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Abstract: The safety of lithium-ion batteries within electrified vehicles plays an important role.
Hazards can arise from contaminated batteries resulting from non-obvious damages or insufficient
production processes. A systematic examination requires experimental methods to provoke a defined
contamination. Two prerequisites were required: First, the extent and type of contamination should
be determinable to exclude randomness. Second, specimens should work properly before the
contamination, enabling realistic behavior. In this study, two experimental methods were developed
to allow for the first time a controlled and reproducible application of water or oxygen into 11 single-
layer full cells (Li4Ti5O12/LiCoO2) used as specimens during electrical cycling. Electrochemical
impedance spectroscopy was used to continuously monitor the specimens and to fit the parameters
of an equivalent circuit model (ECM). For the first time, these parameters were used to calibrate
a machine-learning algorithm which was able to predict the contamination state. A decision tree
was calibrated with the ECM parameters of eight specimens (training data) and was validated by
predicting the contamination state of the three remaining specimens (test data). The prediction
quality proved the usability of classification algorithms to monitor for contaminations or non-obvious
battery damage after manufacturing and during use. It can be an integral part of battery management
systems that increases vehicle safety.

Keywords: lithium-ion battery; safety; in operando; contamination; electrochemical impedance
spectroscopy; equivalent circuit model; machine learning; classification algorithm; decision tree

1. Introduction

As we face the challenges of global warming, a significant reduction in greenhouse
gas emissions will be an necessary step. Power train electrification is one way to lower
the carbon intensity of transportation [1]. Lithium-ion (Li-Ion) batteries are widely used
for power train electrification due to their advantageous characteristics compared to other
battery technologies (i.e., high energy and power density [2,3]). The increased application
of Li-Ion technology as storage for vehicle propulsion energy is bringing battery safety into
focus [4–7] as it comes with a number of downsides. Damage to a Li-Ion battery may lead
to severe reactions (i.e., smoke, fire, explosion) [8]. The causes and failure mechanisms for
this [9–12], together with the consequences of battery damage [12–23] have been extensively
discussed in the literature. In addition to other failure causation, adverse processes due to
the contamination of the electrode material [24,25] may not be obvious in the first place and
can lead to catastrophic reactions such as thermal runaway. Contamination (i.e., water, oxy-
gen) may be introduced to the cell, i.e., during manufacturing due to the insufficient drying
of materials [26,27], the aging of the cell housing [25], or due to defects of the cell housing
that may result from mechanical loads on the battery. Moisture attributes in the decom-
position of organic electrolytes promote further side reactions and degradation and have
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been investigated by several authors [26–32]. Different studies have revealed that mois-
ture has a negative impact on battery performance and lifetime [27,33–36]. Furthermore,
oxygen can affect battery performance as degradation reactions occur with the electrolyte
and other components [37,38]. The described degradation mechanisms lead to the aging
of battery cell components. Subsequently, aging has an impact on the mechanical and
crash behavior of a battery cell, which affects the battery cell safety [39]. As the described
degradation mechanisms can be safety-relevant, a determination of the contamination state
in advance is of interest. For research purposes, a systematic examination must be enabled
in the form of an intentional and reproducible contamination. A contamination must be
repeatedly applied in adjustable quantities and should not affect the battery cell during
normal operation prior to contamination. Methods to provoke, monitor and examine
damage, i.e., the internal short circuit (ISC) of lithium ion cells, have been presented in
the literature [40–42]. ISCs were intentionally produced by the manipulation of battery
cells during production, i.e., an ISC trigger by means of implanted phase change materi-
als [43–45], perforated separator [46,47], or shape memory alloys [48]. Battery cells were
contaminated with metal particles during production to provoke ISC by dendrite growth
promotion [40,49]. Volck et al. [50] and Santhanagopalan et al. [51] triggered an ISC by
applying an external load on a battery cell manipulated with metal particles (i.e., copper or
nickel). A main drawback of the mentioned methods which introduce particles is that cell
contamination is already present at specimen assembly. The proper principal functionality
of the specimen cannot be guaranteed by this. Contamination by battery cell damage will
occur during usage. An experimental method should therefore guarantee a trigger during
electric cycling without affecting the electrochemical behavior of the battery cell. A method
meeting this requirement for in operando contamination with water and oxygen has not
been reported in the literature to date. In different studies, measurements were performed
to monitor battery cell parameters. Electrochemical impedance spectroscopy (EIS) is a
common tool to measure the electrical properties of battery cells, i.e., the state of charge
(SOC), state of health (SOH) or fault detection [52–54]. EIS can be used to fit equivalent
circuit models (ECMs) which represent the electrochemical behavior of the cell. Different
frequency ranges of the measured impedance are attributed to specific circuit elements and
chemical processes. The measured battery cell impedance and derived equivalent circuit
elements can be processed by machine-learning (ML) algorithms. In the literature, ML has
been used to estimate, predict and monitor different battery parameters [55–60], i.e., for
SOC estimation, SOH estimation, fault diagnostic and ISC detection.

In this paper, a non-destructive method is presented to determine whether a cell is af-
fected by the contamination of the electrode material. As no experimental method fulfilling
the requirements (reproducibility, adjustable contaminant quantity, minor effect on electro-
chemical properties) was found in the literature, we present novel experimental methods for
the reproducible application of contaminants (i.e., water, oxygen) during electrochemical
cycling. Machine-learning algorithms (i.e., decision tree) were used in the literature to rec-
ognize battery degradation. However, the evaluation of a contamination state as such has
never previously been conducted with the help of machine-learning algorithms and will be
shown within this manuscript. Therefore, two research questions will be answered within
this manuscript:

• How can contamination be intentionally introduced and reproducible in a battery cell
without affecting its electrochemical behavior beforehand?

• How can a water or oxygen contamination of a battery cell be predicted?

2. Method

The effects of different types of contamination (water and oxygen) were examined
in a series of novel experiments. Eleven single-layer full battery cells were built and
equipped with a contamination trigger. During electrochemical cycling, contamination in
the form of water or oxygen was introduced into the specimens. EIS was conducted to
evaluate the impedance of the specimen. Additionally, voltage, transferred charge and
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Coulombic efficiency was continuously tracked. A set of specimens without contamination
was subjected to the same procedure as a reference. Parameters for an ECM were derived
from the measurement data. These parameters were used to calibrate a decision tree
algorithm able to predict the contamination state of the specimen. The eligibility of the
decision tree algorithm to predict specimen contamination and to distinguish between
different types of contamination was proofed by a set of validation data. Figure 1 illustrates
the approach and was described in detail hereafter.

Figure 1. Solving the approach to approve the feasibility of the novel contamination trigger and the
ability of a decision tree algorithm to predict a contamination.

2.1. Specimen Preparation

Eleven single-layer full battery cells were manually produced to implement a contam-
ination trigger into the battery cells. Lithium titanate oxide Li4Ti5O12 (LTO) was chosen
for the negative active material. Lithium–cobalt(III)–oxide LiCoO2 (LCO) was chosen for
the positive active material. The LTO showed negligible cycle aging [61,62]. At 1.55 V vs.
Li+/Li the LTO operating potential is well within the electrochemical stability window
of the electrolyte. Consequently, no solid electrolyte interphase (SEI) forms at the LTO
electrode and the cell operates within the thermodynamically stable domain. By ruling out
the aging effects caused by electrochemical cycling, changes in the electrochemical behavior
were explicitly correlated with the effects from contamination (i.e., the degradation of
active materials).

Conductive carbon black (TIMCAL SUPER C65) was added to the active mate-
rial slurry for both electrodes as a conductive additive. An electrode binder (Arkema
Kynar® 2801) was used to dissolute active material components. N-Methyl-2-pyrrolidone
(NMP) was used as a solvent for electrode preparation. The ratio of 1:1 and 1:3 between the
solid electrode components (active material, conductive carbon black and electrode binder)
and the NMP was used for the cathode and anode, respectively. A ball mill homogenized
the slurry components. The anode slurry was mixed with 3 zirconium dioxide (ZrO2)
balls. The mixing procedure consisted of 3 repetitions over a period of 5 min at a speed
of 300 min−1 and a break of 5 min between the repetitions. The cathode slurry was mixed
with 3 ZrO2 balls. The cathode slurry was milled with three repetitions each 15 min at a
speed of 300 min−1 and a 5 min break between the repetitions.

The active material of the cathode was applied on an aluminum foil with a layer
thickness of 50 µm. The active material of the anode was applied on a copper foil with
a layer thickness of 200 µm. The capacity was limited by the cathode to avoid lithium
plating by balancing the electrode masses, accordingly. The coated foils were dried for 12 h
at 100 °C in a drying oven. Discs of 28 mm in diameter were punched out of the electrode
material. Table 1 lists the contents and layer thickness of the active materials used in
this study.
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Table 1. Chemical composition of the electrode slurry and the applied layer thickness.

LCO LTO Super C65 Electrode Binder Layer Thickness
wt% wt% wt% wt% µm

Cathode 88.3 - 6.3 5.4 50
Anode - 80.0 13.0 7.0 200

wt%—weight percentage.

The specimens were assembled in an inert argon atmosphere. All components were
first dried to avoid prior moisture contamination. To establish a robust external electrical
contact, copper or aluminum stripes were fixed on the electrodes with adhesive tape. A
separator (Freudenberg 2226) with a thickness of 0.18 mm and a pore volume of 68% was
drenched with 120 µL of electrolyte (1 mol LiPF6 in EC/DMC 1:1 wt.%) (BASF Selecti-
Lyte™LP30). The separator was placed between the positive and negative electrodes. A
pouch foil with 100 µm thickness was wrapped around the electrode stack and welded.
A hot melt adhesive guaranteed proper tightness in the tab area. Outside the inert atmo-
sphere, the pouch was welded a second time with a vacuum welding machine to guarantee
an airtight assembly. Figure 2a shows an assembled and sealed specimen.

(a) (b) (c)

Figure 2. Assembled specimen (a) and principle sketches of specimen prepared for contamination
with water (b) and oxygen (c). 1—pouch; 2—electrode stack; 3—negative copper tab; 4—positive
aluminum tab; 5—glass container; 6—ZrO2 plate; 7—self-healing injection port; 8—separator; 9—hot
melt adhesive. (a) Specimen. (b) Water contamination. (c) Oxygen contamination.

2.2. Contamination Trigger

Some specimens were modified to investigate the different contamination triggers as a
means of finding novel in operando trigger methods for water or oxygen contamination. A
contamination trigger method should provide a repeatable application of different quanti-
ties of contaminant with only a minor effect on the battery cell during normal operation.

The precise application of water contamination was realized by applying the desired
water quantity to a glass container, as can be seen in Figure 3. A glass container with an
open-end was filled with 2 µL of water by a high-precision syringe. The glass container
was closed by melting the open end by locally heating with a punctual flame. The glass
container was placed within the specimen before welding the pouch foil. During the
experiment, contamination with water was triggered by breaking the glass container. The
principal assembly of the specimens equipped with a glass container for contamination
with water can be taken from Figure 2b.

Figure 3. Glass container filled with 2 µL of water for assembly inside the specimen.



Batteries 2022, 8, 35 5 of 22

The precise application of contamination with oxygen was realized by external appli-
cation using a syringe. A ZrO2 plate was placed inside the specimen next to the electrode
stack before the pouch foil was welded. A self-healing injection port (i.e., septum) was
glued on the pouch foil in the area of the ceramic plate. By inserting the cannula of the
syringe, high-purity oxygen (99.999%) was injected into the cell to trigger contamination.
The self-healing injection port prevented further contamination with the environmental
atmosphere by closing itself after removing the cannula. The ZrO2 plate prevented the
penetration of the pouch foil on the opposite side. The principal assembly of the specimens
equipped with the ZrO2 plate and the self-healing injection port for contamination with
oxygen can be taken from Figure 2c.

In sum, four specimens (No. 01–04) were used as a reference. Specimens No. 03 and
No. 04 were equipped with a ZrO2 plate to investigate its influence on the electrochemical
behavior. Four specimens (No. 05–08) were equipped with a glass container for water
contamination. Three specimens (No. 09–11) were equipped with a ZrO2 plate and a
self-healing injection port for contamination with oxygen, as can be seen in Table 2.

Table 2. Test matrix consisting of specimens with corresponding capacity after formation (10 cycles),
contamination type and contamination cycle.

Specimen No. Capacity after Formation Loops Contamination Contamination CyclemAh

01 * 0.7 50 Reference -
02 2.4 50 Reference -
03 * 2.6 11 Reference -
04 2.2 11 Reference -
05 * 1.8 11 Water 60
06 * 1.1 11 Water 50
07 2.6 11 Water 50
08 * 1.8 22 Water 110
09 * 2.2 21 Oxygen 100
10 * 1.8 22 Oxygen 110
11 * 2.5 22 Oxygen 110

* Training data—data set was used as training data for the decision tree, as can be seen in Section 2.5.

2.3. Electrochemical Cycling

The specimens were electrochemically cycled by a multichannel electrochemical work-
station (Biologic VMP3). The test procedure can be taken from Figure 4. At the beginning,
the specimens were in an open circuit voltage (OCV) phase for 12 h. Subsequently, potentio
electrochemical impedance spectroscopy (PEIS) with 10 points per decade at a logarithmic
spacing was performed within a frequency of 10 mHz–2 MHz. A sinusoidal voltage signal
with an amplitude of 10 mV represented the excitation. At each frequency, an average of
four measurement values was used to obtain the impedance. The impedance measurements
were performed in the discharged state (0% SOC) of the specimens. Subsequently, 10 cycles
of galvanostatic cycling with potential limitation (GPCL) between 1.5 V and 2.8 V were
conducted with a current of 1.0 C. The theoretical capacity of each cell was determined
with the electrode masses and was used to estimate the charging current of 1.0 C. The
estimated charge and discharge rate of 1.0 C was maintained through all cycles. The
measured initial capacity in Table 2 was the cell capacity after the formation procedure
(after loop 0). The SOH was determined after each cycle of the GPCL by dividing the
current capacity by the capacity after formation (first cycle). The Coulombic efficiency
for each cycle of the GPCL was determined by dividing the delithiation capacity by the
lithiation capacity of the corresponding cycle. After the GPCL phase, the procedure started
anew with the OCV phase and the cycle program ended after a certain number of loops
(1 loop included 10 GPCL cycles, as can be seen in Figure 4). Loop 0 was not considered in
the following analyses, as cell formation took place here.
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Figure 4. Test procedure for the specimen. OCV—open circuit voltage; PEIS—potentio electrochemi-
cal impedance spectroscopy; GCPL—galvanostatic cycling with potential limitation between 1.5 V
and 2.8 V consisting of 10 charge and discharge cycles (=1 loop).

The total number of loops (column “loops” in Table 2) for each specimen and the cycle
in which contamination was introduced (column “Contamination cycle” in Table 2) were
both varied in the experiment.

2.4. Equivalent Circuit Model

The electrical behavior of a system (i.e., Li-Ion battery) can be simulated using
equivalent-circuit models (ECMs). ECMs represent an electrical network consisting of
several resistance, capacitance and inductance phase elements which allow an approxi-
mation of the electrochemical behavior of battery cells. Further information on ECMs can
be found in the literatures [63–68]. The model parameters (i.e., the characteristics of the
electrical components) were obtained by calibrating the ECM parameters according to
impedance spectra from the measurements. A least square fitting procedure was applied
for each specimen and each measurement loop by using the software ZView® [69]. In
this study, an ECM consisting of a resistance R0 and two parallel circuits with a resistance
and constant phase element (CPE) (R1, CPE1 and R2, CPE2), were used, as can be seen
in Figure 5. Each component in the ECM reproduces a certain area in the corresponding
impedance spectrum of a specimen and can be attributed to certain physical phenomena in
the specimen. R0 defined the position of the spectrum on the abscissa and represents the
ohmic resistance of the electrolyte (see “I” in Figure 5). The parallel circuits consisting of a
resistance and constant phase element were used to model the semicircular segments in
the impedance spectrum. The constant phase element represents a non-ideal capacitor and
included two parameters, a linear factor T and an exponential factor P [70]:

ZCPE =
1

T ∗ (j ∗ ω)P (1)
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with j and ω as the imaginary number and angular frequency, respectively. The first parallel
circuit with resistance R1 and constant phase element CPE1 was correlated with the solid
electrolyte interface (SEI) in the literatures [53,63,68,71,72] (see “II” in Figure 5). The second
parallel circuit with resistance R2 and the constant phase element CPE2 is correlated with
the charge transfer resistance and the double-layer capacity in the literature [53,63,68,71,72]
(as can be seen in “III” in Figure 5). Inductive or diffusive behavior of the specimens were
not taken into account.

Figure 5. Schematic illustration of an impedance spectrum in a Nyquist plot and the equivalent
circuit model (ECM) used in this study with its correlating impedance segments.

2.5. Decision Tree

The recorded impedance every 10 cycles allowed for an examination of the contamina-
tion influence. A classification algorithm was used to predict the effect of contamination
on the specimens’ behavior. A decision tree was used as the classifier to identify sensitive
ECM parameters and to derive threshold values for the ECM parameters. A decision tree
algorithm is favorable as the results are simple to interpret and the performance works
well with large data sets. An important characteristic of decision trees is that their depth
represents the number of branches split off the tree’s root. The less branches are needed to
derive a statement, then the more robust its results are. More branches allow more detailed
decisions, but specialization reduces universal validity. To find an optimal balance, the
smallest tree, which gives reliable results, is preferable, meaning that the tree depth should
be kept as low as possible. To support this decision, the contribution of each element
of the tree (i.e., the model input parameter) to the final result is expressed as a “feature
importance” (FI) value. To set up a decision tree data structure, a special software package
(scitkit-learn for the Python programming language) was used.

The measurement data sets of the eleven specimens were randomly separated into
eight cases (specimens No. 01, No. 03, No. 05, No. 06, No. 08–No.11), that were used to train
the decision tree classifier and three cases (specimens No. 02, No. 04 and No. 07) which
were used to verify the results, as can be seen in Table 2. The values of the ECM elements
were normalized by dividing each of them by its respective value at loop 1 as can be seen
in Equation (2).

Ri
1,normalized =

Ri
1

R1
1

(2)

with i indicating the loop index.
A two-stage approach was chosen to find a prediction model. In the first step, the tree

depth for decision making was unlimited in order to find the relevant ECM parameters.
The input parameters with the greatest sensitivity were chosen according to the feature
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importance (FI) obtained by the decision tree. In a second step, ECM parameters allowing
a distinction between the types of contamination (i.e., contamination with oxygen or water)
were obtained. To unveil the sensitivity of the model parameters for this distinction, the
depth of the decision tree was adapted accordingly.

3. Results
3.1. Electrochemical Cycling

Figure 6 illustrates the SOH and Coulombic efficiency during cycling for different
contamination types. Reference specimens No. 01 and No. 02 were subjected to 500 cycles
to investigate the aging effects during cycling. Specimen No. 01 indicated peaks in the
Coulombic efficiency and drops in the SOH each 10 cycles. A similar behavior was ob-
served for reference specimen No. 02. Reference specimen No. 03 showed no relevant
changes in electrochemical behavior in terms of SOH and Coulombic efficiency for 97 cycles.
After 97 cycles, specimen No. 03 indicated faulty measurement values with a Coulombic
efficiency exceeding 100%. These data were excluded in further analysis. The SOH of
reference specimen No. 04 linearly decreased at a consistent Coulombic efficiency of approx-
imately 100%. After contamination with water, a fast drop in the SOH of specimens No. 05
to No. 08 was observed. The Coulombic efficiency showed an erratic course for specimens
No. 05, No. 06 and No. 08. Specimen No. 07 had a smooth Coulombic efficiency course
before water contamination, changing to an erratic course after contamination with sharp
drops each 10 cycles. The Coulombic efficiency dropped for specimens No. 06 and No. 08
after water contamination. Specimens No. 05 and No. 07 reached a Coulombic efficiency of
almost 100% even for the electrochemical cycles after contamination. Specimens No. 05,
No. 06 and No. 07 showed an erratic course of SOH before contamination with peaks or
drops each 10 cycles. The SOH of specimen No. 08 constantly decreased before contam-
ination. After contamination with oxygen, a sharp drop in SOH of specimens No. 09 to
No. 11 was observed, followed by a constant decrease in SOH. Specimens No. 10 and No. 11
showed a similar effect as specimen No. 04 (reference specimen equipped with ZrO2 plate)
with a linear decrease in SOH before contamination at a consistent Coulombic efficiency.
Specimen No. 09 showed a raising capacity until a peak was reached after 39 cycles and
decreased for further cycles before contamination. The Coulombic efficiency stayed almost
constant for specimen No. 09–No. 11. After contamination, the Coulombic efficiency of
specimen No. 10 started to decrease with sharp drops each 10 cycles.

The EIS measurements revealed further information about the effect of contamination
and the influence of a contamination on the electrochemical properties of specimens. Except
from specimens No. 05, No. 06 and No. 10, all specimens showed two semicircles in the
impedance spectrum of the corresponding impedance measurement, as can be seen in
Figure 7. The second semicircle degenerated to an almost linear section for specimens
No. 03, No. 09 and No. 11.

The reference specimens No. 01–No. 03 indicated minor changes during cycling. Minor
changes of the intercept with the abscissa were observed during cycling. Specimen No. 04
showed increased semicircle diameters after 20 cycles (loop 2) with minor changes during
further cycling. Noise was observed for specimens No. 01 and No. 04 at low frequencies
indicated by a zig zag curve. Specimens contaminated with water (No. 05–No. 08) showed
an increase in diameter of the second semicircle after contamination. Specimens No. 05
and No. 06 indicated changes in the intersection with the abscissa. Specimen No. 05
indicated a shift of the intersection with the abscissa towards higher values. Specimen
No. 06 had a shift towards lower values after contamination increasing afterwards (loop 9).
Additionally, reduced slopes of the linear part of the impedance spectra in the low frequency
range were observed after contamination. Specimens No. 07 and No. 08 indicated minor
changes of the intersection with the abscissa. Specimens No. 09–No. 11 contaminated with
oxygen showed slighter changes in electrochemical behavior compared to the specimens
contaminated with water. The intersection with the abscissa did not change to a relevant
extent after contamination. The intersection with the abscissa shifted towards higher
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values for specimen No. 11 at 10 cycles after contamination (loop 11) that faded after
20 further cycles (loop 13). The diameter of the first semicircle slightly increased before
contamination and significantly afterwards for specimens No. 09–No. 11. The degenerated
second semicircle of specimens No. 09 and No. 11 flattened after contamination. The
slope of the linear part of the impedance spectra in the low frequency range decreased for
specimens No. 09–No. 11.

Figure 6. State of health (SOH) and Coulombic efficiency over the number of cycles for different
contamination types. First column—reference specimens. Second column—specimens with water
contamination. Third column—specimens with oxygen contamination. Dashed vertical lines indicate
the contamination initiation cycle.

In summary, the reference specimens showed no qualitative change (i.e., change in
curve shape) in the electrochemical impedance spectra during electrochemical cycling. A
continuous shift of the curves during electrochemical cycling towards higher impedance
values was observed. The water-contaminated specimens indicated the fast degeneration
of the electrochemical impedance spectra after contamination, seen as large changes in the
semicircle’s diameters and change in curve shapes. A similar behavior was observed for
specimens contaminated with oxygen. The semicircle’s diameters increased subsequently
after contamination but not to the same extent as water-contaminated specimens.
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Figure 7. Electrochemical impedance spectra for specimens during cycling. First column—reference
specimens. Second column—specimens with water contamination. Third column—specimens with
oxygen contamination. A lower limit was indicated by the first loop. The upper limit can be taken
from Table 2. The dashed line represents specimens after contamination.

3.2. Equivalent Circuit Model

The obtained EIS measurements were fitted with the ECM parameters shown in
Figure 5. The numerical values of the ECM parameters of each specimen can be taken
from the supplementary material. Average χ2, describes the goodness of fit, was within
the guideline of a value below 6 × 10−3 for good fit except from the fitting results of
specimens No. 07, No. 08 and No. 10 before contamination, as can be seen in Table 3. For
specimen No. 10, doubtful fitting results of the EIS measurements were obtained before
contamination. After contamination, a χ2 of 2.24 × 10−3 represented good fit.

3.3. Decision Tree

Two variants for contamination prediction were investigated: In the first, two classes
“no contamination” (0) and “contamination” (1) were distinguished. In the second, three
classes “no contamination” (0), “contamination—oxygen” (1) and “contamination—water”
(2) were distinguished. For each variant, the feature importance (FI) of the model input
parameters was examined in first place, as can also be seen in Appendix A.
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3.3.1. Contamination Recognition (Tree Depth = 1)

Without tree depth limitation R1,normalized achieved the highest feature importance
FI = 0.92 for a classification between “no contamination” (0) and “contamination” (1), as
can be seen in Figure A1. The parameter with the second highest feature importance was
CPE1,normalized − P with FI = 0.03. In order to predict the classes “no contamination” (0)
and “contamination” (1), the maximum depth of the decision tree classifier was set to one
with R1,normalized as the main criterion. This led to the prediction of “no contamination” (0)
as long as R1,normalized ≤ 1.693 is true. Figure A2 shows the decision tree for this variant.
Three data points out of 169 were falsely classified in this configuration.

Table 3. Average goodness of fit expressed in terms of χ2 for the fitted EIS measurements with the
equivalent circuit with the ECM parameters R0, R1, R2, CPE1 and CPE2.

Specimen No. Contamination Average χ2 Average χ2

before Contamination after Contamination

01 Reference 1.06 × 10−4 -
02 Reference 5.90 × 10−4 -
03 Reference 1.93 × 10−3 -
04 Reference 6.49 × 10−4 -
05 Water 1.46 × 10−3 2.20 × 10−4

06 Water 1.79 × 10−4 2.09 × 10−4

07 Water 6.99 × 10−3 1.56 × 10−3

08 Water 8.03 × 10−3 4.04 × 10−3

09 Oxygen 2.58 × 10−3 2.37 × 10−3

10 Oxygen 1.17 × 10−2 2.24 × 10−3

11 Oxygen 7.94 × 10−4 3.10 × 10−4

Figure 8 shows the evolution of criterion R1,normalized (red line) over all measurement
data sets. The threshold for R1,normalized for a class split in the decision tree is symbolized
by “Threshold R1, normalized” (black-dashed line). The activation of the contamination
in the experiment was marked as “contamination–target” (green line). The prediction of
contamination from the decision tree algorithm is marked as “contamination–prediction”
(blue line).

The left column “Reference” in Figure 8 shows the data for specimens without con-
tamination (specimens No. 01–04). R1,normalized showed a reasonably constant course over
cycling. The contamination indicator “Contamination–Experiment” and the decision tree
classification “Contamination–Decision Tree” both stayed at “no contamination” (0). The
algorithm correctly assigned the contamination state for specimens No. 01 and No. 03
and performed a correct prediction for specimens No. 02 and No. 04. The middle column
“Contamination Water” in Figure 8 shows the data for specimens with water contamination
(specimens No. 05–08). Contamination was activated at loop 5 for specimens No. 05, No. 06
and No. 07 and at loop 11 for specimen No. 08, indicated by the green line switching to
“contamination” (1). The contamination of specimens No. 05 and No. 06 was assigned
with a delay of one loop by the algorithm. The contamination assignment of specimen
No. 08 was accurate. The contamination of specimen No. 07 was correctly predicted. The
right column “contamination oxygen” in Figure 8 shows the data for specimens with
oxygen contamination (specimens No. 09–11). Contamination was activated at loop 10
for specimen No. 09 and at loop 11 for specimens No. 10 and No. 11. The assignment of
the contamination of specimen No. 09 was delayed by one loop. The assignment of the
algorithm for specimens No. 10 and No. 11 was correct.

3.3.2. Contamination Type Differentiation (Tree Depth = 2)

As R1,normalized was identified as the most relevant model parameter to recognize con-
tamination. A further criterion was needed to distinguish different types of contamination.
The data sets, which were classified as “contamination” (1) in the step before, were now
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separated into the classes “contamination—oxygen" (1) and “contamination—water” (2).
Therefore, the maximum depth of the decision tree was set to two.

Figure 8. Prediction of classes “no contamination” (0) and “contamination” (1) with a decision tree of
depth = 1 based on R1,normalized. Blue—decision tree; green—experiment. * Training data—data set
was used as training data for the decision tree.

In the next step, R2,normalized and CPE1,normalized − P were found to distinguish between
the classes “contamination—oxygen” (1) and “contamination—water” (2). CPE1,normalized −
P was able to classify one data point into the class “contamination—oxygen” with a
threshold of 0.465, see Figure A3. R2,normalized was able to distinguish between the classes
“contamination—oxygen” (1) and “contamination—water” (2) with one false classifica-
tion. The threshold value for R2,normalized was 1.681. The threshold value for R1,normalized
was 1.693 as before. The decision tree calculated for this variant is shown in Figure A3.
Figure 9 shows the evolution of criteria R1,normalized (red line) and R2,normalized (magenta line)
over all measurement data sets. The threshold for R1,normalized is symbolized by “Thresh-
old R1, normalized” (black dashed line) while threshold for R2,normalized is symbolized by
“Threshold R2, normalized” (black dotted-dashed line). As before, the activation of the con-
tamination in the experiment was marked as “Contamination—Experiment” (green line).
The decision tree classification is indicated by “Contamination—Decision Tree” (blue line).
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The left column “Reference” in Figure 9 shows the data for specimens without con-
tamination (specimens No. 01–04). Specimen No. 04 revealed a high R2,normalized value for
loop 0 changing to R2,normalized = 1 for loop 1 as loop 1 was used for normalization. The
contamination status was assigned correct for every value by the decision tree.

The middle column “Contamination Water” in Figure 9 shows the data for specimens
with water contamination (specimens No. 05–08). The contamination of specimens No. 05
and No. 06 was assigned by the algorithm with a delay of one loop. The contamination
assignment of specimen No. 08 was accurate. A contamination of specimen No. 07 was
correctly predicted.

The right column “Contamination Oxygen” in Figure 9 shows the data for specimens
with oxygen contamination (specimens No. 09–11). The algorithm falsely assigned a
contamination with water for specimen No. 11, but changed to the correct value, indicating
a contamination with oxygen one loop later. The assignment of the algorithm for specimens
No. 09 and No. 10 was correct.

Figure 9. Prediction of classes “no contamination” (0), “contamination—oxygen” (1) and
“contamination—water” (2) with a decision tree of a depth of two based on R1,normalized,
CPE1,normalized − P and R2,normalized. Blue—decision tree. Green—experiment. * Training data—data
set was used as training data for the decision tree.
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4. Discussion

Novel methods for in situ contamination with different contaminants were presented
within this study. Eleven single-layer full battery cells were produced in a glove box and
monitored with electrochemical impedance spectroscopy during cycling. Seven of these
specimens were contaminated with water or oxygen during cycling. In this investigation,
aging was excluded as far as possible by choosing LTO/LCO as the active material. The
impedance data obtained were fitted with equivalent circuit elements and used in a nor-
malized form to train a decision tree for contamination classification and prediction. Water
contamination was achieved by breaking a water-filled glass container placed within the
specimen before sealing. Oxygen contamination was achieved by application via a syringe.
A self-healing injection port glued to the specimen guaranteed further contamination by
closing itself after removing the syringe. A ZrO2 plate prevented the penetration of the
pouch foil with the syringe.

4.1. Limitations

Manually produced single-layer full battery cells were used in this study for flexibility
in terms of chemistry and to avoid the safety risks of high-energy battery cells. The
necessary adaptions on the specimen to implement the contamination trigger were large in
terms of size. It is expected that the electrochemical behavior of commercial battery cells will
not be affected by these adaptions in the same magnitude as was observed in this study. The
chemistry used (Li4Ti5O12/LiCoO2) was chosen to exclude the aging effects. The presented
classification algorithm has to be validated when aging is overlaid with contamination.
Additionally, a small number of specimens did not allow statistical statements to be made.
In the case of more data being available and with the spread of electrochemical parameters
being lower between the specimens, more sophisticated methods would be available, i.e.,
a recurrent neural network. Additionally, the effect of the contaminant quantity was not
observed within this study. The water quantity used for contamination was unlikely to be
found in a realistic scenario. A relatively high amount of water was used in this study to
maximize the effects of the water contamination. The contamination prediction quality for
smaller water quantities should be evaluated in further studies.

4.2. Contamination Trigger

The electrochemical properties were sensitive to the necessary adaptions (glass con-
tainer or ZrO2 plate) and refer to the possible chemical side reactions and disturbances.
The glass container seemed to affect the electrochemical properties of the specimens with
water contamination (specimens No. 05–08) before contamination by affecting the SOH
during cycling. The observed sensitivity of the specimens’ electrochemical behavior on the
glass container is considered small compared to the changes by the contamination itself,
as can be seen in Figure 6. The ZrO2 plate was also observed to affect the electrochemical
cycling behavior and SOH of the specimens before contamination. While ZrO2 is often
used as a surface coating material for cathode electrodes and is reported to be stable and
relatively inert, it is still able to react with lithium ions and form a Li2ZrO3 phase, resulting
in capacity fade [73]. The defined requirements for the contamination trigger method (the
application of different contamination quantities, repeatability, simple release and minor
effect on the battery cell during normal operation) were met except for the minor effect on
the battery cell during normal operation. For commercial battery cells, it is expected that
the effect of the contamination trigger method itself is minor as the size of the disturbance
is small compared to the battery cell size.

4.3. Electrochemical Cycling

As was intended by the choice of the active material, the minor aging of the reference
specimens (No. 01–04) was indicated by minor changes in the SOH and Coulombic effi-
ciency during cycling. Additionally, minor changes of the intercept with the abscissa of the
impedance spectrum corresponded to a low change in electrolyte resistance during cycling.
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The Coulombic efficiency showed a rather erratic course for every specimen. Drops or
peaks were observed every 10 cycles, correlating with the OCV phase with a relaxation time
of 12 h after the galvanostatic cycling with potential limitation (GCPL). The relaxation time
led to an increased capacity for one subsequent cycle possibly explaining the drops and
peaks. Specimens contaminated with water (No. 05–08) showed clearly electrochemical
behavior changes in terms of SOH, Coulombic efficiency and impedance. The impedance
spectra of the water-contaminated specimens had a growing second semicircle, indicating
a growing charge transfer resistance. Water ingress and oxygen ingress in pouch cells are
known to significantly deteriorate cell performance and lead to a degradation of SOH [27].
In the environment of the Li-Ion cell, water is thermodynamically unstable. The electro-
chemical stability window of water is only 1.23 V, which is significantly narrower than the
voltage of Li-Ion batteries and the voltage of the tested specimens. While hydrogen and
oxygen may be generated in the process, when water and oxygen are in trace quantities,
complex electrode reactions occur at the electrodes which involve solvents and salt. In
addition to electrochemical decomposition, water may spontaneously react with several
components of the cell. For instance, traces of water will result in the hydrolysis of the hex-
afluorophosphate (PF6

−) ion with the formation of hydrofluoric acid (HF) [31,36,74]. HF is
a highly corrosive gas that will react with both active materials and current collectors. While
the electrochemical decomposition of water is a relatively fast process, the formation of HF
through PF6

− hydrolysis is a slow process. Specimens contaminated with oxygen showed
slower degradation compared to the specimens contaminated with water. In the impedance,
the first semicircle’s diameter slightly increased before contamination, but subsequently,
the increase was significant, indicating a growing SEI on the cathodic electrode (cathodic
SEI) or the formation of additional passivation layers. This can be attributed to oxidative
reactions of the current collectors, electrolyte and active material (cathode). Additionally,
diffusion decreased after contamination, considering the slope at a low frequency range of
the EIS measurements. Indeed, the oxygen reduction reaction is known (from fuel-cells
research) to proceed at notoriously slow rates in the absence of suitable catalysts. Thus, it is
not surprising that water contamination shows a pronounced and immediate effect, while
oxygen contamination leads to a slower response, simply because it is very likely that the
oxygen reduction reaction has sluggish kinetics under experimental conditions. In general,
a faulty battery cell within a battery module might lead to safety-relevant changes in the
system behavior. The continuously dropping capacity of a contaminated battery cell leads
to an unbalance in the battery module, promoting the further accelerated aging of the other
included battery cells. The complete failure of individual battery cells should be avoided
to guarantee the safe operation of a battery system. State-of-the-art monitoring methods
(i.e., internal resistance monitoring, voltage monitoring) might not be applicable to the
detection of contaminated battery cells (i.e., no change of internal resistance was observed
after contamination).

4.4. Decision Tree

The specimens had a wide dispersion in terms of electrochemical properties. This
made the normalization of ECM parameters necessary. This issue can be attributed to
the manual manufacturing process of specimens. The chemical side reactions include
SEI growth and oxidative reactions leading to the growth of the first semicircle which is
represented by R1 and CPE1. The ECM parameter R1 was therefore expected to be the most
sensitive model parameter. CPE1,normalized − P was only able to classify one data point into
the class “contamination–oxygen” (1). CPE1 − P was also obtained by the shape of the
first semicircle which was also affected by R1. By including R1 in the decision, the relevant
information about the first semicircle was already available, leading to no more additional
information by including CPE1 − P. R2 correlated with the second semicircle and provided
further information about the impedance spectrum and was therefore usable to distinguish
the type of contamination. The classification showed an offset in some cases that may result
from the fact that, every 10 cycles, an impedance spectrum was measured. The changes in
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the electrochemical behavior were thus not tracked for 10 electrochemical cycles. A more
frequent impedance measurement would result in the continuous tracking of the effect of
contamination on the electrochemical behavior of a specimen and gain more insights into
the involved degradation mechanisms.

5. Conclusions

The methods described and demonstrated in this work are suitable for an in operando
contamination of commercial battery cells, allowing for the repeatable application of
contaminants of different quantities with only a minor impact on the battery cell operation.
The quantification of the observed changes in the impedance spectrum with the ECM
parameters and corresponding thresholds proved eligible for monitoring the contamination
status. In the following, the conclusions drawn from the presented study are listed.

• Novel methods were found to apply different contaminants (i.e., water, oxygen) in
operando with minor effects on battery performance.

• The chemical kinetics of the oxygen contamination were slow compared to the
water contamination.

• The first semicircle’s diameter in the Nyquist plot increased after contamination,
indicating the growing SEI or formation of additional passivation layers.

• A decision tree based on ECM parameters from EIS measurements was able to detect
the contamination of a specimen.

• The ECM parameter R1 in the normalized form (R1,normalized) was identified as the
most sensitive model parameter for contamination recognition.

• The ECM parameter R2 in the normalized form (R2,normalized) was able to distinguish
the contamination type (oxygen or water).

Combination with other advanced monitoring and evaluation tools such as the density
of relaxation times (DRT) may improve prediction quality and allow for a reduction in
the frequency range needed to be tested by EIS. The definition of single frequencies or
small frequency ranges for contamination determination would enable the continuous
tracking of the contamination state. In future research, the influence of cell chemistry
on the contamination behavior and changes in ECM elements should be investigated.
The prediction capability of the described method for overlaid aging and degradation
mechanisms still has to be validated. Industrially produced battery cells only show a narrow
spread and should be used for the further testing and validation of the contamination
classification method. By applying the results of this paper on commercial Li-Ion cells,
a method for real-time monitoring could be established which will increase the safety of
battery modules.
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C C-rate
CPE Constant phase element
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ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
FI Feature importance
GCPL Galvanostatic cycling with potential limitation
HF Hydrofluoric acid
ISC Internal short circuit
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LTO Lithium titanate oxide (Li4Ti5O12)
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SOH State of health
ZrO2 Zirconium dioxide

Appendix A

In the following, the results of a decision tree algorithm with the ECM parameters are
illustrated. Different tree depths allow for an examination of the parameter and feature
importance for contamination prediction. Figure A1 illustrates the classification results of a
decision tree without tree depth limitation.

The results of a decision tree classifier with a tree depth limitation of one can be taken
from Figure A2.

The results of a decision tree classifier with a tree depth limitation of two can be taken
from Figure A3.
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Figure A1. Feature importance (FI) and the classification of data points into the classes
“no contamination” (0) and “contamination” (1) for a decision tree without depth limitation. Brackets
indicate (“no contamination” (0) and “contamination” (1)).
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Figure A2. Classification of data points into the classes “no contamination” (0) and
“contamination” (1) for a decision tree with tree depth = 1. Brackets indicate (“no contamination” (0),
“contamination” (1)).

Figure A3. The classification of data points into the classes “no contamination”, “contamination—
oxygen” and “contamination—water” for a decision tree of depth = 2. Brackets indicate (“no
contamination” (0), “contamination—oxygen” (1), “contamination—water” (2)).
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