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Abstract: Condition monitoring of components in internal combustion engines is an essential tool for
increasing engine durability and avoiding critical engine operation. If lubrication at the crankshaft
main bearings is insufficient, metal-to-metal contacts become likely and thus wear can occur. Bear-
ing temperature measurements with thermocouples serve as a reliable, fast responding, individual
bearing-oriented method that is comparatively simple to apply. In combination with a corresponding
reference model, such measurements could serve to monitor the bearing condition. Based on exper-
imental data from an MAN D2676 LF51 heavy-duty diesel engine, the derivation of a data-driven
model for the crankshaft main bearing temperatures under steady-state engine operation is discussed.
A total of 313 temperature measurements per bearing are available for this task. Readily accessible
engine operating data that represent the corresponding engine operating points serve as model inputs.
Different machine learning methods are thoroughly tested in terms of their prediction error with
the help of a repeated nested cross-validation. The methods include different linear regression ap-
proaches (i.e., with and without lasso regularization), gradient boosting regression and support vector
regression. As the results show, support vector regression is best suited for the problem. In the final
evaluation on unseen test data, this method yields a prediction error of less than 0.4 °C (root mean
squared error). Considering the temperature range from approximately 76 °C to 112 °C, the results
demonstrate that it is possible to reliably predict the bearing temperatures with the chosen approach.
Therefore, the combination of a data-driven bearing temperature model and thermocouple-based
temperature measurements forms a powerful tool for monitoring the condition of sliding bearings in
internal combustion engines.

Keywords: internal combustion engine; bearing temperature; bearing wear; tribology; lubrication;
condition monitoring; data-driven approach; machine learning; regression analysis; model selection

1. Introduction

Internal combustion engines (ICE) are employed as energy converters in manifold
applications such as transportation of goods and people, machinery and power genera-
tion [1–4]. Their widespread utilization is due to advantageous key characteristics such as
high power-to-weight ratio, robustness, efficiency, affordability and large-scale fuel supply
infrastructure availability [2,3,5]. Global issues such as climate change, environmental
pollution and scarcity of resources are currently posing major challenges to engine man-
ufacturers, who must meet the requirements of substantially reduced emissions of CO2
and other greenhouse gases, elimination of pollutant emissions and increased service life
of ICEs [3,4,6]. Because the development of entirely new ICE concepts requires extensive
research and development work, engine manufactures are focusing on increasing the ef-
ficiency of existing ICE technology in the short term [7]. One possible solution employs
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newly developed low viscosity oils that have the potential to reduce friction and thus
increase engine efficiency [7]. However, such oils in turn pose new challenges for sliding
bearings in ICEs and their lubrication.

Shafts in multicylinder ICEs, such as crankshafts or camshafts, are generally supported
by sliding bearings (also known as journal or plain bearings) [8]. This bearing type is
hydrodynamically lubricated, i.e., due to the convergence of the bearing surfaces, their
relative motion and the viscosity of the lubricant fluid, a positive pressure is developed
that separates the surfaces by a lubricant film [9]. Sliding bearings have a high capability
to withstand and dampen shocks, may be divided for easy assembly, come with low
space requirements and are insensitive to grime [8–10]. Compared to roller bearings,
sliding bearings cost less but have higher friction [8]. During normal engine operation,
the lubricant film is generally thick enough that the shaft surface does not come into contact
with the opposing bearing surface; hence near-zero bearing wear can be expected [9].
During engine start or stop, there is no or too little relative motion, so the lubricant film is
either non-existent or too small to completely separate the surfaces. In such cases, metal-
to-metal contacts between the shaft and the opposing bearing surface and thus wear can
occur [8,10–13]. Although the use of low viscosity oils has the potential to reduce overall
friction, it also decreases the lubricant oil film thickness and therefore increases the risk
of metal-to-metal contacts [14–16]. This in turn can lead to increased wear, then reduced
engine performance and eventually bearing and engine failure [17]. Therefore, appropriate
tools for monitoring and assessing the bearing condition will play a key role in increasing
engine durability, avoiding critical engine operation and preventing engine failure, thereby
avoiding unnecessary engine downtime [17–19]. Digital technologies have the potential to
accomplish such tasks [20,21].

In the past decades, with the advent and widespread distribution of electronics and
integrated circuits, ICE manufacturers have already developed sophisticated digital systems
which serve to improve efficiency, power output and emissions behavior of ICEs [21–24].
Such systems are used to control fuel injection, air/fuel ratio and ignition [25–27]; exhaust
gas recirculation and variable geometry turbochargers [28–30]; and diesel particulate filters
and SCR catalytic converters [31]. More recently, advanced digital technologies such as
machine learning have enabled an effective and beneficial analysis of the large amounts of
data generated by an ever-increasing number of sensors inside ICEs [32–34]. The insights
gained and the predictive power of such methods can in turn help to meet the high
requirements placed on ICEs by using them for applications such as controls [35,36] as well
as condition monitoring (CM) and predictive maintenance (PdM) [37–41].

According to Mechefske [42], condition monitoring (and fault diagnostics) of machin-
ery can be defined as “the field of technical activity in which selected physical parameters,
associated with machinery operation, are observed for the purpose of determining ma-
chinery integrity”. The author further describes that a PdM strategy “requires that some
means of assessing the actual condition of the machinery is used in order to optimally
schedule maintenance, in order to achieve maximum production, and still avoid unex-
pected catastrophic failures”. According to Weck [43], CM is divided into the following
three subtasks:

1. Condition detection refers to the acquisition of one or more informative parameters
which reflect the current condition of the machinery.

2. Condition comparison consists of comparing the actual condition with a reference
condition of the same parameter.

3. Diagnosis evaluates the results of the condition comparison and determines the
type and location of failure. Based on the diagnosis, compensation measures or
maintenance activities can be initiated at an early stage.

Besides the diagnosis to determine the type and location of failure, there are other
evaluation goals for a CM system as well. Beyond the diagnosis task, Vanem [44] and
Mechefske [42] introduce prognostics as a task that provides information about the possible
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future of the condition of the machinery. Furthermore, condition monitoring can generally
be classified as either permanent or intermittent monitoring [43,45].

Existing literature proposes several measurement parameters that can help in detecting
the sliding bearing condition. Two main categories are observed. First, there are significant
parameters such as vibration, acoustic emission and oil contaminants [46–49], which can be
measured at a certain distance from the bearing. Second, there are informative parameters
that have to be measured directly at or inside the bearing. These include bearing temper-
ature [19,50,51], bearing deformation and vibration [19], oil film temperature [19,51], oil
film pressure and thickness [50,52,53] and metal-to-metal contact [47]. With the second
category, information can be obtained about the condition of each individual bearing,
and the signal quality is higher and transient response faster in case of a rapid change in
bearing condition compared to measurement parameters acquired at a distance from the
bearing [51,54]. At the same time, it likely requires a larger effort for instrumentation due to
the restricted access to the bearings and the need to not influence bearing functionality [7].
In the existing literature, bearing temperature measurement with instruments such as ther-
mocouples has proven to be a reliable, continuous, fast responding measurement method
that is comparatively simple to apply [15,50,55]. With these characteristics, the method
is particularly useful to diagnose bearing failure modes which lead to a rapid change in
bearing temperature [47,56,57].

A straightforward approach to condition comparison of bearing temperature values
would simply employ a global temperature limit which may not be exceeded during
engine operation. With this approach in particular, anomalies in bearing temperature
behavior may not be detected if the defined temperature limit is not reached during the
anomaly. On the contrary, a bearing temperature model that incorporates the current
engine operation would enable the identification of anomalies in bearing temperature as
soon as the measured temperature is outside the limits of a comparatively small tolerance
range around the predicted model value. For such a model, transient engine operation
poses a specific challenge: Due to the thermal inertia of the engine components and the
engine operating media, the bearing temperature reacts slowly to swift changes in engine
operating conditions such as engine speed and engine torque. However, this is beyond the
scope of this paper with its focus on steady-state engine operation. There are two main
types of approaches for deriving a bearing temperature model: data-driven approaches and
physics-based approaches (also referred to as model-based or model-driven) [44]. While
the latter apply physical domain knowledge to formulate a mathematical model of the
monitored machinery condition [58], data-driven approaches simply utilize the inherent
information in the available data [44]. Finally, the combination of a physics-based and a
data-driven approach is often referred to as a hybrid approach [44].

Today artificial intelligence (AI) and in particular machine learning (ML) form the
backbone of data-driven approaches. Although AI and ML emerged in recent times, their
origins date back to the 1950s and even earlier [59,60]. Machine learning refers to the ability
of an AI system to extract its own knowledge from raw data [60]. Therefore, statistical
learning methods such as (linear) regression models are usually included in ML [60–62].
For machine fault diagnosis, CM or PdM data-driven methods have been proven to work in
various engineering application scenarios [63–65], yet the simple application and training
of data-driven methods is usually not straightforward because proper data and knowledge
are required to train a suitable model. Consequently, it is common to use more controllable
experimental data rather than data from a real-world application for model training [58].
However, by taking into account the application-specific background and the underlying
structure of the experimental data, it is possible to derive a model that can be generalized
for real-world applications or at least taken as the basis for further developments.

The goal of this paper is to demonstrate that the combination of a data-driven bearing
temperature model and thermocouple-based temperature measurements forms a powerful
tool for monitoring the condition of sliding bearings in ICEs. The data-driven model of
the crankshaft main bearing temperatures under steady-state engine operation is derived
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based on experimental data. In order to obtain a model that is realistic for real-world
applications, only measured or calculated parameters that would also be available on
a production engine are considered as model inputs. In Section 2, information on the
experimental investigations is provided and the acquired data are analyzed. In addition,
the requirements for a suitable data-driven model, the considered ML methods as well
as the model training and selection approach are discussed. The results of the modeling
process are then presented and analyzed in Section 3. Finally, the main conclusions and
possible next steps are discussed and summarized in Sections 4 and 5.

2. Materials and Methods
2.1. Experimental Investigations

To generate a measurement database, experimental investigations with a test engine
were carried out on one of the Large Engines Competence Center’s (LEC) engine test
beds at the Graz University of Technology campus. The engine under study is an MAN
D2676 LF51 in-line six-cylinder diesel engine, which has a displacement of approximately
12.4 dm3 and is used for heavy-duty applications. During fired engine operation, a VA
Tech Elin EBG GmbH Indy 80/4P/5500 dynamometer with a pendulum stator acted as a
brake and thus controlled the engine speed level. The engine was operated and monitored
with the test bed automation system PUMA Open version 1.5.3 from AVL List GmbH
(Graz, Austria). Some engine parameters were directly measured and retrieved via the
engine’s electronic control unit (ECU). The additionally applied measurement technology,
the experimental setup and the engine operating strategy are summarized below. A more
detailed description of the experimental methodology can be found in [7].

Comprehensive external conditioning systems for coolant and lubricating oil and
for fuel, charge air and ambient air were employed to ensure defined and accurately
reproducible engine operating conditions and to allow the independent adjustment of
specific parameters. All relevant parameters such as engine torque and speed as well as
media temperatures, pressures and flow rates were measured and recorded with measuring
instruments and a data acquisition system. The measuring instruments applied are specified
in Section 2.2 (data selection process, cf. Table 1). The temperatures of the seven crankshaft
main bearings were measured with type K thermocouples (Class 1 accuracy) fitted through
a bore in the bearing support whose measuring tip is in contact with the external surface
of the bearing shell. Figure 1 schematically illustrates this measurement setup for a single
crankshaft main bearing. The instrumented bearings are numbered one to seven, starting
from the clutch side. No measurements of bearing #2 are available due to sensor failure.

Main bearing 
shell

Thermocouple
tip

Main bearing 
support

Clutch side Engine front end

Bearing numbers (blue) and
thermocouple positions (red)

1 2 3 4 5 6 7

Figure 1. Schematic of the thermocouple position at a crankshaft main bearing (left, adapted with per-
mission from [7]); bearing numbers of the instrumented crankshaft main bearings and thermocouple
positions (right, as seen from underneath the engine).

The operating points used for the engine tests were based on the sixteen specific
operating points illustrated in Figure 2, which include various combinations of engine
speed and engine torque. Nearly the entire engine operating map is covered, where engine
load is defined as the percentage of the maximum available brake torque at a defined engine
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speed. After adjustment of each operating point, a settling time of approximately 15 min
was observed to ensure that all relevant measurement parameters were in a steady state.
These parameters are recorded and averaged over a period of 30 s. In order to examine and
ensure the repeatability of the measurements, three consecutive recordings were performed
at each investigated operating point.
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Figure 2. Investigated engine operating points and oil viscosity/temperature dependence.

At the 50 % engine load operating points, oil inlet temperature and inlet pressure were
varied individually and independently with the oil conditioning system. Oil temperature
was varied from 90 °C (standard temperature) to 80 °C and 100 °C and oil pressure was
varied from 4 bar(g) (standard pressure) to 3 bar(g) and 6 bar(g). All parameter variations
described above were carried out with three different lubricant oil viscosity grades, whose
setting was achieved through oil changes at engine standstill. The employed grades were
SAE 10W-40, 10W-20, and 5W-20. Due to testing time limitations, the oil temperature
variation was not carried out with the viscosity grade 5W-20. The viscosity of each oil in
relation to the oil temperature is shown in Figure 2 (values provided by oil supplier).

2.2. Data Selection and Model Requirements

The data include a total of 313 temperature measurements per bearing that originate
from 105 different operating points (for two operating points, only two repetitions were
valid). Although a large number of parameters were measured during the engine tests,
only specific parameters are used to model the bearing temperatures under steady-state
operation. The modeled bearing temperature should solely depend on engine parameters
that would be available on a production engine as well. Furthermore, by selecting param-
eters whose influence on bearing temperature can be ruled out on the basis of physical
considerations, there is the risk of the model relying on parameters that correlate with the
bearing temperature but do not cause it. The following considerations have also affected
data selection:

• Due to the applied conditioning systems, coolant-related parameters such as pressure
and temperature at inlet or outlet are constant and therefore irrelevant to modeling.
This also applies to ambient air temperature. The coolant mass flow, however, is
a measurement result that varies according to the applied engine operating point.
Therefore, it is considered as a model input candidate.

• Indication system-based measurements such as in-cylinder pressures and key figures
derived from them are not considered because they are usually not available on a
production engine.

• Linear transformations of a single measured or calculable parameter are not used
for modeling. For example, the break mean effective pressure (BMEP) is a linear
transformation of the brake torque, which is considered to be available from the ECU
of a production engine. Parameters that are calculated from multiple other parameters
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(e.g., brake-specific fuel consumption is calculated from fuel mass flow and engine
power) are considered as model input candidates.

Taken together, the measured or calculated parameters listed in Table 1 are considered
for modeling the seven crankshaft main bearing temperatures. With the bearing-related
information, i.e., the targeted temperature as well as the bearing identification parameter, it
is possible to distinguish between the bearing positions during modeling. As an additional
model input candidate, the oil type information is indirectly included via the temperature-
dependent oil viscosity curves shown in Figure 2, where for each measurement, the oil
temperature at the engine inlet is used as reference. To avoid any circular reasoning, it was
decided not to use the crankshaft main bearing temperatures as references for a bearing-
specific viscosity approximation, but rather the technically most proximate one. Moreover,
this viscosity information could be adapted for use in a production engine as well.

Table 1. Measured and calculated engine operation parameters considered for building the data-
driven bearing temperature model.

Name Description Unit 1 Type Measuring Instrument 3

T_MB
Crankshaft main bearing
temperature (all bearings included;
position identification listed below)

°C target Type K thermocouple (Class 1)

MB1, MB2, . . . , MB7
Boolean variables (i.e., true or false)
denoting if a temperature value is
from a specific bearing position

- identifier -

N Engine speed min−1 measurement Rotary encoder in dynamometer
(±5 % of grating period)

Md Engine torque N m calculation 2 Strain gauge load cell in
dynamometer (±0.3 % of MV)

P Engine power kW calculation -
load Engine load % calculation -

m_oil_inlet Oil mass flow at inlet kg h−1 calculation 2 Emerson F200 Coriolis mass flow
meter (±0.2 % of MV)

p_oil_inlet Oil pressure at inlet bar(g) measurement AVL EZ 0187 (±0.1 % of FSO)
T_oil_inlet Oil temperature at inlet °C measurement Type K thermocouple (Class 1)
T_oil_sump Oil temperature at oil sump °C measurement MAN ECU parameter

m_coolant Coolant mass flow kg h−1 calculation 2 Emerson F200 Coriolis mass flow
meter (±0.2 % of MV)

m_air_inlet Air inlet mass flow kg h−1 measurement ABB Sensyflow FMT700-P hot-film
anemometer (±0.8 % of MV)

p_air_intake Air pressure on intake manifold bar(g) measurement MAN ECU parameter
T_air_intake Air temperature on intake manifold °C measurement MAN ECU parameter

T_air_TC2 Air temperature upstream of
second turbocharger °C measurement MAN ECU parameter

p_air_EGR Air inlet pressure upstream of EGR
admixing hPa(g) measurement MAN ECU parameter

T_air_EGR Air temperature upstream of EGR
admixing °C measurement MAN ECU parameter

EAR Excess air ratio - calculation -

m_fuel Fuel mass flow kg h−1 calculation 2 Coriolis mass flow meter in AVL
FuelExact 740 (±0.1 % of MV)

BSFC Brake-specific fuel consumption g kW−1 h−1 calculation -

visc_oil_inlet
Kinematic oil viscosity based on
T_oil_inlet and oil type-related
viscosity curves shown in Figure 2

cSt calculation -

1 For modeling, all temperature values are internally converted to Kelvin. 2 This parameter was measured during
engine tests but is considered calculable or at least available from lookup tables at an ECU. 3 The accuracy of
the measuring instrument is provided in from of a tolerance classification or as relative value (MV stands for
measured value; FSO stands for full scale output).
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Figure 3 shows all available temperature measurements, where each temperature pro-
file corresponds to an associated measurement recording. As already mentioned, the tem-
perature values for bearing #2 (MB2) are missing (for graphical representation, these values
were linearly interpolated, but the interpolation must be considered inaccurate). As a result,
the bearing position-related information is considered as a nominal variable, i.e., there is
no ranking of the positions. To avoid an arbitrary joint numerical encoding (e.g., a single
bearing variable taking values from 1 to 7), so-called one-hot encoding (also referred to
as full dummy encoding) is used. As described in Table 1, by using one-hot encoding,
each bearing position is a single Boolean variable (i.e., true or false), which is then binary
encoded for modeling (i.e., 1 or 0). Through this encoding, it is possible to derive a single
model that includes all bearing positions and can serve as reference during condition
comparison of newly measured bearing temperatures.
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Figure 3. Temperature profiles and distribution per bearing.

Based on Figure 3, it also appears that the peripheral bearings #1 and #7 generally
exhibit a significantly lower temperature level than bearings #3 to #6. This is likely because
the thermal load is lower at the ends of the crankshaft, where there is only one neighboring
crankpin and where heat dissipates more quickly due to a considerable temperature
gradient towards the crankcase. All six observed bearing-related temperature distributions
are similar but have shifted centers. The single temperature profiles are smooth and appear
shifted by an individual base level. This is another motivation for using the one-hot
encoded bearing position. However, all curves do not behave uniformly, especially at
bearing #5.

The distributions of the measured and calculated parameters shown in Figure 4 do not
provide a uniform picture either. Since the parameters do not change between the bearings,
they are included once (i.e., 313 observations per plot). Due to the experimental design,
several parameters have a rather discrete or multimodal distribution. Furthermore, some
parameters distributions are skewed or heavy-tailed.

As shown in Figure 5, some parameters are also correlated with each other. The Pear-
son correlations in the left correlation matrix plot are calculated using the raw values and
indicate the linear relationship between two parameters. The Spearman’s rank correla-
tions are based on the parameter rankings and indicate how monotonic the relationship
between two parameters is. Both correlation matrices show a similar picture and indicate
so-called multicollinearity and redundancy of several parameters. For example, while
all air temperature-related parameters are positively correlated, the intake air pressure
at intake manifold has a (weak) negative correlation with all of them. As might also be
expected, load and engine power are positively correlated with engine torque.
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Figure 4. Distributions of the engine operation parameters (histogram bin widths calculated using
the Freedman–Diaconis rule [66]).
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Figure 5. Engine operation parameter correlation analysis based on Pearson correlation coefficients
and Spearman’s rank correlation coefficients.

However, if there are non-monotonic relationships, both Pearson and Spearman-type
correlations can miss out on important associations [67]. In contrast, Hoeffding’s D [68]
is a general and robust similarity measure for detecting dependencies [67]. Dendrograms
from hierarchical cluster analyses of the Pearson correlation and the Hoeffding’s D sim-
ilarity measures are shown in Figure 6. The further right a split is in a dendrogram,
the stronger the correlation/dependency between two subsequent clusters. Both reveal
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a similar basic relationship structure between the engine operation parameters. But they
also indicate different relationships for some parameters. While m_oil_inlet and p_oil_inlet
are only strongly (linearly) correlated with each other (cf. Figure 5), m_oil_inlet is closer to
p_air_intake and visc_oil_inlet in terms of Hoeffding’s D.

T_oil_inlet
p_air_intake
visc_oil_inlet
Md
load
EAR
BSFC
m_oil_inlet
p_oil_inlet
T_oil_sump
N
T_air_intake
m_air_inlet
T_air_TC2
T_air_EGR
m_coolant
p_air_EGR
P
m_fuel

0.0 0.2 0.4 0.6 0.8 1.0

Pearson r2

Pearson correlation clustering
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30 × Hoeffding D
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Figure 6. Hierarchical clustering of the engine operation parameters using Pearson correlation and
Hoeffding’s D similarity measures (30 ·D ranges from −0.5 to 1 [69]).

While collinearity makes it difficult to interpret the effect of individual model param-
eters, it does not affect predictions that are made on datasets similar to those on which a
model was fit [67]. Therefore, whether collinearity is problematic is closely related to the
actual aim for which a data-driven model should be used.

Deciding between interpretable model types and black boxes or between parsimony
and complexity are two of the many choices that need to made when deriving a model [67].
While a simple and rather inflexible method is advantageous if inference is the goal of a
data-driven approach, the interpretability of a model does not matter if the focus is on
prediction [61]. But complex and highly flexible ML methods do not necessarily result in
more accurate predictions because they also have a higher risk of overfitting [61]. For this
reason, a proper model training strategy is required, especially for highly flexible ML
methods. In the event that a black-box model eventually yields the best results, however,
it is still possible to gain insights by developing an interpretable approximation to the
black-box model [67].

First and foremost, the data-driven model for monitoring the bearing temperatures
should be capable of accurately predicting the temperature values based on the engine
parameter inputs. In terms of machine learning, a predictive model attempts to predict
a given target using other variables (or features) in the dataset as inputs [70]. Since
the target is given, such a task is usually referred to as supervised learning. On the
contrary, unsupervised learning lacks a target and aims to better understand and describe
a given dataset [70]. Depending on whether the target is a numeric (continuous) or a
categorical (discrete) outcome, supervised learning is further divided into regression tasks
and classification tasks, respectively [70]. Since the bearing temperature is a numeric
variable, ML methods for regression tasks may basically be applied.

2.3. Machine Learning Methods

From ordinary linear regression to highly complex deep neural networks, there are
various ML methods available to address a regression problem. Yet since there is no single
best method for all possible datasets, it is challenging to select the best approach [61].
In addition to the considerations regarding the model aim discussed above, the available
data also inherently influence the choice of potential methods. This paper examines three
different ML methods: linear regression (with and without lasso regularization), gradient
boosting regression and support vector regression. They differ in their interpretability as
well as flexibility, whereas flexibility is significantly affected by so-called hyperparame-
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ters—the “adjusting screws” of an ML method that require sophisticated tuning during
model training with the so-called training data.

Many different software solutions are available for the computational implementation
of a machine learning project. For this paper, model training is basically carried out and
controlled using the statistical programming language R [71]. Furthermore, seamless
integration of Python [72] libraries such as scikit-learn [73] has been achieved through a
self-implemented solution based on the R packages reticulate [74] and R6 [75].

2.3.1. Linear Regression and Regularization

Linear regression is a fairly simple method that often provides an adequate and
interpretable description of how features affect a target [62]. The (multiple) linear model
(LM) has the form

f (x) = β0 +
p

∑
j=1

β j · xj, (1)

where x = (x1, . . . , xp)T is the p-dimensional vector of input variables and β = (β0, . . . , βp)T

are the corresponding model coefficients [62]. The most popular method for obtaining
estimates of the model coefficients is the least squares method, which aims to minimize the
residual sum of squares

RSS(β) :=
n

∑
i=1

(yi − f (xi))
2, (2)

where the (training) data consist of n instances (or observations) of targets yi and feature
vectors xi = (xi1, . . . , xip)

T, i = 1, . . . , n.
An LM has no hyperparameters to tune and is easy to fit (i.e., there is a unique solution

of the least squares minimization problem). However, the set of features and the inherent
model formula have to be set beforehand. Often stepwise feature selection techniques (e.g.,
those based on statistical hypothesis tests) are applied to find the most important features,
but these techniques are associated with major problems and should be avoided [67].
In contrast, the so-called lasso [76] is a regularization method that shrinks coefficients
towards zero by adding the penalty term λ ·∑p

j=1

∣∣β j
∣∣ to the RSS minimization problem (2),

where the tunable hyperparameter λ ≥ 0 determines the strength of the shrinkage penalty.
With the lasso, all features are considered, but if λ is large enough, some coefficients are
forced to be exactly zero and a feature selection is performed [61]. For a fair comparison of
the features, they have to be on similar scales and thus an initial standardization is required
(i.e., center a variable by its mean and divide it by its standard deviation) [77].

In this paper, two fixed LM structures (both realized directly in R) are considered for
predicting the bearing temperatures:

• An LM including all available engine parameters (cf. Table 1) as well as the categorical
bearing position

• A naive reference LM that includes only the categorical bearing position (equivalent
to taking the average temperature of each bearing from the training data)

For a sparser representation of the bearing temperatures, an LM with lasso regulariza-
tion is also evaluated. In this paper, the R package glmnet [78] was chosen for the lasso
computations because it allows for individual penalty factors per coefficient. In this way,
the shrinkage of a coefficient can be omitted (i.e., the corresponding variable is always
included in the model) or even more strongly forced [77,78]. Based on the underlying
data structure and the discussed model aim, the bearing position identifiers (MB1, . . . ,
MB7) are not penalized. All engine parameters (cf. Table 1) are penalized equally except
for parameters that are directly calculated from other parameters, which are additionally
penalized by the number of other parameters involved. Therefore, engine power P (prod-
uct of N and Md) and BSFC (calculated with m_fuel and P) are penalized two and three
times, respectively.
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2.3.2. Gradient Boosting Regression

Gradient boosting (GB) regression is based on decision trees. A decision tree is a
summary of rules used to split the feature space into different regions/partitions [61].
Although a single decision tree is hardly capable of adequately modeling a regression
problem, many of these weak trees can be aggregated into a potentially very powerful
predictive model (a “committee”) using a so-called ensemble method [61,62]. With GB,
the regression tree ensemble learns sequentially, i.e., each tree learns from the previous one
by being fit on the residuals of the previous tree (i.e., the differences between actual and
predicted target values), thereby improving the ensemble [70]. The aggregated predictive
model of B trees has the form

f (x) =
B

∑
b=1

f b(x), (3)

where x = (x1, . . . , xp)T is the p-dimensional input vector and each f b is a single decision
tree that was fit on the residuals from f b−1 [70]. This GB approach minimizes the mean
squared error loss function and is considered as a gradient descent algorithm that can be
generalized to other loss functions as well [70].

There are many software solutions available with different variants of GB algorithms.
For this paper, the widely used XGBoost library (short for eXtreme Gradient Boosting) [79]
is applied via its scikit-learn API. XGBoost offers a variety of tunable hyperparameters
including additional regularization terms. Table 2 summarizes the hyperparameters used
for tuning.

Table 2. XGBoost hyperparameters of the scikit-learn API for gradient boosting regression used for
tuning [79].

Hyperparameter Description

n_estimators Number of trees used for boosting (corresponds to B)
eta Learning rate of boosting updates (cf. gradient descent)
max_depth Maximum depth of a single tree
min_child_weight Minimum number of data instances/weight for a child node in a tree
gamma Minimum loss reduction required for further partitioning on a leaf node
lambda Ridge regression-analogous L2 regularization on tree weights
alpha Lasso regression-analogous L1 regularization on tree weights

2.3.3. Support Vector Regression

Support vector regression (SVR) is essentially an adaptation of the support vector
machine (SVM) that is intended for binary classification problems. SVR aims to find a
function in the feature space that should not deviate from each target by more than a
tolerance margin ε and at the same time is as flat as possible [80]. While errors less than ε
are not penalized, errors greater than ε are penalized with an additional hyperparameter
C > 0. As a result, there is a trade-off between the flatness of the function and the tolerance
for larger errors [80]. The corresponding loss function for an error ξ is therefore called
ε-insensitive loss function |ξ|ε := max(0, |ξ| − ε) [80]. This type of SVR is usually referred
to as ε-SVR [80].

Analogous to the SVM, the real strength of the SVR comes from using the so-called
kernel trick, in which the feature space is implicitly projected into a higher-dimensional
space, where the problem may be easier (linear) to solve. In this way, it is also possible
to model nonlinear target behavior in the original feature space. For a p-dimensional
input vector x = (x1, . . . , xp)T and based on the data consisting of n feature vectors
xi = (xi1, . . . , xip)

T, i = 1, . . . , n, the SVR model has the form

f (x) = β0 +
n

∑
i=1

αi · k(xi, x), (4)
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where β0 is an intercept term, αi, i = 1, . . . , n, are instance-related coefficients that need to
be optimized with regard to the targets and k is the kernel function [81]. There are various
kernel types with different properties and even additional hyperparameters [80,81]. This
paper considers the linear kernel k(xi , x) = xi · x and the radial basis function (RBF)
kernel k(xi, x) = exp

(
−γ · ‖xi − x‖2), γ > 0. While the linear kernel is very simple,

the RBF kernel actually projects into an infinite-dimensional space. Thus in contrast to the
linear kernel, the interpretability of the model in respect of the feature space is lost with
the RBF kernel.

The kernel selection is considered as an additional hyperparameter that is tunable.
The SVR is evaluated using the scikit-learn implementation [73], and Table 3 summarizes
the hyperparameters used for tuning. Since SVR is a distance-based method like the lasso
LM, similar feature scales (e.g., via standardization) are required.

Table 3. Hyperparameters of the scikit-learn implementation for support vector regression used for
tuning [73].

Hyperparameter Description

epsilon Margin tolerance of ε-SVR
C Trade-off (regularization) parameter
kernel Kernel function to be used (“linear” or “rbf”)
gamma Coefficient for RBF kernel

2.4. Model Training and Selection

A good predictive model does not need to perform well on the already known training
data, but it should accurately predict previously unseen test data [61]. Therefore, it is of
interest to find the method that yields the lowest test error (or loss) rather than the lowest
training error [61]. There are various measures for assessing the prediction error/loss of an
ML method. This paper uses the mean squared error (MSE) for training and evaluation
of the ML approaches presented above. Later, the mean absolute error (MAE) will also be
used for comparison purposes. For n pairs of actual target values y = (y1 . . . , yn)T and
model predictions ŷ = (ŷ1, . . . , ŷn)T = ( f̂ (x1) , . . . , f̂ (x1))

T, they are defined as follows:

MSE(y, ŷ) :=
1
n

n

∑
i=1

(yi − ŷi)
2

MAE(y, ŷ) :=
1
n

n

∑
i=1
|yi − ŷi|

(5)

For better interpretation in terms of the original units, the root mean squared error (RMSE),
RMSE(y, ŷ) :=

√
MSE(y, ŷ), will also be reported in some instances.

In ML, the entire dataset is usually split into data for training and data for testing that
is not used during model training to accommodate the idea of unseen test data. However,
there are some pitfalls to this approach. On the one hand, if the model was trained on
data completely different from what it is tested on, the risk is high that the results are
not accurate. On the other hand, if there is any information leakage from the test data to
the training data, the performance evaluation on the test data might be positively biased.
An example of such information leakage is the use of all data for standardizing. Therefore,
proper model training requires the performance of such steps solely using the training data.
This also applies to the data analyses presented in Section 2.

To evaluate the performance of the final bearing temperature model, the data are
randomly split into approximately 75 % training data (235 measurement recordings) and
25 % test data (78 measurement recordings). Since the random sampling is performed on
the 313 measurement recordings, all six bearing measurements from one measurement
recording are in the same split. In addition, the random sampling is restricted so that all
two or three measurement recordings of each of the 105 engine operating points are in the
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same split (i.e., grouped sampling to ensure that probably very similar measurements are
kept together) and the training and test data both have similar temperature distributions
(i.e., stratified sampling on the mean bearing temperature per measurement recording).

Only the training data are used to tune all the ML approaches and find the best
predictive model. To tune the hyperparameters of an ML method, it is again necessary to
compare and evaluate the performance of different hyperparameter settings on previously
unseen data. A so-called k-fold cross-validation (CV) is often used for hyperparameter
tuning. For the CV, the training data are split into k equally sized parts, and each part
is used once for validation (testing) iteratively while training is performed using the
k − 1 others. The average of the k errors, the CV error, indicates the hyperparameter
setting with the best overall performance. A strategy is also required to define a set of
hyperparameter candidates in the first place. Two common approaches are the grid search
and the random search. While the grid search involves evaluating all combinations of a
predefined hyperparameter grid with a CV, the random search consists of random sampling
of a fixed number of combinations from specified hyperparameter distributions.

However, CV also has its potential pitfalls [82]. For example, the approach discussed
above (for hyperparameter tuning) may yield optimistically biased estimates of the gener-
alization error of a model [83]. The entire process of tuning a model should be seen as an
integral part of model fitting and be validated as well [83] including all preprocessing steps.
To this end, complete modeling procedures (or pipelines) must be evaluated and compared.

In this paper, the bearing temperature model is derived using a so-called repeated
nested cross-validation. Figure 7 illustrates a nested CV process. During each outer CV
iteration, the currently available training data are again split for the inner CV. While the
inner CVs are used to train and tune the modeling procedures, the outer loop is used to
compare their performance. Analogous to the basic train–test split described above, all outer
and inner CVs samplings are again grouped by engine operation points and stratified by
the bearing temperature values. To derive reliable generalization error estimates, the entire
nested CV procedure is repeated multiple times. The lowest mean CV error determines the
most suitable modeling procedure for the bearing temperature CM model. This modeling
procedure is then fit again on the entire training data before it is assessed on the unseen
test data.

The entire nested CV procedure has been self-implemented in R, including support
for parallel computing. In combination with the R-based solution, which allows seamless
integration of Python, it is possible to evaluate the R and the Python procedures with
random but identical CV splits. With this CV implementation, a nested CV is repeated
25 times to derive the results presented below. In the course of this, five folds are used for
all outer as well as inner CVs. Since the hyperparameter search is an integral part of each
modeling procedure, algorithms suited for each ML method are applied. While glmnet’s
default log scale-based 1D grid search [78] is used for the LM with lasso regularization,
scikit-learn’s [73] RandomizedSearchCV (with 1000 samples) and GridSearchCV (with
1456 combinations) are used for the GB regression and the SVR, respectively.

All bearing temperature data
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Figure 7. Illustration of the nested cross-validation for evaluation and comparison of the model-
ing procedures.
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3. Results
3.1. Cross-Validation Results and Model Selection

Figure 8 presents the distributions of the CV errors over the 25 nested CV repetitions.
Both the MSE-based CV errors (i.e., the minimization target during training) and the
CV-related MAEs are provided. The two plots show that for all CV repetitions, the SVR
modeling procedure best predicts the bearing temperatures. Considering the temperature
range from approximately 76 °C to 112 °C, considerably small CV errors of less than 1 °C
(both RMSE and MAE) are achieved with the SVR. The XGBoost regressions perform
worse than the LMs using all engine parameters (LM_all) and the lasso-regularized LMs
(LM_lasso). Compared to the other methods, the results of the GB approach are also not that
stable. Nevertheless, all these plotted methods are able to predict the bearing temperatures
well. For graphical reasons, the results of the LM that relies on the categorical bearing
position only (LM_bearing) are not displayed. As listed in Table 4, this crude approach
yields stable yet much higher errors than all other ML methods.
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Figure 8. Error distributions of nested cross-validation repeated 25 times.

Table 4. Summary of nested cross-validation repeated 25 times (mean, median, standard deviation,
minimum, and maximum of repetitions).

RMSE [°C] MAE [°C]ML Method Mean Median SD Min. Max. Mean Median SD Min. Max.

LM_all 1.0508 1.0479 0.0323 0.9954 1.1160 0.7908 0.7883 0.0247 0.7546 0.8434
LM_bearing 5.4586 5.4583 0.0044 5.4512 5.4674 4.3627 4.3616 0.0039 4.3574 4.3715
LM_lasso 1.0105 1.0096 0.0198 0.9832 1.0605 0.7644 0.7631 0.0137 0.7420 0.7954
XGBoost 1.6080 1.5686 0.1603 1.3567 2.0172 1.1204 1.1228 0.0614 1.0130 1.2477
SVR 0.5514 0.5460 0.0311 0.5016 0.6267 0.3611 0.3611 0.0192 0.3313 0.4032

3.2. Model Assessment on Test Data

To assess the performance of the SVR on the test, the entire modeling procedure is
carried out again using all training data. Evaluated by means of a 5-fold CV, the grid search
yields the optimal hyperparameters reported in Table 5.

Table 5. Optimal hyperparameter values of the SVR modeling procedure on entire training data.

Hyperparameter Value

epsilon 2−2

C 211

kernel “rbf”
gamma 2−10
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As shown in Figure 9, the SVR also performs very well on the previously unseen
test data. There are only minor errors and the residuals do not show any patterns, so
the model has a similar predictive accuracy throughout the entire temperature range.
The largest residuals of the test data predictions are observed with regard to bearing #5.
Moreover, the error comparison in Table 6 shows that the test errors are in accordance with
the CV errors. The higher errors for bearing #5 are also in agreement with the graphical
observations of the bearing temperature profiles (cf. Figure 3).
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Figure 9. Graphical analysis of SVR predictions on previously unseen test data.

Table 6. Overall and bearing-resolved prediction error summary of the SVR.

Test Data 5-Fold CV
RMSE [°C] MAE [°C] Mean RMSE [°C] Mean MAE [°C]

MB1 0.2351 0.1779 0.3472 0.2506
MB3 0.3622 0.3247 0.4915 0.3393
MB4 0.2746 0.2346 0.3344 0.2461
MB5 0.7151 0.5289 1.0296 0.7715
MB6 0.3616 0.2745 0.4140 0.3088
MB7 0.2311 0.1724 0.3369 0.2502

Overall 0.3995 0.2855 0.5514 0.3611

Since the RBF kernel is chosen, the SVR does not allow for a direct interpretation
of the feature’s importance. The LM with lasso regularization (also trained on the entire
training data) is strongly correlated with SVR results (Pearson correlation of 0.9881). This
also applies to the previously derived CV results, where the correlation between the
predictions of these two ML methods ranges between 0.9871 and 0.9905. The LM with lasso
regularization (with an optimal hyperparameter λ = 0.0237) allows a direct interpretation
of the features. The selected variables (nonzero coefficients) form the simple bearing
temperature model

T_MB = 13.2245− 5.7486 ·MB1− 0.2673 ·MB3 + 1.8001 ·MB4 + 0.7950 ·MB5

+ 1.7327 ·MB6− 2.5297 ·MB7 + 0.0083 ·N + 2.0051 · load

− 0.0006 ·m_oil_inlet + 0.8787 · T_oil_inlet− 0.0644 · T_oil_sump

+ 0.0034 ·m_air_inlet− 4.7267 · p_air_intake + 0.3624 · visc_oil_inlet,

(6)

where the coefficients correspond to the non-standardized inputs of the engine parameters.
For proper interpretation of the interrelationships, it is necessary to rely on currently
available information only. Although not very different from the entire dataset, the Pearson
correlations and the Hoeffding’s D statistics of the engine parameters for the training
data only are provided in Figure 10. Except for the strong positive correlation between N
and m_air_inlet, there are no other strong correlations among the model variables due to
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the lasso regularization. Replacing a model variable in the LM equation (6) above with
another non-included engine parameter that is only correlated to that included model
variable would not change the predictive performance of the model greatly. Therefore,
replacing m_oil_inlet with p_oil_inlet would not significantly change the model results (if
the unit-related coefficient is compensated). As to be expected, T_oil_inlet has an effect
on the bearing temperature and is (weakly) related to visc_oil_inlet. However, no further
dependencies on T_oil_inlet are observed. All other selected features of the LM_lasso
model (6) are related with multiple non-included engine parameters. For this reason,
a final judgment on their individual importance would require additional (statistical)
investigations.
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Figure 10. Pearson correlation coefficients and Hoeffding’s D statistics on training data (30 ·D ranges
from −0.5 to 1 [69]). Engine parameters selected by the LM_lasso model (6) are marked in red.

4. Discussion

Considering the temperature range from approximately 76 °C to 112 °C, with a pre-
diction error of 0.3995 °C (RMSE on previously unseen test data), the results presented
above show that it is possible to reliably predict bearing temperatures on the basis of engine
operation parameters. However, the results also demonstrate that there is often a trade-off
between the interpretability and the predictive quality of a data-driven approach. While
the best model obtained (an SVR with a radial basis kernel) does indeed perform excellently
as it predicts the bearing temperatures on the basis of engine operation parameters, it does
not allow for a direct interpretation of their importance. Nevertheless, given the wide
range of ML methods applied, it has also been demonstrated that a simpler and more easily
interpretable approach (the LM with lasso regularization) serves as an understandable
approximation of the best model obtained. Since only a subset of the engine parameters is
used for predicting the bearing temperatures, the simpler approach would also be more
robust to potential sensor failures.

Considering the comparatively small amount of data available for an ML application,
more data will be acquired in a follow-up measurement campaign to improve and validate
the derived data-driven CM model as well as to acquire data from the currently missing
bearing position #2. Hence, the bearing position correlation and encoding will be reeval-
uated. With the insights already gained (especially from the interpretable ML approach),
meaningful data can be efficiently acquired and very low or high bearing temperatures can
be specifically studied.

To further improve the performance of the predictive model, additional ML methods
such as kernel ridge regression or random forests could be evaluated as well. It might
also be beneficial to enhance the LM approaches by using parameter transformations or
interaction terms. Linear additive models, for example, also permit modeling of the non-
linearity of certain features. Additional preprocessing steps such as principal component
analysis may help to further improve the performance of a modeling procedure. All these
model types and methods could easily be implemented in the previously created modeling
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pipeline. Of course other ML methods such as artificial neural networks could improve the
predictions as well, yet such methods usually require even greater training effort, which
would necessitate an adapted framework.

The present paper does not address data from transient engine operation. Since
bearing temperature reacts comparatively slowly to swift changes in engine operating
conditions such as engine speed and engine torque, transient operation poses special
challenges to both data collection and experimental design. For reliably modeling transient
engine operation, it will probably be necessary to consider time-dependent effects and
correlations. In order to reflect all possible engine operating modes, future investigations
will focus on transient engine operation as well.

5. Conclusions

This paper demonstrates that it is possible to reliably predict sliding bearing tempera-
tures that are measured with thermocouples fitted through a bore in the bearing support.
Solely depending on engine operation parameters, the data-driven model that is ultimately
derived is well suited to serve as a reference during condition comparison in a CM system
under steady-state engine operation. As part of such a system, it enables the identification
of anomalies in bearing temperature as soon as the measured temperature is outside the
limits of a comparatively small tolerance range around the predicted model value. The
combination of a data-driven bearing temperature model and thermocouple-based tem-
perature measurements, therefore, is an eminently suitable solution for monitoring the
condition of sliding bearings in ICEs. An application is particularly suitable for large ICEs
because the cost for bearing instrumentation is relatively low compared to the potential
cost of an engine failure caused by the bearing system. Although this paper investigates
crankshaft main bearings in a heavy-duty diesel engine, the approaches it discusses could
be applied to other engine types or similar problems as well.
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