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A study on robust feature representations
for grain density estimates in austenitic steel

Filip Ilic1, Marc Masana1,2, Lea Bogensperger1, Harald Ganster3 and Thomas Pock1

Abstract— Modern material sciences and manufacturing
techniques allow us to create alloys that help shape our way
of living; from jet turbines that withstand extreme stresses
to railroad tracks that retain their intended shape. It is
therefore an important aspect of quality control to estimate
the microstructural properties of steel during and after the
manufacturing process, as these microstructures determine the
mechanical properties of steel. This estimation has for a long
time been a labor intensive and non-trivial task which requires
years of expertise.
We show that modern deep neural networks can be used to
estimate the grain density of austenitic steel, while also applying
a visualization technique adapted to our task to allow for
the visual inspection of why certain decisions were made. We
compare classification and regression models for this specific
task, and show that the learned feature representations are
vastly different, which might have implications for other tasks
that can be solved via discretization into a classification problem
or treating it as an estimation of a continuous variable.

I. INTRODUCTION

Not all steel is created equally. Other than the ratio of
carbon and other metals that are used in the alloy when it
is being forged to steel, different modes of cooling, heating,
and hardening produce variations in steel. Broadly speaking,
steel can be classified into austenite, martensite, and under
certain circumstances even a mixture of both. Martensite
forms when steel is quenched very quickly, whereas austen-
ite forms through a lengthy cooling process. Even within
the austenite cooling process, there are many factors that
influence the development of microstructures within the steel
that contribute to the graining process, i.e. the formation of
individual grains. Determining the characteristic grain size of
the sample, which is used to determine the grain density, is
important for many applications as it relates to the tensile and
compressive stresses that the material is able to withstand.
These grains and other microstructures of the resulting steel
can - through an extensive etching and cleaning process - be
made visible under a light microscope [10].

Traditionally, austenitic steel grain density is estimated by
costly and labour intensive work done by a metalographer
where etched steel samples are manually inspected under a
light microscope. Currently the most reliable way to perform
this grain density estimate is by including a template, that
is projected onto the viewfinder of the microscope. The
metalographer then uses this template to determine the
grain density by comparing it to the different available
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Fig. 1. A single image of an austenitic steel sample taken with a light
microscope at 100-fold magnification. Our method estimated the overall
density of the sample to be 5.0. The overlayed heatmap is created with
a proposed visualization scheme, detailed in Section VI, that aids in
understanding the decision process of the network, as a pixel-wise density
estimate can show inhomogeneous regions if they are present. Note that the
learned representation is robust enough to ignore sample preparation artifacts
and carbide pockets that have a similar appearance to higher density grain
regions.

templates. Since only a 2-dimensional cross-section of the 3-
dimensional material is visible, grains might appear smaller
or larger than the average grain size within the material due
to the slicing process. It is therefore a requirement that a
judgement is made based on the relative distributions of grain
density within a single slice of the sample.

In this paper, we propose a deep learning-based approach
to estimate austenitic steel grain density from a single image.
We explore how classical cross-entropy-based losses allow to
learn classification models with state-of-the-art performance.
However, we find that classification models - at least in
the domain of grain density estimation - come at a price
when comparing it to similar, albeit slightly less performant
regression models, that show more resilience when dealing
with out of distribution samples, and appear to have a more
robust and human interpretable feature space. We therefore
also propose to use regression-based losses that are capable
of predicting a continuous grain density, at the cost of a slight
decrease in performance.

It is notoriously difficult to explain the decision making
process of deep neural networks, which can often be a
source of confusion when applied and deployed in real world
applications. It is therefore important, to provide tools to
visualize the model’s decisions, and understand the failure
cases and the reasons for a failure. Recently, some methods
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have been proposed to evaluate the confidence by using class
activation maps [32]. We adapt a well known algorithm –
GradCAM [27] – that allows us to visualize local regions
within a single sample, that can a) show us glimpses of the
underlying feature embeddings and whether they really en-
code relevant information that trained metalographers would
look for, and b) give more fine grained analysis of the input
image than just the classification label, shown in Fig. 1.

A challenge of using deep learning models in this domain
is that deep neural networks require large amounts of data
to reach a satisfying degree of robustness. Because the data
acquisition and labeling of steel samples requires thorough
metalographic knowledge, this data is rather scarce. There-
fore, we propose a heavy data augmentation scheme that
allows to generate grain densities of continuous granularity,
even when only whole grain (i.e. 4.0, 5.0, etc.) austenite data
is available, as it often is.

In summary, our contributions are the application of clas-
sification and regression based deep learning models to the
domain of microstructural analysis of austenite steel, with a
focus on the differences in interpretability of the resulting
feature representation that the two modes of learning yield.
Furthermore, we propose a data augmentation scheme which
could be extended to other datasets that are fractal-like or
display self-similarity. We show that its usage improves
performance across a variety of different models. We present
through ablations on classification and regression models that
in general classifiers perform better than regressors in this
setting. However, this improved performance comes at the
cost of a decrease in robustness and interpretability.

II. RELATED WORK

In the past, many insights into material composition and
corresponding material properties were derived from expert
knowledge and experience. Nowadays, data generated by
simulations and measurement systems are becoming more
available, thus moving away from physically-based tests.
Agrawal and Choudhary [1] introduce the term deep ma-
terials informatics in the context of data-driven technolo-
gies and provide a comprehensive overview of challenges
and applications of deep learning with respect to learning
chemical compositions of materials, prediction of crystalline
structures, (3D) microstructure analysis, and microstructure
reconstruction [6]. Furthermore, [12] illustrate opportunities
and current paths, where machine learning will have signif-
icant influence on material science.

Automated detection or classification of microstructures
is the central theme of metallographic studies. Chowdhury
et al [7] use image analysis and machine learning to dis-
criminate whether samples have dendritic morphologies or
not. DeCost and Holm [13] use a feature-based approach to
identify generic signatures of microstructures. These serve
as the basis for a Support Vector Machine (SVM) [8]
classifier to distinguish 7 microstructure classes. Similarly,
Gola et al [17] employ an SVM model for reproducible and
objective microstructure classification and achieve classifica-
tion accuracy greater than 90% for cast iron samples. The

morphological data comes from both optical microscopy and
electron microscopy images, and the mixed microstructure
exhibits a variety of graphite morphologies. An extension of
the classification system to deep learning techniques achieved
95% accuracy on unprocessed electron micrographs of low-
alloy steels [3], [25]. Here, a combination of CIFARNet, a
modification of LeNet [22], and a pretrained VGG16 net-
work [28] were used. Mulewicz et al. [23], [24] distinguish
8 classes of microstructures of different steel grades (C15,
C45, C60, C80, V33, X70, and non-hardened steel) from
optical microscopy images with the aid of a deep network
structure based on ResNet18 [18]. The authors of [15]
train models with U-Net architectures with about 30-50
micrograph samples in order to achieve robust segmentation
for bainite microstructures. To segment microstructures into
four relevant domains (”grain boundary carbide, spheroidized
particle matrix, particle-free grain boundary denuded zone,
and Widmanstätten cementite”), DeCost et al [11] use pixel-
based machine learning [4]. Their segmentation model was
compared to the results of microscopic annotation by met-
alographer using 24 carbon steel samples. Although direct
comparison in microstructures (< 5 pixels) was not possible
and demonstrated the need for high quality training data, it
was still possible to show the effectiveness of deep learning
in the analysis of complex microstructures. Albuquerque et
al. [9] apply a multilayer perceptron with backpropagation to
achieve a microstructure segmentation for cast iron images.
Verification on a test set of 60 images showed high correla-
tion to human ground truth. In this line Bulgarevich et al. [5]
apply a Random Forest classifier to optical microscopic
images of steels for an automated segmentation. Austenite
grain density is a significant variable in the AI system of
Kuziak [21], which allows the estimation of different phase
constituents occurring during the cooling process.

III. DATASET

To perform a density analysis the grains within the steel
need to be made visible. Various types of acids are used
which etch the weak spots of the metal surface, i.e. the
grain boundaries or other impurities of the metal, away
first, leaving behind a darkened appearance. The prevailing
industry standard to measure the grain density within the
material is the ASTM e112 [2] norm. It specifies a 100-fold
magnification at which the optical microscope images are
captured. Therefore all our images are taken with a 100-fold
magnification, and in total consist of 242 images that have
a resolution of 1280×960. We split them into 125 train, 53
validation, and 64 test images, keeping the distribution of
classes balanced.

The dataset contains images from whole-grade densities
ranging from 4.0 to 13.0 with increments of 1.0, and addi-
tionally the grain density 2.5. This range of grain densities
are provided by the manufacturing process at the steel mill.
Fig. 2 shows austenitic steel with various grain densities;
it also shows the variation in appearance that is due to the
different alloys, and variations in the etching process.
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Fig. 2. Samples of varying grain densities. The grain density increases from left to right and exhibits fractal like self similarity at different scales. It does
however produce a variety of artifacts due to the etching process depending on size of individual grains and variation among samples. While the grain
density is fundamentally a continuum, it is often discretized to whole- or half-grades in practice.

IV. GRAIN DENSITY ESTIMATION

The problem of grain density estimation can be framed as
an image classification task, with the increased complexity
that naturally occurring grain density variations might not be
homogeneously distributed across the entire sample. Image
classification has seen a massive shift from hand-crafted
feature detectors towards the use of different deep learning
techniques. When data is limited, a common technique is to
pretrain on a large dataset and only fine-tune the network
to the specific domain. This exploits a good initialization of
the network parameters to learn an adjusted representation of
that smaller domain [26]. Since the amount of annotated data
which contains information about microstructures, including
grain density, is usually limited due to its acquisition cost,
we propose to use fine-tuning with a cross-entropy loss
on a pretrained classification network. To the best of our
knowledge, this popular technique has not been applied to
this setting. The closest work which uses deep learning for
microstructural analysis in steel is [3]. Although this work
is not applied to austenitic steel, nor evaluated with grain
density estimates, we consider it in our comparisons.

Classification allows for the network to learn represen-
tations which project the input data into a feature space
where different classes can be easily discriminated without
any specific ordering. However, due to the nature of steel
grains spanning a continuum of different sizes, we also
consider to frame the grain density estimation as a regression
problem. This allows the network to not only discriminate
between different classes, but also maps to a feature space
that implicitly preserves grain density order.
Classification. We consider a backbone pretrained feature
extractor Φ parameterized by weights θΦ and a classi-
fier Ψ parameterized by weights θΨ. We define o(x) =
Ψ(Φ(x;θΦ);θΨ) as the output logits of the network given an
image x. Then, given y as the one-hot encoding of the ground
truth label corresponding to the N classes (grain densities),
we consider the cross-entropy loss

LCE(x,y;θΦ,θΨ) =
N

∑
k=1

yk log
exp(ok)

∑N
i=1 exp(oi)

. (1)

Regression. We use the same feature extractor and head
as in classification, together with output logit o(x) given an
image x. However, given y as the actual numerical value of

the ground truth grain density, and d = o(x)−y, we define
the regression loss as a smooth `1 loss

LS1(x,y;θΦ,θΨ) =

{
d2

2α , if |d|< α
|d|− α

2 , otherwise
, (2)

where α = 1. This threshold α specifies when the loss
function changes between `1 and `2

2. This loss is less sensitive
to outliers, than the mean squared error and can help prevent
exploding gradients [16].
Data augmentation. As stated earlier, austenitic steel data
for microstructural analysis is costly to acquire and difficult
to annotate correctly. This leads to generally small datasets,
which can be an issue for deep learning models. However,
apart from fine-tuning on pretrained models, another pop-
ular training strategy is data augmentation, which consists
of altering and extending samples from the dataset with
class preserving transformations. The transformed samples
increase the number of images to be learned from and help
the model generalize better, and to have a more robust
representation of the target domain.

The grain density G is determined by N = 2G−1, where N
is the number of grains per square inch at 100× magnifica-
tion. The different grain densities exhibit similar structures
and patterns at different scales with self-similar features.
Therefore, various magnifications of samples with their
corresponding adapted labels can be generated from image
patches to simulate larger or smaller grain densities by crop-
ping and resizing them in accordance with the grain density
formula. Our proposed data augmentation strategy consists
of generating new samples which differ at a maximum of
±0.5 grades from the original. In the case of classification
this is set to a binary ±1.0 to align with our class labels.
In addition we perform the common data augmentation best
practices: random rotations between 0°and 360°, horizontal
and vertical flips, and contrast jitter to simulate possible
changes in the lighting conditions during data acquisition or
variations in the etching strength during sample preparation.
In the experimental sections we will denote the additional re-
scaling during data augmentation as λ (·), and apply the rest
of mentioned transformations to all reported experiments.
Image and crop augmentation. Regression or classifica-
tion can be performed by passing the whole image or crops
of a fixed size to the model. Our proposed data augmentation
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Fig. 3. Two different proposed heads for image classification: Ψfc is defined
as a single fully-connected layer, whereas Ψext is defined with an extension
of 2 more intermediate fully-connected layers. When doing regression, the
last layer is replaced by a single output.

is nearly identical for both of these scenarios with one small
difference. In the case of whole image augmentation, the
re-scaling function λ (·) does not operate within the bounds
of ±0.5, but between 0.0 and −0.5 – analogously 1.0 for
classification. This means that we only generate samples with
a smaller grain density. This is because the re-scaling to a
higher grain density would require generating or replicating
new image regions to fit the space left empty from the re-
sizing. Using the whole image will be denoted as img, while
the use of crops of size 224×224 will be denoted as crop.

Architectures. Due to the relatively small size of the
dataset, retraining state-of-the-art feature extractors such as
ResNet18(Φres) [18] or AlexNet(Φalex) [20] architectures
from scratch yields worse results than using pretrained
models. Therefore, we use pretrained Φres and Φalex models
on Imagenet [14] as the backbones in our experiments. These
two architectures have shown to perform well in different
image classification and regression tasks, some of which
share the domain of microstructure analysis [3]. The two
architectures also represent two paradigms in deep learning;
convolutions alone, or incorporating residual blocks. Further-
more, we propose to use two different heads applied on top
of the feature extractor: Ψfc and Ψext (see Fig. 3). Ψfc is a
single fully-connected layer on top of the feature extractor,
commonly used in fine-tuning from a pretrained model.
The other, Ψext is an extended head with two intermediate
fully-connected layers, to allow for a larger capacity in the
classification or regression head.

Metrics. We evaluate image classification performance with
Top 1 accuracy. However, for regression, exact prediction
of the grade is neither necessary nor effective. A more
comparable metric to classification is to allow for a margin
of ±0.5 around the regressed prediction. If the prediction
lies within the margin we still consider it to be correct.
This relates to the available metalographic data being labeled
either in whole-grain or sometimes in half-grain steps.

Experimental setup. Each network architecture is trained
with Adam [19] with an initial learning rate of 3e-4. Training
spans 1,500 epochs and the final model is chosen from the
epoch with the lowest validation loss before evaluating on the
test split. Each experiment consists of 20 seeds to measure
the robustness to different initializations.
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Fig. 4. Grain density estimation with classification. We compare Azimi et
al. [3] (purple) and our proposed ResNet18-based architecture (green) with
various configurations. We also demonstrate the effectiveness of our data
augmentation λ (crop) on [3].

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed strategies, we
first compare results on classification, then on regression, and
finally we summarize and discuss them together.
Classifying Grain Density. The first approach we consider
is using classification networks to solve the problem of grain
density estimation. We show our results across the different
configurations introduced in Section IV and compare them
in Fig. 4b). Furthermore we compare our models directly to
the approach proposed in [3] (Φazimi). We note that our best
configuration Φcls

res outperforms Φazimi by 19.4% on average,
if Φazimi is trained with their proposed scheme. However, if
we employ our proposed data augmentation pipeline λ (crop)
on Φazimi performance improves and the gap is reduced to
11.3%, yielding an improvement of 8.1% just by using λ (·).
As Φalex never exceeds 60% Top 1 accuracy across the
various settings it is omitted from the ablation figure.

Regarding our results of Φres, we show that training on
whole images results in better performance than training
on image crops. The network heads Ψ show no effect
when training on whole images, and a slight increase of
performance when using Ψext on crops.
Regressing Grain Density. We also investigate using
regression networks to estimate the grain density. In Fig. 5,
we show an ablation of the regression configurations. Φres
outperforms Φalex in every configuration that is comparable.
This is especially impressive as Φres has only roughly 11
million parameters, whereas Φalex has around 60 million
parameters. It is easy to conclude that there is neither a gain
in performance nor a gain in computational cost in using
Φalex. We find that the best performing model is Φres with a
plain Ψfc head, using image crops and our λ augmentation.
This is also shown and summarized in Table I.

Regarding the heads, Ψfc in combination with Φres yields
models that have a smaller standard deviation. This is ex-
plained by the fact that heads with more capacity tend to
over-fit on the limited data, while the pretrained backbone is
robust enough to not degenerate. Another interesting finding
is that passing the whole image (i.e. global information)
through the network generally performs worse across all
tested configurations than using crops, except for one outlier.
This indicates that local information plays a more important
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Fig. 5. Grain density estimation with regression. Comparison of Φres
(green) and Φalex (blue) when training on images (img) or crops (crop),
combined with classifiers Ψ f c (gray) and Ψext (white), and with data
augmentation λ (·).

TABLE I
SUMMARY OF GRAIN DENSITY ESTIMATION

Classification Regression
Crop Image Crop Image

Φres,Ψext 89.91±3.02 98.11±0.09 86.42±7.66 81.98±8.80
Φres,Ψfc 93.02±4.07 97.92±0.58 91.89±2.68 86.98±2.99

role, and that the anticipated inhomogeneities within a sam-
ple do not contribute to wrong estimates, which is surprising
because Classifiers Φcls

res all performed considerably better
with global than with local information. Finally, our data
augmentation strategy λ (·) increases performance by ∼7%
on average w.r.t. Φres. The best model configuration is a
combination of Φres, Ψ f c, and λ (crop), as seen in Table I.

Discussion We generally observe that classification models
outperform their regression counterparts (see Table I). In
contrast to regression which prefers crops to images, we
find that classifiers exhibit preference towards whole images.
This already hints that the learned feature representation for
regression and classification is drastically different, which
we explore further in the following section.

VI. FEATURE REPRESENTATION AND
VISUALIZATION

Interpretability. Visualizing the feature space of learned
image representations is often done to gain insight into
the decision making process. When visualizing embeddings
Φ(x) ∈ R256 from image x, we need to reduce its high
dimensionality to allow for better visual analysis. This step
could be done with methods such as Principal Component
Analysis (PCA) [30] or t-Stochastic Neighbor Embedding (t-
SNE) [29]. We choose PCA since distances in the projection
are preserved, unlike in non-linear projections such as t-SNE.

We forward pass our training samples through Φcls
res and

Φreg
res , with cls and reg denoting the best classifier and regres-

sor network backbones. We then apply the same projection to
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Fig. 6. Classifier Φcls
res(left) and Regressor Φreg

res (right) feature space
visualization with PCA. While classification models outperform regression
models w.r.t. Top 1 accuracy, it might come at a cost. The learned feature
representation of the classifier, while good at separating classes, does not
span the grain density space continuously according to their size. This is in
contrast to regressors that clearly show a grain-density axis.

TABLE II
MEAN ABSOLUTE ERROR ON CLASSES OF UNSEEN GRAIN DENSITIES

Model Train Test Unseen Classes

Best Classifier (Φres,Ψcls
ext) 0.000 0.019 1.038

Best Regressor (Φres,Ψreg
fc ) 0.135 0.216 0.646

the test set and observe where they end up in feature space.
Results are shown in Fig. 6. A drastic difference between the
feature representations of Φcls

res and Φreg
res can be observed. The

embedding space of the classifier does not arrange classes
corresponding to grain densities in any particular order.
Instead, classes form clusters where interpolation in the
feature space does not equal interpolation in grain density.
Contrarily, a very orderly arrangement of grain densities
emerges when learning with regression, as shown in the right
column of Fig. 6. These results are particularly interesting
as we previously show that Φcls

res outperforms Φreg
res by a

significant margin, thus one could relate a more structured
feature space representation to better performance.

Out-of-distribution robustness. In order to investigate if
the ordered grain density feature structures emerging from
learning with a regressor is beneficial, we explore inference
on unseen and out-of-distribution data that does occur in real
world scenarios. We further have metalographers annotate
668 new samples belonging to half-grade density austenite
steel – which finer partition is commonly used in real world
applications – and captured with a similar setup as the data
described in Sec. III. Concretely this new dataset consists
of austenite steel images with classes corresponding to grain
densities ranging from 3.5 to 12.5, in increments of 1.0 –
with only the grain density 10.5 missing.

In Fig. 7, we show the embedding plots of these unseen
classes, both for Φcls

res and Φreg
res . Once more it can be observed
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Fig. 7. Feature embeddings of unseen grain densities on a classification
(left) and regression (right) model. Bottom row shows the regression plot, in
essence a confusion matrix, where each sample is plotted relating its ground
truth and predicted value. The Mean Absolute Error (MAE) is considerably
lower for the regression model.

that the feature space exhibits mostly a continuous represen-
tation of the grain densities in the case of Φreg

res , and Φcls
res ex-

hibits the same clustering behaviour. Not only is this shown
qualitatively in the visualization, but is also quantitatively
established in terms of Mean Absolute Error (MAE) over
the out-of-distribution samples. In conclusion, Table II sum-
marizes our findings by showing that the classifier performs
both better on train and test sets, but generalizes worse to
out-of-distribution samples. In contrast, regression presents a
potential trade-off between the performance of a model and
its interpretability at the feature representation, which allows
evaluation of intermediate grain densities without re-training.

Grain density attention mapping. Work that focuses
on visualization and explainability of convolutional neural
networks has been around almost since their inception [31].
A common technique, especially for classification-based
methods, is the use of class activation map (CAM) [32]
algorithms. Since the grain density estimation is also framed
as a classification problem, we can apply GradCAM [27],
a popular CAM algorithm, to highlight areas in images that
correspond to particular classes. We exploit the fact that an
ordering of the grain density classes exists, which enables
us to analyse image structures that lead to high activations
in the output neurons. This can be used in order to visually
perform a grain density homogeneity estimation.

GradCAM generates attention maps based on the gradients
of a network w.r.t. a particular class and image. We perform
a GradCAM step for every single class given, stack the gen-
erated attention maps, and compute the maximally activated
class value for each pixel. The resulting scalar field is a
pixel-wise class activated discriminative map.

To test the robustness and predictive capabilities of our
proposed architectures we splice together an image consist-
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Fig. 8. An artificially spliced image from 4 different grain densities
trained with whole images (left) and crops (right). The overlayed heatmap
is generated by our proposed argmax GradCAM modification to provide
pixel-wise grain density estimates. Best viewed digitally.

ing of 4 individual images of different grain densities. The
images used correspond to those in Fig. 2. The resulting
class attention maps are shown in Fig. 8, for a model trained
on whole images and one trained on crops. We observe that
the classifier network that was trained on whole images has
difficulties to detect the boundaries of the various grain den-
sities, whereas the network trained on crops shows no such
limitation and produces a heatmap delineating the spliced
quadrants very well. The crop trained model processes the
individual crops separately, which are then assembled to
a single attention map. The inhomogeneity detection and
visualisation provided by the crop-trained model could be ex-
plored in future work, because the homogeneity of austenitic
steel is useful for determining its mechanical properties.

VII. CONCLUSION

We explore classification and regression with deep neural
networks for estimating the grain density of austenitic steel
samples taken with optical microscopes. We show that clas-
sification models overall yield better results than comparable
regression models. Our findings show that the learned feature
representation of classifiers and regressors differs drastically.
The feature embedding of regressors yields an interpretable
axis that corresponds to the actual grain density, whereas
classifiers do not seem to encode the grain density as a major
dimension in their feature space, and instead partition it into
rigid, easily separable clusters. This is also reflected in the
results that compare the performance of both types models on
previously unseen grain density samples. Dealing with such
out-of-distribution samples is especially important in the con-
text of real-world applications. Since regression is shown to
be robust w.r.t. out-of-distribution samples while maintaining
accurate grain density estimates, we demonstrate a feasible
way of additional quality control in steel mills. We also show
the adaptation of a popular CAM algorithm to visualize grain
densities and inhomogeneities within a sample, which also
provides insight into the learned feature representation. Due
to limited data, common in these settings, we introduce a
novel data augmentation technique tailored to grain density
estimation, which is shown to improve the performance of
both classifiers and regressors.
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