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Abstract— Refuse sorting is a key technology to increase the
recycling rate and reduce the growths of landfills worldwide.
However, monitoring and parameterization of sorting facilities
is still done in a mostly static fashion. This work combines
multi-spectral imaging with deep learning based image recogni-
tion to monitor and dynamically optimize processes in sorting
facilities. Our solution is capable of monitoring the sorting
process remotely avoiding potentially harmful working conditi-
ons due to dust, bacteria, and fungal spores. Furthermore, the
introduction of objective sorting performance measures enables
informed decisions to improve the sorting parameters and react
quicker to changes in the refuse composition.

I. INTRODUCTION

The global refuse production is still on the increase
worldwide, since the refuse output increases faster than the
recycling rates [9]. The ever-changing refuse composition
poses a major challenge to automated sorting in recycling
application. This work presents preliminary findings of KI-
Waste [5] capturing the refuse composition on conveyor belts
in a refuse sorting facility. This is done by multi-spectral
imaging and deep learning for semantic segmentation and
object recognition on refuse streams at key points in the
sorting facility.

II. RELATED WORK

Sorting facilities extract usable fractions with sorting and
shredding machines connected by conveyor belts [4]. Image
recognition applied to the refuse streams on these conveyor
belts is capable of capturing the refuse composition since
different substances have different spectral reflection charac-
teristics. Thus, multi-spectral cameras can provide a spectral
fingerprint of the material streams on the conveyor belts [12],
[13]. A four-channel setup is often used consisting of RGB
plus near-infra-red (NIR) cameras [3], [15], [11], [10]. In ad-
dition to these two-dimensional (2D) multi-spectral systems,
a tree-dimensional (3D) acquisition can capture geometric
properties useful in automatic material separation.

The resulting images of the refuse on the conveyor belt
are the input for image recognition software identifying
predefined refuse categories on a pixel-wise basis. Traditional
image recognition techniques based on color and gradient
features are typically not able to handle the large variations in
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appearance and shape occurring in mixed-material streams.
Convolutional neural networks (CNNs) [7] have shown great
performance on a variety of image recognition tasks inclu-
ding semantic segmentation [8], where a category label is
assigned to each pixel of an image. The results of the image
recognition are a good basis for predictive maintenance,
optimization, automation and self-adaptation of the refuse
sorting process [14].

III. IMAGE CAPTURING AND CLASSIFICATION

The high variety in substances and the challenging en-
vironmental conditions like dust, dirt, lighting, temperature,
and vibrations make the image capturing challenging. We
overcome these challenges by employing a line-scan-based
multi-spectral system with a light-sectioning method that
uses laser-line projection to determine surface profiles. It
outputs high-quality four-channel multi-spectral 2D images
and 3D registered image data.

The hardware setup is designed so that all capturing devi-
ces cover the same acquisition area. Nevertheless, calibration
methods are required, registering the captured image data
to each other. Finally, all image modalities are transformed
into one common coordinate system by geometric mapping,
ensuring that each pixel has a direct correspondence between
geometric and spectral information.

The image classification segments each image pixel-wise
into the predefined refuse categories by state-of-the-art fully-
convolutional CNNs with a huge number of trainable pa-
rameters. To set these parameters in a meaningful way,
CNNs need to be trained with hundreds or thousands of
representative ground truth images, where each pixel is
correctly annotated with its category.

Creating this ground truth manually requires an enormous
labeling effort. Hence, this project uses empty belt images
and images of mono-material refuse streams to effortlessly
create ground truth labels as shown in Fig. 1 (top row).
With this groundtruth, we can synthetically create realistic
mixed-material images with known proportions and locations
of refuse categories. This way we can generate unlimited
amounts of annotated mixed-material images as depicted in
Fig. 1 (bottom row).

IV. INITIAL PROJECT RESULTS

We train and evaluate the proposed approach within the
DeepLabv3+ [2] framework. Our training consists of two
steps. First, we train a binary segmentation model to distin-
guish belt vs. waste. In the second step, we use this model
to generate groundtruth for the known mono-material images
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Fig. 1. Mono-material stream samples and binary segmentation belt/waste (top row) and synthetic ground-truth data with mixed stream (bottom row).
All images: plastics (green), wood (turquoise), textiles (purple), paper (blue).

and use this groundtruth to train a model on synthetic mixed-
material images. Manually labeling only a few waste images
is sufficient for the binary network to train an initial model,
which is further improved with the automatically generated
labels it produces. Having a well working binary model, we
use it to label the mono-material images. We then generate
130k superpixels [1] of different sizes from 492 mono-
material images for our synthetic training regime, holding
back 324 for testing. During training of our multi-class
model, the synthetic mixed-material images are generated
on-the-fly to guarantee a diverse training set. We train the
network for 500k iterations with batch size 8 and Adam
optimizer [6] using an initial learning rate of 0.0001 and
a decay of 0.1.

As it is almost impossible to manually annotate mixed-
material streams even for a trained person, we limit evalua-
tion of the multi-class model to mono-material recordings.
A great accuracy of 84 − 100% can be observed on the
refuse fractions clothes, paper, plastic and wood. Most of
the fractions are very well classified except for wood that
is partly misclassified as paper, as the confusion matrix in
Fig. 2 shows. The reduction of these confusions is topic
of an ongoing refinement and validation. In addition, while
we cannot measure the performance due to the lack of
groundtruth, we can visually observe very promising results
produced by our trained CNN model also on real mixed-
material streams, as shown in Fig. 3.

Fig. 2. Confusion matrix with pixel-wise accuracies in % for 324
test images. Apart from minor confusions between wood and paper, the
performance of the CNN model is very promising.

Several properties of the visible refuse can be calculated
when combining the semantic segmentation output with the

3D surface information, e. g. refuse category distribution,
particle size, and the height of specific regions of the image.
These properties will then be used for further analysis and
refuse processing parameters adjustment.

Fig. 3. Semantic segmentation results with plastics (green), wood (turquoi-
se), textiles (purple), paper (blue).

V. CONCLUSION & OUTLOOK

The project is currently in its first phase focusing on
hardware design, interface definition, and data collections.
The ground-truth generation strategy of using single refuse
categories as starting point to synthesise realistic refuse
mixtures proofed to be extremely valuable and brought a
tremendous speed-up in necessary data generation, which can
also have an impact on other similar deep learning applicati-
ons. This data collection is the basis for all future work in the
project including improvements of the camera and lighting
setup, training of image recognition models, domain-specific
adaption and improvements of the image recognition models,
validation of the image recognition results, and all further
analysis and optimizations.

Initial results of semantic segmentation and refuse classifi-
cation already showed the feasibility of the approach, which
will be further refined during the ongoing project and applied
to other machinery on the refuse processing chain as well as
to other sorting facilities in the future.
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