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Abstract: Climate change, as well as increasing urbanization, lead to an increase in urban flooding
events around the world. Accurate urban flood models are an established tool to predict flooding
areas in urban as well as peri-urban catchments, to derive suitable measures to increase resilience
against urban flooding. The high computational cost and complex processes of urban flooding with
numerous subprocesses are the reason why many studies ignore the discussion of model uncertainties
as well as model calibration and validation. In addition, the influence of steep surface (hillside)
conditions on calibration parameters such as surface roughness are frequently left out of consideration.
This study applies a variance-based approach to analyze the impact of three uncertainty sources
on the two variables—flow and water depth—in a steep peri-urban catchment: (i) impact of DEM
validation; (ii) calibration of the model parameter; (iii) differences between 1D/2D and 2D models.
The results demonstrate the importance of optimizing sensitive model parameters, especially surface
roughness, in steep catchments. Additional findings of this work indicate that the sewer system
cannot be disregarded in the context of urban flood modeling. Further research with real heavy storm
events is to be pursued to confirm the main results of this study.

Keywords: calibration and validation; steep urban catchments; integrated urban flood modeling;
uncertainty

1. Introduction

Heavy storm events have increased and will continue to increase in the future in both
frequency and amplitude due to climate change [1–4]. This leads to adverse impacts on
human and environmental systems, such as floods [5]. Urbanization as a socio-economic
impact of urban population growth represents one main driver in the urban flooding
context. Together with global climate change, it is one of the primary sources of increasing
flood events [6,7], caused by the associated increase in the impervious surface area [3,8,9].
Numerous documented events worldwide in past years confirm the threat posed to society
by urban floods (e.g., Ljubljana 2021 (Slovenia), Kufstein 2021 (Austria), North Rhine-
Westphalia 2021 (Germany), Ankara 2020 (Turkey), Venice 2019 (Italy), Elblag 2017 (Poland),
and Wallingford 2014 (UK) [10]).

Based on the observation of air temperature increase induced by climate change, a
trend towards extreme storm events [11–13] and subsequent flooding can be expected in
the future. The reason for this has been highlighted in several studies, which predict an
increase of 7 percent in atmospheric water volume per degree of global warming based
on the Clausius–Claperyron equation [13–15]. This is especially noticeable in the change
of extreme storm events [16–18]. In urban catchments, flooding is a complex process that
is difficult to describe. The increased damage potential is a result of the high building
density [19], the often-occurring combination of fluvial and pluvial flooding and the high
spatial and temporal variability of extreme storm events [17,20,21]. Additionally, several
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not-predictable conditions such as blockage scenarios in sewers, streams, or culverts can
also have a significant impact on the flooding process [22]. Especially in peri-urban or hilly
catchments, which are often characterized by small urban streams, sediment transport-
induced blockages of drainage systems can be a likely cause of flooding. These will occur
more frequently due to the increase of extreme storm events by climate change and the
land cover changes by urbanization [23]. For this reason, urban flooding events are not
simply of pluvial or fluvial type but can be defined as a stand-alone type of flooding, which
is often a combination of several types [24].

Urban flood models estimating water depth and flow velocity are widely used and
accepted tools among researchers and professional engineers [25–27]. Types of such flood
models span simple and traditional 1D urban drainage models [28], hydrodynamic 2D flood
models such as BASEMENT2D [29], raster-based 2D flood models such as CADDIES [30,31],
and coupled model approaches, demonstrated by numerous studies [32–37].

The required level of model accuracy is one of the most discussed topics in the field
of urban flooding. Despite numerous studies published in recent years, there is no clear
answer to the question whether the urban drainage system must be included in an urban
flood model [38–40], if it can be discarded or simplified with source and sink terms [41–43].
However, a trend in literature can be identified, leaning towards considering drainage
systems in urban flood assessment [44]. While the focus of the past decade was on building
a model with the highest accuracy, the current focus is on model application, such as
real-time prediction [45–47] or the quantification of model uncertainties, sensitivities and
calibration techniques [48]. However, model calibration in particular remains a challenge
due to the spatially and temporally distributed properties of flooding and the often-poor
data basis in terms of measurements [21,49].

A model is always a simplified representation of a real system and can therefore
never be without error, which results in the necessity of communicating of model
uncertainties [27,50]. Additionally, model complexity is directly related to data availability
and consequently to model uncertainty [51,52].

The first step of uncertainty analysis is the identification of the main uncertainty source.
This simplifies the quantification of model uncertainties in the workflow as the second
step [27,53,54].

In general, four sources of uncertainty should be distinguished in environmental
modeling: (i) input data; (ii) model parameters; (iii) model structure; (iv) observational
data [54,55].

One key source regarding input data uncertainty is the digital elevation model (DEM),
as it significantly impacts the spatial model discretization (2D mesh) of the surface runoff
process [43]. If the DEM and the 2D mesh are available in a suitable resolution, the
calibration of the sensitive model parameters is one further option to reduce the model
uncertainties [56].

The surface roughness parameter particularly depends on the land cover and the sur-
face slope described by the sheet flow condition [57,58]. This must be considered especially
in urban hillside catchments where higher surface slopes dominate. The steep surface also
influences further model parameters, such as the depression storage [59–61] and the hy-
draulic capacity of rainwater manholes on the streets [62,63]. Therefore, model parameters
in hillside catchments must be selected in different ways than in flat urban catchments.

The uncertainties of model structures include the basic model approach (black box,
grey box, white box) [64], the relevant processes (e.g., hydrological or hydraulic) [50] and
the accurate mathematical description as well as the required boundary conditions [65].

The uncertainties of observations include a wide spectrum [66], from measured input
data (e.g., precipitation data) to measured time series used for calibration, such as flow
measurements [65]. The lack of measured calibration data often results in an alternative
way based on damage data and field observations (e.g., photo and video documentation
from social media) to qualitatively validate urban flood models [49,67,68]. Damage data
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itself introduces uncertainties, for instance resulting from the visual estimation of a selected
model variable (e.g., water depth).

While there are numerous studies on flooding in flat urban and peri-urban catchments
(e.g., [43,69–72]), sites with a hillside characteristic are rarely analyzed. Such catchments
are often located on the border area of urban catchments. To bridge this gap, a flood
model in a hillside peri-urban study site in Graz, Austria was developed in this work. To
build up the model, two DEM in different qualities were used to address the impact of the
main input data. The differences in slope inclination will influence the selections of model
parameters and consequently the calibration and validation of the model. Additionally, two
different model structures (with (1D/2D) and without sewer system (1D)) were generated
to quantify the impact of the sewer system. These three main uncertainty sources (input
data, model parameters, model structure) are analyzed with a variance-based method to
identify the uncertainty source with the highest impact, to further the understanding of
uncertainties of urban flood modeling, particularly peri-urban hillside catchments.

2. Materials and Methods

A state-of-the-art modeling framework was used to build the urban flood model [73]
for the study site. We followed the three major steps in terms of modeling: (i) planning and
preparation; (ii) model formulation; (iii) model build, model validation) [74].

The main study objective (planning and preparation) is to identify the most impactful
uncertainty source within an urban flooding model. The dominant processes for urban
flooding are hydrological runoff generation, the spatial and temporal distribution of surface
water flow, flow in a potential urban stream and interaction with the sewer system in form
of possible flooding in the urban drainage system [75]. This resulted in a 1D/2D urban
flood model with three main model layers: (i) a fully distributed rainfall-runoff model;
(ii) a fully distributed 2D surface runoff model (urban surface and urban stream); (iii) a
hydrodynamical 1D sewer model. Calibration and validation of the model is based on
surface flow and water depth at two monitoring sites and documentation from the sewer
operator, fire department and interviews with affected persons. Based on this structure, an
urban flood model was built for the hillside study site.

Three main uncertainty sources (n) are analyzed in this study and each of them has two
options (k) which resulted in eight different scenarios (nk) (Figure 1). Two available digital
elevation models (DEM) represent the main input data to create the urban flood model.
The first one represents the original DEM (DEMraw) and the second will be modified with
obstructions (DEMmod) as demonstrated by [43]. Furthermore, the spatial resolution of
the DEMraw is 1 × 1 m and is lower than that of the DEMmod with 0.4 × 0.4 m.

Based on a comprehensive literature review the initial value of the sensitive model
parameters were selected. Liu et al. [48] identified the surface roughness, the hydrological
losses such as interception and the infiltration capacity as the key parameters in terms
of urban flood modeling. These parameters were calibrated for the steep surface areas
to quantify the influence of a high surface slope. This resulted in two different model
scenarios with initial literature values for the sensitive model parameters and calibrated
values for steep surface conditions. The last analyzed uncertainty source represents two
different model structures to identify the impact of the sewer system. Therefore, a coupled
1D/2D model with the sewer system and secondly a 2D model without the sewer system
were selected. Precipitation data of two heavy storm events are available for the catchment.
One event was used to calibrate the basic model and the other to demonstrate the analysis
regarding the identifications of the highest-impact uncertainty sources.
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Figure 1. The model scenarios used to identify the highest-impact uncertainty source (input data:
DEM raw (A), DEM mod (B); model parameter: initial parameter set-up (1), calibrated parameter
set-up (2) and model structure: integrated 1D/2D (i), only 2D (ii)).

2.1. Study Site Annabach

A small study site in Graz, the capital of Styria, a southern province of Austria, with a
total catchment area of 132 hectares was selected. Graz is located on the southern outskirts
of the alps and is influenced by Alpine and Mediterranean climate and can be classified as
a humid continental climate [76]. The local climate is also influenced by alpine conditions
with cold winters and warm summers. Average precipitation per year is 860 mm and the
majority of storms can be classified as convective summer storms [20].

The Annabach catchment can be described as a small peri-urban valley on the outskirts
of Graz, with two hillsides to the north (average slope about 10 degrees) and the south
(average slope of about 15 degrees) (Figure 2). The catchment is predominantly serviced
by a combined sewer system, with the selection of a few sub-catchments serviced with a
separate sewer system. Therefore, the urban drainage system considers only the combined
and the stormwater sewers. The catchment also includes a small urban stream with a base
flow between 5 and 10 L per second. Due to the urban character of the catchment, the
stream is situated next to and crossed by residential properties. The combination of runoff
in the hillside and flat areas, the sewer system, and the buildings situated next to the urban
stream result in a high damage potential in case of a heavy storm event in this catchment.
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Figure 2. The location of the Annabach catchment inside the City Graz in Austria (a), the land cover
distribution in the Annabach catchment (b), the locations of the measurement systems (c) and the
recorded damage data in Annabach catchment (d).

2.2. Data Requirements

The required data to model and analyze urban flooding in the Annabach catchment
are categorized in three general groups [77,78]:

1. Input data (e.g., rainfall data, terrain data, obstruction data);
2. Modeling data (e.g., land cover data to define the model parameters);
3. Calibration and validation data (e.g., streamflow measurement data, flood damage

data, interviews, social media data)

Two DEM based on airborne laser scan data (ALS) are available for the study site.
The first DEMraw has a spatial resolution of 1 × 1 m. The second DEMmod include
the modification of the micro-structures combined with a higher spatial resolution of
0.4 × 0.4 m. Wang et al. [43] demonstrated the importance of revising the DEM with urban
micro-structures identified by a digital surface model (DSM). Additionally, culverts under
bridges, micro-boundaries due to the flood paths along the streets and small walls along
the private grounds must be considered. All these micro-structures influence water flow
on the surface [43]. To quantify the impact of accurate terrain and obstruction data for
urban flood analysis, these obstructions were revised based on Google Earth data, open
data orthophotos (e.g., from https://basemap.at/ (accessed on 2 December 2021)), expert
interviews and personal location inspections. Furthermore, the revised obstructions are
integrated in the DEMmod. Based on these two DEMs, the spatial discretization of the
surface runoff was generated with two different 2D meshes.

https://basemap.at/
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Two extreme storm events were observed in the catchment, one on 13 August 2020
with a return period of 90 years and one on 30 July 2021 with a return period greater than
100 years. Both events were convective storm events with high rainfall intensity and short
event duration (Figure 3). The extreme storm event on 13 August 2020 was used to calibrate
the model. The event on 30 July 2021 was used for the identification of the highest-impact
uncertainty source. The precipitation data are measured by weighing precipitation gauge
in the catchment (Figure 4) with a temporal resolution of one minute and measurement
accuracy of 0.1 mm.

Figure 3. Extreme storm events in the Annabach catchment including flow in the Annabach stream
used for calibration (left side) and identification of the most impact uncertainty source (right side).

Figure 4. Locations of the measurement systems in the Annabach Catchment: (a): flow mea-
surement system, (b): rain gauge, (c): camera system to generate frames of water depth in the
Annabach stream).
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The required hydraulic and hydrological model parameters (e.g., surface roughness,
hydrological losses, infiltration parameters) depend, among other factors, on the land
cover. These data are provided by the surveying department of the city of Graz and were
classified into six land cover classes (impervious, green areas, forest and trees, farmland,
water areas and buildings (Figure 2)). The land cover types were revised with open data
orthophotos (Google Earth, OpenStreetMap, basemap). The combined sewer network
data (e.g., conduits, manholes, junctions, and special structures such as combined sewer
overflows (CSO)) were provided by the operator, Holding Graz Water Management.

The available observation data are classified into quantitative and qualitative calibra-
tion data. The quantitative data stem from a portable flow measurement system (PCM-Pro)
and a camera system that generates continuous photo series and videos of water depth
gauges upon activation when a threshold water depth of 0.1 m is surpassed (Figure 4).
Additionally, qualitative data, i.e., reported flood locations, based on emergency reports
from local fire departments, were available. These include the locations and the severity
of an emergency in the catchment. Further, spatial data on manhole clogging and sewer
surcharging has been provided for the 13 August 2020 event. Both qualitative data and
quantitative camera data are only available for the 30 July 2021 event. Therefore, the flow
data and the damage data were selected to calibrate and validate the model. Both data
sources were used to analyze the impact of the different uncertainty sources.

2.3. Uncertainty Source: Input Data

The flow direction of the modelled surface runoff is highly influenced by terrain data
and its spatial resolution [56]. Therefore, the DEM represents one of the most sensitive
model inputs. When structures such as buildings, walls, fences, and underpasses were not
included, the calculated flow path resulted in unrealistic directions. One way to reduce
this error was the revision of the DEM as the main input data to create the 2D mesh. A
combination of information from web-based orthophotos (e.g., basemap, Google Maps,
Google Earth or OpenStreetMap), the digital surface model (DSM) and field studies were
used to identify microstructures impacting flow directions on the surface. Three main
micro-structures were selected to work into the DEM and subsequently the 2D mesh
(Figure 5):

1. All micro-obstructions of the private and the public ground that obstruct flows
(e.g., walls and fences);

2. Validation of buildings with changes in geometry and implement new buildings that
are not included in the old data source (e.g., land cover data);

3. Take all pathway boundaries along the streets into account, including the gaps due to
street entrances.

2.4. Uncertainty Source: Model Parameters

The sensitive model parameters on steep areas were optimized using the Sensitivity-
based Radio Tuning algorithm (SRTC) which is demonstrated by [79]. The SRTC-algorithm
can be described as a partial linear optimization algorithm that benefits from a suitable
number of simulations due to the partwise linear approach. Non-linearity is approximated
by the number of points within the selected parameter limits and an iterative validation
simulation after the optimization.

Based on the study demonstrated by Liu et al. [48], the surface roughness, hydraulic
conductivity and hydrological losses (i.e., interception and depression storage) have been
identified as the parameters to calibrate in this research. Only locations with a high surface
slope (>5 percent) were selected for calibration due to the hillside character (more than
70 percent of all hydraulic elements).
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Figure 5. Modification of the DEMraw (a) and the revised 2D mesh (b) as a result of a field study
with photo documentation, identification of missing obstructions with the digital surface model and
validation of the spatial structure with open online-mapping tools such as Google Maps, Google
Earth, or OpenStreetMap.

The SRTC algorithm started with an initial value as a reference scenario and varied
within a predefined range (R) of realistic parameter values based on a comprehensive
literature review (Appendix A.1.). For the definition of the parameter range, outliers in the
parameter’s distribution were removed and the median was selected as the initial value.
The outliers were defined as values over and under 1.5 times the interquartile range. For
the variation of the parameters, the minimum of the difference to the upper or lower limit
values was used to guarantee that the realistic parameter space is not exceeded (Figure 6).

Figure 6. Definition of the parameter range to use the Sensitivity-based Radio Tuning method (SRTC).

Inside this range, eight sensitivity points were defined and each of them resulted in an
independent simulation, leading to a total of 49 simulations. Due to the eight sensitivity
points for each selected parameter, the non-linearity of the model could be considered.
Based on the simulations, each sensitive model parameter could be varied individually and
compared with the change of the observed time series (e.g., flow, water depth) by selected
performance indicators. The variation of the parameter in hillside catchments depends on
the surface slope. For example, the surface roughness as one key parameter was assumed
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to be higher on hillside areas than on flat terrain [57,58]. Equally, it can be assumed that
the surface storage is lower in strongly sloped surfaces. This effect is described by the
following relation between the surface slope, the depression storage in flat areas, and the
spatial resolution of each land cover class. The complete description of Equation (1) is
attached in Appendix A.2.

ds = DS2/
(
2θ
√

A/π
)
[mm]

range : ds = f(DS, θ ) =

{
ds ∈ R θ > 0
A ∈ R A > 0

(1)

A = area of the 2D cell [m2]; DS = depression storage flat area [mm], θ = surface slope [–];
ds = reduced depression storage [mm].

The flow measurement data at the end of the catchment are used to compare the
simulation results with the observation of the heavy storm event on 13 August 2020. Three
objective functions are used to quantify the performance of the urban flood model (Nash-
Sutcliff-Efficiency (NSE), Peak Error (PE), Volumen Error (VE)). VE and NSE were selected
to evaluate the complete event on the one hand and the important peak flow value PE on
the other hand.

The second step was the validation of the urban flood model with the optimum
parameter set after the calibration. The defined flooding areas were compared with the
operating transcripts of the fire department, public interviews of affected persons, photo
and video documentation of the sewer operator for the 13 August 2020 heavy storm event
in a qualitative way. This is recommended to assess not only the temporal variation of the
flow at one specific measurement point, but also the spatial distribution of the flooding
area in the whole catchment area. Therefore, it is essential to determine the threshold value
for the definition of the inundation area as well as the appropriate model variable. Previous
studies based on experimental tests have demonstrated that a combination of flow velocity
and water depth should be used to define the flooding area [80,81] with a threshold value of
0.3 m2/s [82]. Based on these values, the simulated flooding area can be compared with the
observations of damages and quantified by the creation of the contingency table [83]. The
following qualitative performance indicators based on the confusion matrix are selected to
quantify the model quality and are attached to Appendix A.3. (model accuracy, frequency
bias, hit rate, false alarm rate and success index).

2.5. Uncertainty Source: Model Structure
2.5.1. D/2D Urban Flood Model

The commercial modeling software PCSWMM2D (version 7.4.3240) [84] by CHI-Water
(https://www.pcswmm.com/ (accessed on 22 December 2021)) was used for this study.
The implemented urban flood model is based on the EPA Storm Water Management
Model (SWMM) 5.1 [28]. This model was frequently applied in the field of urban drainage
modeling (e.g., [85–87]). The model combines two general model types. A cell-based
approach for spatial discretization resulting in a raster with a predefined spatial resolution
and geometry (2D cells). This approach was similar to models based on cellular automata
(CA) such as LISFLOOD-FP [88]. The full hydrodynamic 1D de Saint-Venant equations
(continuity equation (Equation (2)) and conservation of momentum (Equation (3)) solved
the water transport between each 2D cell. This resulted in a 2D mesh consisting of nodes
and open conduits to determine water depth in each node and flow velocity in each conduit.
Therefore, both models 1D and 2D can be described by the same mathematical formulations
(Equation (2) and Equation (3)), which allows the use of the same timestep in both models.
Each 2D cell represented one specified land cover class, allowing the determination of each
relevant hydrological subprocess (infiltration, precipitation, evapotranspiration, or snow
melting) for the generation of the surface runoff in a fully distributed way.

The implicit backwards Euler method is used to solve the 1D de Saint-Venant equa-
tions [89]. The appropriate choice of the variable time step depends primarily on the spatial

https://www.pcswmm.com/
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discretization of the 2D surface. For this reason, the resolution of the 2D mesh is the key
parameter regarding the required computational effort.

δA
δt

+
δQ
δx

= 0 (2)

δQ
δt

+
δ
(
Q2/A

)
δx

+ gA∗δH
δx

+ gASf + gAhL = 0 (3)

x = distance [m]; t = time [sec]; A = cross area [m2]; Q = flow rate [m3/sec]; H = hy-
draulic head [m]; Sf = friction slope [–]; hL = local energy loss [-]; g = acceleration of
gravity [m/sec2].

Water transport in the sewer system is also determined by the full 1D de Saint-Venant
equations. To determine the head at the nodes, the difference between inflow and out-
flow in the linked conduits is equal to the time difference of the volume for normal flow
conditions (Equation (4)). If at one time-step all connected conduits are pressurized, the
nodal continuity equation (Equation (5)) must be replaced with a perturbation equation
(Equation (5)) [89].

δH
δt

=
∑ Q

ASN + ∑ ASL
(4)

∑
[

Q +
δQ
δH

∆H
]
= 0 (5)

Q = CdA0
√

2gHe (6)

V = node assembly volume [m3]; t = time [sec]; ASN = node assembly surface area [m2];
ASL = surface area of connected links; Q = flow rate [m3/sec]; H = hydraulic head [m];
DH = adjustment to the node head [m]; Cd = discharge coefficient [-]; A0 = open area [m2];
[-]; g = acceleration of gravity [m/sec2]; He = head difference [m].

The bidirectional connection between the surface and the sewer system is described
with a bottom orifice as a hydraulic element in the model. The interaction with the surface
in the case of a sewer surcharging is given by the Torricelli’s law in Equation (6) and needs
only the water depth in the sewer node or the water depth on the connected surface node
of the 2D Mesh. A detailed description of the mathematical formulation of the flow routing
in the conduits and the exchange between the sewer system and the surface is given by
Rossman [89].

Rainfall volume coming from buildings is considered in two ways in the model. The
rainfall on the buildings erected before 2005 is directly connected to the sewer system. All
other buildings drain the rainwater directly on the surface. This assumption had to be
made due to a new regulation implemented by the city of Graz since 2005, specifying that
stormwater cannot discharge directly into the sewer system.

2.5.2. D Model

The 2D model used the same approach to calculate the flooding areas as the 1D/2D
model scenario. This resulted in the combination of the CA-approach and solving of the full
1D de Saint-Venant equations for the water transport between the cells. The surface runoff
as the input for each cell based on the land cover class. The only difference to the 1D/2D
model scenario is to ignore all processes of the sewer system such as sewer surcharging or
sewer overflows. This resulted in a 2D model that only considered the surface runoff and
the discharge in the stream.

2.6. Identification of Uncertainty Source

The main study objective is to identify the most impact of the three analyzed uncer-
tainty sources: (i) influence of the DEM quality and resolution as one main input data for
urban flood models; (ii) influence of three selected sensitive model parameters (surface
roughness, hydrological losses, hydraulic conductivity); iii) impact of the sewer system as
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one main element of the model structure. However, the presented method is designed for
general usability, allowing it to analyze the impact of any source of uncertainty.

Model uncertainty is defined as the difference between the simulated and the observed
objective value under consideration of all possible errors [51]. Therefore, the empirical
variance as the mean squared deviation from the empirical mean value is suitable to
quantify the impact of different uncertainty sources on the model, depending on the
selected model variable. This is described with the uncertainty value UCk (Equation (12)).
In this study, two measurement sites with different physical values (water depth and flow)
are available. This allows the analysis of uncertainty sources with the highest impact on
these two variables.

RDt = 100×
XSim,t − XObs,t

XObs,t
(7)

→
RDs = (RDt0, RDt1, . . . . . . . . . , RDtn)

T (8)

Rs =

∣∣∣∣max
(

⇀
RDs

)
−min

( →
RDs

)∣∣∣∣ (9)

Rij = Rsi − Rsy (10)

sk
2 =

1
n− 1

n

∑
ij=1

(
Rij − Rij

)2 (11)

UCk =
√

s 2
k (12)

UCmax = max(UCk) (13)

Xsim,t = simulated value at a timestep t; Xobs,t = observed value at a timestep t; RDt = relative

diviation at a timestep t;
⇀

RDs = vector of the relative deviation for each scenario s;
Rs = range of each scenario s; Rij = difference of range Rs between two scenarios i and j;
Rij = mean value of all comparisons; UCk = uncertainty value of each comparison k;
sk

2 = empirical variance of the compared scenarios Rij; UCmax= identifier of the most
impact uncertainty source.

First, the range (Rs) of the relative deviation for each of the eight scenarios and both
model variables is determined using the differences between the observation and the
simulation at each reported timestep (RDt). Each of the three uncertainty sources has
two options:

1. DEMraw and DEMmod (input data);
2. Sensitive model parameters with literature values and calibrated values (parameters);
3. 1D/2D model and 2D model (model structure).

Consequently, four relative scenario comparisons regarding each source are used to
estimate the UCkvalue. The maximum of each UC value represented the identifier for the
most impact uncertainty source UCmax (Equation (13)).

3. Results & Discussion
3.1. Model Calibration and Validation

The first step in the model evaluation was to optimize the sensitive model parameters
at the point where the flow measurement system in the Annabach stream is situated
(Figure 4). This step can be described as the quantitative model evaluation part.

Three sensitive hydrological parameters (hydrological losses, hydraulic conductivity
and surface roughness) and one hydraulic model parameter (surface roughness) are used
to calibrate the model. The surface roughness value in the hydrological model is also used
for the hydraulic surface model. Each parameter was classified into six land-cover classes,
which are generally divided into impervious and pervious areas.

Eight sensitivity points are used by the SRTC algorithm, and this resulted in 48 simulations
to find the optimal parameter setup. Each scenario with the base DEM needs 1.5 h (min-
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imum timestep of 0.15 sec) and for the revised DEM with the detailed 2D mesh 12 h
(minimum timestep of 0.10 sec) to simulate the event of 13 August 2020 with a total event
time of five hours. An Intel (R) Core (TM) i7-7700 CPU with 3,60 GHz and 16 GB RAM
was used for all simulations. After the optimization and the validation with the SRTC
algorithm, an optimized parameter vector can be determined (calibration value in Table 1).

Table 1. Calibration of the sensitive model parameter surface roughness, hydrological losses (depres-
sion storage and interception), and the hydraulic conductivity.

Model Parameter: Surface Roughness [m−1/3/1]

Land Cover Parameter Range Initial Value Calibration Value Rel. Difference[%]

impervious 0.0105–0.024 0.016 0.02 34
green area 0.13–0.352 0.275 0.34 28

forest/tree/bush 0.012–0.8 0.275 0.51 95
farmerland 0.02–0.18 0.041 0.14 151

water 0.02–0.2 0.059 0.03 66
Buildings 0.011–0.074 0.018 0.023 38

model parameter: losses [mm]

land cover parameter range initial value calibration value range (R) [%]

impervious 0.8–2.34 1.94 2.35 21
green area 3.75–9.64 5.78 8.09 35

forest/tree/ bush 4–13.26 8.14 11.4 51
farmerland 3.25–12.55 7.06 11.4 53

water - - - -
buildings 0.74–4.23 2 3.28 63

model parameter: hydraulic conductivity [mm/h]

soil type parameter range initial value calibration value range (R) [%]

loam-sand 0.25–360 29.9 (loamy sand) 59.94 (sand) 100

The calibrated model resulted in good model performance in the corresponding
reference point after the optimization, which is quantified by an NSE from 0.76 to 0.92, the
PE from −0.18 to 0.12 and the low VE from zero. The influence of steep surface on the
accurate model parameter selection can be assessed, because only the sensitive parameters
in the hillside area are optimized. The results of the parameter optimization demonstrate
that especially the roughness parameter should be increased in hillside areas. This also
confirms the hypothesis to separate the parameter set-up in hillside areas from those in flat
areas, which was derived from the studies demonstrated by LUBW [57] and USDA [58].

Moreover, the surface flow is based on the 1D de Saint-Venant equations in the ordinary
global coordinate system. Juez et al. [90] recommend a transformation of the gravitation
terms in the equations in a local coordinate system if a steep slope condition occurs. This
is especially relevant if sediment transport processes and granular flows are investigated.
The differences between the use of a global coordinate system and a local coordinate
system can be compensated by increasing the roughness parameter in a realistic range [91].
Additionally, the effects are relevant for events with long durations. This could also be
confirmed by the results of the calibration. Therefore, the calibration represents an essential
part, especially if the traditional mathematical formulations and solving of the 1D de
Saint-Venant equations are used. In contrast, the results of the calibration do not indicate a
reduction of hydrological losses in hillside areas. Although this should occur due to the
geometric relationships (Equation (1)). One possible explanation is that the precondition of
the water content in the soil zones and the surface storage is considered as a very simplified
initial condition in the model, which resulted in an undersized starting storage capacity [92].
Therefore, it can be deduced that even in event-based modeling, the pre-condition on the
soil zones must always be analyzed in detail.
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The qualitative evaluation represents the second part of the model evaluation. The
results of the calibrated model are the basis for the qualitative evaluation, which aimed to
verify the spatial distribution of the flooding areas in the whole catchment. This resulted
in a model accuracy of 0.993 (best value 1), success index of 0.65 (best value 1) and a
frequency bias of 1.67, which is an indicator that the model overestimates the flooding
areas (frequency bias >1).

Based on the presented quantitative model calibration and qualitative model validation
the spatial and temporal distribution of the flooding event on 13 August 2020 could be
evaluated in a sufficient way (Figure 7). For this reason, the presented combination of
two evaluation methods is suitable to evaluate the spatial and temporal distribution of the
flooding processes, which results in a more robust model.

Figure 7. Model calibration and validation with the real heavy storm event on 13 August 2020:
validation of the spatial distribution of the urban flooding process with the recorded damage data
and flooding area (a); consideration of the temporal distribution of urban flooding with the surface
flow comparison in the Annabach stream on the end of the study site (b); resulting contingency table
and the performance indicators (c).
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In addition, the simulation with the second event on 30 July 2021 confirms the selec-
tion of the sensitive calibrated model parameters in hillside areas, especially the surface
roughness (NSE = 0.91, PE = 0.07, VE = 0.2).

3.2. High-Impact Uncertainty Sources

For the identification of the uncertainty sources with the highest impact, the event
on 30 July 2021 is analyzed at two monitoring sites and consequently two variables, flow
(Figure 8) and water depth (Figure 9). The range of the relative deviation (Rs) represents
the value to quantify the impact of uncertainties. The presented NSE and PE are model
performance indicators in comparison to the measurements for each of the analyzed
scenarios. Rs is used to determine the UCk value for each scenario. This is required to
identify the highest source of uncertainty and is not an indicator of model performance.
This value can also be used to support the communication of uncertainties as, for example,
required by Grayson and Blöschl [50] and Teng et al. [27].

The best model performance for the variable flow represents scenario A.2.i (Figure 8b)
quantifies with the NSE of 0.91, which is in a similar range as scenario B.2.i with the NSE
of 0.89 (Figure 8f). This is an indicator that the calibration of the model and the model
structure have a high influence on the model performance. The best model performance
of scenario B.2.i with an NSE of 0.82 regarding the variable water depth confirms these
conclusions (Figure 9f).

The comparison between the results of the eight scenarios regarding the variables
flow and water depth shows a significant difference in the relative deviation range (Rs). The
difference between the maximum and the minimum Rs of all eight simulated scenarios
for variable flow is 344.49. In contrast, the difference for water depth is only 72.11. The
identification of the highest-impact uncertainty source is dependent on the selected variable
and the corresponding monitoring sites. For this reason, the interpretation of results
regarding the high-impact uncertainty source is differentiated by the two variables flow
(Figure 10a) and water depth (Figure 10b).

The resulting UC values for the uncertainty source input data regarding both variables
are in a similar range (45.59 for flow and 29.17 for water depth). The same UC for the
uncertainty source model parameter is about 71.17 for flow. In contrast, the UC value of
water depth is 12.41. The UC values for the model structure as the uncertainty source are
47.81 for flow and 9.81 for water depth.

In comparison to the model parameter and model structure, the UC value regarding
the flow and the input data as uncertainty source has the lowest value, but this UC has the
highest value for the assessment in terms of the water depth. Thus, it can be derived that an
improvement of the input data (validation of the micro-structures and higher resolution of
the DEM) is only useful in the case of an assessment of the urban flooding concerning the
water depth.

If the flow on the surface must be considered for an urban flood assessment, the
optimization of the sensitive model parameters has the highest impact in hillside catchments
(UC = 71.17). In particular, the optimization of the surface roughness in steep locations is
impactful. This conclusion must be re-evaluated if a model is used with the formulation of
the mathematical equations in a local coordinate system because this represents the flow
characteristics more realistic at a steep surface [90,91]. In contrast, an optimization of the
model parameters for an evaluation concerning the water depth does not have a large impact
(UC = 12.41). Similar conclusions are reached by Hunter et al. [56], who identify model
calibration as a useful way to reduce uncertainties in urban flooding modeling.
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Figure 8. Range of relative deviation (Rs) for the model variable flow to estimate UCk of each scenario
(a–h) for the identification of the most impact uncertainty source and NSE and the PE to evaluate the
model performance of each scenario.
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Figure 9. Range of relative deviation (Rs) for the model variable water depth to estimate UCk of each
scenario (a–h) for the identification of the most impact uncertainty source and NSE and the PE to
evaluate the model performance of each scenario.
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Figure 10. Identification of the most impact uncertainty source with the standard deviation UC of
the four scenarios comparisons for each uncertainty source (input data, model parameter, model
structure) and the two analyzed model variables flow (a) and water depth (b).

The influence of the sewer system as a source of uncertainty in the model structure
has the most impact in terms of the absolute deviations of all four compared scenarios
concerning the flow with Rij of 197.55 (Figure 10a). This also confirms the conclusions of
Dong et al. [38], GebreEgziabher and Demissie [39], and Zhou et al. [40]—that the sewer
system can not be discarded in terms of urban flooding. Furthermore, a simplified approach
with source and sink terms, as demonstrated by Wang et al. [43], should be used carefully.

In summary, the sensitive model parameters are identified as the highest-impact un-
certainty source regarding the variable flow for urban flood modeling in hillside catchments.
Therefore, especially when assessing the urban flood risk using damage functions that
consider water depths and flow, the selection of sensitive model parameters (e.g., surface
roughness) in the course of calibration is essential. If the water depth is the selected variable,
the improvement of the DEM as the input data has the highest impact compared to the
uncertainty sources model parameter and model structure. Therefore, the validation of
microstructures and the resolution of the DEM represent the main potential to reduce the
uncertainty in this context. In addition, the combination of a DEM revision, the optimiza-



Water 2022, 14, 1973 18 of 25

tion of sensitive model parameters and the use of a 1D/2D model as a general model
structure provide the best results. Similar conclusions are expected in catchments with flat
terrain conditions but need further investigation.

4. Conclusions

The focus of the study was to identify the most impact of three main uncertainty
sources (input data, model parameter, model structure) in terms of urban flood modeling
in a hillside study site. To identify the high impact source, a transferable variance-based
approach with only one value (UC) was developed by using two monitoring sites and two
variables (flow and water depth).

In general, the variable water depth represents the lower sensitive variable, which is
demonstrated by the range of relative deviation (Ri) between simulations and observations
(maximum Ri of 442.52 percent (flow) and maximum Ri of 147.03 percent (water depth)).
Therefore, the main conclusions differentiated between the two available variables. The
calibration of the sensitive model parameter represents the most-impact uncertainty source
regarding the variable flow (UC = 71.17). Additionally, the high mean value of 197.55 (Ri)
for the uncertainty source model structure indicates the importance of the sewer system in
terms of urban flooding in hillside catchments. For this reason, an urban flood model should
include the sewer system. The comparisons of the eight scenarios with the observations
confirm this conclusion because the scenarios with the 1D/2D model as model structure
provide the best results (NSE of 0.91 for flow and NSE of 0.82 for water depth). The input
data represents the high-impact uncertainty source if the water depth is selected as the
relevant variable (UC = 29.17). Especially the validation of micro-structures (walls, pathway
boundaries, buildings) resulted in good adaptions regarding the water depth (NSE of 0.82).
Other input data such as spatially distributed precipitation can represent a further relevant
uncertainty source, but they are not analyzed in this study.

The presented study includes only one hillside catchment and two real heavy storm
events. For robustness of the derived conclusions, it is desirable to test the same method in
several catchments with hillside locations and further real heavy storm events. Furthermore,
it should be clear that not every possible uncertainty source can be analyzed in one study,
but the results provide an initial picture regarding uncertainties in terms of urban flood
modeling in hillside catchments.

Author Contributions: Conceptualization, S.R., G.K. and D.M.; methodology, S.R.; software, S.R.;
validation, S.R.; formal analysis, S.R.; investigation, S.R.; data curation, S.R.; writing—original draft
preparation, S.R.; writing—review and editing, S.R., G.K., M.P. and D.M.; visualization, S.R., M.P.;
supervision, D.M.; project administration, D.M.; funding acquisition, D.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Provincial Government of Styria in terms of the In-
terreg Central Europe Project RAINMAN (Interreg Central Europe Project CE968: https://www.
interreg-central.eu/Content.Node/RAINMAN.html (accessed on 08 February 2022)). Additionally,
the research was supported by Open Access Funding by the Graz University of Technology.

Data Availability Statement: All used data are provided by the city of Graz to build-up the model
and for the model calibration the Institut of Urban Water Management and Landscape Engineering.
These can be provided on request.

Acknowledgments: We want to thank all partners of the RAINMAN project team for their great
work, input, and funding of this research. We would also like to thank numerous departments of
the city Graz, who supported this work with the data to build-up the urban flood model. Addi-
tionally a big thank you to Computational Hydraulics International (CHI-Water) which supports
this research by using the software PCSWMM2D. A special thank you goes to Michael Pointl and
Albert Wilhelm König who supported this work through numerous discussions regarding paper
structure and language style. A primary thank you to both reviewers which support this research
with helpful comments.

https://www.interreg-central.eu/Content.Node/RAINMAN.html
https://www.interreg-central.eu/Content.Node/RAINMAN.html


Water 2022, 14, 1973 19 of 25

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper. The
funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in
the writing of the manuscript, or in the decision to publish the results.

Appendix A

Appendix A.1. Overview of Sensitive Model Parameters of the Flooding Process

Table A1. Overview of the model parameters surface roughness for urban flood models.

Model Parameter: Surface Roughness [m-1/3/1]

Source Impervious Green
Area

Trees and
Bushes Farmland Water Buildings

[93] 0.12 0.352 0.3 0.09 - 0.011
[45] * 0.014 - 0.189 0.043 0.022 0.074
[94] * 0.048 0.275 0.4 - - -
[95] 0.015 0.28 0.45 0.02 - -
[51] 0.015 0.28 0.45 0.02 - -

[48] * 0.0176 0.285 - - - 0.012
[57] 0.036 0.233 0.25 0.096 0.0953 0.018
[96] 0.0155 0.3250 0.6 0.115 - -
[97] 0.0105 0.014 0.012 - - 0.0125
[98] 0.0125 0.2 0.25 0.04 0.02 0.05
[99] 0.0155 0.253 - 0.12 0.12 0.15

[100] 0.0105 0.065 0.12 0.038 - 0.035
* calibrated values.

Table A2. Overview of the model parameters surface roughness for urban flood models.

Model Parameter: Losses [mm]

Source Impervious Green Area Trees and
Bushes Farmland Buildings

[101] 1.88 3.75 8 - -
[102] * 2.34 9.64 13.26 12.55 -
[103] ** 3 9 11.67 9 4

[59] 0.9 4 4 8.28 0.9
[104] *** 1.2 5.55 7.46 5.83 0.74
[48] *** 2 6 10 - 2
[105] 0.8 4.8 6.2 3.25 -
[61] 2.07 7.65 8.28 8.28 4.23

* interception and depression storage; ** only depression storage; *** calibrated values.

Table A3. Overview of the parameter hydraulic conductivity for urban flood models.

Model Parameter: Hydraulic Conductivity [mm/h]

Source Sand Loamy
Sand

Sandy
Loam Loam Siltloam Sandy

Clayloam SandyClay Silty Clay Clay

[106] 11.4 7.6 7.6 3.8 1.3 1.3 1.3 1.3 1.3
[107] * 360 11.7 - 2.34 - - - - 0.44
[108] 210 - - 13.2 - - - - 0.6
[109] 297 - - 2.6 - 13.1 - - 2.6
[110] 150 - 3.5 - - 4.5 - 0.54 -
[111] 120.34 29.97 10.92 3.3 6.6 1.52 1.02 0.51 0.25
[99] 210 61 26 13 6.8 4.3 1.2 0.9 0.6
[112] - - 44.2 10.4 4.5 13.08 - - 2.58

* experimental values.
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Appendix A.2. Reduction of the Depression Storage in Hillside Areas

Figure A1. Conceptual approach to reduce the model parameter depression storage depending on
the surface slope.

A = W× L with L ≈ R − > A = W× R (A1)

A = R2 × π − > R =
√

A/π (A2)

A = W×
√

A/π − > W = A/
√

A/π (A3)

W =
√

A× π (A4)

θ = tan(α) (A5)

tan(α) = DS/X (A6)

θ = DS/X (A7)

X = DS/θ (A8)

a = (X×DS)/2 (A9)

a = DS2/ (2× θ) (A10)

V1 = a×W (A11)

V1 = DS2 ×W/ (2× θ
)

(A12)

V1 = DS2 ×
√

A× π/ (2× θ) (A13)
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V2 = ds× R×W = ds× R×
√

A× π (A14)

V1 = V2 = ds× R×
√

A× π (A15)

DS2 ×
√

A× π/ (2× θ) = ds× R×
√

A× π (A16)

dsred =
DS2

2× θ×
√

A/π
(A17)

Appendix A.3. Qualitative Objective Functions

Figure A2. Definition of the contingency table values (Hits, False Alarms, Misses, Correct Negatives)
as qualitative comparison between modelled and observed flooded areas [113].

model accuracy =
Hits + Correct Negatives

Hits + False Alarms + Misses + Correct negatives
(A18)

frequency bias =
Hits + False Alarms

Hits + Misses
(A19)

hit rate =
Hits

Hits + Misses
(A20)

false alarm rate =
False Alarms

Correct Negatives + False Alarms
(A21)

success index =
1
2

(
Hits

Hits + Misses
+

Correct Negatives
nObservation

)
(A22)

Appendix A.4. Quantitative Objective Functions

NSE = 1− ∑n
i=1
(
yobs

i − ysim
i
)2

∑n
i=1
(
yobs

i − yobs
mean

)2 (A23)

PE =

(
yobs

max − ysim
max

yobs
max

)
× 100 (A24)

VE =

(
Vobs −Vsim

Vobs

)
× 100 (A25)
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