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Abstract: Digitalization of causal domain knowledge is crucial. Especially since the inclusion of
causal domain knowledge in the data analysis processes helps to avoid biased results. To extract
such knowledge, the Failure Mode Effect Analysis (FMEA) documents represent a valuable data
source. Originally, FMEA documents were designed to be exclusively produced and interpreted
by human domain experts. As a consequence, these documents often suffer from data consistency
issues. This paper argues that due to the transitive perception of the causal relations, discordant
and merged information cases are likely to occur. Thus, we propose to improve the consistency of
FMEA documents as a step towards more efficient use of causal domain knowledge. In contrast
to other work, this paper focuses on the consistency of causal relations expressed in the FMEA
documents. To this end, based on an explicit scheme of types of inconsistencies derived from the
causal perspective, novel methods to enhance the data quality in FMEA documents are presented.
Data quality improvement will significantly improve downstream tasks, such as root cause analysis
and automatic process control.

Keywords: digitalization; semiconductor manufacturing industry; FMEA; NLP; consistency improve-
ment; causal data science

1. Introduction

Two centuries have passed since the industrial revolution transformed manufacturing
processes. Now in the era of industry digitalization and increased use of data, causal
domain knowledge is, more than ever before, crucial. For example, in automated data ana-
lytics processes, causal domain knowledge inclusion helps to avoid biased results [1] and
increases data analysis algorithms’ robustness (e.g., increases machine learning algorithms’
robustness [2]).

Risk assessment and root cause analysis are two practices performed in the industry
that capture and document causal domain knowledge. Almost a century has passed since
the Failure Mode Effect Analysis (FMEA) process was first proposed as a tool for risk
assessment [3]. In the FMEA process, a multidisciplinary team often uses the brainstorming
method to identify lists of the failure modes and their possible root causes and potential
effects. In addition to other information such as corresponding authors’ information and
the scope of the FMEA process, these lists are saved in a document (the FMEA document)
typically using a standard tabular format. This tabular format’s columns contain the failure
mode, potential effects, and possible root causes, in addition to other columns such as risk
priority number, detection, etc. The FMEA process successfulness as a risk assessment tool
depends on (i) the complete and accurate identification of potential failure modes contained
in a system and (ii) the rigorous evaluation of the risk level of these failure modes [4].
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Now, the FMEA process is widely used in many industries. For example, the FMEA
process is used in the design and validation of a hydraulic torque converter [5]. Addition-
ally, the diagnosis of the bearing condition using the FMEA process is presented in [6].
Additionally, in [7], Bayesian networks are built from the FMEA process used by Markov
decision processes to model uncertainties within unmanned aerial vehicles. Thus, in the
context of extracting causal domain knowledge in the industry, FMEA documents represent
a valuable data source.

As highlighted by previous research, the FMEA process is error-prone. As a result,
FMEA documents suffer from data consistency issues. For example, Bluvband et al., in [8]
argued that due to the insufficient comprehensibility of the brainstorming session, cases
of missing information might occur (i.e., by omitting failure modes). Consequently, many
approaches are proposed to differently aggregate sources of information to improve the
brainstorming sessions’ comprehensibility. Thus, solutions based on ontologies are pre-
sented in [9–11] to satisfy the requirement to share, reuse, and maintain FMEA knowledge.
Such solutions are labor-intensive and time-consuming. As such, text mining algorithms
are proposed to extract a list of frequent failure modes and build the standard failure mode
vocabulary (e.g., the method proposed in [12]).

Additionally, FMEA process performance is limited in capturing rich information
about implicit causal relations expressed between its columns. In order to enrich these
causal relations with more information, a more sophisticated methodology, namely Failure
Modes, Mechanisms, and Effects Analysis (FMMEA), is proposed in [13].

Since our research aims to extract causal knowledge from FMEA documents, which
is, by design, limited in capturing rich information about the causal relations, we are
faced with consistency impairments in these documents. Moreover, these consistency
impairments, to our best knowledge, were not previously addressed. Especially when the
intention is to extract causal domain knowledge, these consistency impairments limit the
effectiveness of the extracted knowledge for downstream tasks. Therefore, in this paper,
we argue that consistency impairments concerning the implicit causal relation between the
FMEA documents’ columns (i.e., root cause and failure mode, and failure mode and effect)
are also significantly important.

Ideally, in a given FMEA cell, a short, descriptive text represents a single concept. In
this case, a concept is a separable (identifiable) phenomenon that acts either as (i) a root
cause, (ii) an effect of the failure mode observed in the product characteristics, or (iii) a
failure mode as an intermediate state in the causal chain. However, based on the analysis
of actual FMEA documents from a semiconductor manufacturing company, the majority
of data consistency impairments are attributed to one of two main categories: (a) FMEA
documents’ cell consistency; (b) FMEA relations consistency (i.e., consistency impairments
concerning the implicit causal relation between the FMEA documents’ columns). Figure 1
depicts our observations concerning consistencies found in actual FMEA documents. In the
category of FMEA documents’ cell consistency impairments, we noticed cases of merged
cells wherein the short text of a single cell comprises multiple concepts or even relations
between multiple concepts, e.g., a causal chain of multiple causes and effects. In the
category of FMEA relations consistency, we noticed the following:

1. Cases of missing information in the causal chain, where the documented relation
actually describes a subsequent effect of the cause but skips its direct effect;

2. Cases of conflict in the direction of the relations, i.e., the direction of the causal effect
relation is reversed.

These consistency impairments are mainly attributed to the manual creation of FMEA
documents by human domain experts, the broad definition of FMEAs’ columns, and the com-
plex nature of causal relations (e.g., many-to-many relations with transitive perception [14]).
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Figure 1. Comparison between ideal FMEA and actual FMEA. Cases of merged cells are highlighted
with background color. Cases of missing information and reversed direction are indicated between
the FMEA cells. Our approach is mainly concerned with detecting and assessing the consistency
impairments in FMEA documents. There are two main categories of consistency impairments in
FMEA documents, which are (1) cell consistency and (2) relation consistency. In the cell consistency
category, cases of merged cells are noted. In such cases, the short text describes more than one concept.
In the relation consistency, cases of missing information and conflict in the direction of the causal
relation are noted. In these cases, although the FMEA documents still conform to the tabular format,
the content of the FMEA does not conform to the intended semantics.

Hence, any disagreement among experts on the exact semantics of these columns will
increase consistency impairments within these documents. Formally, these documents will
still conform to the structure (i.e., tabular); their content no longer aligns with the intended
semantics. Consequently, in the era of industry digitalization, these consistency impair-
ments seriously limit the effectiveness of including causal domain knowledge documented
by the FMEA process.

In this paper, we first propose methods to improve the consistency of FMEA docu-
ments by defining a classification scheme to provide an improved understanding of the
consistency impairments with respect to the causal relations expressed in the FMEA docu-
ments. The classification scheme is derived from domain experts’ perception of the short
text in the FMEA cell. The classification scheme can be applied in the form of metadata
annotations to the tabular data to assess the data consistency for a given FMEA. Still,
the dataset size limits the feasibility of a manual annotation process, i.e., in practice, it is
not possible to manually label all available datasets in the production environment. As
such, we leverage advances in artificial intelligence and natural language processing for an
automated or at least semiautomated classification method. Consequently, the reversed
direction of causal relations, which indicates swapped cells in the FMEA, is effectively
addressed via this classification method combined with experts’ logic. Moreover, we are
able to distinguish different types of causal relations based on the classes of the concept
that it connects. We hypothesize that these classes and these different types of relationships
would be extremely beneficial for downstream tasks, such as information retrieval and
knowledge discovery, effectively addressing the challenges related to missing information
issues. Next, this paper proposes a pattern-based method for merged cell identification in
FMEA documents. This method leverages predefined patterns for causal cues to identify
merged FMEA cells. Additionally, a patterns extraction method calculates the Mutual
Information based on the co-occurrence of the terms on FMEA cells to identify merged cells
is also presented.

In summary, our contributions are as follows:

• We highlight the importance of including causal domain knowledge to improve the
data analytics methods robustness;
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• We propose to use FMEA documents as a source of causal domain knowledge;
• We highlight the main challenges with respect to manually written FMEA documents

and their consistency impairments for extracting causal domain knowledge;
• We propose a framework to address these challenges first based on explicitly defining

these consistency impairments types;
• Based on manually labeled examples from real-world FMEA documents, we derive

methods for the classification and identification of consistency impairments;
• The improved FMEA documents can then be used for many downstream tasks.

2. Materials and Methods

Based on the analysis of actual FMEA documents from a semiconductor manufac-
turing company, most data consistency impairments are attributed to one of two main
categories: (a) FMEA documents’ cell consistency or (b) FMEA relations consistency, where
our proposed methods address both types of inconsistencies.

Our primary approach relies on causal data science for checking the consistency of
FMEA documents. Causal data science is concerned with the underlying data generation
process. Thus, causal data science aims to adjust for spurious correlations present in the
data. The spurious correlations could be a result but not limited to confounding bias or
collider bias. Biases are translated in the FMEA documents to cases of merged cells. One
example for confounder bias could be: “layer thickness A” affect “Functional parameter A and
Functional parameter B”. Collider bias may look like: “layer thickness A is out of spec” due
to “process A deviation or process B deviation”. In the cases of merged cells due to biases (i.e.,
confounding and conditioning on colliders), they result from how the FMEA documents
are crafted, i.e., first identify the failure modes, then place the potential effects and the root
causes. Thus, the failure mode could be a collider for the root causes or a confounder for
the effects.

The FMEA documents do not seem to support the cases of interaction between multiple
concepts, based on our study of FMEA documents. Thus, cases of merged cells that describe
the interaction between concepts are typical to occur. An example could be: “layer A stress
in combination with layer B thickness limit violation” causes “functional parameter C to deviate”.
The “layer A stress” alone is insufficient to cause “the functional parameter C to deviate”. Also
“the functional parameter C deviation” is not caused by “layer B thickness limit violation”
alone. In such cases, the merged cell might contain additional information about the
relationships of the individual concepts. However, in some cases, not all the individual
concepts are stated. To handle such cases, we follow Vanderweele and Robins steps
as proposed in [15]. Vanderweele and Robins studied the interaction between concepts
introducing sufficient causal directed acyclic graphs. The sufficient cause is added to
the original causal directed acyclic graphs as an artificial node to describe the interaction
between the causes. In addition, the individual concepts are also represented in the graph
and connected to the artificial node. The interaction of such concepts happens only when
these concepts fulfill the role of causes in causal relations. Thus, in the FMEA documents,
such merged cells of cases are only occurring as failure mode or root cause.

We also observed cases of merged cells that contain an entire causal chain of multiple
causes and effects (e.g., “layer thickness A violation causes layer thickness B violation”). We
assume that this is mainly attributed to the manual creation of FMEA documents by human
domain experts, in combination with a broad definition of FMEA’s columns. For example,
domain experts may try to document causal chains, which stretch across multiple cause
and effect pairs.

To summarize, in the category of FMEA documents’ cell consistency impairments, we
noticed cases of merged cells, for which we further categorized into four categories, based
on our observation of real-world FMEA documents. These four categories of merged cell
types are depicted in Figure 2 and can be described as:
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Figure 2. The four categories of merged cells: (a) merged cells containing a causal chain; (b) merged
cell as a result of confounding bias; (c) merged cell as a result of bias caused by conditioning on a
collider; (d) merged cells caused by describing the interaction between concepts.

(a). Merged cells containing a causal chain;
(b). Merged cells as a result of confounding bias;
(c). Merged cells as a result of bias caused by conditioning on a collider;
(d). Merged cells caused by describing the interaction between concepts.

As a result of merged cells, the usability of the FMEA document for further processing
is seriously limited. In many cases, these limitations can be attributed to the absence of
standard terminology for the possible concepts. This is especially the case in many complex
and rapidly developing industries, such as semiconductor manufacturing. Here, domain
experts typically describe the concepts using short text, which comprises domain-specific
language and many abbreviations.

In comparison to other proposed approaches concerned with FME cells’ consistency,
most approaches are only concerned with the consistency of failure modes to achieve a
standardized description. Our research is concerned with the effect, root causes, and failure
modes. However, before addressing the standardization of all FMEA cells, we noticed
cases of merged cells, which we address in part of this paper. Similar to [12], we opted for
a data-driven approach that requires limited labeling effort.

In the case of identifying merged cells, multiple indicators could be devised. For
example, in the case of individual cells containing entire causal chains, causal relation
extraction from texts could be of value. In [16], the authors survey causal relation extraction
from text and describe the most relevant approaches. They distinguish between explicit
and implicit causal relations. For the case of FMEA documents, the causal relations are
most likely to occur explicitly, i.e., the causal relation is articulated explicitly in the short
text of the FMEA cell. Thus, we propose to leverage causal patterns identified as in [17] to
identify merged cells containing causal cues.

The first indicator (i.e., causal cues) and the proposed methods to detect mainly
assumes consistent use of cues through the data (which is typically not the case) and does
not cover cases (b), (c), (d) of merged cells. Thus, it yields high precision, but limited recall.
As a response, we build upon the work presented in [18], leveraging the Mutual Information
(MI) to detect merged cells. The proposed approach to extract the intra-sentential patterns,
which are meaningful combinations of terms (e.g., “voltage threshold”, “leakage current “,
etc.), from FMEA cells. To construct patterns, It calculates MI between the terms based on
their occurrence in the text of FMEA cells. The proposed approach is based on six steps,
explained as follow:

Step 1 FMEA cells’ short text n_grams: In this step, the algorithm splits the FMEA
short text into a list of terms based on spaces. The algorithm collects all the possible
n_grams (i.e., sequence of terms of a length n) that occurred in the FMEA cells’ short text.

Step 2 n_grams occurrence extraction: This step counts the FMEA cells where an
n-gram occurred in its short texts.
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Step 3 n_grams Mutual Information calculation: This step calculates the collected
n-grams Mutual Information based on the occurrence of n_gram terms in FMEA cells (i.e.,
based on the occurrences in FMEA cells). Hence, an n_gram with higher Mutual Informa-
tion is more likely to represent a pattern. Whereas high Mutual Information indicates a
large reduction in uncertainty, low Mutual Information indicates a small reduction, and
zero Mutual Information between a set of terms means the terms are independent. The
Mutual Information is calculated based on the occurrence of the terms in the FMEA cell
using the equation below:

MI(t1, t2, ..., tn) = P(t1, t2, ..., tn) log
P(t1, t2, ..., tn)

∏i=n
i=1 P(ti)

Step 4 Patterns extraction (n_gram filtering): The collected n_grams are filtered based
on two criteria (their number of occurrences in FMEA cells and their Mutual Information).
Thus, this approach is performed using two hyperparameters: the Mutual Information
threshold (MIth) and the occurrences threshold (OCth). These two hyperparameters
increase the approach precision in detecting merged cells for a range of values where
MIth > 0 and OCth > 1. However, it decreases the recall. The filtered n_grams are
considered as patterns.

Step 5 Top Patterns and subpatterns extraction (pattern clustering): A Top Pattern
is a pattern (n_gram) that is not contained by any other pattern. In this step, all the Top
Patterns are extracted from the filtered n_grams resulting from Step 4. Furthermore, all
the patterns from the same filtered n_grams contained in a Top Pattern are collected and
considered subpatterns. The results of this step are a number of clusters represented by the
Top Patterns and the member of this cluster, which are the subpatterns.

Step 6 Merged FMEA cell detection: A rule-based approach leverages the patterns
extracted from Step 4 and Step 5 to predict the merged FMEA cell. This step matches all
the patterns from Step 4 contained in the FMEA cell then checks if there is a Top Pattern
(cluster) that contains all the matched patterns. If this criterion is not met, the algorithm
predicts the cell is merged.

The proposed approach to detect merged cells based on the intra-sentential pattern is
highly dependent on the dataset where the Mutual Information is calculated. Thus, the
MIth and OCth need to be adapted.

As for the causal relation documented during the FMEA process, it depends on the
scope of the FMEA and the internal agreement between the multidisciplinary team creating
the FMEA. This agreement typically is not documented. Thus, for FMEA documents
conducted on the same scope, significant differences in the semantics of the concepts
described in the columns are found. This is worsened by the broad definition of the FMEA
columns. For example, while Bluvband et al. argue in [8] that the definition of failure is
too narrow and that this might lead to the omission of failure modes, we believe that the
definitions of the root causes and effects are too broad. This claim is also supported by
observing common practices in datasets for knowledge graphs that include causal relations
such as Atomic [19] and Glucose [20]. In such datasets, the authors define different types of
causal relations and attempt to describe the semantics of causal relations.

Consequently, the descriptions of the effects and the root causes are less consistent.
Thus, because the transitive perception of causal relation might lead to the description
of a distant cause or effect skipping the direct one. For example, given the causal chain
[A]-[causes]->[B]-[causes]->[C] (A, B, C are three concepts in the FMEA documents), due
to the transitive perception of causal relation [A]-[causes]->[C] is also valid and might be
documented in the FMEA documents. However, the information about the mediation of the
causal effect between A and C through B is missing, especially if the original causal chain
[A]-[causes]->[B]-[causes]->[C] is not documented in FMEA documents. This missing
information is critical, especially in industries with a long manufacturing process, where
the manufacturing typically extends for hundreds of processing steps.
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Additionally, in some cases, the direction of the causal relation is reversed. For
example, [C]-[causes]->[B] is documented instead of [B]-[causes]->[C]. This impairment
might be attributed to human error or ambiguity of the temporal aspect while creating the
FMEA document.

In general, this might not pose a large problem for domain experts to cope with this
missing information and automatically correct for the reversed relation due to their pro-
found knowledge of the domain. However, in the case of automated data analytics, missing
information and contradictions in the documented causal relation direction severely affects
the usefulness of the data analytics method, especially in the considered causal model.

As a response, we propose to define a classification scheme to provide an improved
understanding of the consistency impairments with respect to the causal relations expressed
in the FMEA documents. As such, it is critical to firstly identify the concept classes that
logically should be represented by the data (i.e., matching content interpretation by domain
experts). In many cases, the concept classes are domain-specific and typically cannot
be inferred from the data alone; they need to be established with the help of domain
knowledge. To this end, we propose a set of rules to govern the identification of the classes:

• Concepts classes need to be completely separable;
• Concepts classes need to allow for the assessment of the causal relations consistency

between concepts;
• Concepts classes need to be aligned with domain experts’ perception of the cells’ short

text content.

For our case study on FMEA documents, the identification of individual concept
classes is rooted in actual production lines and based upon the knowledge of experienced
domain experts. They were interviewed in order to establish our concept classification
scheme, which forms the base for the FMEA documents consistency improvement methods.
While our work is focused on causal relations found in FMEA documents of the semicon-
ductor manufacturing industry, other domains also require domain-specific classification
schemes, also taking expert knowledge and its formalization into consideration.

First, on a high level, in the semiconductor manufacturing company under study,
FMEA documents can be split into multiple types depending on the respective scope of
the FMEA. One can distinguish between Process FMEA documents (P_FMEA) and Unit
Process FMEA documents (UP_FMEA). An individual P_FMEA contains multiple causal
chains, each of which might be associated with numerous processes used in a product
production line. UP_FMEAs include causal chains only belonging to single processes,
which in turn could be related to multiple products’ production lines.

The expected concepts described in the P_FMEA documents are different from those
expected to be described in UP_FMEA documents. In P_FMEA documents, one can
expect concepts physical characteristics’ deviation of the products’ structures, which causes
concepts describing functional characteristics’ deviation of the product. Many reasons
could cause these physical characteristics’ deviation. However, due to the high degree
of manufacturing automation and the highly controlled environment (i.e., the typical
manufacturing conditions in the semiconductor manufacturing industry), the most relevant
causes stem from the so-called unit process deviation.

In the UP_FMEA documents, it is expected to find concepts describing the so-called
unit process key parameters deviation that causes the unit process deviation (which is also
described in P_FMEA documents). Additionally, in the UP_FMEA documents, the root
causes of the unit process key parameters deviation follow the 5M (Man, Machine, Material,
Method, Measurement) risk-management model similar to the Ishikawa causal diagram.
To connect the two types of FMEA documents, experts aim to link unit process cause in
the P_FMEA document to the respective unit process effect of UP_FMEA. The linking
concept (i.e., the unit process deviation) is abbreviated as UP-C/E. Domain experts further
explained that the product functional characteristics’ deviations are caused by deviations in
physical characteristics of the product structures, while the reversed direction is not valid.
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To summarize, leveraging the information acquired from the discussions and multiple
rounds of interviews with domain experts, we are finally able to distinguish five distinc-
tive concepts classes: Functional, Physical, UP-C/E, Parametric, and 5M. The concept
classes and their causal chains are depicted in Figure 3. To readers who are familiar with
measurement data typically found in a modern semiconductor manufacturing FAB, these
measurements types are also in line with the proposed concept classes. Whereas in [21], Qin
et al. summarized the measurement data types available in semiconductor manufacturing
as follows:

• Real-time trace data at the tool level reflects equipment health conditions;
• Integrated metrology or inline metrology provides geometric dimensions;
• The sample and final electrical test provide data about the products’ electrical properties.

Thus, domain experts could map defined concept classes to the corresponding mea-
surement data types. Namely, concepts belonging to the Functional, Physical, and Para-
metric concept classes could be mapped to the final electrical test, integrated metrology,
real-time trace data, respectively. This alignment intends to enhance the reuse of FMEA
knowledge concerning root cause analysis. However, the benefits of this alignment will be
addressed in future research.

Consequently, the defined concept classes can be applied in the form of metadata
annotations to the existing FMEA documents. This metadata allows for causal relation
consistency assessments of a given FMEA document. Thereby, for an annotated causal
relation found in the data, one can check for consistency via compliance with the consistency
rules. Examples of such rules are:

(i) A causal relation from a concept that belongs to the Functional class to a concept that
belongs to the Physical class is considered to have a consistency status of reversed;

(ii) A causal relation from a concept that belongs to the UP-CE class to a concept that
belongs to the Functional class is considered to have a consistency status Missing
Information due to the missing concepts belonging to the physical class.

Here, causal relations are found in the FMEA document that does not adhere to the
consistency schema; one can distinguish two cases:

Case 1 Missing information: In this case, one or more intermediate concepts are
missing from the causal chain. In an automated setting, this missing information would
need to be completed using other FMEA documents or other data sources. These concepts
might have other (root) causes, which also need to be considered and completed. In general,
this case is not trivial and mostly needs to be dealt with on a case-by-case basis.

Case 2 Reversed direction: In this case, the direction of the causal relation is reversed
according to the consistency schema. Such cases are attributed to the manual creation of
the FMEA documents. In such cases, the data might be complete while inconsistencies
concerning the classification scheme and defined causal chain can be observed. In this case,
the problem can be automatically detected and automatically rectified.

In an actual scenario, the number of data is typically too large to allow for a complete
manual classification of all the available documents according to the classification scheme,
i.e., to conduct a large-scale manual annotation process by (highly paid) experts. (This
also could be the case in transferring the FMEA to FMMEA). Yet from the perspective
of dataset sizes required to train contemporary machine learning models, it is an open
question if the available data fulfills these requirements, primarily since FMEA documents
we consider comprise: (i) just short text snippets that (ii) do not follow grammatical rules
(i.e., no full sentences), and (iii) represent domain-specific language (i.e., terms not found
in generic dictionaries).
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Historically, the task of building classifiers for textual input data has been approached
following a rule-based approach [22,23]. Such methods are highly dependent on the experts’
knowledge, which is consecutively modeled as a set of guiding rules. As a welcome
consequence, these systems do not require ground truth data for training. Thus, these
systems evolve naturally by extending and optimizing the rules set. While these methods
give good results for well-constrained and well-understood environments, the drawbacks
of such methods concern the scalability and the difficulty of identifying a complete and
consistent rule set (e.g., no loops or contradicting rules). As an alternative, machine learning
methods are devised to learn directly from the data. The initial challenge associated with
text classification is transforming the text into a representation suitable for machine learning
models, a process comprising the tasks of feature extraction and feature engineering. Rule-
based feature extraction faces similar challenges as rule-based classification methods. At
the same time, general text classification and representation learning benefit highly from
deep learning approaches [24,25]. Thus, for this research, we opted for an end-to-end deep
learning classification model. Our text classification model consists of a preprocessing
pipeline, an embedding layer, a recurrent network layer, and a fully connected layer as an
output layer. Namely, we test four recurrent neural networks layers: LSTM [26], GRU [27],
and their bidirectional variation [28]. The classifier is trained on a multilabel, multiclass
classification using weighted binary cross-entropy loss to account for the classes’ imbalance
in the training dataset. The loss function is calculated using the equation:

dL = −
[
wp × ytrue × log

(
ypred

)
+ wn × (1 − ytrue)× log

(
1 − ypred

)]
where wp and wn are positive and negative class weights, respectively, for each concept class.

Our classification model is achieved as follows: First, the FMEA dataset is split into
three datasets: training, testing, and development. The training and development datasets
are used in the training phase. During the training phase, preprocessing is learned on the
training dataset. The preprocessing pipeline is responsible for text data cleaning and trans-
formation into a numerical representation using techniques of abbreviation substitution,
text cleaning, and text tokenization. The resulting text representation is sparse. Next, the
embedding layer and the recurrent neural network layer try to learn the mapping function
of the sparse text representation to the target labels based on the loss function. Here, to
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control the training of the model, the model performance on the development dataset is
used for an early stopping approach. Finally, the testing dataset is used to evaluate and
report the model performance. In our case, we noticed that the model performance is
affected by the dataset splits. Thus, we opted for k-folds cross-validation to adjust for
biases induced by dataset splits. Hence, the average model performance is reported.

3. Results
3.1. FMEA Documents Dataset Description and FMEA Relation Consistency Assessment

For this research, we opted for the strategy to initially generate a seed dataset, upon
which consecutively a classifier is trained, which finally can automatically annotate the
complete available documents. Thus, we collected a sample of FMEA documents that
domain experts annotated for this research. The annotation process is conducted using
an annotation tool. This annotation tool shows the complete cells’ text and allows for
multilabeled FMEA cells’ text annotation. For a FMEA cell text that does not belong to the
defined classes or is ambiguous, domain experts are given the option to annotate the text
as out of the scheme. The experts annotated four P_FMEA and nine UP_FME. In P_FMEA,
the number of distinctive cells is five times higher than the number of distinctive cells in
UP_FMEA. Based on the annotation, 10% and 18% of the P_FMEA and UP_FMEA cells are
annotated as out of scheme, respectively. These cells are excluded from further analysis.
The comparison of concepts class distribution over P_FME vs. UP FMEA cells is depicted
in Figure 4.

Based on the annotation acquired from the experts, we can annotate the relations
between the cells present in the FMEA documents. Here, we distinguish five types of
annotated relations. The first type is considered to be consistent relation if the head cell and
tail cell concept classes conform to the sequence in the classification scheme. The second
type is considered to be a relation with missing information (Missing Information relation)
if the head cell and tail cell concept classes do not conform to the classification scheme
sequence, skipping concepts belonging to one or more of the concept classes (e.g., 5M to
Functional). The third type is considered to be a relation with reversed direction (Reversed
relation) if the head cell and tail cell concept classes do not conform to the sequence in
the classification scheme and link concepts in the reversed direction (e.g., Physical to
Functional). The fourth type is considered to be a relation within the same concept (Same
Concept relation) if the head cell and tail cell concept belong to the same class. In this case,
we cannot determine any information about the relation consistency. Moreover, a relation
is considered out of scheme (Out of scheme relation) if it connects to a head cell or a tail
cell that has annotation out of scheme. It should be noted that for the comparison of the
head cell concept classes and the tail node concept classes, we compare the highest (closest
to the functional concept class) concept classes from the tail cell to the lowest (closest to 5M
concept class) concept class for the head cell.

Based on the analysis of the relations present in P_FMEA and UP_FMEA, the per-
centages of relations that are out of scheme in P_FMEA and UP_FMEA are 37% and 22%,
respectively. Additionally, the number of relations in P_FMEAs is six times higher than
UP_FMEAs. Moreover, we noticed that both types of documents have consistency im-
pairments concerning the causal relation. Additionally, the percentages of the relations
between concepts within the same concept class and those that indicate reversed direction
are comparable between the UP_FMEA and P_FME documents. However, in UP_FMEA,
the relations with missing information are more present. Thus, we think that the definition
of the scope of UP_FMEA is insufficient. Consequently, an increasing number of rela-
tions with missing information are observed. The comparison of relation type distribution
present in P_FMEA and UP_FMEA is depicted in Figure 5.
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Figure 5. Comparison of the relation types distribution in P_FMEA and UP_FMEA. Relation inconsis-
tencies are present in both types of FMEAs (i.e., P_FMEA and UP_FMEA). In UP_FMEA, the relations
with missing information are more common.

3.2. Text Classification for FMEA’s Relations Consistency

For the purpose of this research, we opted for an end-to-end deep learning classifi-
cation model. The objective of the model is to predict the concept classes of FMEA cells’
text. Based on this prediction, we can apply the same analysis presented in Section 3.1 for
assessing the consistency of FMEA’s relations consistency presented before.

First, we established a data preprocessing pipeline that consists of abbreviation substi-
tution, text cleaning, and text tokenization. Together with domain experts, we collected a
set of abbreviations commonly used in the FMEA documents for abbreviation substitution.
Additionally, we applied the basic cleaning function to remove punctuation and numbers
for the text cleaning. Finally, tokenization based on spaces is applied to FMEA cells’ text.

Second, we trained a recurrent neural network-based classification model. The model
consists of an embedding layer with an input size of the number of distinct words from
the training set with a masking function to handle the different lengths, followed by a
recurrent neural network layer with 100 hidden units. We test LSTM, Bidirectional LSTM
(BiLSTM), GRU, and Bidirectional GRU (BiGRU). Finally, a fully connected layer of five
neurons followed by sigmoid functions is established as an output layer.

We propose two approaches to evaluate our classification model and method (au-
tomatically assessing the relations consistency in FMEA documents). First, we propose
conducting a cell-based test training split on the full dataset to evaluate the classifier on un-
seen FMEA cells. Here, we collect all the FMEA cells from all the FMEA documents, apply
the cleaning pipeline and remove duplicated cells. Second, we propose to do document-
based splitting. Here, we divided the FMEA documents into training and testing in the
training phase. The criteria are made under the assumption that if we have annotated
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FMEA documents of a specific distribution, we evaluate the proposed method’s perfor-
mance in assessing a new FMEA document from the same distribution. Thus, we use
one P_FMEA document and one UP_FMEA for testing. We use four-fold cross-validation
to test the classification performance. This approach is used to test the effectiveness of
the proposed method for assessing the relation consistency. The first evaluation strategy
targets the classification performance removing any biases caused by a potential target leak.
Similarly, we use four-fold cross-validation to test the classification performance.

Based on the first evaluation approach, we noticed that all the classifiers’ architecture
performances drop with respect to minority classes (i.e., the lower three classes that are the
least represented in the collected dataset). However, with respect to the Functional and the
Physical concept classes, LSTMS and Bidirectional LSTMS surpass the other architecture by
a small margin. The results of the comparison are depicted in Figure 6 and summarized in
Table 1. Additionally, Table A1 (a full table of results) is added to Appendix A.

Table 1. The classification results of FMEA cells using cell-based splitting. The best performing
architecture and its performance with respect to the concept class is summarized.

Class Name Architecture Average F1 Score

Functional BiLSTM 92%
Physical LSTM 88%
UP-C/E LSTM 61%

Parametric GRU 56%
5M GRU 63%

Moreover, we used the second approach of splitting (documents-based splitting) to
test the effectiveness of the proposed method for assessing the relation consistency. The
results of each FMEA relation type detection are summarized in Table 2.

Table 2. Results of FMEA consistency using document-based splitting.

Class Name Architecture Average F1 Score

Missing Information BiGRU 64%
Reversed LSTM 41%

Same Concept BiGRU 72%
Consistent BiGRU 76%

Out of Schema BiLSTM 71%
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3.3. Pattern-Based Approach for FMEA Cell Consistency

Based on the analysis of actual FMEA documents, we noticed cases of merged cells.
In these cases, the short text of a single cell comprises multiple concepts or even relations
between multiple concepts, e.g., a causal chain of multiple causes and effects. Thus,
together with domain experts, we collected and labeled a subset of FMEA cells to evaluate
the severity of such cases. The labeling criterion is based on more than one concept that
belongs to our classification scheme. Based on the collected dataset, 34% of the annotated
dataset is considered as merged. As a response, we collected lexical causal cues (such as
”causes”, “caused by”, ”due to”, etc.) in addition to some special abbreviation used by
domain experts to indicate the causal relation (e.g., ”->“). In the first merged cell detection
approach, we employed a search for the collected causal cues within the FMEA cells’
text. As a result, this approach yielded high precision but limited recall. To this end, we
proposed an approach-based intra-sentential pattern. For this method, we need to set two
hyperparameters (MIth, OCth) in order to optimize the proposed approach performance.
Thus, we split the labeled subset of FMEA cells into validation and testing sets. We used
the validation set to conduct a grid search to optimize MIth and OCth. Based on the grid
search, we decided for MIth = 0.0015 and OCth = 3.

Furthermore, we tested the union ensemble for both of the approaches assuming that
the patterns-based method could increase the recall of the causal cues-based approach.
Here, we report the results of the three methods (intra-sentential pattern, causal cues, and
the ensemble of both methods). The results are summarized in Table 3.

Table 3. The detection of merged FMEA cells.

Approach F1 Score Precision Recall

Causal cues 60% 92% 45%
Intra-sentential pattern 70% 61% 81%

Union ensemble 72% 62% 86%

4. Discussion

The proposed consistency improvement methods address two main aspects of data
consistency: cell consistency and relation consistency.

For the relation consistency, the results show the usefulness and the importance
of domain knowledge being represented in the proposed classification scheme, which
was derived from extensive interviews with multiple domain experts. This classification
scheme allows for the assessment of relation consistency presented in the FMEA documents.
Interestingly, we noticed that although the distribution of the concept classes in P_FMEA is
different from the one in UP_FMEA, the expected concepts class distributions based on the
discussion with the experts is not present. For example, despite the fact that in UP_FMEA,
concepts belonging to the lower two classes are more represented than in P_FMEA, we
noticed that the majority concept class in both P_FMEA and UP_FMEA cells is the Physical
concept class. This does not conform to the initial expectation and the definition of the
FMEAs. In addition to the presence of concepts belonging to concepts’ classes out of the
FMEA’s type scope, these observations are the first indication of inconsistency in the causal
relations. Leveraging the annotated dataset, we discovered that UP_FMEA documents are
less consistent than P_FMEA, where more Missing Information relations occur. In other
words, as a result of this research, we can quantitatively assess the relation consistency
presented in the FMEA documents. The results of this research can be integrated into many
downstream tasks. An example is to support domain experts in the process of creating new,
more consistent FMEA documents.

Additionally, for the automated relation consistency checking, we found this to be
highly dependent on the classification method. Thus, different classification architectures
are required due to the highly imbalanced distribution of the classes. Namely, for minority
classes (e.g., 5M and Parametric), models with fewer parameters, such as the model with
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GRU-based architecture, perform better than models with a higher number of parameters,
such as the model with LSTM-based architecture. Additionally, each type of relation
has a different distribution regarding FMEA cell concept classes. For example, Same
Concept relations mainly occur between FMEA cells labeled with concept class Physical. In
contrast, Reversed relations mainly occur between FMEA cells labeled with concept classes
Physical and UP-C/E. Moreover, Missing Information relations mainly occur between
FMEA cells labeled with concept class “‘Parametric’, ‘Physical’, ‘5M’, ‘Physical’” and “‘UP-
C/E’, ‘Functional’”. Finally, consistent relation FMEA cells are labeled with concept class
“Physical”, “Functional” and “UP-C/E”, “Physical”. Consequently, the FMEA relation
consistency performance depends on the classifier performance. The combination of the
classes mainly occurs for each relation type.

For the cell consistency, in FMEA documents, merged cells occur frequently. Over a
third of the FMEA cells are merged based on our labeled subset. Thus, we have devised
two approaches to detect merged cells. The first approach is based on causal cues. This
approach achieved a 60% F1 score. The high F1 score is attributed to the high precision,
which is over 90%. However, as expected, the causal cues-based approach has limited recall
because it does not cover cases (b), (c), and (d) of merged cells (please check Figure 2). As
such, we proposed the intra-sentential-based approach as an alternative solution.

The intra-sentential pattern-based approach showed good results even with no labeled
data for the cell consistency improvement. The intra-sentential-based approach achieved
a 70% F1 score. This score was achieved with two hyperparameters that were optimized
based on grid search. The method has high recall but limited precision. To improve the
precision of the intra-sentential-based approach, we devised a union ensemble combining
its results with the causal cues-based approach. As a result, the union ensemble achieved
the best outcome with a 72% F1 score. To increase the paper readability we added acronyms
glossary (Table A2) to the Appendix A.

5. Conclusions

We presented work on FMEA documents, a form of tabular documents comprising
short snippets of domain-specific text, where causal relationships are being captured. These
documents were originally intended for interpretation by human experts. Consequently,
these documents tend to contain many inconsistencies. As a response, we systemati-
cally defined: (i) a domain-specific model, consisting of a concept scheme (i.e., types of
cause/effects) and a relationship consistency scheme (i.e., valid relations between the con-
cepts), and (ii) a model of inconsistencies, consisting of mixed-up cells (including reverse
direction), missing information, and merged cells. We supported domain experts by devel-
oping an annotation tool to collect a specific dataset for the semiconductor manufacturing
industry. As a result of this research, we can quantitatively assess the relation consistency
presented in the FMEA documents.

We trained and compared different models directly on the FMEA documents to obtain
a consistency checking method, which achieves between 56% and 96% F1 on identifying
the concept classes. The challenge of merged cells requires separate processing. Here, we
adapted an existing method on intra-sentential pattern mining, which was adapted to suit
our needs. The intra-sentential pattern extraction finally achieved an F1-score of 70% and
72% when combined with the causal cues-based method.

The result of the developed models can also be added to the FMEA documents as
additional information. The additional information added to existing FMEA (i.e., the
classes of the concepts in an FMEA cell, also the cell status if it is merged) is beneficial
for the reuse of the FMEA knowledge. A simple example may include retrieving only the
direct effect or root cause.

To summarize, data inconsistency detection in complex environments, similar to
highly automated production lines, is likely to fail if conducted exclusively in a data-driven
manner. Domain-specific knowledge needs to be considered in multiple stages of the
processing pipeline in order to achieve sufficiently good results. In our case, having a
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causal model and the constraints implied by this model helped to detect many cases of data
inconsistency. Our method can be adapted in the future by considering more external data
sources for more meaningful representation learning of the text contained in the FMEAs
and providing means of interactions and feedback of human experts to address the detected
consistency impairments. Finally, as future work, we aim to integrate the results of this
research (i.e., FMEA and the additional information provided by the proposed method) in
a knowledge discovery approach to predict missing links in the FMEA.
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Appendix A

Table A1. Classification results based on the architecture and the data training and testing splits; we
compare four different classification methods based on different recurrent neural network layers.

Class Classifier Train/Test Split Average MCC Average F1

Functional

LSTM
Documents based 0.89 (SD 0.02) 91% (SD 0.02)

Cell based 0.89 (SD 0.04) 91% (SD 0.03)

BiLSTM
Documents based 0.90 (SD 0.05) 92% (SD 0.04)

Cell based 0.91 (SD 0.06) 92% (SD 0.05)

GRU
Documents based 0.88 (SD 0.05) 90% (SD 0.04)

Cell based 0.88 (SD 0.06) 91% (SD 0.05)

BiGRU
Documents based 0.91 (SD 0.01) 93% (SD 0.01)

Cell based 0.89 (SD 0.11) 90% (SD 0.1)

Physical

LSTM
Documents based 0.77 (SD 0.01) 89% (SD 0.01)

Cell based 0.77 (SD 0.04) 88% (SD 0.01)

BiLSTM
Documents based 0.76 (SD 0.01) 88% (SD 0.01)

Cell based 0.75 (SD 0.04) 87% (SD 0.02)

GRU
Documents based 0.77 (SD 0.03) 89% (SD 0.02)

Cell based 0.75 (SD 0.03) 88% (SD 0.02)

BiGRU
Documents based 0.77 (SD 0.03) 89% (SD 0.02)

Cell based 0.76 (SD 0.02) 88% (SD 0.01)
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Table A1. Cont.

Class Classifier Train/Test Split Average MCC Average F1

UP-C/E

LSTM
Documents based 0.56 (SD 0.09) 64% (SD 0.07)

Cell based 0.53 (SD 0.09) 61% (SD 0.07)

BiLSTM
Documents based 0.57 (SD 0.10) 65% (SD 0.08)

Cell based 0.52 (SD 0.06) 59% (SD 0.07)

GRU
Documents based 0.53 (SD 0.12) 62% (SD 0.09)

Cell based 0.51 (SD 0.08) 58% (SD 0.08)

BiGRU
Documents based 0.56 (SD 0.09) 64% (SD 0.07)

Cell based 0.53 (SD 0.11) 60% (SD 0.09)

Parametric

LSTM
Documents based 0.62 (SD 0.02) 64% (SD 0.02)

Cell based 0.4 7(SD 0.15) 51% (SD 0.15)

BiLSTM
Documents based 0.58 (SD 0.08) 59% (SD 0.09)

Cell based 0.45 (SD 0.11) 49% (SD 0.10)

GRU
Documents based 0.57 (SD 0.04) 59% (SD 0.06)

Cell based 0.52 (SD 0.12) 56% (SD 0.11)

BiGRU
Documents based 0.65 (SD 0.03) 67% (SD 0.02)

Cell based 0.49 (SD 0.04) 53% (SD 0.05)

5M

LSTM
Documents based 0.63 (SD 0.07) 65% (SD 0.07)

Cell based 0.59 (SD 0.11) 62% (SD 0.10)

BiLSTM
Documents based 0.63 (SD 0.12) 65% (SD 0.11)

Cell based 0.54 (SD 0.05) 58% (SD 0.05)

GRU
Documents based 0.58 (SD 0.07) 61% (SD 0.06)

Cell based 0.60 (SD 0.09) 63% (SD 0.07)

BiGRU
Documents based 0.65 (SD 0.12) 67% (SD 0.10)

Cell based 0.59 (SD 0.06) 63% (SD 0.05)

Table A2. Acronyms glossary.

Acronyms Clarification

FMEA Failure Mode Effect Analysis
FMMEA Failure Modes, Mechanisms, and Effects Analysis
P_FMEA Process FMEA documents

UP_FMEA Unit Process FMEA documents
Functional Concept class that includes concepts describing functional characteristics’ deviation of the product

Physical Concept class that includes concepts describing physical characteristics’ deviation of the
product structures

UP-C/E Concept class that includes concepts describing unit process deviation
Parametric Concept class that include concepts describing the so-called unit process key parameters deviation

5M Concept class that include concepts describing Man, Machine, Material, Method, and Measurement from
the risk-management model

Intra-sentential pattern A meaningful combination of terms
MI Mutual Information

N_gram A sequence of terms of a length n
MIth Mutual Information threshold
OCth Occurrences threshold

Top Patterns A pattern (filtered n_gram) that is not contained by any other pattern
Subpatterns Patterns (filtered n_gram) contained in a Top Pattern
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