
Mathematical Modelling of Weld Phenomena 13 

127 

 

MODELLING OF THE MELT POOL 

BEHAVIOUR DURING A PULSED TIG 

WELDING OPERATION IN A NARROW 

GROOVE 

S. CADIOU*, A. BAUMARD*, A. BROSSE*, V. BRUYERE** 

*Framatome-DTIM, 2 Rue Professeur Jean Bernard, 69007 Lyon, France 

**SIMTEC, 5 rue Félix Poulat, 38000 Grenoble, France 

DOI 10.3217/978-3-85125-968-1-07 

ABSTRACT 

Arc welding is one of the main processes for assembling metal components in the nuclear industry. To 

guarantee the quality of the welded assemblies and to predict the characteristics of the weld, it is 

necessary to master the welding process and have a thorough understanding of the interactions within 

the melt pool. To this end, the objective of this work is to develop a transient numerical model allowing 

for the prediction of the behaviour of the melted zone during current pulsation in reasonable 

computational times. The relevant industrial application in this study is the welding of a narrow groove 

gap of a stainless steel pipe. The welding process used is pulsed TIG and different synergies are studied. 

In this work, numerical simulation is used as a predictive analysis tool providing data that complete the 

experimental ones. Knowing that the predictive aspect of the simulations depends on the modelling 

choices, it is necessary to consider the main physical phenomena governing the melt pool (thermal 

transfers, fluid flow, electromagnetism) and to model the mass feeding process using the Arbitrary 

Lagrangian Eulerian (ALE) method. The development of the magneto-thermohydraulic model with 

material supply is carried out using the Comsol Multiphysics® software. 

 

Keywords: pulsed TIG welding, groove welding simulation melt pool, magnetohydrodynamics, heat 

transfer 

INTRODUCTION 

Framatome's activities in the nuclear industry require a high level of expertise in assembly 

processes, including welding processes, to ensure that manufactured components respect 

industrial standards. This accurate knowledge of assembly processes is historically based 

on empirical approaches, resulting from experimental feedbacks that have demonstrated 

their capacity in classifying Framatome as one of the leaders in the mastery of welding 

techniques. Nevertheless, these experimental approaches are expensive and lead to both a 

limited understanding of the correlation between the operating parameters and the 

properties of the welds, and of the origin of the defects generated during welding. To 

reduce experimental costs and improve the comprehension of welding processes, 
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Framatome has developed numerical tools. Originally, numerical simulation of welding 

techniques focused on Thermo-Mechanical-Metallurgical (TMM) studies to predict the 

distortions and residual stresses of the manufactured assembly. Although the power of 

computational tools has considerably increased during last decades, assumptions are made 

to simplify the global physical model and thus reduce computational times. Since 2013, 

Framatome has been developing predictive tools for numerical simulation. These 

multiphysics models are based on the process parameters (electric current intensity, arc 

height, shielding gas flow) to simulate a welding operation. The development of these 

models enables to study the influence of the process parameters on the physical quantities 

relevant to TIG (Tungsten Inert Gas) (weld pool, electric arc, detachment of the drop from 

the filler wire or other), to have a better understanding of the phenomenon involved in 

welding. 

Before developing the different aspects of the model, the physics of arc welding 

processes is explained in a first section. The numerous physical phenomena involved are 

described, with particular emphasis on the magnetothermo-hydraulic ones. Then, the 

results from a simplified model of the pulsed TIG welding process with filler metal in a 

narrow groove, known as Orbital Narrow Gap GTA (Gas Tungsten Arc) welding, are 

presented in a second section. The model studied here is considered as simplified because 

the filler metal is not directly modelled but only included in a source term. 

MATHEMATICAL FORMULATION AND GOVERNING EQUATIONS 

The mathematical description made in this section focuses on the modelling of the melt 

pool. The plasma, the tungsten electrode used for TIG welding and the filler wire 

integrating the detachment of the drop are not modelled. 

The main purpose of this section is to describe the physical phenomena (Fgi. 1) in a 

mathematical form, essential to implement the code defining the numerical model. The 

calculation code used in this study is the COMSOL Multiphysics® software (version 5.6). 

As a reminder, the physics explained here is related to electromagnetism, heat transfer 

and fluid mechanics. The ALE method (Arbitary Lagrangian Eulerian) is used to describe 

the free surface. 
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Fig. 1 Multiphysics couplings in the modelling of arc welding 

ELECTROMAGNETISM 

To determine the electromagnetic forces acting on the flow in the melt pool as well as the 

Joule effect, the Maxwell equations given below are solved: 

𝑑𝑖𝑣 (𝜎𝑒𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑉) + 𝜎𝑒 
𝜕𝐴 

𝜕𝑡
) = 0       

(1) 

𝜎𝑒
𝜕𝐴 

𝜕𝑡
+
1

𝜇0
𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝐴 )) + 𝜎𝑒𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑉) = 0⃗      

where 𝜎𝑒 is the electrical conductivity, 𝑉 is the electrical potential, 𝜇0 is the magnetic 

permeability and 𝐴 is the magnetic vector potential.  

THERMAL 

The temperature field is calculated using the energy conservation equation: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣 . 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑇)) = 𝑑𝑖𝑣 (�̅̅� 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑇)) + 𝑆𝑣    (2) 

where 𝜌 is the density, 𝐶𝑝 is the specific heat, 𝑘 is the thermal conductivity, 𝑇 is the 

temperature, and 𝑆𝑣 a volumetric heat source term. Here, 𝑆𝑣 is the heating Joule effect 

(with 𝑗 is current density, and 𝐸 is electric field): 

𝑆𝑣 = 𝑗 . �⃗�         (3) 
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FLUID FLOW 

The flows within the melt pool can be calculated from the conservation equations of mass 

and momentum: 

- Conservation of mass: 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣 ) = 0      (4) 

where 𝜌 is the density, 𝑡 the time and 𝑣  the velocity vector. 

- Conservation of momentum: 

𝜌 (
𝜕�⃗� 

𝜕𝑡
+ 𝑔𝑟𝑎𝑑̿̿ ̿̿ ̿̿ ̿(𝑣 ). 𝑣 ) = 𝑑𝑖𝑣⃗⃗⃗⃗⃗⃗ [−𝑃𝑖̿ + 𝜇𝑓 (𝑔𝑟𝑎𝑑̿̿ ̿̿ ̿̿ ̿(𝑣 )+

𝑡𝑔𝑟𝑎𝑑̿̿ ̿̿ ̿̿ ̿(𝑣 )) −
2

3
𝑑𝑖𝑣(𝑣 )𝑖]̿ +

𝐹𝑣⃗⃗  ⃗    (5) 

where 𝑃 is the pressure, 𝑖 ̿the identity matrix, 𝜇𝑓  the dynamic viscosity and 𝐹𝑣⃗⃗  ⃗ the 

volumetric force detailed below. 

In the melt pool, the volumetric forces include the electromagnetic forces, also called 

Lorentz forces, gravity, the buoyancy effect, also called Boussinesq force and a force of 

extinction of flow velocities called Darcy, allowing to cancel the velocities in the solid 

part. More specifically, the Boussinesq force is an upward volumetric force caused by 

changes in the density of a fluid as a function of variations in its temperature and the 

effects of gravity. It is related to the phenomenon of natural convection. Most of studies 

use the Boussinesq approximation. It consists in considering that the density varies 

linearly with the temperature: 

𝐹 𝑣 = 𝐹 𝑚𝑎𝑔 + 𝐹 𝑏 + 𝐹 𝐷𝑎𝑟𝑐𝑦 + 𝐹 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑗 × �⃗� − 𝜌𝑟𝑒𝑓𝛽(𝑇 − 𝑇𝑟𝑒𝑓)𝑔 − 𝐶
(1−𝑓𝐿)

2

𝑓𝐿
3+𝑏
𝑣 + 𝜌𝑔  

(6) 

where 𝐹 𝑚𝑎𝑔 represents the electromagnetic forces, �⃗�  the magnetic field, 𝑗 the electric 

current density, 𝐹 𝑏 the buoyancy force, 𝐹 𝐷𝑎𝑟𝑐𝑦 the Darcy law and 𝐹 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 the gravity. 

The Darcy law enables to stop the fluid flow in the solid region. 𝜌𝑟𝑒𝑓 corresponds to the 

density at the reference temperature 𝑇𝑟𝑒𝑓, 𝛽 to the thermal expansion coefficient, 𝑔  to the 

acceleration due to gravity, 𝐶d 𝑏 are two constants and 𝑓𝐿 is the liquid fraction function. 

This function is assumed to vary linearly with temperature in the mushy zone as follows: 

𝑓𝐿 = {

1                 if  𝑇 > 𝑇𝐿
𝑇−𝑇𝑆

𝑇𝐿−𝑇𝑆
       if  𝑇𝑆 ≤ 𝑇 ≤ 𝑇𝐿

0                  if  𝑇 < 𝑇𝑆

      (7) 

where 𝑇 is the current temperature, 𝑇𝑆 and 𝑇𝐿 are the solidus and liquidus temperatures of 

the workpiece. 
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INTERFACE EQUATIONS 

To model electromagnetism effects, an electric current density is applied using a surfacic 

Gaussian distribution. The electrical intensity of the process is involved: 

 

𝐽𝑎𝑟𝑐 = 𝑑
𝐼𝑒𝑙𝑒𝑐

𝜋𝑟0
2 exp (−𝑑

(𝑥−𝑥0)
2+(𝑦−𝑦0)

2

𝑟0
2 )     (8) 

 

where 𝑟0 is the arc radius, 𝐼𝑒𝑙𝑒𝑐 the intensity of the electric current, 𝑥0 and 𝑦0 the 

coordinates of the centre of the welding torch and 𝑑 the parameter to be calibrated for the 

process. In the case of TIG welding with filler metal, d is generally equal to 3 [1]. 

To describe thermal effects at the interface, additional energy terms are used to modify 

the energy balance defined as follows: 

𝑞 𝑡𝑜𝑡𝑎𝑙 . (−�⃗� ) = 𝑄𝑎𝑟𝑐 + 𝑠𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑠𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛    (9) 

where 𝑞 𝑡𝑜𝑡𝑎𝑙 is the total heat flux received by 𝑄𝑎𝑟𝑐, 𝑠𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛, and 𝑠𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 

The description of these terms is given below: 

- The heat input generated by the process is assumed to follow a surfacic Gaussian 

distribution: 

𝑄𝑎𝑟𝑐 = 𝑑
𝜂𝑒𝑙𝑒𝑐𝑈𝑒𝑙𝑒𝑐𝐼𝑒𝑙𝑒𝑐

𝜋𝑟0
2 exp (−𝑑

(𝑥−𝑥0)
2+(𝑦−𝑦0)

2

𝑟0
2 )   (10) 

where 𝑈𝑒𝑙𝑒𝑐 is the voltage of the electric current and 𝜂𝑒𝑙𝑒𝑐 the numerical efficiency 

applied to the power. 
 

- Radiation losses: 

𝑠𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = −𝜀𝜎𝐵(𝑇
4 − 𝑇𝑎𝑚𝑏

4 )     (11) 

where 𝜎𝐵 is the Stefan-Boltzmann constant, ε the emissivity, 𝑇 the temperature at the 

surface of the part and 𝑇𝑎𝑚𝑏 is the ambient temperature. 
 

- Convection losses: 

𝑠𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = −ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏)     (12) 

where ℎ𝑐 is a convective exchange coefficient. 

INTERFACE EQUATIONS FOR FLUID FLOW WITH THE FREE INTERFACE (ALE METHOD) 

Under the action of the gravitational force, of the arc pressure and of the surface tension 

acting on the melt pool, the free surface of the molten metal deforms. Even though the 

amplitude of this deformation is directly related to the welding current and to the arc 

voltage, it remains relatively low in TIG compared to other welding processes such as 

MAG, during which the impact of the droplets considerably deforms the free surface [2]. 
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The development of this model is based on the work of Ushio and Wu [3], also taken 

up by Le Guen [4] and Traidia [2]. It relies on a variational approach which consists in 

minimizing the total energy of the weld pool and in constraining it to a constant volume, 

defined by the mass flow rate of filler metal. The energy of the melt pool depends on the 

variation of the surface energy with the change in the corresponding area (linked to the 

consideration of the filler metal), on the potential energy due to gravity, and on the work 

done by arc pressure on the surface. We have designed this approach to predict the 

deformation of the surface of the weld pool in TIG welding with filler metal using 

COMSOL Multiphysics® software. The total energy can therefore be expressed 

according to equation (13). 

𝐸𝑡𝑜𝑡𝑎𝑙𝑒 = ∬ (𝛾 (√1 + 𝜙|𝑥
2 + 𝜙|𝑦

2 − 1) +
1

2
𝜌𝑔𝜙2 − 𝑃𝑎𝑟𝑐𝜙)𝑑𝑥𝑑𝑦𝑆

 (13) 

where 𝑆 is the upper surface of the part, 𝛾 the surface tension, 𝜌 the density of the metal, 

𝑃𝑎𝑟𝑐 the arc pressure, 𝜙 the space function giving, along the vertical axis z, the position of 

the surface of the melt pool with respect to the undistorted reference plane. The indices |x 

and |y correspond to the derivatives of the variables concerned with respect to x and y. 

The arc pressure is defined by a gaussian distribution of the following form: 

𝑃𝑎𝑟𝑐 = 𝑑𝑃𝑚𝑎𝑥 exp (−𝑑
(𝑥−𝑥0) 

2+(𝑦−𝑦0)
2)

𝑟0
2 )    (14) 

with 𝑃𝑚𝑎𝑥 the maximum pressure of the arc which is defined as follows: 

𝑃𝑚𝑎𝑥 =
𝜇0𝑒𝑙𝑒𝑐𝐼𝑒𝑙𝑒𝑐

2

𝜋𝑟0
2       (15) 

where, as a reminder, 𝑟0 is the arc radius, 𝜇0𝑒𝑙𝑒𝑐is the magnetic permeability, 𝐼𝑒𝑙𝑒𝑐 is the 

intensity of the electric current, 𝑥0 and 𝑦0 are the coordinates of the centre of the welding 

torch, and 𝑑 is the parameter to be calibrated for the process, (generally equal to 3 for TIG 

process application with filler metal [1]). 
The Marangoni force, also known as the surface tension gradient force, is also 

considered. It is defined by the following equation: 

𝐹 𝑚𝑎𝑟𝑎𝑛𝑔𝑜𝑛𝑖 =
𝜕𝛾

𝜕𝑇
 ∇S⃗⃗⃗⃗ 𝑇     (16) 

where 𝛾 is the surface tension defined according to a Sahoo law [5]. 
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RESULTS AND DISCUSSION 

EXPERIMENTAL VALIDATION 

The development of the model is based on the TG4 model of the NeT network (Neutron 

Techniques Standardization for Structural Integrity) [6]. The material used is 316L 

stainless steel. The geometry of the TG4 groove as well as its dimensions are shown in 

Fig. . To reduce the duration of the calculation, a local adaptation of the mesh is 

performed (limiting the number of elements) and only the thermal equations are solved on 

the totality of the geometry. Consequently, fluid mechanics and electromagnetism are 

treated in a restricted domain encompassing the melt pool and slightly larger than its size. 

It is in this domain that the mesh is refined. Moreover, the model being symmetrical with 

respect to the plane (xz), only half of the geometry is modelled (Fig. 2).  

Table 1 Welding parameters used for TG4 groove [6] 

Intensity Voltage Travel speed Wire feed speed Wire diameter 

220 A 10 V  76.2 mm/min      29.67 mm/s       0.9 mm 

The welding parameters used to fill the TG4 groove are presented in Table 1 [6] and are 

used in the numerical model. As the model does not consider the cycles of variation of the 

wire feed speed, the average value of this wire speed is chosen for the simulation. 

 

Fig. 2 Experimental and numerical geometries of the TG4 mock-up groove [6] 

The results presented below focus on the behaviour of the melt pool. First, one can 

observe in Fig. 3 the thermal field as well as the shape of the weld pool, highlighted by 

the purple curve formed by the Iso-value corresponding to the melting temperature (fixed 

Experiment

al 

Numerical 
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at 1700 K). Then in Fig. 4 are represented the velocity field and vectors of the fluid flow 

within the melt pool.  

 

Fig. 3 Temperature field (in K) in the melt pool of the first bead 

 

Fig. 4 Velocity field and vectors (in m.s-1) of the fluid flow in the melt pool of the first bead 

To estimate the validity of the model, comparisons between numerical and 

experimental results are made. More specifically, are compared: 

- Macrographs; 

- The thermal evolution obtained by thermocouples. 

Fig. 5 shows a good agreement between the melted zones obtained experimentally in 

the case of the TG4 study (surface in the centre of the figure in light grey) and the melted 

zones generated by numerical simulation (represented by the purple outline). 
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Fig. 5 Comparison of experimental (light grey) and numerical (purple) melted zones 

The next step of validation consists in comparing the thermal numerical field to the 

experimental one. To that purpose, the temperature values recorded by one of the 

thermocouples of the TG4 study [6] are used as references. This thermocouple is located 

at the bottom surface of the groove, aligned with the welding direction and centred on the 

torch position. The numerical model being stationary, it is necessary before to compare 

simulation results with the thermocouple data, to transform them to obtain a temporal 

evolution. To this end, temperatures calculated along the central line located below the 

groove (shown in blue in Fig. 6) are transformed using the ratio of the position along the 

welding direction (x) and the welding speed: 

𝑡 =
𝑥

𝑉𝑠
        (17) 

with 𝑥 the position along the welding direction and 𝑉𝑠 the welding speed. 

 

Fig. 6 Representation of the segment used for the comparison of numerical temperatures and 

temperature measurements recorded experimentally by the thermocouple 
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Fig. 6 allows for the comparison of the temperature evolution observed experimentally 

(via the thermocouple) with the one obtained by simulation. Although the model 

overestimates the maximum temperature (around 20°C), we can notice similar trends. 

PULSED TIG MODEL FOR ORBITAL NARROW  

The simulation of the TG4 groove leads to the validation of the model. Indeed, the results 

indicate its ability to predict the geometry of the bead and the thermal field of the part 

based on the welding parameters.  

To consider the cycles of intensity pulsation, it is then necessary to realize a transient 

model. A first approach would consist in modelling the formation of the bead from its 

beginning to its steady state. The main advantage of this model is that the shape of the 

bead can be simulated from the very first moments of welding. The main disadvantage is 

that it requires the resolution of fluid mechanics equations over a wide area, which leads 

to significant calculation times (about a month). This first approach should be avoided 

when dealing with sensitivity studies on process parameters and therefore is inappropriate 

in the context of this study. 

The innovative approach described below enables the integration of the transient aspect 

of the studied problem, with the advantage of limiting the computational times. It is based 

on two successive calculations: a stationary calculation identical to the one used in the 

case of the TG4 model, and a transient magneto-thermohydraulic calculation without 

filler metal. The first calculation aims at obtaining the established shape of the weld bead 

from averaged welding parameters, such as the intensity of the electric current. The 

results obtained at the end of the stationary calculation is then used as initial conditions 

for the transient calculation. This calculation allows for the simulation of the pulsation 

cycles of the current intensity and for the study of the consequences of these cycles on the 

behaviour of the melt pool. 

 

Fig. 7 Geometry of the narrow gap model with a symmetry of the plane (xz) 

Considering the shape of the bead obtained during the transient calculation and 

assuming a negligible deformation of the weld pool during the pulsation cycles, it was 
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decided not to model the filler metal. As a note, less than 4 days are needed to simulate 4 

seconds of physical time (i.e., real welding time), since the duration of the calculation is 

around 10 hours for the stationary model and varies from 24 to 72 hours for the transient 

model. The dimensions of the orbital narrow gap model are confidential. Nevertheless, 

the geometry of the groove is presented in Fig. 7. The material used is of stainless-steel 

type. The process parameters used to develop the model are confidential Framatome data. 

 

Fig. 8 Thermal field (in K) and velocity vectors of the fluid flow within the melt pool. The 

purple curve corresponds to the melting isovalue (1700 K). 

 

Fig. 9 Numerical macrograph with the melted zone represented in red (temperature above 

1700 K) 

Fig. 8 and Fig. 9 summarize the simulation results. Fig. 9 shows the thermal field and 

the fluid flow velocity vectors within the weld pool. The shape of the melt pool is 
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represented by the purple curve generated by the fusion isovalue (temperature of 1700 K). 

Fig. 9, corresponds to the numerical macrograph simulated. 

The results from the transient calculation describe the variations in shape of the melt 

pool during the intensity pulsation cycles. Fig. 10, Fig. 12, Fig. 13 and Fig. 14 show, as a 

function of intensity, the variations in elongation, width, penetration, and volume of the 

weld pool respectively. In these figures are plotted: 

- Continuous lines: representing the characteristic pool dimensions; 

- Dashed lines: depicting the current intensities; 

- Dotted lines: corresponding to the slope of the speed of the welding torch (only 

Fig. 10). 

 

Fig. 10 Evolution of the elongation of the melt pool during the intensity pulsation cycles 

using the initial (blue curves) and optimized (orange curves) process parameters 

Two different sets of parameters are tested within the framework of this study: an 

initial one and an “optimized” one that leads to the obtention of a more stable weld pool. 

During stationary simulations the power is determined by averaging the parameters 

related to the electric current (intensity and voltage). In the present case, the two sets of 

parameters, “initial” and “optimized”, give the same average power, which would lead to 

identical results for a stationary simulation. Therefore, it is important to define a transient 

model to be able to perform an accurate analysis of the behaviour of the melt pool. In the 

following, the results of simulations carried out with the initial set of parameters are 

identified by the blue curves and those related to the optimized set of parameters by the 

orange curves.  

Comparing the curve of the welding torch speed of advance and the elongation of the 

melt pool (Fig. 10, Fig. 11), one can observe that the pool grows faster than it moves. 

Indeed, the two areas represented in yellow in the figure located above the dotted lines 

(slope of the speed of the torch), and under the continuous lines show that the pool grows 

faster than the torch moves. The weld bead therefore undergoes a remelting during 
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electric current intensity pulsations. Intensity pulsation cycles also highlight the 

disadvantage of using stationary calculations.  

 

Fig. 11 Diagram representing the elongation of the melt pool 

The results obtained being confidential, only the analysis of the relative deviations, 

𝜀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is made: 

𝜀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑜𝑝𝑡𝑖−𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑖

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑖
     (18) 

Table 2 summarizes the relative deviations obtained for the various observables, namely 

the elongation of the melt pool, its width, its penetration, its volume, its maximum 

temperature and its maximum flow velocity. This table shows that intensity pulsation 

cycles have a significant impact on the shape of the melt pool. Indeed, the table highlights 

the fact that the weld pool undergoes less significant variations during a pulsation cycle 

with the optimized parameters than with the initial parameters, since these variations are 

reduced by 48% if we focus on the volume of the weld pool. Fig. 12, Fig. 13 and Fig. 14 

reinforce the conclusions of Table 2. 

Table 2 Relative deviations of the variations of the different observables 

Observables 
Relative deviation of the variations between 

initial and optimized parameters 

Elongation of the tail of the weld pool -28 % 

Width -26 % 

Penetration -3 % 

Volume -48 % 

Maximum temperature -4,56 % 

Maximum fluid flow velocity -5,71 % 
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Fig. 12 Evolution of the width of the melt pool during cycles of intensity pulsation for the 

initial (blue curves) and optimized (orange curves) parameters 

 

Fig. 13 Evolution of the melt pool depth penetration during intensity pulsation cycles for 

initial (blue curves) and optimized (orange curves) parameters 
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Fig. 14 Evolution of the melt pool volume during intensity pulsation cycles for initial (blue 

curves) and optimized (orange curves) parameters 

CONCLUSION 

This paper presents some of the work carried out by Framatome in the modelling of the 

melt pool formed by welding processes aiming at the contribution of the improvement of 

the control of these processes. 

Framatome being interested in the welds used in the nuclear industry, the objective of 

this study was to develop a model suitable for industrial configurations of the Orbital 

Narrow Gap GTA Welding type to improve the understanding of the influence of the 

operating parameters on the behaviour of the weld pool. First step consisted in developing 

a model consistent with the physics of the weld pool, based on experimental data. A 

model already used by Framatome was chosen, including a narrow chamfer. After 

comparing the experimental and numerical temperatures and weld pool shapes, a good 

agreement was found, allowing for the validation of the defined simulation method for a 

typical welding configuration. 

The methodology was then specially adapted to Orbital Narrow Gap GTA Welding 

processes, which use a pulsed transfer mode. To this end, in addition to the initial 

stationary model, a transient magneto-thermohydraulic model considering the cycles of 

pulsations was developed. Finally, the developed approach offers promising results in 

reasonable computation times. 
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