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ABSTRACT 

Data evaluation is of great importance for quality assurance and control loops. Components and process 

parameters involved in the production process can be networked and evaluated using all relevant 

information and controlled in real time. Thermal joining processes are complex; so is laser beam 

welding (LBW). The numerical description of the processes provides good approximations for partial 

aspects. However, experiments are still the basis for determining optimal process parameters. This is 

time-consuming and cost-intensive. 

For the evaluation of experimental data there are some AI approaches; e.g. response surface method, 

Taguchi method, KNN models, Kriging models, principal component analysis (PCA). Systematic 

backup, analysis and visualization of welding and quality data using database systems and analysis 

algorithms is not currently taking place on a wide scale. Expert knowledge is a mandatory prerequisite 

for the preparation, execution and evaluation of LBW processes. Therefore, the potentials of the process 

are often not fully exploited. The consequences are e.g. long commissioning times, low flexibility for 

new tasks and missing objective knowledge management. 

In the lecture a tool based on PCA will be presented. The interdependencies between process parameters 

and the welding result in the form of the 2D weld geometry are mapped in a statistical model. The 

system is learned from experimental data sets. The weld geometry can contain further characteristic 

values; e.g. weld penetration depth, weld width or load-bearing weld cross-section. These characteristic 

values can be linked to the quality of the welded joint. The two-dimensional weld formation and all 

contained spatially resolved result variables can be represented; e.g. width of heat affected zones and 

grain size distribution. This requires the analysis of multivariate data; e.g. micrographs with a pixel 

number of several million, as dependent result variables with all nonlinear dependencies. To realize the 

spatial resolution of the result variables, the full pixel resolution is used for image analysis. From the 

formed statistical model, the seam geometry with all properties can be predicted ad hoc within the 

learned data space for arbitrary parameter combinations, or local target variables can be specified and an 

optimization algorithm searches for the best possible parameter combination from many model queries. 

Using an LBW task as an example, the evaluation principle and the GUI are shown. Key points are the 

permanent accumulation of knowledge, usable control strategies, quality proofs and thus time and cost 

savings. 
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INTRODUCTION 

Individual operations or several operations in a process chain always have influencing 

variables; some can be easily influenced (controlled variables) and some are difficult to 

influence. In the complex operation of laser welding LBW, controllable influencing 

variables are e.g. feed rate, focus position and power; difficult to influence is usually the 

task, i.e. the materials to be welded. At present, theoretical control of the LBW-process is 

not sufficient to dispense with experiments. Therefore, the welding parameters are mainly 

determined experimentally (Fig. 1). 

 

Fig. 1 Iterative approach to experience-based welding parameter determination 

There is not always sufficient time available for test series. Technological decisions 

often have to be made on the basis of subjective empirical values. Potentials of the 

processes are not exploited to the full extent. For manufacturing companies, problems 

arise during preparation due to long commissioning times and during processing due to 

non-optimal parameters. 

This situation is exacerbated by the increasing individualization of production. The 

development is characterized by the increase of small series, one-off productions or 

changing component derivatives within a series production. Rapid adaptation of 

technology parameters to new production tasks is required. This flexibility demanded by 

customers poses great challenges for plant manufacturers as well as for the supply 

industry and contract manufacturers. 

Therefore, the following objectives are pursued: 

• Predict welding parameters for desired seam geometries without time-, material- 

and energy-intensive welding tests; that leads to fast, efficient, accurate planning 

processes  

• improvement of quality through optimal parameter selection  

• fast commissioning of welding systems even for batch size 1; making 

uneconomical orders profitable  

• Process stabilization in automatic control loops 

• make welding knowledge independent of people; constantly expand know-how. 

The analysis of complex data makes sense only if a large number of setting parameters 

are required and the user therefore has difficulty in keeping track of the interdependencies 

between input variables and welding results. 
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STATE OF THE ART 

Data evaluation is of great importance for quality assurance and control loops. 

Components and process parameters involved in the production process can be networked 

and evaluated using all relevant information and controlled in real time. 

Transforming the experiential knowledge of experts into usable algorithms has been 

the subject of research for years. For the evaluation of experimental data there are some 

AI approaches [1]; e.g. Response Surface Method [2], Taguchi method [3], Neuronal 

Network models [4], Kriging models [5], Principal Component Analysis (PCA) [6]. 

As parameter studies carried out on various manufacturing processes, PCA makes it 

possible to analyze multivariate data with a high number of input and dependent result 

variables - up to the range of millions [7]. Thus, complex nonlinear dependencies can be 

spatially resolved and mapped with good accuracy by statistical methods. 

COUPLED PROCESS ANALYSIS 

Coupled Process Analysis (CPA) is discussed in [8-10]. 

A number of 12 tests were performed to realise a prediction in this data space from 

experimental data with the CPA-Tool. In Fig. 2 the processing cycle of CPA is shown 

beginning with a Design Of Experiments (DOE). 

 

Fig. 2 CPA - processing cycle 

There are indications that the acquisition of complex experimental data represents 

reality better and more efficiently than the attempt of numerical description. But, also 

targeted experiments to determine material properties [11] or serial measurements to 

describe processes are costly. This data acquisition incl. the preparation of the data for 

automatic machine readability are often 90% and more of the expenses for a successful AI 

project. Therefore, minimizing the experiments by maximizing the use of the data is an 

important criterion. 
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For the realized LBW task, the input variables with the selected data space are shown 

in Table 1; the fixed boundary conditions are shown in Table 2. As DOE a Latin 

Hypercube Sampling was used to determine the variable parameters for the 12 weld tests; 

see Table 3. 

Table 1 Data space of the input variables 

Input variable min max 

welding speed [m/min] 1,5 5 

Power [kW] 2 5 

Focus position (mm) -4 5 

Table 2 Fixed boundary conditions  

description Value (const.) 

Laser source Disk laser Trumpf „TruDisk 10002“ 

Fiber diameter 0,4 mm 

Welding optic Trumpf MSO (focal length 200 mm) 

Base material Steel (DC04) / thickness 1,0 mm / uncoated 

Weld configuration lap joint in flat position 

Table 3 Variable laser parameters 

Test Test Speed [m/min] Power [kW] Focus Position [mm] 

1 2,83 2,83 2 

2 3,17 2 3 

3 4,5 3,13 1 

4 1,5 4,62 -2 

5 1,83 5 -4 

6 4,17 3,37 0 

7 5 3,37 0 

8 1 2,62 5 

9 2,5 4,12 -3 

10 2,17 2,88 -1 

11 3,83 2,38 5 

12 3,5 4,38 4 

Data acquisition is carried out on the prepared 12 cross sections in high pixel 

resolution. An example for a narrow seam, see Fig. 3, welded at higher speed and lower 

power. For a wide seam see Fig. 4, welded at lower speed and higher power. 

The images were taken in a high resolution with millions of pixels; each with a gray 

value between 1 and 256. Suitable algorithms for image preprocessing and feature 

extraction are available open-source [12] as well as commercially. For supervised 

learning classifiers up to complex neural networks, a wide range of methods exists [13]. 
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In addition to the gray values, color and texture features can also be recorded in order to 

make statements about the microstructure; e.g. about the grain size distribution. 

Data processing means make the data machine readable. The LBW-micrographs will 

be formatted to the same size, i.e. to an identical number of pixels. 

Classically, the relationship to the input variables could be mapped in an extra 

metamodel for each pixel. This does not make sense with current computing technology. 

So data reduction based on PCA is used. 

Supervised learning on the basis of Python-based engines determines the best 

mathematical approximations for various relationships. Automatic model building takes 

place in the reduced data space. Often simple polynomial approaches are sufficient for the 

description. In the case of the LBW task, 5 modes with maximum quadratic terms 

resulted. Based on the created analytical model, input variables with only minimal 

influence can be sorted out in a sensitivity analysis. In the present case with only three 

input variables, no parameter was sorted out. 

A dynamic shape-based visualization for arbitrary parameter combinations is 

performed. This GUI of the relationships can be automated by analytically calculating a 

large number of variants for a desired target variable in an optimization run and 

determining the parameter combination that best satisfies the target variable. 

The whole cycle can be repeated if the model quality does not meet the set 

requirements. In this case, a new DOE is created with a serial Latin Hypercube Sampling, 

whereby only new values for the variables are specified. 

LASERTOOL 

In [14] the LBW-example was published for the first time. In the following the evaluation 

principle and the GUI are shown. 

The 2D virtual micrograph is represented by different gray values, the fusion line - the 

boundary between laser weld seam and heat affected zone - by two blue lines. The data 

for the blue lines were determined manually in the 12 micrographs and then 

approximated. See Fig. 3 and 4 to compare the real micrograph with the image from the 

virtual model. 

 

  

Fig. 3 Cross sections from experiment; Test 7 left; Test 12 right 
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Fig. 4 Shape-based visualization with grey values and blue fusion line from metamodel; 

Test 7 left; 12 right 

Fig. 6 shows the Graphic User Interface. 

The two target variables – grey values and blue lines - are each represented by a separate 

metamodel. 

Model-based generation of a 2D virtual micrograph with the geometry of the heat-

affected zone and the fusion area of the laser weld seam for various parameter 

combinations is possible in real time – see Fig. 5 and 6 for process chain and GUI.  

 

Fig. 5 Shape-based visualization with grey values and blue fusion line from metamodel; 

Test 7 left; 12 right 
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Fig. 6 GUI Virtual, shape-based visualization 

OUTLOOK 

Many other influence parameters have an impact on the process; e.g. process gas or laser 

parameters (e.g. laser beam wavelength, fibre diameter, spot diameter, power distribution 

in the beam ...). These variables multiply the solution space and the effort. Especially the 

material combination can hardly be parameterised. 

Further characteristic values can also be evaluated for the target variables; e.g. weld 

penetration depth, load-bearing weld cross section or grain size distribution. These 

characteristic values can be linked to the quality of the welded joint. 

Based on the described approach, the goals stated in the introduction can be achieved. 

CONCLUSION 

For the field meta modelling approach based on the sensitivity analysis of variances it will 

be necessary to automate the pre- and post-processing of experiments and data analytics. 

In the presented example "LBW", a prediction of the seam geometry becomes possible 

on the basis of micrographs using the variance-based sensitivity analysis with field 

metamodeling. This makes it possible to find suitable parameters for welding processes. 

Often the data acquisition can be the biggest cost driver. What is sought is the 

analytical model that achieves the best process description at the lowest cost for 

measurement. Such an analytical model is then used as a basis for the automatic control of 

processes based on the developed software workflow via suitable control variables; e.g. 

laser parameters.  
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