
Citation: Tockner, A.; Lei, J.;

Ellermann, K. Fault Detection in

Offshore Structures: Influence of

Sensor Number, Placement and

Quality. Appl. Mech. 2022, 3, 757–778.

https://doi.org/10.3390/

applmech3030045

Received: 14 April 2022

Accepted: 21 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fault Detection in Offshore Structures: Influence of Sensor
Number, Placement and Quality
Andreas Tockner *, Jixiang Lei and Katrin Ellermann

Institute of Mechanics, Graz University of Technology, Kopernikusgasse 24/IV, 8010 Graz, Austria;
jixiang.lei@tugraz.at (J.L.) ellermann@tugraz.at (K.E.)
* Correspondence: andreas.tockner@tugraz.at

Abstract: Within the Space@Sea project floating offshore islands, designed as an assembly of plat-
forms, are used to create space in offshore environments. Offshore structures are exposed to harsh
environment conditions. High wind speeds, heavy rainfall, ice and wave forces lead to highly
stressed structures. The platforms at the Space@Sea project are connected by ropes and fenders.
There exists the risk of a rope failing which is therefore investigated subsequently. To ensure the
safety of the structure, the rope parameters are monitored by the Extended Kalman Filter (EKF). For
platform arrangements, a large number of sensors is required for accurate fault diagnosis of these
ropes, leading to high investment costs. This paper presents a strategy to optimize the number and
placement of acceleration sensors attached to the floating platforms. There are also high demands
on the sensors due to the harsh offshore conditions. Material deterioration and overloading may
lead to decayed sensor performance or sensor defects. Maintenance of offshore sensors is difficult,
expensive and often not feasible within a short time. Therefore, sensor measurement deviations must
not affect reliable structure fault detection. The influence of defect sensors on the rope fault detection
is examined in this study: Types, intensities, number, place of occurrence of defect sensors and the
distance between defect sensors and rope faults are varied.

Keywords: sensor fault; sensor placement; extended Kalman filter; offshore structure; multi body
dynamics; floating islands

1. Introduction

Sensors are used in almost every complex technical application and are indispensable
in daily life. Applications of sensors range from environmental monitoring, disease de-
tection, machinery and vehicle monitoring to robots and agriculture [1]. They also play
a major role in maritime applications such as logistic and shipping activities, to stay on
course and to prevent collisions, for characterizing the hydrodynamic performance of
designed hulls and machinery performance monitoring to detect failures, to optimize the
fuel consumption and to reduce environmental pollution [2]. For characterizing hydro-
dynamic performance in the work of [3] among others acceleration sensors are used to
investigate the heave and pitch motions of a ship on the resistance and the ice-breaking
pattern. In [4] floating-plate-type friction sensors are used to measure the friction reduction
in an experimental setting using air lubrication of the bottom of a flat plate. Examples
for machinery performance monitoring are given in [5] where the diagnosis of the coking
of a marine diesel engine injector nozzle is performed by measuring and analysing the
vibrations of the crankshaft and the study [6] use level sensors to estimate the position
and size of a breach of a damaged ship. Offshore sensors are established for arctic field
observation, e.g., to observe the arctic warming, CO2 and methane fluxes due to climate
change [7,8].

Another sensor application is safety monitoring of offshore structures. Structure
fatigue, corrosion, abrasion and external unwanted effects decrease structural safety. An
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outline of field monitoring of offshore structures and related sensor technologies is given
in [9]. The work of [10] uses sensor data and cosine similarity for multi damage detection.
Ref. [11] uses fibre bragg grating sensors and [12] ambient excitation for structure health
monitoring of offshore structures. Corrosion monitoring of a ship structure is shown in [13]
where mainly optical, acoustic, electromagnetic and galvanic sensors are used. Examples
of offshore riser monitoring can be found in [14] where fibre optic strain sensors monitor
the static and dynamic strain of offshore risers and in [15] acceleration measurement data
are used for monitoring riser damage due to wave and vortex-induced-vibration. Fault
detection in mooring lines of a floating offshore wind turbine is given in [16], further work
for mooring monitoring is done by [17].

This study is based on the impact of acceleration sensor data variation used for the
Kalman filtering (KF) technique to estimate parameters in offshore structures from which
faults in the structure are concluded. Sensor data variation is caused by different number
and placement of sensors and potential sensor defects. The KF plays a major role in
technical applications, some of them are given in [18,19]. The KF is an optimal filter to
obtain least square estimates by combining the information of the measured information
with the state prediction [20]. The input and measured values of a system are used for the
KF to estimate the states and parameter of a system whereas the quality and the amount
of measurement data influence the performance of the KF significantly. There are some
studies on Kalman filter applications in the offshore sector. In the work of [16] the KF is
used for the detection of mooring line faults in floating offshore wind turbines. In [21],
hydrodynamic coefficients matrices for an offshore tower are determined by the Extended
Kalman Filter (EKF).

Depending on the KF application, different sensors are used. For KF application
in chemistry, the measurements of, e.g., current, potential and concentrations serve as
input values [22], for moving object tracking by the KF, position and velocity are the
measurement inputs measured by GPS, radar, sonar, laser and speedometers [23], for
multi-body dynamics (MBD) state estimation by KF mainly inertia sensors for acceleration,
vibration, inclination, displacement and gyroscopic sensors are used. Parameter estimation
in MBD’s with many degrees of freedom by the KF algorithm often requires many sensors
to get adequate input data for the filter algorithm. More sensors provide more data, which
leads basically to more precise estimation results by the KF technique, with the drawbacks
of expensive hardware components and higher computational effort. Optimal sensor
placement minimizes the number of sensors used for KF applications. An overview of
methods for optimal decisions on the number, placement and type of sensors and actuators
is given in [24].

Offshore structures are exposed to harsh environment loads, high wind speed, icy
conditions and heavy wave forces overloading the structure and its superstructures. Per-
manent monitoring of the dynamic behaviour can be required to ensure the safety of these
structures. In the European Union Space@Sea project a concept to create space in marine
environment using flexible floating platforms is designed [25], areas of application of float-
ing offshore platform arrangements are given in more detail in [26,27]. This arrangement
consists of platform elements and some mooring elements attached to the corner platforms,
an example of such a platform arrangement is shown in Figure 1.

Depending on the number of connected platforms, this leads to a dynamic system
with many degrees of freedom. The platform elements and connecting elements of these
platforms are highly stressed due to tremendous forces caused by the harsh offshore
conditions. The connecting elements consist of ropes and fenders. The ropes are assumed
to be the critical elements, because there are only three ropes but twelve fenders per platform
side [28]. Because of the difficult accessibility to the ropes, local inspection is not feasible.
Therefore, the KF technique is used to estimate the rope stiffness parameters. Based on these
parameters, rope faults are detected without direct access to the damaged components.
Acceleration sensors are attached to the floating platforms, delivering measurement data
for the KF algorithm. Large platform arrangements lead to significant costs for sensor and
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measurement data equipment with adequate quality to get sufficient results by the KF
algorithm. The increasing computational effort of the KF algorithm using many sensors
must be considered to maintain real-time capability. Therefore, it is of great interest to
minimize the number of sensors while ensuring sufficient reliability in detecting rope faults.

Figure 1. Example of a floating platform arrangement with mooring lines on the corner platforms.

Defect sensors or sensor failure lead to wrong measurement data, which can lead to
dangerous or even disastrous consequences for people and equipment. The influence of
defect acceleration sensors on the estimation of seismic fragility of structures, controlled by
a linear quadratic Gaussian control and a KF algorithm, where the accuracy of the working
sensors is degraded by an uniform random noise signal, is shown in [29]. For offshore
applications sensor maintenance is more expensive and time-consuming. Defect sensors
with scaled measurement amplitude occurring in wind turbines, often located offshore, and
their detection is shown in [30]. To ensure adequate access for maintenance of the sensors
and the data transfer equipment, they are exposed to potentially challenging environmental
conditions, increasing the risk of damage or failure of a sensor. Defective sensors are
leading to a partial or complete loss of their functionality, caused by external impacts such
as temperature and corrosion or by internal influences as component wear and overheating.
An overview of common types of defect sensors and possible reasons for their occurrence
is given in [1]. A study of defect sensors occurring in sensor networks and their modelling
is shown in [31]. According to [31], defect sensors can be described by environment,
system and data characteristics. For offshore applications, environment features such as
physical conditions such as environmental perturbations caused by weather conditions
such as heavy rain, hail, icing, strong sunlight and ambient conditions such as salinity and
humidity can lead to defective sensors. Errors in the measurement system can be caused
by a defective transducer, a defective analog to digital converter, exceeding the detection
range, component degradation due to the age of the sensors, a weak power supply, e.g., low
batteries for wireless sensors and noise caused by unwanted variation in the data. Wrong
sensor calibration leads to faulty measurement values.

The first aim of this work is to minimize the number of acceleration sensors used
for rope fault detection by the EKF while ensuring sufficient fault detection reliability.
Therefore, a strategy for optimal sensor placement is developed. The challenge of this
optimal sensor placement strategy is that it must be suitable for complex nonlinear systems
with a large number of degrees of freedom and sensors. Another aim is to determine the
influence of the numbers, location of occurrence and intensity of different types of sensor
defects on the reliability of rope fault detection. The advantages and disadvantages of using
an additional sensor per platform are presented in detail. The investigations concerning
sensor placement, sensor defects and fault detection in the connecting elements are based
on a platform arrangement consisting of 25 platforms with 150 degrees of freedom. The
original software used for the presented methodology was developed in-house.

This paper is structured as follows: First, the MBD model of the platform arrangement
is designed and a short introduction to the KF theory is given in Section 2. In Section 3, a
strategy of optimal sensor placement for rope fault estimation is developed and applied
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to a platform arrangement. Starting from the two most efficient sensor placements, the
influence of different sensor defects on the rope fault detection reliability is investigated
in Section 4. Section 5 discusses the results of different quantities, locations of occurrence
and intensities of the defect sensors on the reliability of rope fault detection. Finally, a
conclusion is given in Section 6.

2. Problem Description

The system described subsequently is based on an example of a platform configuration
of the Space@Sea project. The platform arrangement does not exist at the time of this work.
In this section, a MBD model of the platform arrangement is built up to simulate the
model of the platform arrangement which creates necessary measurement data for the KF
algorithm. The KF, a short description of its algorithm is given subsequently, estimates
the rope stiffness of the MBD platform model. Based on deviations of the estimated rope
stiffness from the stiffness of non-faulty ropes, rope faults are concluded.

2.1. System Kinematics

A 5 × 5 platform array with 25 platforms, 30 connecting ropes, 3 acceleration sensors
per platform and 8 mooring lines, attached to the corner platforms, is shown in Figure 2a.
The mooring lines are attached to the corner platforms to keep the platform arrangement
in place. They are designed as non-prestressed linear springs in horizontal direction which
cannot transmit compression forces. Fibre ropes and elastomer fenders connect the floating
platforms. Their modelling is shown for platforms 21–25 in Figure 2c. The prestressed fibre
ropes are attached to the exterior platforms. They go through pipes inside the platform
elements and are connected to the edge or corner platforms on the opposite side of the
platform array as shown in Figures 2c and 3.

The platforms are made of concrete, the fenders consist of rubber with steel flanges
which are used to connect the platform elements. Forces and moments acting on a single
platform are shown in Figure 2b. The equations of motion of a single platform are given
according to [28]. They are given by

ẍ =
1

mp f + mxadd

[
∑a nr

j=0 Fcrx(j) + Fcmx + ∑
a n f
j=0

(
Fc f x(j) + Fd f x(j)

)
+ Fdvx + Fdx

]
, (1)

ÿ =
1

mp f + myadd

[
∑a nr

j=0 Fcry(j) + Fcmy + ∑
a n f
j=0

(
Fc f y(j) + Fd f y(j)

)
+ Fdvy + Fdy

]
, (2)

z̈ =
1

mp f + mzadd

[
∑a nr

j=0 Fcrz(j) + ∑
a n f
j=0

(
Fc f z(j) + Fd f z(j)

)
+ Fbz + Fg + Fdz

]
, (3)

ϕ̈x =
1

Θp fx + Θxxadd

[
∑a nr

j=0 Mcrx(j) + ∑
a n f
j=0

(
Mc f x(j) + Md f x(j)

)
+ Mdx + Mbx

]
, (4)

ϕ̈y =
1

Θp fy + Θyyadd

[
∑a nr

j=0 Mcry(j) + ∑
a n f
j=0

(
Mc f y(j) + Md f y(j)

)
+ Mdy + Mby

]
, (5)

ϕ̈x =
1

Θp fz

[
∑a nr

j=0 Mcrz(j) + ∑
a n f
j=0

(
Mc f z(j) + Md f z(j)

)]
, (6)

where Fcr are the forces and Mcr the moments acting from the fibre ropes on the platform.
The forces Fc f and Fd f and the moments Mc f and Md f are generated from the fender
stiffness and fender damping. The indices x, y and z refer to the directions of the forces and
to the axes of rotation of the moments. The mooring line forces Fcm act on the platforms on
the corners of the platform arrangement and are considered only for them. The damping
of the platform caused by the interaction of the ocean current and the platform motion
is accounted for by Fd and Md, the linear damping forces and linear damping moments,
and Fdv, the viscose damping forces. The buoyancy is respected by the buoyancy force Fb
respectively the buoyancy moments Mb, the weight by Fg. The buoyancy force is calculated
from the amount of water displaced by the platform, calculated from the difference of
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the platform location and the average wave height projected to the platform area, the
buoyancy moment by the inclined position of the platform around the ϕx and the ϕy axis.
The platform mass is named mp f and the platform inertia related to their x, y and z axes
Θp fx , Θp fy and Θp fz . The impact of the surrounding fluid is respected by the additional
mass mxadd, myadd and mzadd, the additional inertia terms Θxadd, Θyadd and Θzadd and also
by the linear damping forces Fdx, Fdy and Fdz and linear damping moments Mdx and Mdy.
The factor a represents the number of adjacent platforms which is four for a platform inside
the platform array, three for a platform in the corner and two for a platform at the edge of
the platform array. The number of ropes and the number of fenders per platform side area
are given by nr and n f . The wave height is calculated from the Pierson- Moskowitz power
spectrum [32] using autoregressive moving averages [33].

Figure 2. (a) Platform arrangement of 25 platforms and 30 ropes. (b) Forces and moments acting on a
single platform. (c) Detailed schematic representation of several platform connections (c).

Figure 3. Schematic sectional view of five floating platforms connected by ropes and fenders.
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2.2. Rope Fault Estimation Using EKF

The EKF is an extension of the linear KF to account for non-linearities in the system
and measurement equations [20]. The system and measurement equations of a non-linear
discretized system are described by

xk = fk−1(xk−1, uk−1, wk−1), (7)

yk = hk(xk, vk), (8)

where xk are the states calculated by the state function fk−1 including the previous states
xk−1, the system input uk−1 and the process noise wk−1, the measurements yk are calculated
by the measurement function hk including the states xk and the measurement noise vk. The
Kalman observer should estimate the states and the parameters of the MBD model by using
the model input uk and the acceleration measurements yk, shown in the schematic diagram
in Figure 4.

Figure 4. Schematic diagram of the dynamic system observed by the Kalman Filter (KF).

The estimated state vector x̂ek of the Kalman observer contains the estimated states
of the MBD system and the states for the parameters to be estimated x̂pk resulting in
x̂ek = [x̂T

k , x̂T
pk
]T , R(nst+np)×1. The number of states and parameters are indicated by nst

respectively np. At first the expected values of the initial state x̂+e0
= E(xe0) are calculated

by the covariance of the initial state xe0 . This results in the initial covariance of the estimated
error calculated from

P+
e0

= E[(xe0 − x̂+e0
)(xe0 − x̂+e0

)T ]. (9)

The estimated state x̂−ek
, the time update of the covariance P−ek

of the estimated error,
the Kalman gain Kk, the state update x̂+ek

and the update of the covariance matrix P+
ek

are
calculated from

x̂−ek
= fk−1(x

+
ek−1

, uk−1) (10)

P−ek
= Ak−1P+

ek−1
AT

k−1 + Qk (11)

Kk = P−ek
CT

k (CkP−ek
CT

k + Rk)
−1 (12)

x̂+ek
= x̂−ek

+ Kk

[
yk − hk(x̂

−
ek
)
]

(13)

P+
ek

= (I − KkCk)P−ek
. (14)
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Calculation steps where the measurement information is not implied at time step k
are marked by (−), calculation steps where the measurement information at time step k is
included are marked by (+). The process covariance matrix Qk is known from the process
noise wk, wk ∼ (0, Qk) and the measurement covariance matrix Rk from the measurement
noise vk, vk ∼ (0, Rk). The nonlinearities in the system are considered by the linearized
state transition matrix Ak−1, calculated from a partial derivative of the state function fk−1
near x̂+ek−1

and the linearized output matrix Ck, calculated from a partial derivative of the
measurement equation hk near x̂−ek

by

Ak−1 =
∂ fk−1
∂xek

∣∣
xek=x̂+ek−1

∈ R(nst+np)×(nst+np) (15)

Ck =
∂hk
∂xek

∣∣
xek=x̂−ek

∈ R(nmeas)×(nst+np). (16)

The number of measurements is denoted by nmeas. To include parameter changes due
to different loading or wave conditions, the platform masses, the vertical damping values
and the additional masses in z direction of the MBD model are varied according to the
work of [28]. The MBD model of the floating connected platforms is modified to set rope
faults by lowering the stiffness of the faulty fibre ropes. The EKF should detect these faults
through estimation of the respective rope stiffness. Therefore, the estimated parameters
in the vector x̂pk , which are part of the estimated state vector x̂ek , refer to the respective
corresponding rope stiffness values in the platform model. If the estimated rope stiffness
parameter falls below a defined boundary, a fault in the respective rope is indicated. The
state vector of the MBD model of a single platform is given by

x = [x ẋ y ẏ z ż ϕx ϕ̇x ϕy ϕ̇y ϕz ϕ̇z]
T , (17)

where the platform positions are given by (x, y, z) and the orientations by (ϕx, ϕy, ϕz). For
a platform arrangement consisting of 25 platforms and 30 ropes this results in 300 states
(nst) and 30 rope stiffness parameters (np) to estimate by the EKF.

The simulation of the MBD model and the EKF algorithm are calculated by the software
package MATLAB® R2019a.

3. Optimal Sensor Placement for Rope Fault Detection Using EKF

States and parameters are estimated by the Kalman observer using the system input
and the measurement data. The input information of the system depends on the wave
spectrum and the measurement data of the acceleration sensors attached to the platforms. A
previous study on fault detection in modular offshore platform connections by the EKF uses
a large number of seven acceleration sensors per platform which corresponds to 175 sensors
for a 5 × 5 platform arrangement [28]. In this section, a strategy is developed to find the
optimal sensor location for a floating platform arrangement with the intention to reduce the
number of sensors while ensuring reliable rope fault detection. The influence of rope faults
on the measured acceleration values is investigated to find the optimal sensor locations. It
is assumed that acceleration measurements of sensors which are more influenced by rope
faults, deliver more valuable information to the EKF algorithm for rope fault detection.
Based on these results, the influence of different sensor arrangements on the rope fault
detection performance is examined to prove the previous assumption. The influence of
sensor placement using ten different sensor settings, shown in Figure 5, on the percentage
of correctly detected rope faults and rope fault detection time is investigated. The sensors
S1, S3, S7, and S9 used for the simulations in Figure 5 are located at the corners of the
platforms, the sensors S2 and S4 at the center of the edge, and the sensor S5 at the center of
the platform. The arrows indicates the direction of the acceleration measurements.
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Figure 5. Sensor settings for 2, 3, 4, 6 and 7 acceleration measurements per platform.

To compare measurement data of the platform array with a fault in a rope with the
measurement data from the faultless platform arrangement, measurement data of nine
contemplated sensor locations and 27 acceleration measurements per platform, shown in
Figure 6, are used.

Figure 6. Contemplated locations for acceleration sensor placements measuring accelerations in x, y
and z direction.

In order to be able to service the sensors, they are placed on the top of the platforms. For
a 5 × 5 platform arrangement, shown in Figure 2a, using 30 ropes for platform connection,
30 simulations with respective one fault in a different rope are executed. To simulate the
rope fault, the stiffness of the faulty rope is set to 80% of the faultless rope in the MBD
model. The wind speed is set to 21 m/s measured 19.5 m above sea level and the simulation
time is set to 1000 s which corresponds to 20,000 time steps. From these simulations, the
average deviations of acceleration values, measured at platforms with faulty ropes y f ault
from those at platforms without faulty ropes yno_ f ault, are calculated by

ydi f f =
1

nrt
∑nrt

j=1

√
1

nmtst
∑nmtst

i=1

[
y f ault(i) − yno_ f ault(i)

]2
,R(np f nsmax )×1, (18)

where nrt is the number of simulations with respectively different rope faults, nmtst the
number of measurement time steps, np f the number of platforms and nsmax the number
of considered acceleration measurements. An array consisting of 25 platforms, with 27
acceleration measurements each, results in 675 averaged acceleration deviation values
ydi f f . The deviating acceleration values are averaged over all platforms, where the average
of the acceleration values of the sensors with the same placement and orientation of the
different platforms is calculated. That gives 27 averaged acceleration deviation values
ydi f f av, corresponding to 27 signal channels shown in Figure 7. The orange bars show the
averaged acceleration deviation values ydi f f av in x direction, the red bars in y direction and
the green bars in z direction. The higher these values, the greater the effect of a rope error
on the acceleration measurements of the respective sensors. The indices 1 to 9 indicate the
sensor number.
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Figure 7. Over all platforms averaged acceleration deviations calculated from the difference of
platform arrangements with faulty ropes and faultless ropes.

Figure 7 shows that rope faults mainly influence the acceleration values z1, z3, z7 and
z9 measured by the sensors in z direction placed on the corner of the platforms and at least
the z acceleration measurement z5 in the middle of the platform. It is concluded that the
z acceleration measurements of the corner sensors are more sensitive to rope faults and
therefore can be considered as the main indicators for stiffness changes.

To verify this, the influence of different sensor arrangements on the rope fault detection
performance is examined. Investigations are performed with 2, 3, 4, 6 and 7 acceleration
measurements per platform, which are shown in Figure 5. The number and positions of the
acceleration sensors on all platforms in the platform arrangement are kept the same. As
rope faults detection quality in the x and y direction should be similar, symmetrical sensor
arrangements are considered. Rope fault detection in rope number 8 of the 5 × 5 platform
array is reviewed. To test the repeatability, every configuration was simulated 100 times for
the same wave spectrum but a different time-depending wave height curve. The simulation
starts when the MBD model is in equilibrium and not moving. The rope stiffness of the
faulty rope number 8 of the MBD model the 5 × 5 platform model is set to 80% of the
faultless value after a simulation time of 410 s, the fault detection process is launched
400 s after the simulation start. Fault detection in rope number 8 is chosen, since faults
occurring in the ropes going through the centre of a platform and are placed further inside
the platform arrangement are more difficult to be detected than ropes at the edges [28]. If
these faults are indicated within a certain detection time, it is assumed that all other rope
faults can also be reliably detected.

Table 1 lists the error detection results for the different sensor settings. The second
column indicates the percentage of simulations for each sensor setting, where the faulty rope
is estimated correctly within 600 s after the fault occurred. The rope fault detection times
listed in the third column result from the average fault detection times of the respective
100 simulations, whereas only the fault detection times of the correctly detected faults
are respected.

It can be confirmed that acceleration sensors measuring the acceleration in z direction
on the corners of the platform are best suitable for EKF rope fault detection. They deliver
the most important information to the EKF algorithm to estimate the movement dynamics
and rope stiffness parameters of the platform arrangement. The average detection time of
version B and F is the lowest compared to the other considered sensor settings. Version
F leads to faster fault detection than Version B, although it can be assumed that for a
rigid-body 3 sensors in z direction deliver the same information to the EKF than 4. The
additional sensor in version F provides additional information to the EKF algorithm, hence
measurement uncertainties due to sensor noise are compensated using 4 sensors in setting F.
Fault detection for sensor setting I is faster compared to sensor setting B with the drawback
of 3 additional sensors. More sensors do not always lead to better results. The comparison
of sensor setting J with sensor setting B shows longer fault detection time and only 99%
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of correctly detected rope faults for the sensor setting J with 4 additional acceleration
sensors given in Table 1. Additional data of the acceleration sensors in x and y direction
reduce the weighting of the acceleration sensors data in z direction, where the EKF gets the
predominant information from.

Table 1. Fault detection parameters for 2, 3, 4, 5 and 7 acceleration measurements per platform.

Sensor Setting Correct Fault Indication in % Rope Fault Detection Time s

A 17 531
B 100 107
C 100 288
D 100 142
E 0 -
F 100 77
G 82 387
H 74 419
I 100 100
J 99 150

4. Influence of Sensor Defects on the Reliability of Rope Fault Detection

In this chapter, the influence of the number, placement and intensity of sensor defects
on the reliability of rope fault detection at the 5 × 5 platform arrangement is investigated
by the EKF. Defect sensors lead to sensor data deviation from the correct measured sensor
data. Sensor data from defective sensors used for KF input leads to less accurate state and
parameter estimation.

4.1. Sensor Defects

Material deterioration, overloading and environmental corrosion mandatory lead
to degraded sensor performance or sensor defects [34]. Typical sensor defects are bias,
drift, gain, precision degradation and complete failure with constant sensor output with
or without sensor noise [35], detailed description and causes of some sensor defects are
shown in the work of [1]. In this work, sensor defects refer to sensor precision degradation,
sensor gain defects, sensor bias and complete sensor defects. Insufficient power supply
or hardware failures can degrade sensor precision due to additional noise. A precision
degradation can be defined as an unexpectedly high amount of variation exceeding the
expected variance of the sensor given by the sensor manufacturer. The possibility of higher
environmental noise must be considered and may not be related to a sensor error [1,31].
Sensor gain defects occur when the rate of change of the measured acceleration data
deviates from the true sensor values. This results in a wrong scaled measurement amplitude.
Reasons for sensor gain defects can be calibration faults, measuring signal amplifier faults,
unstable voltage supply, or non-linearity of the sensor [31,36]. Insufficient zero-point or
temperature calibration of the sensor can cause sensor bias defects. Furthermore, bias
voltage or bias current, caused by an unstable change of environment temperature, lead to
sensor bias defects [1].

The simulation of the MBD platform model creates measurement data used for the KF
algorithm for rope fault detection. To simulate defects in specific sensors of the MBD model,
the measurement values of the respective defect sensors are altered. Sensor precision
degradation is simulated by gaussian white noise with a variance up to 1 m2/s4, which is
added to the measurement values of the sensors, where a defect is introduced. For sensor
gain defects, the defect sensor measurement amplitudes are calculated by y∗(t) = ∆ y(t)
where y(t) are the faultless sensor measurements received from the MBD model. For the
simulations, a range of ∆ dependent on the sensor defect intensity from 0.5 to 1 is chosen.
Sensor bias defects are simulated by adding a constant value of 0.1 up to 1.5 m/s2 to the
measurement values of the MBD model, where a sensor defect is simulated. The parameters
of the different sensor defects used for the simulations are listed in Table 2.
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Table 2. Parameters of the simulated sensor defects.

Kind of Sensor Defect Parameter Parameter Values

Precision degradation Variance of the added noise in
m2

s4

0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.75, 0.8, 0.9, 0.95, 1

Gain defect Gain factor ∆
0.5, 0.6, 0.65, 0.7, 0.725, 0.5,

0.75, 0.8, 0.825, 0.85, 0.875, 0.9,
0.925, 0.95, 1

Bias defect Added acceleration in m
s2

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5

4.2. Simulation Settings

For the following simulations, the 5 × 5 platform array, shown in Figure 2a, is used.
Sensors are placed according to sensor settings B and F shown in Figure 5 using 3 and
4 z acceleration sensors per platform. The effect of different quantities and magnitude
of sensor defects on the rope fault detection performance by the EKF is examined. Two
different rope faults are reviewed: A fault in rope number 1, which is easy to detected and
a rope fault in rope number 8, which is the most difficult to be detected [28]. Rope number
8 goes through platforms 3, 8, 13, 18 and 23 and rope number 1 through platforms 1, 6, 11,
16 and 21 shown in Figure 2a.

For rope fault detection, the EKF was launched 400 s after the simulation start of the
MBD model. The stiffness of the faulty rope was set to 80% of its non-faulty rope after 410 s.
Sensor defects are set simultaneously with the EKF start. Simulations are done for a wind
speed of 21 m/s measured 19.5 m over sea level, the parameters for the simulated model
are referred to the work of [28]. The EKF estimates the rope stiffness of the 30 platform
connecting ropes. It is assumed that a rope fault is correctly detected in the simulated
model of the platform arrangement if the rope stiffness of the faulty rope estimated by the
EKF falls below 95% of the non-faulty rope stiffness within 300 s after the occurrence of the
rope fault.

The procedure to represent the influence of the number and parameters of defect
sensors on the reliability of rope fault detection is shown in a reference configuration in
Figure 8a for 3 and 4 z acceleration sensors per platform.

Figure 8. (a) Array of the percentage of correctly detected rope faults as a function of number,
percentage and parameters of defect sensors for 3 and (4) z acceleration sensors. (b) Examples of
different distances between 4 defect sensors, a rope fault in rope number 1 and 3 z acceleration
sensors per platform.

The horizontal axis in Figure 8a gives the parameter of the defect sensors, the vertical
axis the number and percentage of defect sensors per platform arrangement. For every



Appl. Mech. 2022, 3 768

parameter of the defect sensors, as listed in Table 2, simulations are computed with faultless
sensors and 4 different numbers of defect sensors, as shown in Table 3 for sensor setting B
and F with 3 and 4 acceleration sensors per platform. The number of simulations in Table 3
is adapted, to get the same number of simulations for every number of defect sensors.
Simulations with two different sensor settings are calculated to show to what extent the
usage of an additional sensor per platform is beneficial.

Table 3. Number of defect sensors per platform arrangement and number of simulations calculated
for the respective number of defect sensors executed for rope fault detection in rope number 1. The
indices ∗ at the distances between the platforms with the defect sensors and the platforms with the
rope fault, dist-0 to dist-4, indicates that the defect sensors also occur at adjacent platforms to the
given distance at the simulations with 8 and 10 defect sensors.

Number of Defect Sensors

Sensors setting B 1 2 4 8
Sensors setting F 1 2 5 10

Number of simulations

dist-0 ∗ 2 2 1 1
dist-1 ∗ 2 2 1 1
dist-2 ∗ 2 2 1 1
dist-3 ∗ 2 2 1 1
dist-4 ∗ 2 2 1 1
dist-var - - 2 2

dist-com-0 - - 1 1
dist-com-2 - - 1 1
dist-com-4 - - 1 1

For better comparability of the percentage sensor defects, the simulations with 5 and
10 defect sensors are done for the sensor setting F with 4 acceleration measurements per
platform, and simulations done with 4 and 8 defect sensors for sensor setting B with 3
acceleration measurements per platform.

4.3. Influence of the Distance between the Platforms with the Defect Sensors and the Platforms with
the Rope Fault

Furthermore, the influence of the distance between the platforms with the defect
sensors and the platforms with the rope fault is considered. For every different number
of defect sensors, simulations with varying distances between the defect sensors and the
rope fault are executed. Examples for 4 defect sensors of the 5 × 5 platform array with
3 z acceleration sensor per platform, are shown in Figure 8b. The distance between the
platforms with the defect sensors and the platforms with the rope fault is indicated by
dist-0 up to dist-4. For dist-0, the sensor defects occurs on the same platform; for dist-1 on
the adjacent platform and for dist-2 up to dist-4, there are one to three platforms between
the defect sensor and the rope fault. Sensor defects occurring arbitrarily distributed
over all platforms are indicated by dist-var, dist-com indicates if more than one sensor
defect appears on the same platform. For every number of defect sensors and sensor
defect parameter, simulations with different distances listed in Table 3 are calculated. The
number of simulations calculated for the respective number of defect sensors per platform
arrangement and respective different distances between the defect sensors and the rope
fault in rope number 1 is listed in Table 3. The indices ∗ indicates that the defect sensors
at simulations using 8 and 10 defect sensors also occur at adjacent platforms to the given
distance, which is required for the analysis of one defect sensor per platform. The respective
platforms with the defect sensors are listened in Supplementary Material Table S1. For
dist-com, the subscript indices in Supplementary Material Table S1 indicates the number of
defect sensors on the respective platform. All simulations are done 5 times for the same
wave spectrum but a different time-depending wave height curve. These results in 50
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fault detection simulations for every number and parameter of the defect sensors and rope
fault detection in rope number 1. Based on these simulations, the percentage of correctly
detected rope faults is calculated. Figure 8a gives an example of the calculation with 4
respectively 5 defect sensors for one selected sensor defect parameter calculated for the
different distances between the defect sensors and the rope fault listed in Table 3.

5. Results of Sensor Defects on the Reliability of Rope Fault Detection by the EKF

The first part of this section presents the influence of sensor precision degradation,
sensor gain and sensor bias defects on the rope fault detection reliability. Afterward the
influence where defect sensors occur in the platform arrangement and the distance between
defect sensors and rope faults on the rope fault detection performance is examined. In the
final step, the impact of multiple defect sensors, occurring on the same platform, on the
rope fault detection reliability is given.

5.1. Influence of Sensor Precision Degradation, Sensor Gain and Sensor Bias Defects on Rope
Fault Detection

Figures 9, 11 and 13a,b show the percentage of correctly detected rope faults, using
3 and 4 z acceleration sensors per platform, as a function of number, percentage and
parameters of defect sensors. The dark areas in Figures 9, 11 and 13a,b show simulation
settings for defect sensors where the reliability of fault detection is the lowest. When
comparing Figures 9, 11 and 13a with Figures 9, 11 and 13b, it has to be considered, that
one and two defect sensor equates a bit higher percentage using 3 acceleration sensors
per platform instead of 4. Figures 10, 12 and 14 show the advantage using 4 instead of
3 z acceleration sensors per platform. The dark areas show simulation settings for defect
sensors where the advantage of using 4 instead of 3 z acceleration sensors is greatest.
The different percentage of defect sensors, using 3 acceleration sensors, is respected by
interpolation.

Figure 9 shows the influence of sensor precision degradation on the reliability of rope
fault detection in rope number 1 by the EKF.

Figure 9. Impact of sensor precision degradation on the percentage of correct detected rope faults
by the Extended Kalman Filter (EKF) rope fault estimation for a rope fault in rope number 1. (a) 3 z
acceleration sensors and (b) 4 z acceleration sensors per platform are used.

Figure 9a represents fault detection using 3 z accelerators per platform. Sensor preci-
sion degradation simulated by an additional noise with a variance under 0.25 m2/s4 has no
influence on rope fault detection with up to 8 defect sensors per platform; for two defect sen-
sors, all ropes are detected correctly up to an additional noise with a variance of 0.55 m2/s4.
Fewer defect sensors result in higher tolerable additional sensor noise. For a defect sensor
with additional noise over 0.8 m2/s4, already one defect sensor results in unreliable rope
fault detection, where at least 20% of the faulty ropes are not detected correctly. The usage
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of 4 acceleration sensors per platform leads to a significant improvement of fault detection
as shown in the comparison of Figure 9a,b. Using 4 acceleration sensors per platform, one
of which is defective in the platform arrangement, leads to at least 80% correctly detected
rope faults in rope number 1 as long as the variance of the additional noise is lower than
1 m2/s4. Figure 10 shows that the benefit of using 4 instead of 3 z acceleration sensors per
platform is significant for an additional sensor noise around 0.85 m2/s4 and 1 up to 5%
of defect sensors and an additional sensor noise around 0.55 m2/s4 and 5 up to 10% of
defect sensors.

Figure 10. Improvement of fault detection using 4 z acceleration sensors with sensor precision degradation.

Figure 11 represents the influence of sensors with gain defects on the number of
correctly detected rope faults in rope number 1.

Figure 11. Impact of sensor gain defects on the percentage of correct detected rope faults by the
EKF rope fault estimation for a rope fault in rope number 1. (a) 3 z acceleration sensors and (b) 4 z
acceleration sensors per platform are used.

Faults are detected with the highest reliability when the gain factor is not less than
0.92 and 3 acceleration sensors are used per platform, as shown in Figure 11a. Using 4
accelerators per platform, a gain factor higher than 0.90 leads to 100% correctly detected
rope faults as shown in Figure 11b. For one sensor gain defect, even a sensor gain loss up
to 22.5% results in 100% correctly detected faults, using 4 acceleration sensor per platform,
compared to a maximum allowed sensor gain loss of 10% using 3 acceleration sensors per
platform. The highest benefit is obtained for 10% of defect sensors and a gain factor around
0.85 m/s2. Figure 12 shows the advantage of using 4 instead of 3 acceleration sensors
per platform.



Appl. Mech. 2022, 3 771

Figure 12. Improvement of fault detection using 4 z acceleration sensors with sensor gain defects.

Figure 13 shows the influence of sensor bias defects on the reliability of rope fault
detection in rope number 1 by the EKF.

Figure 13. Impact of sensor bias defects on the percentage of correct detected rope faults by the
EKF rope fault estimation for a rope fault in rope number 1. (a) 3 z acceleration sensors and (b) 4 z
acceleration sensors per platform are used.

A sensor bias up to 0.3 m/s2 respectively 0.35 m/s2 has no influence on the reliability
of rope fault detection as shown in Figure 13a,b. The gradient of the line indicating the
contour of 20% correctly detected faults in Figure 13a shows that the allowed sensor bias for
four defect sensors is lower than for eight defect sensors. A higher number of sensor bias
defects with the same bias on adjacent sensors and platforms where all sensors are defect,
influences the estimation of the states and rope parameters of the MBD model by the EKF
and the overall dynamic of the estimated platform model in a way that can have a positive
effect on the rope fault estimation algorithm. Locations of defect sensors where this effect
occurs are named dist-com and listed in Supplementary Table S1. A larger sector in the
platform arrangement, containing eight instead of four bias sensor defects, has less negative
impact on estimating the whole platform array’s x and y movement, almost mainly the z
states of the platform section with the defect sensors are estimated wrong. This leads to a
more reliable estimate of the rope stiffness by the EKF. Figure 13b shows that five defect
sensors may allow a higher sensor bias than two defect sensors to detect 20% of the rope
faults in rope number 1 correctly. The simulations with five defect sensors also contain
simulations with platforms where all sensors are defect leading to a smaller influence on
the estimation of the platform x and y movement dynamics of these platforms. This leads
to a smaller impact of the defect sensors on the correct rope fault estimation even if there
are more defect sensors. Only 20% of correctly detected rope faults are rarely acceptable
for practical application. The advantage of using 4 instead of 3 acceleration sensors per
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platform is greatest for a sensor bias around 1 m/s2 and 1% of defect sensors as shown in
Figure 14. The maximum increase of additional detected rope faults is 52%.

Figure 14. Improvement of fault detection using 4 z acceleration sensors with sensor gain defects.

Figures 12 and 14 show that there are also regions with a negative effect on rope fault
detection using 4 instead of 3 acceleration sensors per platform. The region in Figure 12
with a sensor gain factor of 0.5 and two defect sensors and the region in Figure 14 with a
sensor bias of 1.5 and one defect sensor results from interpolating the percentage of correct
detected rope faults using 3 z acceleration sensors per platform. 10% of defect sensors and
a sensor gain factor lower than 0.8 in Figure 12 and a bias around 0.9 in Figure 14 results
and in fewer correctly detected rope faults. An additional sensor per platform may lead to
fewer correctly detected rope faults when sensor gain or sensor bias defects occur. Defect
sensors lead to worse results for state and parameter estimation by the EKF. If there are two
platforms side by side where all sensors are defective, named dist-com in Supplementary
Table S1 and Table 3, state and parameter estimation of these platforms leads to even
worse results using 4 instead of 3 z acceleration sensors per platform. The incorrectly
estimated states and parameters of these platforms are compensated to a greater extent
by the surrounding platforms without defect sensors when only 3 sensors per platform
are attached to and defect. If the correctly detected rope faults due to this phenomenon
predominate the correctly detected rope faults in the simulations with only one defect
sensor per platform and using 4 instead of 3 acceleration sensors per platform, this leads to
the negative regions at 10% of defect sensors per platform arrangement in Figures 12 and 14.
This phenomenon mainly occurs at a higher number of defective sensors, as there must
be at least 4 defect sensors to obtain all sensors of a platform defect if there are placed 4
acceleration sensors per platform. If there is only one platform where all sensors have a
gain or bias defect, the disadvantage of this phenomenon is negligible.

The influence of sensor precision degradation, sensor bias and gain defects on the
reliability of rope fault detection in rope number 8 is shown in Supplementary Material
Figures S1–S3. The number of simulations calculated for the respective number of defect
sensors per platform arrangement and respective different distances between the defect
sensors and the rope fault in rope number 8 is listed in Supplementary Material Table S2.
The number of simulations in Supplementary Material Table S2 differs to approximate the
number of simulations executed for every number of defect sensors. These simulations
are performed five times for the same wave spectrum but with a different time-depending
wave height curve. The locations of defect sensors for a rope fault in rope number 8 are
listed in Supplementary Material Table S1.

5.2. The Influence of the Distance between Defect Sensors and Rope Faults on the Rope Fault
Detection Reliability

The values of the following bar plots in Figures 15 and 16 reflect the percentage of
correctly detected rope faults averaged over all defect sensor parameters listed in Table 2
and different numbers of defect sensors listed in Table 3 used in the section before. Different
distances of the rope faults to the sensor defects are indicated with dist-0 to dist-4. A lower
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percentage of correctly detected rope faults means less reliable fault detection. Rope fault
detection in rope number 1 and 8 is considered. Figure 15 shows the influence of the
distance of rope faults and defect sensors on the rope fault estimation process for a rope
fault in rope number 1 using sensor setting B and F with 3 and 4 z acceleration sensors.

Figure 15. Percentage of correctly detected rope faults depending on the distance between defect
sensors and the rope faults for a rope fault in rope number 1. (a) 3 z acceleration sensors and (b) 4 z
acceleration sensors per platform are used.

For better comparability, only single defect sensors per platform are considered. For
a rope fault in rope number 1, located on the edge of the platform arrangement, sensor
precision degradation leads to the worst results if defect sensors occur at the platforms
with the faulty rope or at the platforms with the largest distance to the faulty rope using
3 and 4 acceleration sensors per platform. This is reflected in a lower percentage of correctly
detected rope faults when the distance between defect sensors and the rope fault is dist-0
and dist-4. The same phenomenon can be observed for sensor gain and sensor bias defects
using 4 acceleration sensors per platform as shown in Figure 15b. The average percentage
of correctly detected rope faults indicates the average percentage of correctly detected
rope faults resulting from the degradation of sensor precision, sensor gain and sensor
bias defects. For a rope fault in rope number 8, located in the middle of the platform
arrangement, Figure 16a,b show a decreasing rope fault detection rate with an increasing
distance between rope faults and defect sensors for all kinds of defect sensors. It is shown
that sensor faults occurring closer to the platforms with the rope fault do not have a negative
impact on the reliability of the rope fault detection in most cases.

Considering these results, it can be concluded that the percentage of correctly detected
rope faults is hardly influenced by the distance between the defect sensors and the rope
faults. However, the location of the defect sensors in the platform arrangement influences
rope fault detection, where defect sensors occurring at or near the edge platforms of the
platform arrangement leads to the worst results for rope fault detection. Defect sensors
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occurring on the edge platforms of the platform arrangement are named dist-0 and dist-4
in Figure 15 for a rope fault in rope number 1 and dist-2 in Figure 16 for a rope fault in
rope number 8. This effect is based on the attachment of the ropes to the exterior platforms,
shown in Figures 2c and 3, whereby changing rope stiffness more influences the dynamic
of these platforms. Therefore, the EKF gets more information for state and parameter
estimation from the exterior platforms. Incorrect input information to the EKF, generated
by anomalous sensor measurement values due to defect sensors of these exterior platforms,
leads to worse rope fault detection results than defective sensors occurring further inside
the platform array.

Figure 16. Percentage of correctly detected rope faults depending on the distance between defect
sensors and the rope faults for a rope fault in rope number 8. (a) 3 z acceleration sensors and (b) 4 z
acceleration sensors per platform are used.

5.3. The Influence of the amount of Defect Sensors Per Platform on the Rope Fault
Detection Reliability

The influence of the number of defect sensors per platform is reviewed for 3 and 4 z
acceleration sensors per platform and rope fault detection in rope number 1 and 8. Rope
fault detection of single defect sensors per platform is compared to multiple defect sensors
per platform, including the influence of the distance of the defect sensors to the rope fault.
For rope fault detection in rope number 1, the distances of the defect sensors to the rope
fault are named dist-0, dist-2 and dist-4, for rope fault detection in rope number 8 dist-0,
dist-1 and dist-2. The placements of the defect sensors on the platform array are listed in
Supplementary Material Table S1. For comparability, the total amount of defect sensors
per platform arrangement and the distance between defect sensors and the rope fault is
kept constant. The percentage of correct rope fault detection shown if Figures 17 and 18 is
averaged over all simulations with different sensor defect parameters shown in Table 2.
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Figure 17. Comparison of single and multiple sensor defects per platform on the reliability of rope
fault detection for a rope fault in rope number 1 with 3 z acceleration sensors per platform. Results
for three different distances between defect sensors and the rope fault are shown: (a) For sensor
precision degradation, (b) for sensor gain defects and (c) for sensor bias defects.

Figure 18. Comparison of single and multiple sensor defects per platform on the reliability of rope
fault detection for a rope fault in rope number 1 with 4 z acceleration sensors per platform. Results
for three different distances between defect sensors and the rope fault are shown: (a) For sensor
precision degradation, (b) for sensor gain defects and (c) for sensor bias defects.
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Figures 17a and 18a shows that for sensor precision degradation more defect sensors
per platform lead to a negligible difference of correctly detected rope faults in rope number
1. More defect sensors per platform lead mostly to significantly better results for rope fault
detection, when sensor gain and sensor bias defects occur as shown in Figure 17b,c for 3
and in Figure 18b,c for 4 z acceleration sensors per platform. When the sensor bias defects
of all sensors of a platform are similar, mainly the z state of this platform is estimated
wrong by the EKF. This results in deviating estimation of the platform rotation of this
platform caused by the ropes and fenders connecting the platform with the adjacent
platforms. Although the deviation of the movement estimation in x and y direction
of the whole platform arrangement, from the non-faulty sensor platform arrangement,
is significantly smaller compared with defect sensors distributed on a higher number
of platforms. These effects advantageously influence the estimation of the states and
parameters of the platform arrangement for multiple sensor bias defects per platform
which leads to a higher percentage of correctly detected rope faults. In the simulations,
sensor gain defects are set by multiplying the non-faulty acceleration amplitude by a gain
factor. For varying acceleration amplitudes, sensor gain defects result in different sensor
amplitude defects. Different sensor amplitude defects occurring at the same platform
leads to irregularly distributed defect sensors resulting in a reduced benefit of multiple
defect sensors per platform with sensor gain defects compared to sensor bias defects. The
comparison of Figures 17b,c and 18b,c shows this difference.

The impact of multiple sensor defects per platform on the reliability of rope fault detec-
tion for a rope fault in rope number 8 is shown in Supplementary Material Figures S4 and S5.

6. Conclusions

In the presented work, the Extended Kalman Filter (EKF) technique is used to detect
faults in connecting elements of floating modular offshore platforms. Simulations confirm
that there is a significant influence of sensor data variation caused by the occurrence
of defect sensors, different sensor placements and number of sensors on the rope fault
detection reliability. A strategy for optimal placement of the acceleration sensors, which
are attached to the platforms, to reduce the number of sensors while maintaining sufficient
fault detection reliability is shown. The results are confirmed by the simulation of several
test cases with different sensor quantities and sensor placements. Three accelerometers
measuring the acceleration in the vertical direction of the platforms are usually sufficient for
rope fault detection. The rope fault detection time can be shortened mainly by additional
acceleration measurements in vertical direction. Based on the optimal sensor settings, the
influence of the numbers, place of occurrence and intensity of sensor defects on the fault
detection reliability is reviewed. Results show that the advantages of using an additional
sensor per platform for fault detection are predominant, but there are also cases where
fault detection reliability is reduced. Furthermore, it is shown that sensor defects occurring
on the exterior platforms of the platform arrangement reduce the reliability of rope fault
detection more than sensor defects appearing further inside the platform arrangement.
It is shown that the influence of the distance between defect sensors and faults in the
connecting elements is negligible. Finally, the number of defect sensors per platform are
varied, simulations show more reliable fault detection in the connecting elements when
sensor defects occur more closely.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/applmech3030045/s1, Figure S1: Impact of sensor precision
degradation on the percentage of correct detected rope faults by the EKF rope fault estimation for a
rope fault in rope number 8.; Figure S2: Impact of sensor gain defects on the percentage of correct
detected rope faults by the EKF rope fault estimation for a rope fault in rope number 8.; Figure S3:
Impact of sensor bias defects on the percentage of correct detected rope faults by the EKF rope fault
estimation for a rope fault in rope number 8.; Figure S4: Comparison of single and multiple sensor
defects per platform on the reliability of rope fault detection for a rope fault in rope number 8 with
3 z acceleration sensors per platform.; Figure S5: Comparison of single and multiple sensor defects
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per platform on the reliability of rope fault detection for a rope fault in rope number 8 with 4 z
acceleration sensors per platform.; Table S1: Locations of defect sensors for rope fault in rope number
8 and 1.; Table S2: Number of simulations calculated for the respective number of defect sensors per
platform arrangement executed for rope fault detection in rope number 8.
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