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Abstract: At present, autonomous driving vehicles are designed in an ego-vehicle manner. The
vehicles gather information from their on-board sensors, build an environment model from it and
plan their movement based on this model. Mobile network connections are used for non-mission-
critical tasks and maintenance only. In this paper, we propose a connected autonomous driving
system, where self-driving vehicles exchange data with a so-called road supervisor. All vehicles
under supervision provide their current position, velocity and other valuable data. Using the received
information, the supervisor provides a recommended trajectory for every vehicle, coordinated with
all other vehicles. Since the supervisor has a much better overview of the situation on the road, more
elaborate decisions, compared to each individual autonomous vehicle planning for itself, are possible.
Experiments show that our approach works efficiently and safely when running our road supervisor
on top of a popular traffic simulator. Furthermore, we show the feasibility of offloading the trajectory
planning task into the network when using ultra-low-latency 5G networks.

Keywords: automated driving; 5G networks; traffic simulation; SUMO

1. Introduction

Connected automated driving is currently a popular research topic. In recent years, a
lot of effort has been put into the development of different car-to-car and car-to-infrastructure
communication systems. Both local inter-vehicle communication such as WiFi 802.11p [1],
as well as cellular 4G technologies [2] were evaluated for different scenarios. With the
emergence of the 5G standard, it is now possible to unify both approaches within a com-
mon communication protocol. The promised ultra-low latencies, the high communication
bandwidth and the enhanced communication reliability of 5G [3] seem to make it a good
choice for connected automated driving.

Currently, the path- and trajectory-planning of automated vehicles [4] is solely per-
formed based on local sensor data and map information. Considering driving velocities,
and thus the required communication delays, this restriction on local sensor data is un-
derstandable. However, this determination also has many downsides: only objects within
the vehicle’s field of view can be detected and taken into account. It would be desirable
to have a better overview in order to make the right decisions, especially in traffic jam
situations. Equally advantageous would be to know the exact intention of another road
user as proposed by [5] and not have to guess it—as is the case in current implementations.

Given the promising characteristics of 5G, the widely used vehicle-centric approach
has to be questioned. By exchanging location, speed, heading and other relevant data of
automated vehicles using a low latency network, the trajectory planning could be improved.
In our research project, we even go a step further and explore the possibility of outsourcing
the trajectory planning to a powerful server of the 5G network operator. This way, the
individual trajectory planning of a vehicle is replaced by an overall planning, covering
all vehicles on a monitored road section. Similarly to a tower in air-traffic, the actions of
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the autonomous vehicles on the road are coordinated and consequently the flow of traffic
is optimized. This way, the energy consumption could be lowered and traffic congestion
reduced. However, unlike in airspace surveillance, not all vehicles are equipped yet with
connectivity. This must be taken into account when designing a centralized trajectory
planning strategy.

In this paper, we describe an algorithm that is capable of performing trajectory plan-
ning for several automated vehicles on a given road section. Based on the periodic reports
from the autonomous vehicles under supervision, the algorithm plans and recommends
trajectories for all of them. Provided that the recommendations are plausible, the connected
automated vehicles are supposed to follow them. Conventional vehicles need to be taken
into account as well, in the sense that they are detected by the on-board sensors of the
autonomous vehicles and predicted. The feasibility of the approach is demonstrated using
SUMO [6]—a microscopic and continuous multi-modal traffic simulation package. A sensi-
tivity analysis is made by inserting artificial delay times into the communication between
the vehicles and the trajectory planning running on a centralized server. This way, the
requirements regarding communication delays can be identified.

The idea of connected automated vehicles and centralizing the trajectory planning
is not new. Several activities can be found in the literature. For example, in [7] benefits
of connected automated driving in terms of traffic capacity are demonstrated. A similar—
yet more detailed approach—is presented in [8]. Optimizing urban traffic throughput
using connected automated vehicles is discussed in [9]. Planning a trajectory for on-ramp
merging is the focus of [10–12].

In contrast to these research activities in the domain of connected automated driv-
ing [13,14], we propose a generic algorithm which is not tailored to any specific traffic
situation (e.g., intersection, on-ramp), but is applicable to a wide range of scenarios. Instead
of finding a solution for a specific situation, we propose the following way: we assess
and quantify a traffic situation, and try to optimize it by varying the degrees of freedom
available in the scenario. Admittedly, this approach will not lead to the perfect solution,
although in most cases it is not necessary. Considering the inaccuracies of sensor data and
communication latency, a perfect solution in theory is very likely not feasible in practice
anyway.

The remainder of this paper is structured as follows. Section 2 describes our concept of
simultaneous trajectory planning for multiple vehicles. Section 3 gives the details of the im-
plemented genetic optimization algorithm and applied heuristics. The interaction between
the optimization algorithm and SUMO is described in Section 4. Section 5 summarizes the
results of our latency sensitivity analysis, before Section 6 concludes the paper.

2. Problem Statement

In this chapter, we explain our approach of simultaneous multi-trajectory planning.
Several assumptions and simplifications are made in order to keep the proposed methodol-
ogy as elementary as possible.

Firstly, the entire paper uses the s–d coordinate system, where s is along the road
and d is oriented orthogonal to the road. This implies that entry- or exit-lanes are not
supported for now. Moreover, the number of lanes is assumed to be fixed for the section
under consideration. It is also expected that traffic flow is in one direction only. With
regard to road users, a distinction is made between connected automated vehicles (green),
conventional vehicles (yellow) and static obstacles (gray) (cp. Figure 1).
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Figure 1. Connected autonomous vehicles (green), conventional vehicles (yellow) and static obstacles
(grey) on a road model.

Connected automated vehicles report their status and their perceived surroundings
periodically, while conventional vehicles can be only detected indirectly. Road construction
sites and lane reductions can be modeled by placing large static obstacles on the road.
On the actuator side, it is assumed that every connected automated vehicle is capable of
following a lane using a given speed profile, and is able to trigger a lane change upon
request. For safety reasons, each connected automated vehicle must verify all received
directives for plausibility before execution.

Every planning cycle starts on the basis of the reports of the connected automated
vehicles. Their precise location, speed and acceleration is put in the model of the road.
All conventional vehicles picked up by the onboard sensors are also added to the model.
While the position and velocity of the conventional vehicles can be determined fairly
directly with modern sensors (e.g., Lidar, Radar), this is not the case with acceleration.
Therefore, acceleration is not available for conventional vehicles. Finally, the predefined
static obstacles are also placed in the model.

The challenge is now to determine an optimal trajectory for every vehicle, including
the required speed profile and indicating whether/when a lane change is necessary. These
trajectories must of course be free of collisions. However, there are several additional
requirements for these trajectories, such as a safety margin which must be maintained
around every vehicle. Furthermore, traffic rules, such as speed limits or right hand driving,
must also be considered. Vehicles with higher priority (e.g., an emergency vehicle) should
not be hindered. In general, strong braking and acceleration maneuvers should be avoided
to reduce energy consumption and maintain passenger comfort.

As all vehicles share the same road, the actions of one vehicle potentially influence
the behavior of all surrounding vehicles. Especially in dense traffic, an optimization of
individual vehicle trajectories is thus not advised. Therefore, we elaborated an optimization
method—based on a genetic algorithm—that finds a set of trajectories for all vehicles under
control simultaneously.

3. Genetic Algorithm

Of all optimization algorithms found in the literature, a genetic algorithm [15] seems
to be most adequate for the task at hand. A genetic algorithm finds increasingly better
solutions over time. In the real application, the runtime is strictly limited by the selected
communication schedule. By tailoring the genetic algorithm to the specific problem, and by
applying heuristics, it is usually possible to improve the convergence speed.

To solve any problem using a genetic algorithm, it is necessary to define a relation
between the basic elements of the algorithm (gene, chromosome, population), and the actual
optimization problem. Furthermore, the two main operations of the genetic algorithm
(mutation and crossover) must be implemented accordingly. For evaluating and comparing
potential solutions, a fitness score must be calculated—the higher this value is, the better
the solution is. On the basis of these operations, the optimization then runs analogously
to the evolution of biological life: starting from an initial population of approximately
50 individuals, their fitness is determined, the fittest are selected for reproduction, and the
next generation is formed by the mutation and recombination of the fittest individuals.
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3.1. Mapping of Genes

The trajectory planning problem can be mapped to a gene representation (cp. Figure 2)
in a meaningful way: Every gene encodes the trajectory of a connected automated vehicle
as tuple, consisting of the vehicle acceleration a, the direction dch and the time tch of the
planned lane change. The acceleration is in the range between −amin and amax, depending
on the vehicle capabilities. Using the acceleration a instead of the velocity to describe the
speed profile has the advantage that the resulting speed is always continuous, and a vehicle
controller usually expects a torque as input. The lane change direction field dch is limited to
three possibilities: staying on the current lane; changing to the left lane; changing to the
right lane. The time for the lane change tch can be somewhere in the range of 0.0 s up to
planning horizon (currently 7.0 s).

Figure 2. The mapping of the trajectory planning problem to a gene and chromosome representation
for n connected automated vehicles.

A chromosome consists of a sequence of n genes, where n equals the number of
connected autonomous vehicles in the scenario. For an important heuristic presented
later, it is necessary that the sequence of connected automated vehicles always remains
the same throughout successive optimization runs. The mutation operation applied to a
gene is implemented as the randomization of one of its elements (a, dch or tch) within the
possible range. The crossover operator is implemented as an N-point crossover according
to literature.

3.2. Definition of Fitness Function

As mentioned above, the fitness function is used to evaluate a chromosome/solution.
Generally speaking, a decent fitness function should be strictly monotonous to guide the
optimization toward good solutions. Likewise, a better solution should be awarded a
higher fitness score; a solution with many violations should be punished more than a
solution with a single violation.

Several aspects provide a contribution to the fitness score calculation: The more
distance an individual vehicle drives in the duration of the planning horizon, the better.
On the other hand, driving too close to another vehicle causes reductions in fitness score. If
a collision is detected, the fitness needs to be significantly decreased. A design decision has
been made that a negative fitness value should correspond to an invalid trajectory. Based
on the allocated priority, it is possible to grant certain vehicles the right of way—emergency
vehicles for instance.

To actually calculate a fitness score for a given potential solution, it is necessary to
perform a micro simulation: Initially, all vehicles are placed at their starting location. Then,
they are incrementally moved by ∆t = 100 ms according to their motion parameters until
the planning horizon (Tlookahead = 7 s) is reached. The distance traveled during this time
is accumulated. After every simulation step, the gaps between all adjacent vehicles are
checked and the collisions are counted. Based on this micro simulation, a partial score
is calculated for every connected automated vehicle. In case no collision occurred, the
following equation is used:



Sensors 2022, 22, 6798 5 of 14

scorecar = min

∆s −
∆s ·

(
tdist − Tbegin

)
Tgap − Tbegin

, ∆s

 · plchg
m

In the above equation, ∆s denotes the traveled distance of a connected automated
vehicle during the entire planning horizon (Tlookahead). The temporal distance between the
connected automated vehicle and the vehicle ahead is given by tdist. As long as the vehicle
in front is far ahead (Tbegin), no punishment is subtracted. However, if the vehicle in front
gets closer than Tbegin, the punishment is executed. In the case of the vehicle in front being
closer than Tgap, the score turns negative, indicating an invalid trajectory.

In case a collision is detected during the planning period, a different equation is used
to calculate the fitness:

scorecar = ∆s − ∆s · (tcol − Tlookahead)

Tavoid − Tlookahead

Depending on the time of the collision tcol, a punishment value is subtracted from the
distance traveled ∆s during the planning horizon. The expression differentiates between a
collision that can be avoided (later than Tavoid) and a collision that is inevitable, resulting in a
negative fitness score. A graphic representation of these parameters is depicted in Figure 3.

Figure 3. Graphic representation of Tgap, Tbegin and Tavoid.

The combination of all individual scores is delicate. If only one vehicle violates a safety
gap, the entire fitness score must become invalid. For this purpose, a theoretical maximum
score is determined, assuming that every vehicle moves with its maximum velocity:

scoremax = ∑
all cars

priocar · vmaxcar · Tlookahead

Overall fitness score of the chromosome is then calculated using the following expression:

f it = ∑
all cars

(scorecar · priocar)− #vio · scoremax

Every individual score is summed up and weighted by the vehicles’ priority. For every
detected violation of a safety gap, scoremax is subtracted as punishment. This way, a negative
overall fitness score is guaranteed whenever a single violation is detected. More violations
cause a lower score. In case no violations are detected, the distance traveled and the gradual
punishments for driving too close drives the optimizer toward the optimal solution.

3.3. Improved Optimization Loop

Figure 4 shows the genetic algorithm main loop (blue) embedded in the data exchange
process with the connected automated vehicles (green). Every simulation step starts by
getting the position, speed and other values for both the connected automated vehicles
and the conventional vehicles sensed by the automated vehicles. This is the starting
point for any further planning and extrapolation. To start with, an initial population of
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solutions is randomly created. Unlike the genetic algorithm found in the literature, the
initial population also includes the solution from the last time step, after shifting the time
of the lane change by ∆T = 100 ms. This improves the continuity of planning. On top of
that, it massively accelerates the convergence, because in many cases, a good solution is
probably still good 100 ms later.

Figure 4. The genetic algorithm optimization loop including the micro simulation with granularity
∆t for the fitness calculation, and the data exchange with the connected automated vehicles, using a
communication interval of ∆T.

Then, a fitness score is calculated for all potential solutions using the equations shown
above. Then, the selection for reproduction follows. Solutions with higher fitness scores
are more likely to reproduce using the mutation- or crossover-operation. Elitism—the
best solution which is always promoted into the next generation—is enabled to improve
continuity. New solutions created by these two operations form the next generation of
chromosomes and the algorithm starts again with the calculation of the fitness score.

The optimization loop continues until the time for optimization has passed. If the best
solution found so far is valid ( f it > 0), then it is immediately sent as a recommendation to
the connected automated vehicles. However, if the best solution is invalid, a chromosome
repair function is triggered. This might be caused by a conventional vehicle changing
the lane unexpectedly with short notice. By issuing a strong braking command to the
appropriate connected autonomous vehicle, the chromosome repair function manages to
avoid the accident. Needless to say, passenger comfort and energy efficiency are secondary
considerations in such a rare intervention.

3.4. Heuristics for Increased Performance

Due to the strictly limited time for the optimization, both heuristics to accelerate the
convergence and methods to narrow down the search space are desirable. Regarding
the acceleration of the convergence, the promotion of applied trajectories in the next
simulation step—as explained in paragraph Section 3.3—is already a major improvement.
By discretizing the values in the chromosome while suppressing duplicates within the
population, the search space can be narrowed. In the present implementation, the times of
lane changes are discretized to a multiple of 100 ms, and the acceleration/deceleration is
normalized to ±100% with a step size of 1%.
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4. Implementation with SUMO

Designing, implementing, optimizing and testing such an approach on a fleet of
real automated connected vehicles would be extremely time consuming and dangerous.
Instead, an appropriate simulation environment had to be used. From the variety of vehicle-
and traffic-simulation tools available nowadays, SUMO [6] was chosen. Among other
advantageous features (i.e., freely available), the level of abstraction, as well as the open
interface TraCI, were essential for this decision. This way, the implementation could be
tested and the parameters optimized for a variety of traffic situations.

4.1. Scenario for Sumo Simulations

Due to the integration of this research topic into the EU project 5G-Carmen, a section of
the Brenner motorway in Austria had to be used as a virtual test track. The scenarios to be
investigated were also influenced because of that.

In the context of this paper, an emergency vehicle scenario is replicated in the SUMO
simulator. This particular scenario revolves around an emergency vehicle, which is on
duty on a busy motorway. By using connected automated vehicles and an appropriate
supervisor algorithm, it should be demonstrated that the approaching emergency vehicle
is given the right of passage by other connected automated vehicles.

More precisely, a 3 km-long motorway section of the Austrian A13 between the exit
Gries West and Brennersee was modeled within SUMO. To increase the solution domain
complexity, the virtual test track has three lanes instead of the actual two lanes. The
right-hand drive requirement is turned off in the simulation for further flexibility.

On this motorway, a basic traffic jam consisting of cars and trucks was generated
randomly by SUMO. After the start-up phase, there are on average 50 conventional vehicles
on this motorway section. Then, 10 additional connected automated vehicles are spawned
at the motorway on-ramp with a 3 s gap in between. The last spawned connected automated
vehicle is the emergency vehicle. It is basically the same as the other nine CAVs before but
it has been assigned a higher priority. Once a connected automated vehicle merged into
the traffic on the motorway, the supervisor takes control. The simulation is completed as
soon as the emergency vehicle reaches the exit Brennersee. In case the emergency vehicle
collides with another road user, the simulation is prematurely aborted.

4.2. Interaction with Sumo

The interaction between the traffic supervisor and SUMO is depicted in Figure 5. The
SUMO traffic simulation at the bottom contains both, the connected automated vehicles and
the base traffic, comprised of conventional vehicles. Every connected automated vehicle
within SUMO is linked to an agent using the TraCI interface. The agent is basically an object
written in C++ that interacts with the Road Supervisor. By using TraCI, the flow of time in
the simulation can be precisely controlled. For the sake of simplicity and performance, all
communication delays, determined by the Simulated Network, are converted into position
shifts of the corresponding vehicles, based on their current velocity and acceleration. In
return, the time interval of the simulation remains constant (100 ms), and all TraCI queries
can be done simultaneously in a batch instead of many individual queries to SUMO,
reducing the communication overhead. Moreover, the job of the agents is to query position,
speed, acceleration, driving lane and the surrounding vehicles of the associated SUMO
vehicle. For a more realistic behavior, the vehicles’ sensor range is assumed to be limited
to −100 . . . 200 m around the vehicle. Lane changes and target speed requests need to be
transferred to SUMO, respectively.

In addition to communication aspects, testing the traffic supervisor using SUMO also
has implications on the optimizer and its parameters. When using the default SUMO
configuration, every vehicle under SUMO control strictly maintains a distance from the
vehicle ahead of at least 1 s. If, for any reason, this constraint is violated, SUMO initiates
an emergency braking of the affected vehicle. Thus, the parameter Tgap needs to be set to
1.5 s in the optimizer to preserve a 0.5 s margin. The associated parameter Tbegin is set to



Sensors 2022, 22, 6798 8 of 14

3 s, guiding the optimizer towards platooning with the temporal separation of 3 s between
individual vehicles.

Figure 5. Road supervisor and SUMO connected via a simulated 5G network.

4.3. Configuration of a Scenario

To create a scenario, it is necessary to define a set of connected autonomous vehicles
with parameters. For this purpose, all automated vehicles in the scenario are described
using a XML file (cp. Listing 1). Apart from obvious parameters such as length, width and
color, there are also some parameters that require further explanation: maxAccel defines
the maximum acceleration that a connected automated vehicle is capable of, regarding its
engine power and vehicle mass. Currently, this value is assumed constant, but for a future
real-world implementation, it would be possible to update this value periodically based
on velocity, road slope, engine temperature and battery charge. The parameters startLane
and O f f set are forwarded to SUMO, selecting the lane and the lateral offset on the lane
where the vehicle must be spawned. Likewise, Route is forwarded to SUMO, indicating the
sequence of roads that the new vehicle should follow. startTime is the delay (in seconds)
that should be waited before the vehicle is actually created. This is needed to wait for
the base traffic to fill the road and define intervals between several connected automated
vehicles. startSpeed defines the initial speed (in km/h) of the newly created vehicle.

The base traffic is generated the SUMO way by defining vehicle types and their
probability of occurrence within the rou.xml configuration file. Several scenarios with a
similar traffic density can be generated by starting SUMO with different seed values for the
internal random number generator. Figure 6 depicts a running SUMO simulation consisting
of several automated connected vehicles (green, red) and the base traffic (yellow).
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Figure 6. Screenshot of a SUMO simulation. Within the SUMO-generated base traffic (yellow),
the connected automated emergency vehicle (red) overtakes normal connected automated vehicles
(green).

Listing 1. Definition of a connected automated vehicle in XML format.

<Vehicle Name="Autonom1" Type="normal_car">
<Length> 4.0 </Length>
<Width> 1.9 </Width>
<maxSpeed> 130 </maxSpeed>
<maxAccel> 2.0 </maxAccel>
<startLane> 0 </startLane>
<startTime> 30.0 </startTime>
<startSpeed> 40.0 </startSpeed>
<Route> myroute </Route>
<Offset> 5.0 </Offset>
<Color> #00ff00 </Color>

</Vehicle>

4.4. Assumptions and Limitations of Implementation

Since the focus of this work is set on the feasibility of this method and the influence of
communication delays, many details have been neglected. Converting real-world longitude-
and latitude-reports into s/d coordinates is probably the most important simplification.
For this to be done on a motorway section, a HD-map must be available and used. Sensor
synchronization among the vehicles using GPS is another neglected job to avoid sensor jitter
on top of communication jitter. Moreover, the entire automated driving functionality within
the vehicle is disregarded in this work. The recommendations from the road supervisor
should be verified and implemented there. In case of conflicting recommendations, the
vehicle should rely on its onboard sensors and take actions to avoid collisions. The vehicles
must of course be able to drive fully autonomously in the case of communication loss. This
method is not meant to be a replacement of the vehicle’s intelligence but a guidance aid for
congestion-prone sections of roads.
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5. Results

This chapter demonstrates two aspects. Firstly, the basic function of the presented
algorithm and secondly, the effect of communication delays.

Considering the way that the acceleration values are determined by the genetic op-
timization algorithm one might be concerned about the driving comfort. Therefore, the
speed profile of a high-priority emergency vehicle during a simulation run is plotted in
Figure 7. Overall it looks very reasonable. In sections where the emergency vehicle had
to follow other vehicles, the speed is jittery, but the oscillations are within small margins.
Towards the end of the simulation, the vehicle reaches the speed limit of 130 km/h and is
thus limited.

Figure 7. The speed profile of an emergency vehicle pushing through dense traffic.

Almost as in a chaotic system, minor changes in the input may lead to completely
different results. The reason is the highly interactive behavior with many cause-and-effect
loops between the traffic participants. The actions of one vehicle may change the behavior
of other vehicles in the simulation, and these changes may feed back to the initial vehicle.
This makes the presentation of results and the comparison with other approaches quite
challenging. Instead of comparing a single simulation run, a bunch of simulations with
different seed values are needed to determine a trend.

After every simulation run, a statistic is reported. This includes the time it took the
emergency vehicle to reach its goal, and the number of collisions that occurred during the
simulation. Furthermore, the strong and emergency braking maneuvers of all vehicles
are counted. Regarding a communication latency sensitivity analysis, the communication
delay range is recorded. For debugging purposes, the seed values are stored as well.

It is assumed that the supervisor broadcasts a query to all vehicles under supervision.
Because of network communication latencies, this query arrives more or less delayed at the
vehicles. The effect of these random delays can be seen in Table 1. There, the same seed
has been used for every simulation but the communication latency has varied between
0 ms and 220 ms (first column). The number of significant braking maneuvers of all cars
within the simulation are counted in the second column. The threshold for a significant
deceleration is currently set to 1 m/s2. It is assumed that electric vehicles can recuperate
the braking energy up to this deceleration value with high efficiency. Even stronger braking
interventions of 4.5 m/s2 and more are assumed to be instances of emergency braking.
These are extremely inconvenient for the passengers and should be avoided. The next
column counts the collisions that occurred during the simulation run. The duration of the
simulation is listed in the last column of Table 1. In the presented scenario, the simulation
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finishes as soon as the emergency vehicle reaches the exit lane or is involved in a crash. If the
simulation terminates prematurely (e.g., latency = 190 ms), the values are not representative
and therefore cannot be used for further evaluation.

As can be expected, with increasing communication latency, significant brakings and
emergency interventions increase. With very high communication latencies, collisions start
to occur. By varying the base traffic seed value while keeping the traffic density similar,
the plots in Figures 8 and 9 have been created. The results of 10 scenarios are plotted
simultaneously, and a trend line was fitted. The box-plot has three components: (i) a blue
box spanning the interquartile range (IQR) with a green point marking the median; (ii) a
thin error-bar whose whiskers span 1.5 * IQR; and (iii) additional blue points marking
outliers, that are data outside the whiskers.

It can be seen that the number of significant braking interventions (cp. Figure 8)
increases quickly with increasing communication latency. Transferred to the real world,
this means a deterioration in energy efficiency. In contrast, the number of emergency
braking maneuvers remains low up to 20 ms communication latency, and starts to increase
significantly after 30 ms.

Table 1. Result of a series of simulations using the same base traffic but different communication latencies.

Latency Strong br. Emergency br. Collision Duration
(ms) # # # (s)

0 2 0 0 147
3 17 0 0 151
5 27 1 0 137
10 53 2 0 153
15 52 1 0 134
20 53 1 0 134
25 72 1 0 158
30 44 1 0 141
35 117 0 0 189
40 72 0 0 149
45 91 1 0 160
50 78 3 0 153
55 56 3 0 138
60 80 8 0 166
70 68 12 0 141
80 71 21 0 139
90 90 36 0 146

100 70 32 0 151
110 106 40 0 172
120 75 38 0 148
130 77 39 0 147
150 61 42 1 135
170 75 54 0 131
190 - - 3 60*
220 54 42 4 137
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Figure 8. The number of significant braking requests with increasing communication latency between
0 and 220 ms over 10 scenarios.

Figure 9. Emergency braking interventions when increasing communication latency between 0 and
220 ms.

Requirements on Communication Layer

Regarding the deployment of such an approach using 5G networks in the future,
requirements regarding the communication layer are necessary. Depending on the actual
coding, the messages between supervisor and vehicle can be expected to be less than
100 bytes each, and are transmitted 10 times per second. With the high bandwidth of 5G
networks, this transmission should not be an issue. More demanding is the application in
terms of communication delays. Derived from Figure 8, it can be concluded that even short
communication delays noticeably degrade the performance. According to Figure 9, the
communication delays should definitely not exceed 20 ms in order to apply the presented
algorithm to a real-world scenario.

6. Conclusions

In this paper, we presented a novel approach for a multi-vehicle path planning algo-
rithm that can be used in congestion-prone road sections for automated connected driving
solutions. By delegating the decision of target speed selection and lane changes to a cen-
tralized supervisor, foresighted planning can be achieved. Since the solution space grows
quickly with the increasing vehicle count, a brute force optimization approach is not feasi-
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ble. Therefore, a genetic optimization algorithm was developed that gradually improves
the trajectories of the automated vehicles. By connecting several optimization runs over
time, the faster convergence and a temporal continuity of the solutions is accomplished.

Our analysis confirms that 5G perfectly fits this kind of application, since it is capable
of providing deterministic communication with latencies below 10 ms [16]. In contrast,
4G communication delays in a typical round-trip latency range of 40 ms and above is not
adequate to implement the described approach in a meaningful way on a highway.

Currently, the presented algorithm is only operational in a simulation environment.
Subsequently, the aim was to implement this approach on our autonomous prototype vehi-
cles and evaluate it under real driving conditions—initially on test tracks, and subsequently
on public highways. Thinking even further into the future, the algorithm would have to be
optimized to work with a reasonable number of vehicles. Hence, the choice of the genetic
algorithm, due to the critical part—the fitness calculation—can be easily parallelized and
scaled up to realistic sizes. The ultimate goal would be to migrate the outlined approach to
the infrastructure of the mobile network operator, as a so-called MEC service [17].
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