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Abstract

In this paper, we tackle the problem of analyzing neural
network training via information plane analysis. The key
idea is to describe the mutual information between the input
and a hidden layer and a hidden layer and the target over
time. Even though this is a reasonable approach, previous
works showed inconsistent or even contradicting interpre-
tations. Since the mutual information cannot be computed
analytically, the authors applied different kinds of estima-
tors, often not describing the mutual information very well.
Taking these findings into account, we want to show that
despite this theoretical limitation information planes allow
at least for a geometric interpretation. Thus, enabling us
to analyze different aspects of neural network learning for
real-world problems.

1. Introduction and Problem Statement
One prominent approach to analyze neural network

training is information plane (IP) analysis [7]. Building
on the idea of the information bottleneck principle [8], the
main idea is to describe and analyze the mutual information
between the layers of a neural network over time. In partic-
ular, we are interested in the plane described by the mutual
information I(X;T ) between the input X and the activa-
tion values of a hidden layer T and the mutual information
I(Y ;T ) between T and the target variable Y .

This is illustrated in Fig. 1 for two examples. From
Fig. 1a, two phases can been observed, cf. [7]: first, a phase
in which both I(X;T ) (expansion) and I(Y ;T ) (fitting) are
increasing, and, second, a compression phase during which
I(X;T ) is decreasing again, whereas I(Y ;T ) is increas-
ing only slightly. The compression phase was interpreted as
the hidden layer T discarding irrelevant information about
the input X , and was causally connected to generalization.
In contrast, Fig. 1b shows only fitting as an increase of
I(Y ;T ).

Even though these examples show that IPs appear to be
an appealing way to analyze learning behaviors of NNs,
we are facing the problem that the literature on IP analysis

reports partially contradicting interpretations, cf. [2, 6, 7].
This, however, can be explained by the fact that the mutual
information can often not be computed analytically, and dif-
ferent kinds of estimations for the mutual information terms
I(X;T ) and I(Y ;T ) are applied. Thus, similar to recent
findings [2, 3], we would like to demonstrate that IPs rep-
resent geometric rather than information-theoretic phenom-
ena. In this way, we are still able to use this technique to an-
alyze NN training if the estimates are interpreted correctly.
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(a) Expansion + compression.
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(b) Fitting only.

Figure 1. Information planes reveal different behavior during neu-
ral network training.

2. Geometric Interpretation of Information
Planes

To this end, we create an IP from the plugin estimates for
mutual information between the uniformly discretized acti-
vation value T̂ and the network input X or class label Y ,
respectively. Introducing both fixed and adaptive binning
schemes for obtaining T̂ , we get the estimators Î(Y ; T̂ )
and Î(X; T̂ ) = H(T̂ ). In this way, we argue that the cor-
rect interpretation of H(T̂ ) yields an insight into the ge-
ometric compression of the activation T , both in absolute
(e.g., describing the diameter of the set of all activations of
a dataset) and relative (e.g., clustering of activations of a
dataset) terms. To allow for a more intuitive interpretation,
we additionally show a 2D visualization of latent space. For
more details on the theoretical background and the applied
binning approaches, we would like to refer to [1].
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3. Illustrative Results

In the following, we show an example demonstrating
that information planes can be a valuable tool to analyze
and interpret neural network learning. To this end, we train
a bottleneck network (100-100-2-100) for the well-known
MNIST dataset [4] and Brightness MNIST (BMNIST) [5], a
modified version of MNIST, where the illumination of the
images has been increased. In this way, the contrast of the
images is decreased and, thus, the classes are pushed closer
together in the image space. The bottleneck model was cho-
sen to make the geometric interpretation more apparent. In
fact, in both cases, we finally obtain a similar classifica-
tion result in terms of accuracy: 96.62% for MNIST and
95.25% for BMNIST. However, when looking at the corre-
sponding information planes in Fig. 2 (MNIST) and Fig. 3
(BMNIST) reveals that the learning behavior is different. To
make the temporal character of the trajectories more appar-
ent, the first and the last epoch are highlighted by a black
point and a large circle, respectively.

For MNIST, using adaptive binning (see Fig. 2b), we can
recognize a fitting phase, i.e., Î(Y ; T̂ ) is increasing over
time, indicating a growth of the class separability. In ad-
dition, using fixed binning (see Fig. 2a), we can recognize
a geometric compression with an absolute scale for Ĥ(T̂ )
from the first to the last epoch for the last two layers. In-
deed, as can be seen in Fig. 4, where we plot the two-
dimensional latent space, the absolute scale reduces from
approx. 47× 69 to approx. 7× 7 during training.
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(a) Fixed binning.
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(b) Adaptive binning.

Figure 2. IPs for MNIST: (a) fixed and (b) adaptive binning.
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(a) Fixed binning.
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Figure 3. IPs for BMNIST: (a) fixed and (b) adaptive binning.

In contrast, for BMNIST, the IP analysis shown in Fig. 3
reveals that the learning behavior is different due to a dif-
ferent initial setting. Due to reduced contrast in the images,
the classes are mapped to highly overlapping regions in the
beginning (see Fig. 5a); for the original MNIST dataset, this
is not the case (see Fig. 4a). Thus, during NN training the
data points in the latent space have to be pushed apart ac-
cording to their class label. In this way, we can recognize a
fitting phase, i.e., increasing Î(Y ; T̂ ), for adaptive binning
(see Fig. 3b) and an expansion phase for fixed binning (see
Fig. 3a). Simultaneously, the data points are pushed apart
and occupy a larger volume in the latent space (increased
from 10× 8 to 22× 17), as can be seen in Fig. 5.

(a) First epoch. (b) Last epoch.

Figure 4. 2D plots for MNIST: (a) first and (b) last epoch.

(a) First epoch. (b) Last epoch.

Figure 5. 2D plots for BMNIST: (a) first and (b) last epoch.

4. Discussion and Conclusion

To overcome the known issues of IP analysis, we
demonstrated that the IP represents geometric rather than
information-theoretic effects, which we showed based on
an inllustrative example. To support these findings, we
built a bottleneck architecture (i.e., using a two-dimensional
layer), which allows us to directly relate the information
covered by IPs to the geometric structure of the latent space.
For more technical details and a more thorough evalua-
tion, we would like to refer to [1].
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