or completely
filled with transport good to result in average mass concentration values in this scales. An
additional factor, which can contribute to the estimation behavior of the sensor assembly
with four electrodes for low and large values is the unsymmetrical electrode arrangement
with respect to the y-axis (see Figure 8). Since the flow patterns in horizontally aligned
pneumatic conveying processes provided by the statistical process model are in average
symmetric with respect to the y-axis (see Figure 5 and Table 2) an unsymmetrical electrode
arrangement can reduce redundancy in the measurement data [35].

Figure 12. Model based analysis of the RMSE for sensor with different number of electrodes. The
analyses are performed over all flow regimes covered by the stochastic process model.

4.3. Analysis of Different ECT-Based Signal Processing Variants

In this subsection the influence of different ECT signal processing techniques is studied.
The analysis is carried out for an ECT-sensor with eight electrodes.

4.3.1. ECT Methods: Validation Measurements on Test Rig

Figure 13 depicts a validation measurement for different estimators. The algorithms
are referred to as linearized maximum a posteriori (MAP) estimator stated in Equation (A1),
enhanced linearized MAP estimator stated in Equation (A3) and optimal second order
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approximation (OSOA) estimator stated in Equation (A4). All estimators are non-iterative
BP type estimators, which are given by simple matrix vector multiplications. Details about
the methods can be found in Appendix C.

The results depicted in Figure 13 show the relative estimation error e stated in
Equation (7) over the range of βs. The average trend of the measured errors is well re-
produced by the simulations over the whole range of βs and for all estimators. The error
bounds of the measured errors lie within the dispersion of the simulated samples. Over
a wide range of βs the min/max error bounds of the measurements are smaller than the
dispersion of the simulated samples. This is again due to the choice of the parameters of
the Monte Carlo simulation. For a quantitative validation again the RMS values of the
differences between the average simulated mass concentration estimates and the estimates
of the measurement experiments are evaluated. The RMS values are stated with respect
to the calibration range and are shown in Table 4. The RMS values are in the range of 1%.
The OSOA algorithm shows as slightly increased RMS value, which we attribute to the fact
that this algorithm is purely data driven and is therefore more influenced by deviations in
the material inclusions. Yet we consider the model again to be valid for further analysis.
The results already indicate the impact of the signal processing method. The trivial MAP
estimator shows a significant bias over the whole range of βs for the material distributions
used for model validation. This is due to the error caused by the linearization of the sensor
model. The enhanced MAP estimator in contrast incorporates statistical models to consider
the impact of the linearization of the sensor model. The OSOA is a simple machine learning
based algorithm, which also accompanies these properties by incorporating a quadratic
term of the measurement data. Both algorithms perform significantly better, than the trivial
MAP estimator, which is set up without these extensions. The oscillating trend of the errors
originate from the inhomogeneous spatial sensitivity of the capacitive sensor. Yet the good
agreement to the measurements for all three algorithms is a reassurance for the capability
of the holistic system model.

Figure 13. Measurement-based model validation for different ECT-based estimation algorithms.

Table 4. Quantitative comparison between the average trend of the simulated estimates β̂s,sim

and the estimates β̂s,mean of the measurement experiments (see Figure 13) for different ECT-based
estimation algorithms.

Approach RMS (β̂s,meas− β̂s,sim)/ρbulk

%

MAP 1.08
MAP enh. er. 0.71

OSOA 1.33
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4.3.2. ECT Methods: Uncertainty Quantification for Pneumatic Conveying

For a deeper analysis of capacitive flow metering in pneumatic conveying, the val-
idated holistic simulation model is used to evaluate the different ECT-based estimation
algorithms for the average cross-sectional mass concentration for all possible flow regimes,
which can occur in pneumatic conveying systems.

Figure 14 show an analysis of the RMSE for ECT-based flow meters with different
estimators. The trivial MAP estimator shows the largest RMSE, which is due to the error
introduced by the linearization of the sensor behavior. The incorporation of a statistical
model for the linearization error by the enhanced MAP estimator reduces the RMSE over
the whole range of βs. The OSOA algorithm achieves a further reduction of the RMSE,
especially for high (βs > 350 kg m−3) and low (βs < 100 kg m−3) mass concentration
values, which can be attributed to the quadratic measurement term incorporated by this
algorithm. Similar to the results demonstrated for model validation, which cover only a
small subset of possible flow conditions the simulation-based uncertainty quantification
illustrates the benefit of refined estimation algorithms. Note, that the improvements do not
involve an increased computational complexity. The estimates are given by simple matrix
vector multiplications suitable for online applications.

Figure 14. Model based analysis of the RMSE for ECT-based flow meters with different estimators.
The analyses are performed over all flow regimes covered by the stochastic process model.

4.4. Summary and Outlook

The results presented in this section clearly demonstrate the potential benefit of
ECT-based flow metering maintaining a larger number of electrodes, with respect to the
calibration-based approach.

Due to the properties of the flow patterns, different material distributions the same
cross-sectional average mass concentrations can result in varying capacitances of a single
electrode pair. Hence, in addition to measurement noise, the conveying process itself causes
an intrinsic uncertainty of the estimates [36]. Increasing the number of electrodes to, e.g.,
four or eight electrodes improves the spatial resolution of the sensor and hence, reduces
the intrinsic uncertainty of the measurement task.

Furthermore, the benefit of improved modeling and signal processing techniques for
ECT has been demonstrated. Although the results are in favour of ECT, the development
of a flow meter has also to consider aspects like the instrumentation and hardware effort
to conclusively find a suitable solution for a specific flow measurement application. This
aspect was yet not considered in this work. However, the presented approach can be used
for such considerations by adapting the model for the specific application.

The analyses have been carried out for the average cross-sectional mass concentration
βs. This was found to be a meaningful parameter for the studies in this work. Yet for
further research also the velocity has to be considered, to draw conclusions. This should
be possible by extending the used model. For future comparisons and analyses of sensor
designs the authors are working on the derivation of the Cramer Rao lower bound (CRLB)
based evaluation for capacitive flow meters in pneumatic conveying systems [36,37].
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5. Conclusions

In this paper, fundamental properties about a calibration-based and an ECT-based
approach for capacitive flow metering in pneumatic conveying have been analyzed with
respect to the determination of the mass concentration of the transport good. The study is
based on a holistic simulation model of the measurement process and validation measure-
ments on a test rig. In particular the influence of the number of electrodes and different
estimation approaches for the determination of the mass concentration of particle/gas
mixtures were analyzed. The results show the potential benefit of ECT-based flow metering
over a calibration-based instrument design. It was demonstrated how the RMSE of the
estimates can be decreased for sensor designs with increased number of electrodes and
how further improvements are possible, when refining application tailored estimation
algorithms. The model based analysis approach can further be used to address relevant
development questions for flow metering in pneumatic conveying.
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Appendix A. Sensor Model, Noise Model and Sensor Calibration

Appendix A.1. Sensor Model

The aim of the sensor model is to describe the relationship between the dielectric
material distribution within the sensor and the inter-electrode capacitances of the sensor.
A capacitive sensor with Nelec electrodes provides M = (Nelec(Nelec − 1))/2 independent
measurable capacitances. The physical effects within the sensor are governed by the
Laplace equation of the electrostatic field formulation, which is derived from Maxwell’s
equations ∇ · (ε0εr∇V) = 0 [32]. Hereby, V refers to the electric scalar potential in V,
ε0 = 8.854× 10−12 F m−1 is the permittivity of vacuum and εr is the relative permittivity
of the materials. Dirichlet type boundary conditions are then applied and the potential
equation is solved by the finite element method (FEM). Given the potential distribution
V, the inter-electrode capacitances are computed. The computational steps to calculate all
independent inter-electrode capacitances are summarized by the forward map d = F(ε),
where d ∈ RM is referred to as data vector, which holds the M inter-electrode capacitances.

Appendix A.2. Noise Model

The noise model summarizes all random effects in the measurement system, i.e., in
the front end circuitry and the sensor. In the holistic simulation model it is used to corrupt
the simulated capacitive data with measurement noise, as depicted in Figure 3. Based on a
characterization of the noise of the measurement system, the noise is modeled as additive
white Gaussian noise with zero mean. Hence, the noise is fully characterized by the M×M
covariance matrix ΣV, which is parametrized by the actual noise level of the measurement
system. The measurement based noise characterisation is carried out as it is described in
Section 3.
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Appendix A.3. Sensor Calibration

In order to compensate deviations between the measurement system and the estima-
tion model a sensor calibration strategy has to be applied to the capacitive data. In this
work, an offset/gain calibration is applied to the raw capacitive measurements, which
requires two calibration points [32]. The calibration points are chosen to be the empty
sensor and the sensor completely filled with a defined material with known permittivity.
In the holistic simulation model, the offset/gain calibration is applied to reduce the error
between the sensor model with a fine FE mesh, which is used to generate the simulated
capacitive data and the estimation model with a coarse mesh used for the implementation
of the estimation algorithms.

Appendix B. Calibration-Based Capacitive Flow Meters: Model-Based Parametrization
of Empirical Functions

In order to parametrize an empirical relationship between the capacitive measurements
and the mass concentration within the sensor, the holistic simulation model is used. For
this purpose a set of random mass concentration samples is generated by means of the
statistical process model and the corresponding capacitive data is simulated. Figure A1
depicts a set of 1× 104 simulated capacitance C1′′ ,2′′ and the corresponding cross-sectional
average mass concentrations βs of the emulated sensor with two electrodes, which is
illustrated in Figure 8. The simulated samples can be used to parametrize an empirical
model, which describes the relationship between the mass concentration and the capacitive
measurement on average. The sensor characteristic depicted in Figure A1 is given by a
second order polynomial approximation. The dispersion of the simulated samples around
the average trend represents the intrinsic uncertainty of the measurement system. The
capacitive measurements can vary for the same cross-sectional average mass concentration
due to the different flow regimes of pneumatically conveyed solids, between which cannot
be distinguished with a single electrode pair. Such intrinsic uncertainties are a known
property of capacitive sensors for distributed sensing with small numbers of electrodes [36].

Figure A1. Model based determination of the empirical sensor characteristics, which describe the
relationship between the capacitance of a two electrode sensor and the cross-sectional average
mass concentration.

Appendix C. ECT-Based Flow Meters

Appendix C.1. Back Projection Type Estimators

In this subsection possible back projection type estimators are discussed for the ECT-
based reconstruction of the dielectric material distribution. ECT enables the determination
of the spatially resolved dielectric material distribution within the sensor. For this estima-
tion task models of the measurement process and prior information about the occurring
flow patterns are required [38,39].
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A possible BP estimator is the linearized maximum a posteriori (MAP) estimator,
which is derived within the Bayesian framework. For a linearized sensor model and an
additive white Gaussian noise model as well as Gaussian prior distribution, an analytic
solution of the MAP estimator can be derived [26,37]

ε̂ = µE +
(

JTΣ−1
V J + Σ−1

E

)−1
JTΣ−1

V
(
d̃cal − F(µE )

)
. (A1)

Hereby, µE ∈ RN and ΣE ∈ RN×N are the mean vector and the covariance matrix of
the prior distribution, respectively. ΣV denotes the covariance matrix of the measurement
noise and J ∈ RM×N is referred to as Jacobian matrix, which holds the derivatives of the
inter-electrode capacitances with respect to the individual elements of the permittivity
vector [40]. For the derivation of the MAP estimator stated in Equation (A1) the linearization
point of the forward map was chosen to be the mean of the prior distribution µE . Note that a
3D-FE model is used for the implementation of the estimators but the image reconstruction
result is given by 2D cross-sectional estimates. For this purpose a projection matrix is used
P2D 7→3D to map a 2D material distribution to a 3D material distribution, which is constant
along axial direction. Hence, the Jacobian used to implement the MAP estimator is given by
J = J3DP2D 7→3D, where J3D is the Jacobian of the 3D-FE model. To improve the estimation
behavior of the linearized MAP estimator, e.g., reduced bias and variance, statistics about
the linearization error

e = F(µE ) + J(ε− µE )− F(ε) ∈ RM, (A2)

can be incorporated to the MAP estimate by means of an enhanced error model [41]. For a
Gaussian distributed linearization error e with the mean vector µE ∈ RM and covariance
matrix ΣE ∈ RM×M the enhanced MAP estimator becomes

ε̂ = µE +
(

JT(ΣV + ΣE)
−1J + Σ−1

E

)−1
JT(ΣV + ΣE)

−1(d̃cal − F(µE ) + µE
)
. (A3)

A further BP type estimator, which was shown to provide reliable estimates for
pneumatic conveying flow patterns is the optimal second order approximation (OSOA)
estimators [26,42]. The OSOA estimate is computed by

ε̂ = p0 + P1d̃cal + P2d̃◦2cal, (A4)

where d̃◦2cal denotes the element-wise squared data vector and p0 ∈ RN , P1 ∈ RN×M and
P2 ∈ RN×M are obtained by solving the equation system[

p0 P1 P2
]
= EDT(DDT)−1. (A5)

Hereby E is a matrix holding a representative set of 2D representations of permit-
tivity distribution samples. D is referred to as data matrix, which holds the data vectors[
1 d̃T

cal (d̃◦2cal)
T]T corresponding to the permittivity distribution samples. Hence, the

OSOA algorithm requires training data for implementation.

Appendix C.2. Implementation of ECT-Based Algorithms for Pneumatic Conveying Processes

In this subsection, the implementation of ECT-based estimation algorithms specifically
for pneumatic conveying flow patterns is discussed.

Appendix C.2.1. Formulation of a Prior Distribution

For the derivation of the MAP estimator examples stated in Equations (A1) and (A3) a
Gaussian prior is used, which is parametrized by the mean vector µE and the covariance
matrix ΣE . In order to obtain µE and ΣE for pneumatic conveying flow patterns, the
statistical process model is used to generate a set of 1× 104 permittivity distribution
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samples. A prior distribution can then be obtained by computing a Gaussian summary
statistic of the set of samples [39].

In [26], it was demonstrated how the use of pneumatic conveying tailored prior
information can outperform prior distributions for general material inclusions with respect
to the uncertainty of the estimates.

Appendix C.2.2. Summary Statistic of the Linearization Error

Statistical information about the linearization error between the non-linear sensor
model and the linearized sensor model stated in Equation (A2) can be used to implement
the enhanced MAP estimator stated in Equation (A3) [41]. However, the statistics about the
linearization error will depend on the material inclusions within the sensor. To compute the
mean vector µE and the covariance matrix ΣE specifically for material distributions as they
occur within pneumatic conveying processes, random samples from the statistical process
model are used. The set of samples, which is used to formulate the prior distribution is
simulated with the non-linear forward map as well as with the linearized forward map in
order to compute the linearization error stated in Equation (A2) for each random sample.
A Gaussian summary of the linearization error is then computed, which is parametrized by
the mean vector µE and the covariance matrix ΣE.

Appendix C.2.3. Training Data for Pneumatic Conveying Processes

Pneumatic conveying specific training data for data driven estimators such as the
OSOA algorithm is also generated with the holistic simulation model. Random material
distributions are generated and the resulting inter-electrode capacitances are computed.
The random data can then be used as input and output data for the training of neural
networks [43,44] or other data driven approaches such as the OSOA algorithm stated in
Equation (A4) [26,42].
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