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ABSTRACT 
Madrid Calle 30 ring road tunnels are a very complex road tunnel network, with a total 
extension of 43 km opened in 2007. In order to update the ventilation control algorithms, it 
has been necessary to analyze the records of all sensors and ventilation equipment since 
inauguration with the objective of characterize the current capacity of the system, the 
influence of the different parameters and learn from the analysis of past events. Due to the 
extension and complexity of the network, and the huge amount of field data available, an 
Artificial Intelligence (AI) system (Respira®, from SENER) has been used to evaluate the 
current performance of the system. 

In parallel, a 1D simulation model of the whole ventilation system (as a digital twin) has been 
generated. The uncertainty in some parameters of the 1D model, and its size and complexity, 
has driven the design team to automatize its calibration. A surrogate model of the 1D model 
was built on Python by training it with a sample of 3,000 1D simulations, where uncertain 
parameters were modified randomly within ranges given by expert knowledge. Differential 
Evolution method is used for calibration [1], obtaining a set of parameters that minimizes an 
error function between the model prediction and the field data.  

With this calibrated digital twin, it has been possible to optimize the ventilation algorithms 
for the different events foreseeable in the different areas of the M30. 
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1. INTRODUCTION 

The tunnels of Madrid Calle30 form a complex road network over 43 km long, with 938 fans, 
85 ventilation shafts, 430 anemometers, and 284 gas detection sensors. Inaugurated in 2007, 
its ventilation control system is being refurbished as the control equipment is reaching the end 
of its life cycle. In addition to this, the operation of the ventilation system is being analysed 
and updated, taking into consideration the experience acquired in these years, the current 
situation of the infrastructure and the capabilities of the new control system. 

Updating the ventilation algorithms requires adequate knowledge of the system's capabilities 
and behavior, as well as a digital model that allows knowing in advance the system's responses 
to different events or future actions. It is vitally important that the digital model is properly 
calibrated so that the results obtained accurately predict the behavior that the ventilation will 
actually have in the tunnel. 
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Once the capacity and configuration of the ventilation system is adequately known and a 
properly calibrated simulation model is available, the development of the ventilation 
algorithms is similar to that of any other tunnel. At this point the difference is only the large 
number of zones and equipment that must be considered for operation and fire situations. 

For the analysis of ventilation and historical records of such a complex, extensive network 
with so much data, the application of artificial intelligence tools is a vital help. The application 
of automatic tools that allow comparison of the results of the simulations with those recorded 
during normal operation or during the various ventilation tests developed is also of great help. 
It is necessary to take into account the high number of parameters to be considered in the 
different areas of the infrastructure, in relation to circulation and ventilation itself. 

2. DESCRIPTION OF THE INFRASTRUCTURE 

The M-30 is the busiest road in Spain: it registers a daily average of 1.3 million trips (vehicles), 
with peaks of one and a half million journeys in 24 hours. We are talking about 475 million 
vehicles and 570 million people (users) per year. It is the main ring road of the city of Madrid 
with a mixed configuration of tunnels and open-air road. 

The M-30 is the most extensive network of urban tunnels in Europe (48 kilometers of tunnels, 
equivalent to an underground lane of 118 kilometers. The tunnels have multiple entrances (21) 
and exits (22), as well as a wide variety of configurations and number of lanes in their different 
areas. 

 

 

 

 

 

 

 

 

 
Figure 1: Scheme of the M30 tunnels 

It also has different ventilation modes in its different areas (longitudinal, longitudinal with 
specific extractions, semi-transverse and transverse). The complexity of the tunnel network 
and its ventilation can be seen with some of the figures of its equipment: 

• 430 anemometers (347 inside the road tunnels, rest in auxiliary tunnels and portals) 
• 75 CO sensors 
• 68 NOx sensors 
• 141 opacimeters 
• 521 jet fans 
• 127 smoke extraction shafts for support longitudinal ventilation (normally each of then 

has two axial fans) 
• 85 ventilation shafts with 163 axial fans (part of them are reversible) 
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3. NALYSING FIELD DATA RECORDS WITH ARTIFICIAL INTELLIGENCE  

 VARIABLES 
To analyze the current capacity of ventilation and the influence of the different variables on 
this system, the records of all relevant elements from the last 12 years (2011-2022) were 
extracted from the control center. These records included: 

• Indoor and outdoor environmental sensors (air velocity, wind, temperature, CO, NO 
and NO2, Opacity, etc.)  

• Activation of ventilation equipment (jet fans, ventilation shafts, punctual extractions, 
air filters, dampers information, etc.) 

• Traffic data 
• Fire alarms and emergency exit sensors. 
• Auxiliary variables of the control system 

The information collected exceeds 3 TB of database files. Due to the high number of elements 
for which information is available, the way in which the data is recorded, the great diversity 
of variables considered and the different scales of the variables, it is practically impossible to 
process all the records manually or with conventional tools. From the tender stage, it was 
proposed to process all this information using artificial intelligence. 

 PROCESSES, ANALYSIS, REPRESENTATION AND MINING OF DATA 
Once all the information received was registered, it was processed and filed homogeneously 
in a cloud database. In addition, an information viewer was developed with multiple 
possibilities for filtering and selecting variables, zones and times. This has been of great help 
to engineers to simultaneously analyze different variables and corroborate the correlations 
provided by artificial intelligence. It has also allowed us to analyze various specific events 
that the AI discards because they are not frequent, such as fire drills or real fires. 

 
Figure 2: Example of the information viewer. Average air velocity from tunnel anemometers in the period selected. 

 

Once all the information had been stored, the data was processed, filtering all the information 
that corresponds to specific events or registration failures that do not fit the main correlations 
that govern the ventilation of the tunnel. This guarantees that the data being analyzed is of 
quality for the purpose of the study. 
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To facilitate the analysis of the behavior of the ventilation of the infrastructure, AI techniques 
have been used to identify the equipment of greatest interest. With this, a large part of the 
equipment has been grouped into clusters that have similar behaviors or patterns. This allows 
engineers to see areas where ventilation behavior is similar, as well as greatly reducing the 
search for physical correlations between events or variables. These clusters have also helped 
to quickly locate sensors whose measurement is not sufficiently precise (or even incorrect) 
and have allowed the operator to know which equipment needed to be checked or adjusted. 
Measurements from devices that belong to clusters with inaccurate measurements are 
removed from subsequent data analysis and the model calibration process. 

 
Figure 3: Cluster of anemometers with similar behavior in a given month. 

The analysis of traffic data also allows us to obtain correlations in the different areas of the 
road between traffic intensity and speed and air velocity to analyze the piston effects in the 
different zones. 

   
Figure 4: Correlation between traffic intensity and speed in the different areas of the tunnel. 

Another analysis carried out has been the distribution of temperatures along the tunnel, its 
variation with time and its relationship to the outside temperatures and air speed. This has 
allowed us to know its influence on the natural draught during the normal operation of the 
tunnels. In general, it has been proven that the thermal effects in normal operation are much 
lower than those of the piston effects. During low traffic hours, thermal effects tend to exhibit 
repetitive patterns since they occur at the same times every day under very similar thermal 
conditions. Due to the large air currents in the tunnels caused by traffic, the tunnel temperature 
quickly adapts to the outside diurnal average. In Madrid, at night, the temperature is always 
lower than the daily average, so every night the tunnel temperature is higher than the outside 
temperature and the natural drafts are always the same. Likewise, it is observed that 
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temperatures tend to be colder in the West area that in the East (TBM tunnel), partly due to 
the presence of the Manzanares River and partly due to the greater number of connections 
with the outside of this area. 

 
Figure 5: Average temperatures in the different areas of the tunnel in 2021. 

Additionally, other artificial intelligence tools developed by Sener have been applied to the 
data using the Respira® tunnel ventilation control solution that has allowed, among other 
things, analyze the following: 

• Analysis of hours in which the contaminant values are located at the different control 
thresholds. 

• Relationship between traffic intensity and gas concentration. 
• Establish homogeneous areas of the tunnels in relation to the different variables of 

interest. 
• Selection of variables that affect tunnel ventilation and categorization in relation to 

their influence on ventilation. 
• Detection of variables whose effect on ventilation overlaps with those of others already 

considered. 

 RESULTS OBTAINED WHEN APPLYING AI 
The methodology used by Sener in their AI product Respira® for control the ventilation in 
tunnels is the next: 

 
Figure 6: Methodology used by Sener in the tunnel ventilation control system applying IA. 
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In this project we have used the steps 2, 3 and 4. The most notable results are the following: 

• Categorization of the variables that affect ventilation, making it easier to focus on the 
most important ones for the calibration of the simulation model and mainly discard 
those whose influence is minimal. 

• Provide important tools for visualization and analysis of ventilation in different areas 
and events. 

• Grouping of the different variables into clusters to reduce the number of situations to 
be analyzed manually. 

• Quick obtaining of relevant values in common or specific situations or application of 
formulas considering the values over time of different variables. 

• Detection of equipment with low precision in its measurements or with error. 
• Elimination of incorrect or non-representative values of system operation. 
• First analysis of the efficiency of the different jet fans and ventilation shafts. 
• Obtaining certain correlations between variables (for example piston effect) or 

interpretation of repetitive events or direct physical relationship (temperature 
distribution, thermal effects, ...). 

Additionally, it has been verified that all the information and tools are available to predict the 
behavior of the ventilation of the entire infrastructure and carry out control directly through 
AI assuring algorithms calibrated with real focus on safety and energy efficiency. 

4. SIMULATION MODEL GENERATION AND CALIBRATION 

The simulation model considered for the ventilation of the tunnel network is a 1-D model. 
This type of models apply to systems in which longitudinal dimensions are much bigger than 
transverse dimensions. For this reason, flow variables can be represented varying only along 
longitudinal coordinates not in the transverse directions. The value of each variable in each 
point represents the average value of that given variable in the transverse section of the 
corresponding point. The software used for the 1-D model is IDA-Tunnel, which has been 
validated for railway and for road tunnel networks. This model can be used to study both 
normal and fire ventilation scenarios in the tunnel network. 

As in any physical model, there are some uncertainties in the definition of the inputs. In order 
to find values of these inputs that provides a good representation of the actual behavior of the 
system, a calibration process has been performed. In a first step, the tunnel was modeled 
without considering the ventilation (what we will call “physical model”); once the geometry 
and physical parameters of the tunnels were adjusted, the parameters of the different fans and 
shafts were adjusted, to obtain the “ventilation model” or “digital twin”. 

In the input set (input vector) of the physical model, two types of inputs have been considered:  

• Model parameters (𝜃): these are values of inputs of the physical model that are constant 
in time and have an associated uncertainty in its value. 

• State inputs (𝑥): these values are inputs of the model that are variable with time. In the 
case of the model considered, these inputs are the traffic flows in each of the tunnel 
segments and the ambient temperature. These inputs are assumed to be measured and 
part of the field data. For the purpose of the presented study, no uncertainties are 
considered for these inputs.  

The calibration of the model parameters consists of finding the combination of those model 
parameters (𝜃) that provides the best fit between the output of the 1D simulation and the field 
data for different state conditions (traffic vector and ambient temperature). The output variable 
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that has been used for calibration is the air velocity in the tunnel, measured in each of the 
anemometers of the infrastructure. For the calibration process, the model parameter space 
needed to be explored by comparing the outputs of the simulations with the field data for 
different combinations of the model parameters and state inputs. As will be exposed below, 
the complexity of the model leads to a great number of parameters to calibrate. With such 
parameter vector, exploring the parameter space by directly using the simulation model would 
result in an unaffordable computational time. 

In order to solve the computation time issue in the calibration process, a surrogate model of 
the simulation model has been defined. The surrogate model is a mathematical model that 
aims to provide (for a given set of inputs) equivalent outputs to the outputs provided by the 
1D simulation model, but with a much lower computation time. Once the surrogate model is 
defined, it can be used in substitution of the simulation model during the calibration process. 

Once the physical model has been calibrated, the ventilation is calibrated by adjusting the 
parameters and variables directly related to the activation of jet fans and shafts. To do this, it 
is verified that the variation in air velocity over time is accurately reproduced when the 
different equipment is activated. For this purpose, various tests were carried out in different 
areas of the tunnels. The complete model (digital twin) was considered adequately calibrated 
when the simulation results accurately reproduced the measurements of the different tests and 
the recorded field’s data. 

 MODEL BUILDING 
In order to build the 1D simulation model, information has been collected from the different 
project documentation of the infrastructure. The tunnel network uses different ventilation 
strategies depending on the part of the network considered, with some areas using longitudinal 
ventilation and others using transverse or semi-transverse ventilation. 

In Figure 7, a diagram of the 1D simulation model is represented. The model is composed by 
194 tunnel segments. These elements are defined between two air flow bifurcations that can 
be tunnel bifurcations, connection to ventilation shafts or portals. In order to study situations 
without mechanical ventilation (used for example in the calibration process), tunnel segments 
are grouped taking into account only road bifurcations, resulting in 100 groups of tunnel 
segments. 

 
Figure 7: Diagram of the 1D simulation model.  
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 CALIBRATION OF THE “PHYSICAL MODEL” 

4.2.1. PARAMETERS TO CALIBRATE 
As it was mentioned above, in any physical model there are some uncertainties in the 
definition of its inputs.   

In the tunnel network considered there are many different vehicle types driving through it. For 
this reason, there is a considerable uncertainty in the definition of those parameters related to 
the aerodynamic forces of the traffic (piston effect in the tunnel). In the case studied, these 
parameters are the front area and the drag coefficient of the vehicles. 

The model does not include local geometry changes that generate pressure losses in the tunnel 
(lay-bys, local height changes, beams, etc.), given the impossibility of including them in the 
model due to their quantity and complexity. These local pressure losses will be absorbed by 
the friction coefficient during the calibration process. For the friction coefficient in the model, 
a unique representative value 𝜆  is defined for each group of tunnel segments 𝑘. 

Similarly, there are numerous cross-sectional dimensions for a given tunnel segment, being 
an unaffordable task to include all of them in the model. For that reason, in the simulation 
model these have been simplified. Since the tunnel cross sections are approximately 
rectangular, the simplification used considers a variable width depending only on the number 
of lanes, but a constant height for each group of tunnel segments. These heights will be also 
calibrated obtaining a representative value for the whole segments in a group. 

The parameters used in the calibration process have been selected with a tradeoff in 
representing accurately the behavior of the infrastructure, but not increasing the number of 
parameters in an unreasonable way. In some cases, the parameters selected are not directly 
inputs of the model, but these inputs need to be calculated from these ones. This is the case of 
the friction coefficients and the transverse section dimensions.  

During the calibration, a steady state approach has been used. Due to this, the tunnel wall 
temperature evolution is not simulated during the calibration process. To reduce the error due 
to this effect, an additional parameter (𝑎 ) has been introduced which allows subsequent 
adjustments of the model for the events in which it intervenes.  

For the calibration process, the limits for the parameters need to be defined. In order to obtain 
realistic calibration results, expert criteria based in experience studying ventilation of tunnel 
networks is used. In Table 1, the number of parameters and their limits are summarized. The 
vector of parameters 𝜃, considers the 202 parameters represented in the table. 

 
Table 1: Parameters to calibrate.  

 Parameter Number of parameters Minimum value Maximum value 

Vehicle aerodynamic drag coefficient (𝑐 ) 1 0.3 0.7 

Vehicle front area coefficient (𝐴 ) 1 1.9 3.3 

Global friction coefficient (𝜆 ) 1 0.01 0.035 

Local friction coefficient (𝜆 ) 100 0 0.035 

Tunnel heights (ℎ ) 98 Different limits depending on the group k 

Wall temperature parameter (𝑎 ) 1 0 1 

TOTAL 202   
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4.2.2. SURROGATE MODEL 
As it was mentioned above, the surrogate model aims to provide equivalent outputs to those 
provided by the 1D simulation model, but with a shorter computation time. The surrogate 
model that was built represents the air velocity in each of the anemometers, corresponding to 
a steady state simulation with a constant traffic profile, constant ambient temperature, and 
without mechanical ventilation. The input set of the surrogate model includes the vector of 
the parameters to calibrate (𝜃) and the vector of state inputs (𝑥). 

The type of state of the system considered for the calibration is a steady state situation without 
mechanical ventilation, which is assumed to be reached with a constant traffic flow and 
ambient temperature for one hour (period that is considered representative and in accordance 
with the traffic field data available). Therefore, hours of the year in which some of the 
ventilation was activated (jet-fans or ventilation shafts) have been filtered out and not 
considered for calibration. 

Starting from a complete year of field data (those from the last full year available, which is 
2021), after ventilation has been filtered, 3884 hours of data remains to perform the 
calibration. Looking for the state input, although there are not two hours with the same state 
input vector (x), the state of the system is repeated periodically along the year in an 
approximate way, resulting in some groups of state input vectors that are very similar (and 
would induce similar velocity in the tunnel). To take advantage of this, and to further reduce 
the computation time, 500 clusters have been defined (regarding the state input data), grouping 
each of the hours of the year 2021 in one of those clusters. For each cluster of hours j, an 
average state input vector 𝑥   has been defined. 

Surrogate model used has been built by using a gradient boost decision tree regression model 
[2] [3]. The regression model is fitted with a sample of 3000 simulations performed with the 
1D model, varying the input vector (𝑥,𝜃) in each of the simulations. Input for all these 
simulations have been generated with a Latin hypercube sampling method (LHS) with the 
range of variation of inputs limited to the same range that will be considered for calibration 
(Table 1). 

With this set of 3000 simulations, the output of each of the 303 anemometers considered could 
be evaluated, fitting a surrogate model for each of these anemometers. The complete surrogate 
model results, therefore, in the combination of these 303 surrogate models.  

Performance of the predictions provided by the surrogate model compared with the velocity 
outputs provided by the 1D model are represented in form of a R2 score for each of the 
anemometers. In Figure 8, histogram of the R2 scores is represented. As it is possible to see in 
this figure, the surrogate model provides a good prediction of the results of simulations. 

 
Figure 8: Left - General performance of surrogate model represented as a histogram of R2 scores of the surrogate models of 

each of the anemometers. Right - Example of performance of surrogate model of two of the anemometers considered. 
Predictions of surrogate models compared against result of the simulations. 
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4.2.3. CALIBRATION OF THE MODEL PARAMETERS 
Since the surrogate model has demonstrated to represent with enough accuracy the simulation 
model (for the conditions of interest) but with a much lower computation time, for the purpose 
of the calibration process the outputs of the surrogate model have been used substituting the 
role of the simulation model. With this strategy, an affordable computation time to explore 
the model parameter space is achieved. 

For the field data corresponding to the air velocity measured by each of the anemometers, raw 
data is considered. This raw data contains measurements of air velocity that are not uniformly 
distributed in time, being the number of measurements for certain anemometer and certain 
hour of the year very variable. Measurements are classified in the cluster corresponding to the 
hour when the measure was taken. Pairs of cluster-anemometer with a low number of 
measurements (less than 25) are considered not representative enough and have been 
eliminated from the calibration process. From these filtering there are some anemometers that 
result with no valid clusters, reducing the number of anemometers usable for calibration from 
303 to 289. 

For a given value of the parameter vector 𝜃, error functions are defined to measure the 
difference between simulation results and field data. An error function 𝑒 (𝜃) is defined for 
each anemometer, and from those values a global error function 𝑒(𝜃) is defined. Equations 
used in the definition of these error functions are summarized in Figure 9. 

 
Figure 9: Definition of errors between field data and model results. 

The objective of the calibration process is to find the value of 𝜃, that minimizes the global 
error function. The surrogate model allows to quickly iterate through 𝜃 calculating in each 
step  𝑦 (𝜃) for all the clusters and anemometers and obtain the corresponding value of 𝑒(𝜃). 
Differential evolution algorithm has been used to explore the parameter space finding the 
value 𝜃 that minimizes the value of the error 𝑒(𝜃). 

In Figure 10 the effect of the calibration on the velocities predicted by the model is 
represented. In this figure, the air velocity of different anemometers is represented against the 
value of traffic flow in the tunnel segment where the anemometer is placed. Three data sets 
are represented for each anemometer, field data (blue dots), outputs of surrogate model before 
calibration (red dots), and outputs of surrogate model after calibration (green dots). 

The field data shows a greater amplitude than those generated by the simulation model, for 2 
main reasons: greater variability in the environmental conditions (punctual wind, positive or 
negative natural draught due to sudden changes in temperature, etc.); and turbulence recorded 
by the anemometer (three-dimensional effects). It can be seen in the figure, that the calibration 
of the model improves the prediction of the air speed value and its relation to traffic (piston 
effect). 

,
,
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In Figure 11 histograms of the distribution (by anemometer) of errors of the surrogate model 
in the prediction of field data are represented. Two histograms are represented, by using the 
parameter vector 𝜃 before and after calibration. The figure shows the improvement in the 
predictions with the calibrated values of the parameters. 

 
Figure 10: Air velocity (m/s) for different anemometers against the traffic flow (vehicles/hour) in the tunnel segment where 
the anemometer is placed. Three data sets are represented for each anemometer, field data (blue dots), outputs of surrogate 

model before calibration (red dots), and outputs of surrogate model after calibration (green dots).  

 
Figure 11:  Histograms of the distribution of errors of the surrogate model in the prediction of field data. Left – Before 

calibration. Right – After calibration. 

 CALIBRATION OF THE VENTILATION SYSTEM MODELLING 

4.3.1. FIELD AERODYNAMIC TESTS 
With the information from the control center records and the equipment data, the necessary 
parameters of the ventilation system were available, but some uncertainties remained for the 
simulation model. To minimize these uncertainties, a series of field tests were defined and 
conducted. 

The first round of tests consisted of measuring the air flow of each of the shafts (85) for their 
different operating regimes (different operating speeds of their axial fans) independently or in 
combination with nearby ventilation equipment (jet fans or ventilation shafts). From these 
tests, the most important data has been the current maximum air flow of each shaft. 
Additionally, first approximations of the efficiency of the jet fans and the influence of each 
shaft on the adjacent sections were obtained. 

Due to the frequency of data recording from the control center, analysis of transient processes 
when switching ventilation equipment on or off was not possible. For this purpose, 30 
aerodynamic tests were defined and carried out. In these tests, 2 anemometer arrays were 
placed at different points in the tunnel (normally on both sides of a shaft) and 1 additional 
array in the shaft. Various shaft regimes and nearby equipment (jet fans, shafts and specific 
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extractions) were turned on, obtaining variations in air flow and velocity throughout the tests. 
It also allowed knowing the air flow in both directions for the reversible shafts. 

  

  
Figure 12: Distribution and measurements of anemometers during aerodynamic testing (left in shaft, right in tunnel).  

4.3.2. CALIBRATION OF VENTILATION SYSTEM 
Once the model has been calibrated using field data in states without ventilation of 2021, the 
aerodynamic tests performed in the infrastructure were simulated. With the simulations of 
these tests, it is verified that the model is able to represent the behavior of the system in the 
different ventilation regimes tested. In this model, calibration was only necessary to slightly 
adjust some parameters related to the efficiency of the ventilation equipment, shaft air flow or 
wall temperature (natural air draught). In Figure 13 comparison of the simulation results and 
the experimental data from one of the aerodynamic tests is represented. 

 

 
Figure 13. Results of air velocity results obtained in one of the aerodynamic tests. Comparison of simulation results 
(10NC62AI01) with the measurements of the six anemometers used in the test (T1-1, T2-1, T3-1, T1-2, T2-v, T3-2). 
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 APPLICATION OF THE MODEL TO THE DEFINITION OF 
ALGORITHMS 

Once the model has been calibrated, the possible ventilation actions required for sanitary and 
fire ventilation during different events have been simulated. This way, the jet fans and shafts 
(with their specific regimes) that must be active at all times have been determined, along with 
the time periods and transitions required for the system to adapt to the potential evolution of 
the event. 

This has made it possible to define in detail the sanitary and fire ventilation algorithms for 
each position of the infrastructure. 

In the next stages of the work, once the ventilation algorithms have been implemented in the 
control center, it will be verified with aerodynamic and smoke tests that the system response 
adjusts to what was predicted by the calibrated model. 

With the model it has also been possible to analyse the equipment that has the greatest 
efficiency to achieve the objectives set for each point of the infrastructure, as well as to 
optimize the exact number of equipment to be turned on and the activation regime required 
for the ventilation shafts. 

5. SUMMARY AND CONCLUSION 

The use of new technologies as AI enables engineers to process and analyze a huge amount 
of information. Madrid Calle 30 Tunnels are a very complex road tunnel network of 43 km 
inaugurated in 2007. More than 3TB of information related to the ventilation system has been 
processed and analyzed by an AI system called Respira®. The use of cloud databases and 
artificial intelligence tools has been demonstrated to be essential in order to characterize the 
capacity and operation of tunnel ventilation as well as the analysis of certain events of great 
interest.  

With all the information processed, a digital twin of the ventilation system has been created. 
Once calibrated, it enables the analysis of the optimal response to each event and the definition 
of the ideal algorithms for both normal operation and fire events. 

The calibration process of the digital model has required, given its complexity and extensive 
recording of verification data, the use of computer tools and artificial intelligence techniques 
to automate the processes. It should be noted that the calibrated model reproduces with great 
precision all the field tests carried out both in their global values and their evolution over time 
(stationary and transient processes). 

All this analysis would not be possible without the data collected from the control center since 
2011, which remarks the importance of store the information of the facilities of the tunnel 
through the SCADA system. 
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