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Abstract

We present a segmentation method for tissue images that
uses the shape of image foreground to infer the location of
individual cells. The method works in arbitrary dimension
and is suited for volumetric scans. It is unsupervised, but
allows a user to specify parameters to correct for the pres-
ence of noise and to steer the segmentation behavior. After
describing the algorithm and its limitations, we analyze its
complexity (linear in voxel count) and evaluate the qual-
ity of the segmentation result by applying it to a leaf x-ray
micro-tomography scan.
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1. Introduction

After obtaining a high resolution 3d image of biological
tissue, further processing of that data may require identify-
ing the tissue’s constituent cells, i.e. cell instance segmen-
tation. Even if a volumetric scan only allows for differenti-
ation of tissue from background (as in Fig. 1, where the air
space in-between cells is considered background), a human
expert is still often able to identify single cells. They can in-
fer the position and size of single cells from the shape of the
foreground-to-background surface. Due to the large amount
of data in a 3d image and the resulting work load, a full seg-
mentation by experts is often not feasible. Our method aims
to formalize and automate the human shape-based approach
to segmentation. In contrast to other recent methods [8, 14]
we do not rely on a neural network that needs training (”su-
pervised”), but employ classical geometrical methods from
pattern recognition ("unsupervised”).

Throughout the article, we will use 2d images to illus-
trate the concepts involved. The actual method operates in

Figure 1. 256° voxel X-ray micro-tomography of leaf tissue and
its automated cell instance segmentation result

arbitrary dimension however, not just on slices of 2d im-
ages.

2. Limitations

Our method has the following requirements:

* The image must be an n-d grid (e.g 3d voxels) of grey
values.

» The image must fit into RAM.

» The size of the smallest isolated cells to be captured
must be known a priori or estimated at run time, to not
discard such cells during noise handling.

* Cell shapes must be extractible after a suitable thresh-
olding operation.
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¢ Cell-to-cell interfaces must be smaller in diameter than
cell bodies.

3. Algorithm

Our segmentation method can be summarized as follow-
ing:

1. Extract foreground and background via thresholding.

2. Clean both from noise via morpholigical filtering.

3. Compute distance transform of foreground from back-
ground.

4. Assign labels to local maxima of the (smoothed) dis-
tance transform.

5. Use watershed to grow the labels.

6. Merge labels, if their border is nearly as wide as their
thickest part.

7. Discard labels that are too small.

8. Grow remaining labels again using watershed.

We will now discuss these individual points in more detail.

The distance transform is a great tool to capture shape
information, but it is highly sensitive to noise [2]: Even tiny
spots of background located in the foreground can severely
distort the transform, rendering it useless. This is why care-
ful handling of noise and image artifacts is required. Rather
than blurring the source image to reduce noise effects and
also discarding potentially important high-frequency data
(see Figure 2), we deal with the noise morphologically: Af-
ter thresholding, we search for connected components of
background and delete (i.e. assign as foreground) those,
whose voxel count is below some specified value. This is a
parameter we must specify, and why we must know in ad-
vance the size of the smallest structures we wish to capture.

The seed labels for watershed are constructed from both
the local maxima of the distance transform (possibly a
smoothed distance transform to merge close maxima), and
the connected components of the background.

To use watershed, we need a height map that steers the
growth of seed labels. Classical watershed segmentation [3]
uses the image gradient magnitude as height, which allows
for regions to grow fast where the source image has uni-
form brightness. This however ignores the shape informa-
tion we have already extracted via the distance transform,
and as such is prone to growing labels along image arti-
facts and noise, which strongly affect the gradient. Instead
we choose to use a convex combination of image gradient
magnitude and negative distance transform for height value:
This allows for region growth to happen from cell centers
outwards, uniformly approaching the background, indepen-
dently from cell size. All the while the image gradient can
inform label growth about subtle differences in brightness

that were lost during thresholding. The weight parameter
in the convex combination allows the user to balance shape
with brightness information.

After the first watershed segmentation, we are left with
an over-segmentation. The core insight into how a human
expert segments is now modeled by the constriction factor
c: Each label remembers its radius at the thickest spot, i.e.
the maximum of the distance transform within that label. At
the interface between two neighboring labels, we scan for
the maximum of the distance transform along the interface.
This yields the local thickness of both labels at their border.
Now, if this thickness value is close to the bigger of the two
involved maxima, then the labels don’t constrict much at
their interface, and we assume that they actually belong to
the same biological cell. Hence we merge them. Exactly
how much of a constriction should warrant keeping both
labels? This is another parameter to be specified. In order
to keep the parameter scale-free, we model it as the ratio

distance maximum at border

C = — 5 T
distance maximum within both labels

From our experience, keeping labels separate for ¢ < 0.75
seems to work best.

Even after merging labels, there might be structures
present that are too small in volume to reflect biological
cells. An effective way to merge those tiny labels with their
bigger neighbors is to discard them and use the result as
the seed for another iteration of watershed (using the same
height map as before). This grows the remaining labels,
filling the holes just created. The result is a labeled im-
age, with different labels for connected components of the
background, labels for individual cells wherever their shape
allows for separation, and with a single label per cluster of
cells where they are packed tightly.

4. Runtime & Complexity

The building blocks of our method are thresholding, con-
nected component search, distance transform, local maxima
search, gradient magnitude, and watershed. All of these
components have implementations with linear complexity
O(n) where n is the number of voxels in the data set [4,6,9].

We have implemented our algorithm in a Jupyter note-
book, employing numpy, Skimage and numba for efficient
computation. With this approach, running the method on a
2563 image takes < 5 minutes on an old laptop (Intel Core
i3-3110M with 8GB RAM)), including user input.

5. Validation

To assess the quality of the resulting segmentation, we
apply it to a volumetric X-ray micro-tomography scan of a
poplar leaf (see Figure 1). This image was downsized to
get an isotropic voxel edge length of 0.325um, and then
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(a) Example of a thresholded source im-
age. Note that there is salt-and-pepper noise
present. Best viewed magnified.
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(d) Removing tiny connected components
from both background and foreground in
Fig. 2a cleans noise without losing image de-
tails.

(b) The distance transform of Fig. 2a heavily
distorted by the noise.

(e) The resulting distance transform of Fig. 2d
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(c) Blurring the source image and threshold-
ing removes the noise, but also details from the
image. Note how the bottom shape becomes
disconnected.
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(f) Local maxima of the distance transform are
marked as black dots. They are the used as
seeds for watershed, yielding this oversegmen-
tation.
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(h) We investigate the diameter of Fig. 2g’s re-
gion borders (marked as black lines): In the
top shape, the distance maximum on the bor-
der between the two regions is far smaller than
the maxima in either cell. This characterizes a

(g) Blurring the distance transform prior to
local maxima detection merges neighboring
peaks, reducing oversegmentation and compu-
tation effort in subsequent steps.
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(i) The result after merging neighboring labels
with only slight constrictions at their border.

noticeable constriction in the shape.

Figure 2. 2d illustration of steps involved in the algorithm

cropped to 2562 voxels. Ground truths of all cells present
in three paradermal and four transversal 2d slices were hand
labeled, with the exception of the within-vein cells which
are too densely packed and were assigned a single label.

To compare the human-generated ground truth with the
automated segmentation, we use the metric

2 - precision - recall

error =1—F) =1— —
precision + recall

suggested in [1] as error measure, as well as the
information-based measures described in [11]: The varia-
tion of information (voi) of a segmentation with respect to
the ground truth can be understood as a measure of over-
segmentation, whereas voi of the ground truth with respect
to another segmentation quantifies under-segmentation. We
refer to these measures as splits and merges, respectively.
From the results listed in Table 1, we recognize that both
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over- and under-segmentation occurs, but mostly in moder-
ate less-than-one-bit amount. Error values are high in the
palisade (slice 5) due to low recall, even though the seg-
mentation looks promising upon visual inspection. Correct
segmentation of the water vein from its neighboring cells
proves difficult for our shape-based approach, as can be ob-
served on slices 6 and 7.

6. Conclusion

‘We have demonstrated a linear-time method for unsuper-
vised seeded watershed segmentation of images in arbitrary
dimension. Human interaction is required only to select a
few parameters. The seeds for seeded watershed segmenta-
tion are auto-generated.

The novelty of our method compared to established wa-
tershed segmentation methods [7, 10, 15] lies in the follow-
ing aspects:

1. A careful morphological pre-processing regime to
compensate for the distance transform’s sensitivity to
noise.

2. Operating on level sets of the distance transform in-
stead of explicitly constructing a shape skeleton [5,12,
13].

3. The height map employed during watershed uses in-
formation from both image gradient and the shape of
the foreground-background surface.

4. Over-segmentation resulting from watershed is cor-
rected using a scale-independent, isotropic shape cri-
terion that models human expert behavior.

7. Future Work

We intend to explore further shape-based instance seg-
mentation methods and aim to improve the quality of our
result. The local variation of the constriction factor near la-
bel borders may offer another suitable criterion for merging
labels and correcting for watershed over-segmentation.
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(b) ground truth

(e) ground truth

(h) ground truth (i) automated segmentation

(j) leaf scan slice 4 (k) ground truth (1) automated segmentation

Figure 3. Transversal slices (perpendicular to the surface and to the leaf midrib)
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(c) automated segmentation
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(d) leaf scan slice 6 (e) ground truth (f) automated segmentation

(g) leaf scan slice 7 (h) ground truth (i) automated segmentation

Figure 4. Paradermal slices (parallel to the leaf surface)

slice no. | error [%] | precision [%] | recall [%] | splits [bit] | merges [bit]
1 6.3 98.8 89.0 0.6 0.7
2 4.5 98.0 93.1 0.7 0.5
3 12.2 88.6 87.0 0.8 0.8
4 14.3 91.8 80.4 0.9 0.8
5 40.1 93.0 44.1 0.6 1.2
6 37.6 52.9 76.0 1.5 0.9
7 159 88.2 80.4 1.2 0.7

Table 1. Segmentation error metrics
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