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Abstract

The botanical composition of grassland stands can be
determined using a combination of hyperspectral imaging
and machine learning. Data processing before machine
learning can significantly improve overall model perfor-
mance. Specific preprocessing variants, such as smoothen-
ing and derivation of the spectrum, were found to be ben-
eficial for classifying grassland species groups in detached
models using hyperspectral data from permanent grassland
obtained under laboratory conditions. Compared to exten-
sively preprocessed data, raw spectral data yielded no sta-
tistically decreased performance in most cases.

1. Introduction

Grassland vegetation typically comprises grasses, herbs,
and legumes which represent different functional traits [14]
and feed values; knowledge of their relative proportions of-
fers several advantages for site-specific management and
livestock feeding. Remote sensing is a non-destructive
method used for the reproducible sensing of large areas
[16] as detected spectral signatures may vary depending
on the species group. Machine learning models based on
hyperspectral data can be used for species group classifi-
cation [4, 5]. For this, data preprocessing might be a sub-
stantial step in enhancing model performance. The use of
derivatives together with spectral data is a common tech-
nique [10,18] as removes background signals and visualizes
spectral curve shape differences that might not be evident
in the spectra [7]. Smoothing operations such as Savitzky-
Golay filtering are frequently applied [6, 8] as well as data
standardization or normalization (see Fig. 1). A systematic
review under laboratory conditions can reveal the influence
of the vast number of data processing variants in combina-
tion with machine learning on the spectral-based classifica-
tion of permanent grassland vegetation.

Figure 1. Representative reflectance spectrum and different pre-
processing variants for a single red clover (Trifolium pratense L.)
sample. Left upper corner denotes preprocessing variant.

2. Materials and Methods

The dataset used throughout this study is described in
detail by Britz et al. [5]. Briefly, an in-house hyperspectral
imaging setup was used under standardized laboratory con-
ditions. In total, 5768 plant samples were acquired at two
Austrian grassland sites. Each sample was derived from an
individual plant, manually annotated and labeled according
to species group (grass, herb, or legume).

2.1. Data Preprocessing

For each sample, a total of 100 pixels were drawn
randomly stratified. All samples were grouped based on
their species group, then randomly stratified and assigned
a chunk number from 1 to 5. Further, data was pre-
processed using different combinations of Savitzky-Golay-
smoothening (function savgol with a filter length of 5 and
quadratic filter from R package pracma 2.3.3 [3]), deriva-
tion, and Z-standardization (see Tab. 1). In total, 27 prepro-
cessing variants were generated and analyzed.
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Step Variant

1. O O O O O O O O O O O O O O O O O O O O O O O O O O O
2. Z S S D D D D S S S S D D D D D D D D S S S S S S S
3. Z Z S S D D D D D D D D S S S S D D D D D D D
4. Z Z S S Z S S D D D D D D D D S S S
5. Z Z Z S S Z S S D D D
6. Z Z Z S

Table 1. Preprocessing variants generated from original data (O).
D = derivative, S = Savitzky–Golay filter, Z = Z-standardization.

2.2. Machine Learning Algorithms

Multi-Layer Perceptron (MLP), Random Forest (RF),
and Partial Least Squares Discriminant Analysis (PLS-DA)
models were trained for species group classifications. The
class weights were normalized to compensate for unbal-
anced classes. Final training was performed, 5-fold cross-
validated, and performance metrics were calculated based
on validation parts not used for training. Details on machine
learning algorithms can again be found in Britz et al. [5].

Briefly, MLP networks were trained using Python, Py-
Torch [13], Tune [9] included in Ray [12] and hyperopt
[2]. The architecture is a fully connected layer followed
by batch normalization and a rectified linear unit activa-
tion function (ReLU). After another fully connected layer
with a ReLU, the final layer is connected to the three output
classes. Cross-entropy loss with class weights was used to-
gether with a stochastic gradient descent optimizer. Hyper-
parameters for each variant were searched using an ASHA
and in total 100 hyperparameter combinations per dataset
variant and group were evaluated. The five hyperparame-
ter combinations, having achieved the highest accuracy per
dataset variant and group, were retrained with 5-fold cross-
validation for 120 epochs. Then, the model with the highest
cross-validated accuracy found at any epoch is depicted in
the results. RF classifiers were trained using the function
ranger from the ranger package [17] with mtry of 40, SF of
1 and 400 trees, resulting in reasonable accuracy and com-
putation time for training. PLS regression was performed
using the cppls function from the pls package [11] with 64
components. Subsequently, linear DAs with the lda func-
tion from MASS package [15] were performed.

3. Results and Discussion
MLP achieved cross-validated accuracies of 96.9 % for

species group (grass, herb, or legume) classification. While
MLP and PLS-DA performed well across a wide range of
preprocessing variants and showed a high generalization
ability, this was not true for RF (see Fig. 2). The main rea-
son for this is that RF usually uses only a few predictors at
the tree level to form a decision boundary [1], which makes
it more sensitive to data variations than MLP and PLS-DA.

Figure 2. Mean species group classification accuracy based on
the preprocessing variant for multilayer perceptron (MLP), partial
least squares discriminant analysis (PLS-DA), and random forest
(RF) models. X-axis abbreviations (preprocessing steps from bot-
tom to top): O = original data, D = derivative, S = Savitzky–Golay
filter, Z = Z-standardization. Error bars indicate standard devia-
tion, 5-fold cross-validated.

In general, similar trends in classification accuracy could
be observed depending on the preprocessing variant. Vari-
ants differing only in subsequent Z-standardization showed
no significant differences independent of model type. Pre-
processing steps that do not lead to increased accuracy
should be avoided for the sake of simplicity. Preprocessing
variants including a Savitzky-Golay filter before a deriva-
tion work particularly well for data with low spectral band
distances. Here, differences between successive spectral
channels may be slight compared to random noise [7].
Other variants can also benefit from Savitzky-Golay filter-
ing as a noise reduction technique. Interesting preprocess-
ing variants that performed well, independent of the model
type, included the combination S-D without a second D. In
particular for RF but also in other models, variants contain-
ing a derivation (D) without prior Savitzky–Golay filter (S)
mainly performed worse than variants with a combination
of S and D. This underlines the usefulness of spectral gra-
dients in combination with smoothing for machine learn-
ing applications. However, for MLP and PLS-DA, even the
original dataset variant (O) generated models that were not
significantly different from the best statistical model.
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