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Welcome Note

Join Forces — Increase Performance

We chose this year’s conference title to concisely reflect the current state of the BCI research field.
Researchers from both, the invasive and non-invasive communities, have increasingly worked
together, forming a unified community. Techniques from the non-invasive field are now being applied
in invasive research and vice versa. Additionally, we are at a point where the definition of a BCl is
being questioned and needs to be reformulated. These questions and many more are crucial and
need to be addressed achieving progress in BCI research.

The 9th Graz Brain-Computer Interface Conference (GBCIC2024) provides a platform for extensive
discussions and exchanges among BCI experts from over 22 countries. We have received nearly
100 scientific contributions from approximately 476 authors, all peer-reviewed by at least two
different reviewers. Accepted papers will be openly accessible and published by Verlag der TU Graz.
The present conference proceedings are the result of this rigorous review process.

As a partnered event of the BCI Society, we have assembled a diverse and multifaceted program.
We have organized several workshops as Satellite Events before the conference. During the
conference, researchers will present their work either as talks or posters. We are fortunate that
renowned experts in the field such as Dr. Andrea Kubler, Dr. Jennifer Collinger, Dr. Camille Jeunet-
Kelway, Dr. Nick Ramsey, and Dr. Henri Lorach accepted our invitation to present keynote addresses
at the conference. After a break of several years, GBCIC2024 will conclude with a tour to the South
Styrian Vine Yards.

The BCI conferences held in Graz, Austria, are considered an international initiative that fosters
stronger scientific cooperation in the BCI field.

We wish all participants an exciting and stimulating Graz BCI Conference 2024.

TN

Gernot R. Muller-Putz
Conference Chair

ccBY I Published by
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Editorial Board

Prof. Dr. Gernot Rudolf Miller-Putz is head of the Institute of Neural Engineering and its associated
Laboratory of Brain-Computer Interfaces. He received his MSc in electrical and biomedical
engineering in 2000, his PhD in electrical engineering in 2004 and his habilitation and “venia docendi”
in medical informatics from Graz University of Technoloy in 2008. Since 2014 he is full professor for
semantic data analysis. He has gained extensive experience in the field of biosignal analysis, brain-
computer interface research, EEG-based neuroprosthesis control, communication with BCI in
patients with disorders of consciousness, hybrid BCI systems, the human somatosensory system,
and BCls in assistive technology over the past 24 years. He has also managed several national
projects (State of Styria) and international projects (Wings for Life, EU Projects) and he recently
coordinated the EU Horizon 2020 project MoreGrasp. Furthermore, he organized and hosted seven
international Brain-Computer Interface Conferences over the last 17 years in Graz and chairing the
9th Conference in Sept. 2024. Since August 2019 he is Speciality Chief Editor of Frontiers in Human
Neuroscience: Brain-Computer Interfaces. He has authored more than 200 peer reviewed
publications which were cited more than 16000 times (h-index 77). Recently he was awarded with
an ERC Consolidator Grant “Feel your Reach” from the European Research Council. In May 2017
he received the Ludwig-Guttman Award from the German Medical Spinal Cord Injury Association
(DMGP). In May 2018 he was elected into the Board of Directors of the International Brain-Computer
Interface Society. In May 2019 he received the Science Award from the State of Styria.

Selina Christin Wriessnegger is Associate professor at the Institute of Neural Engineering (BCI-
Lab), Graz University of Technology, Austria. From 2001 to 2005 she was PhD student at the Max-
Planck-Institute for Human Cognitive and Brain Sciences and received her PhD from the Ludwig-
Maximilians University in Munich, Germany. During that time, she spent one year in Rome as
research assistant at IRCCS (Fondazione Santa Lucia), Laboratory for Human Psychophysiology.
From 2005 to 2008 she was university assistant at the Karl-Franzens-University Graz, section
neuropsychology. From 2009 until May 2016 she was senior researcher at the Institute of Neural
Engineering (BCl-Lab). In 2017 she was visiting professor at SISSA (Scuola Internazionale
Superiore di Studi Avanzati), Trieste. Her research interests are, neural correlates of covert actions,
novel applications of BClIs for healthy users, passive BCls, VR-based neuroadaptive systems and
mental state detection.

Kyriaki Kostoglou received her diploma degree in Electrical and Computer Engineering from
Aristotle University of Thessaloniki (AUTH), Greece and her M.Sc. degree in Computer Engineering
from University of Cyprus (UCY), Cyprus. In 2017, she completed her Ph.D. studies and received
her Ph.D. degree from the Department of Electrical and Computer Engineering, McGill University,
Canada. The topic of her Ph.D. thesis was the identification of multiple-input time-varying systems
and binary response systems for biomedical applications. She worked as a postdoc researcher in
medical ultrasound imaging at the Institute of Signal Processing, Johannes Kepler University, Linz,
Austria. Currently she is a postdoc at the Institute of Neural Engineering, Graz University of
Technology, Graz, Austria. Her current research interests include system identification and signal
processing for biomedical applications and brain computer interfaces.

Markus Erwin Oberndorfer is university assistant at the Institute of Neural Engineering (BCI-Lab),
Graz University of Technology, Austria. He received his M.Sc. in Biomedical Engineering,
specializing in Computational Neuroscience, from the Graz University of Technology in 2024. His
research primarily addresses the forward and inverse problems in EEG, as well as the study of
electric potentials originating from the spinal cord. Currently he is working towards his PhD degree
in Biomedical Engineering.
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ABSTRACT: The mechanisms of word prediction have
not been studied in the natural speech perception
paradigm, which formed the aim of the study: to explore
the connection between the function of the EEG
responses and the omitted words during naturalistic
speech perception, confidence score of trained language
model. 14 neurotypical subjects (mean age - 23,5 years;
5 males) participated in the research. EEG included 24
channels. It was proposed to listen to the story and
comprehend it. The obtained results show differences in
listening to omitted and non-omitted words in T3, T5,
P3 electrodes. For modelling the connection between
neural signals and naturalistic speech stimuli, mTRF
was applied. One of the possible future directions of the
research is to explore the communication processes in
this paradigm.

INTRODUCTION

The human brain is a complex dynamical system that
continuously processes the input information. For
acoustic stimuli, as with other types of sensory
information, it is important to distinguish signal from
noise; and by understanding the features of signal, a
person can easily percept the speech. In recent years,
researchers have started to shift their attention to the use
of continuous, natural speech to explore the ways the
brain assesses auditory stimuli [3]. One of the possible
approaches, known as system identification, is to model
the obtained data based on the speech stimuli [3]. In this
vein, the brain is treated as a "black box", in which there
are some mappings between the features of the input
speech and neurophysiological responses. Such a black
box may be represented as a linear time-invariant
system with obtaining a so-called temporal response
function (TRF) by the connections between EEG and
both acoustic and linguistic features [3].

To the best of our knowledge, the mechanisms of
word prediction have not been studied in this paradigm.
During speech perception, words are embedded in a
broader  context  which  facilitates  meaning
interpretation. Recipients can also make predictions
about specific lexemes that can appear in the upcoming
discourse. This task is similar to masked language
modeling, where a pre-trained model predicts a masked
token in a sentence (usually it is marked as [MASK]),
by attending to tokens bidirectionally. In this case, a
model also makes predictions about the word by its
context [7]. Now the neuroscience of perception and
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language widely uses an integrative modeling approach
in which computation and brain function are reflected in
computational models [6]. Moreover, direct evidence
for alpha, beta and gamma bandwidth in predictive
coding is accumulated from observations of increased
gamma power to stimuli with prediction errors, but
differences in these rhythms with stimulus predictability
are not well known [1]. However, the brain responses
and the possible link between their reactions and the
reactions of trained language models in word prediction
have not been simulated.

Thus, the aim of the following study is to explore
the connection between the function of the EEG
responses during naturalistic speech perception,
confidence score of trained language model. It is
hypothesized that the link between EEG signals and a
trained language model naturalistic speech perception
exists. The expected outcome is the approximation of
the mentioned link.

MATERIALS AND METHODS

14 neurotypical subjects (mean age - 23,5 years; 5
males) participated in the research. EEG recording was
performed by a portable neuro-headset Mitsar-EEG-
SmartBCl (Mitsar LLC, St. Petersburg) in a
soundproofed room shielded from electromagnetic
fields. EEG included 24 channels, in the international
10-20 system; impedance devices are maintained at a
level below 10 kOhm. The experiment was
implemented in the NeuroBureau program. During
experiment, it was proposed to listen to the story about
cosmonauts (duration = 5 min 2 sec, language -
Russian), in which 48 words in word combinations were
omitted (content words without functional ones). The
words were chosen randomly, the main criterion was
compliance with the context. The task was to
understand the whole story. After listening to the
recording, subjects were asked to complete a test with
questions about the content of the story. Since all
participants completed this task without mistakes, we
can say with some probability that the missing words
were recovered correctly during listening.

The time periods with omitted words were
taken by the duration of the omitted word, and the time
periods with non-omitted words were taken by the
making shift in one second. Tools from "MNE" Python
library with integrated methods were used for following
EEG analysis [10]. Data preprocessing included the
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filtering, interpolation, artefact removal, re-referencing,
and time frequency analysis (tfr_morlet). The high-pass
filter is at 1 Hz, low-pass filter is at 40 Hz. During the
recording of the study, participants sat motionless with
their eyes closed. Artifacts associated with minimal
movement were removed using independent component
analysis. For each participant was performed this
sequence of actions, after that the result data was
aggregated in one dataset.

Mann-Whitney U Test (w/ continuity
correction) with Bonferroni correction for multiple
comparisons and Machine learning classifiers ("Scikit-
learn" Python library) were applied to explore
differences in EEG responses to the text (TP) and
omitted words (OW) comprehension. For training and
testing the data was chosen randomly; the size of testing
set = 0.3, the size of training one = 0,7 respectively. The
preprocessing stage included only applying Standard
Scaler for train and test data. The reported results were
not cross-validated. The aim of applying binary
classification and using so many different classifiers is
to additionally prove found by Mann-Whitney U Test
differences.

Spearman rank order correlations analysis was
used to explore the link between separate electrodes.
Next, the transformer python library was utilized
(pipeline is fill-mask) [8] with a ruBert-base pre-trained
model [9]. The omitted words of the text were marked
by [MASK]. Separately, the score reflecting the model’s
confidence about the selected word was added to the
new dataset. Next, the results obtained from the model
with the predicted EEG responses were compared.
Underlying the computational modeling framework,
implemented in the language domain, is the idea that the
pre-trained language model can serve as hypotheses of
the computations conducted in the brain. Time domain
data and other used frequency-band signals analysis is
used to investigate the data in terms of complex
reactions.

RESULTS

The statistically significant differences were obtained in
T3 (p = 0,00, z =-13,97), T5 (p = 0,00, z = 17,47), P3
(p = 0,02, z=10,91) electrodes in EEG responses to TP
and omitted words OW comprehension. Additionally,
spearman rank order correlations in OW show
connections between T3 and T5 electrodes (r = 0,60, p =
0,00). This first finding shaded light on what electrodes
are informative in terms of omitted word prediction.

Next, to explore possibility of the clear distinction
between EEG activity while TP and OW phases,
machine learning algorithms ("Scikit-learn" Python
library) were applied. Data was previously preprocessed
by Standard Scaler. Random Forest Classifier, K-
Neighbors Classifier, Gradient Boosting Classifier,
Logistic Regression, Decision Tree Classifier,
MLPClassifier, and Gaussian NB showed high accuracy
results among phases (table 1).
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Table 1: Machine learning classification results
in distinguishing omitted (OW) and non-omitted (NW)
words listening

Algorithm Words  F-score  Accuracy
Random Forest ow .99 .99
Classifier
NW .99
K-Neighbors ow .99 .99
Classifier NW .99
Gradient ow .98 .98
Boosting NW .98
Classifier
Logistic ow .95 .95
Regression NW 95
Decision Tree ow .90 .90
Classifier NW .89
MLPClassifier ow .90 .90
NW .89
Gaussian NB ow .87 .85
NW .81

As distinct differences were found, the next aim
was to model EEG responses and by this model try to
predict the omitted word. For this purpose, mTRF [2]
was used as a forward or encoding model to predict
brain responses as the weighted sum of various acoustic
and linguistic speech features. Continuous data was
analyzed by dividing it into delta (0.5-4 Hz), theta (4-8
Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (>
30 Hz) rhythms. Initially, the linguistic speech feature
was the frequency of the audio. Correlation between
actual and predicted response for delta rhythm
r_fwd=0.51, alpha rhythm r_fwd=0.508, beta rhythm
r_fwd=0.734, gamma rhythm r_fwd=0.786. The best
results are beta and gamma rhythms (fig.2), for them
predicted EEG responses were obtained. Although
correlation results in this mTRF analysis realization
does not have p-values to reveal the significance of
findings, it gives possible the connection between EEG
activity and the core input (audio story), approximation
of the response.

Transformers Python library predicted omitted
words and in the model’s confidence score and EEG
activity correlations were found (table 2).

Table 2: Spearman rank order correlation results
between predicted activity in P3, T5 and T3 electrodes
and token score given by masked language modeling
model.

Rhythm Electrode r
Gamma P3 -0.0005
T5 -0.2530
T3 0.1546
Beta P3 0.1083
T5 0.0639
Published by

Verlag der Technischen Universitat Graz



Proceedings of the

9th Graz Brain-Computer Interface Conference 2024

Electrode r
T3 -0.3162*

Rhythm

* - statistically significant effect with p<0.05 marked

Statistically significant correlation was observed in
beta-rhythm T3 electrode (r=-0.3162, p=0.00), but not
in P3 (r=-0.0005, p>0.05), T5 (r=-0.2530, p>0.05), T3
(r=-0.1546, p>0.05) gamma and P3 (r=-0.1083, p>0.05),
T5 (r=-0.0639, p>0.05) beta electrodes. From the table 1
we can observe the negative connection between the
language model confidence and modeled EEG human
language processing.

DISCUSSION

The purpose of this study was to investigate the
possibility of connecting modeled EEG response and
pre-trained language model to the word prediction task
during naturalistic speech perception. For this purpose,
the T3 electrode was the most informative, T5, P3
electrodes showed statistically significant differences.

The T3 electrode is proximate to BA44, which
might be linked with the prediction of the functional
elements (determiners, prepositions, morphological
particles) retained within the stimuli [4]. Increased
activity in the left inferior frontal gyrus (T3) has been
also reported as a function of word integration in the
syntactic context [4]. Furthermore, increased directed
connectivity from BA44 (T3) to the posterior left
middle temporal gyrus (T5 is near this zone) is observed
when two-word phrases start with a function word
compared to a non-predictive element, possibly
reflecting the top-down transmission of a categorical
expectation [4]. Machine learning results also reflect the
clear difference between OW and TP trials.

For modelling the connection between neural
signals and naturalistic speech stimuli, mTRF was
applied. The obtained correlation between predicted and
real responses denotes neural function, a generalization
of the event potential obtained from averaging
responses to repetitions of stimuli for continuous data.
The proposed EEG model is able to accurately predict
activity across neuronal populations in the human cortex
during the processing of sentences with omitted words.
The proposed idea is similar with the concept of
predictive coding, which suggests that the brain has an
internal world model. This model encodes causes of
sensory inputs as parameters of a generative model.
Determining which combination of the many possible
causes best fits the current sensory data is achieved
through a process of minimizing the error between the
sensory data and the sensory inputs predicted by the
expected causes [11]. Regarding the current study, the
results obtained should be refined in the future to create
a more accurate model.

The highest correlation between actual and
predicted responses was obtained in beta and gamma
rhythms. As the next step, we applied the transformers
python library to a similar prediction task with marked
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omitted words. The model confidence was compared
with predicted EEG gamma and beta responses. The
predicted EEG response was used to correlate with the
language model instead of the actual EEG data to
explore the quality of modelling and further possibility
to apply predicted EEG response to language modelling
domain. We assume that correlation in this case means
that model results with prediction of EEG and
transformers results have common base of the language
perception, and such an approach could give fruitful
direction for further investigation both cortical brain
organization and the large language models domains.

Statistically significant, but not strong correlation
was observed in the beta-rhythm T3 electrode. This is
strong evidence for the involvement of beta oscillations
across grammatical and semantic processing [5]. Power
decreases in beta bandwidth occurring before speech
onset within a picture naming task can be provoked by
the semantic context provided by a preceding sentence
[5]. In our study, we got a negative correlation between
beta EEG response and confidence of the language
model. The possible explanation is that more
predictable words by the language model may be
reflected in beta oscillations in modeled human EEG
responses.

Such a match between modeled EEG human
language processing and the language model may be the
first step to creating a semantical network for speech
rehabilitation among patients with some types of
aphasia. In future it may be of interest to study the
communication processes in the proposed paradigm.
The main limitation of this research is the sample size.

CONCLUSION

An attempt was made to explore the connection
between the function of the EEG responses and the
omitted words during naturalistic speech perception.
The statistically significant differences were obtained in
T3, T5, and P3 electrodes. Machine learning
classification algorithms also show distinct differences
in EEG signals during audio text comprehension.
Anticipatory, likelihood-driven processes are to
contribute to lexical, syntactic, and discourse
processing, which were studied by mTRF method. We
got the modeled brain responses for gamma and beta
rhythms as the highest correlation was obtained. This
model was compared with the language model. The
obtained result may be regarded as the possible solution
for developing a semantical network for speech
rehabilitation among patients with some types of
aphasia. One of the possible future directions of the
research is to explore the communication processes in
this paradigm and to increase the sample size.
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ABSTRACT: Locked-in patients rely on stable
performance of BCls to provide them with a means of
communication. To build a robust BCI, we demonstrate
the need for adaptive decoding that accounts for temporal
variations in electroencephalogram (EEG) dynamics. We
analyzed six consecutive EEG sessions recorded between
2p.m. (afternoon). and 12a.m. (midnight) of 15 healthy
participants engaged in a four-right-hand gesture task.
We employed four-class classifiers trained on
movement-related cortical potentials of different
sessions and applied the decoders to the same session to
evaluate the impact of temporal fluctuations in EEG on
decoding capabilities. As a step towards adaptive
decoding, we developed constantly updated classifiers by
training on the most recently collected data and
compared these to a stationary classifier trained once on
the first session. Our findings revealed that temporal
variations in EEG during movement tasks influence
classification performance. In this context, we
demonstrated that adaptive decoding provides a remedy
to build a robust BCI usable for patients in the home-
environment.

INTRODUCTION

A brain-computer interface (BCI) is a system that
establishes a means of communication between the
human brain and external devices by capturing and
interpreting bioelectrical signals such as non-invasive
electroencephalography (EEG) or invasive electro-
corticography (ECoG) that are modulated by the user’s
intention [1,2]. Such a BCI system provides an
alternative way of communication for patients suffering
from severe motor neuron disorders such as amyotrophic
lateral sclerosis, trauma or stroke that risk losing
complete muscle control and the ability to communicate
while still being conscious leading to locked-in syndrome
(LIS) [3,4]. The EU project INTRECOM aims for the
development of a novel, fully implantable BCI
technology to allow for real-time motor and speech
decoding to provide LIS patients with a means of
communication in  the home  environment.
Communication enabled by motor decoding shall be
realized by movement attempt and the usage of four to
five different gestures for discrete cursor control to
permit the selection of characters or words presented in
matrix-format on a screen. In this study, the execution of
four different right-hand gestures in healthy individuals
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is investigated as a preliminary work towards decoding
of movement-related cortical potentials (MRCPs) for a
four-directions cursor control in a BCI system. A
prerequisite. for BCIs integrated into the home
environment is the stable and robust performance that
enables the user to interact with their surroundings
whenever necessary, e.g., to call a caregiver. Variations
in the EEG directly influence the performance of such
BCI systems, thereby affecting the communication
abilities of users dependent on these systems. Changes in
concentration, attentiveness, motivation [5], and fatigue
[6,7], or the influence of direct or indirect feedback [8,9],
are possible factors contributing to alterations in EEG.
Previous literature has reported temporal variations in the
delta [10], theta, alpha and beta [11,12] frequency bands
during resting states that follow a diurnal pattern. We
hypothesize that such temporal alterations also manifest
in EEG signals during movement tasks and furthermore
influence decoding capabilities of BCI systems based on
MRCPs. Adaptive decoding has proven to be a useful
tool in the context of alterations in EEG due to various
factors [8,9], therefore we introduce adaptive decoding to
enhance the performance stability of the BCI system. In
this paper, we aim to capture changes in movement-
related EEG patterns throughout the day and night by
recording six EEG sessions during gesture tasks at 2-hour
intervals over a 10-hour period with fifteen healthy
participants. Further, we demonstrate a preliminary
approach towards adaptive EEG decoding by introducing
a continuously adaptive classifier and hypothesize that
decoders including most recent data for training purposes
significantly outperform decoders that are not updated
throughout the course of a day.

MATERIALS AND METHODS

A. EEG recordings throughout the day and night

We recruited twenty-two healthy, right-handed
participants (13 female, 9 male) that agreed with the
inclusion criteria targeting a narrow age group from 20 to
40 years and an early morning routine starting between
5a.m. and 7a.m. each day. Additionally, we focused on a
stable sleeping pattern by excluding candidates regularly
working night shifts or feeling a physical or
psychological effect in the absence of caffeine for more
than 24hours. On the day of the measurement,
participants arrived at the laboratory of the Institute of
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Neural Engineering of Graz University of Technology at
12p.m. They were clarified about the study procedure,
had the opportunity to ask questions, and then provided
their written informed consent. The study was approved
by the local ethics review board. Subsequently, we
equipped every participant with an EEG cap holding 60
active, gel-based electrodes (actiCAP Brain Products
GmbH, Germany) according to the 10-10 international
electrode standard setup. For simultaneous recording of
EEG and electrooculogram (EOG), four additional active
electrodes were positioned at the outer canthi of the eyes
as well as on the inferior and superior of the left eye. The
ground and reference electrode were positioned on the
forehead at the position of FPz and the right mastoid,
respectively. The signals were sampled at 500Hz and
amplified using biosignal amplifiers (BrainAmp, Brain
Products GmbH, Germany). To monitor hand
movements, we used a motion capture system developed
at the institute. A green marker was glued to the
participant’s right index finger, and a video camera
recorded the movement at a sampling rate of 30Hz. Each
participant performed six recording sessions every two
hours starting at 2p.m. until 12a.m. on the measurement
day, each one lasting approximately one hour. Between
the recordings, the participants followed a strict
experimental schedule and performed prespecified tasks
that imitated a usual workday. These tasks involved
demanding geometric and linguistic games during the
first two breaks, followed by a standardized dinner after
the third recording at 7p.m. During the last two breaks,
participants were tasked with activities such as watching
a documentary and listening to music to induce fatigue.
At the beginning of each recording session, the electrode
impedance was checked, and gel was applied if
necessary. Then, the participant was asked to perform a
psychomotor-vigilance task and answer questionnaires
regarding emotions, hunger level, and tiredness’
symptoms. Further, 2min of resting EEG were recorded.
To remove eye artifacts, a 6-min EEG measurement was
performed to simultaneously record EEG and EOG while
the participant was asked to blink or move the eyes
vertically or horizontally. After the main paradigm,
another 2min of resting EEG were recorded. The main
paradigm involved four right hand gestures (fist, pistol,
pincer grasp and “Y”-gesture of the American sign
language). Participants were seated in front of a computer
screen positioned 50 to 60cm away, with their right hand
on a table inside a wooden box equipped with the video
camera. They were asked to follow on-screen
instructions and to refrain from blinking and swallowing
during each trial. The paradigm followed the procedure
outlined by Patrick Ofner et al. [13]. Each trial began
with a 1-s presentation of a class cue, including a fixation
cross displayed after the cue for 0.5 to 1s. Participants
were asked to focus on the fixation cross to avoid eye
movements. A 2- to 3-s preparation period followed,
during which a filled green circle shrank to match the
inner white circle. Participants performed the instructed
gesture when the circles overlapped and kept the position
for about 3s until the screen went black, signifying the
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end of a trial. A 1.5-s break between trials allowed
participants to rest. The total trial duration ranged from 8
to 9.5s. Each participant performed 8 movement runs of
approximately 5min each with a 30-s break in between.
In total, 64 trials per gesture and session were recorded
for each participant.

B. Processing of recordings

The recorded signals were processed using MATLAB
R2022b  (Mathworks. Massachusetts, USA) and
EEGLAB [14]. Initial steps included visual inspection,
interpolation of noise-contaminated channels, and
removal of 50Hz line noise and its first harmonic using a
Butterworth bandstop filter of 2" order. A Butterworth
highpass filter of 5" order at 0.3Hz addressed the issue of
drifts and a Butterworth lowpass filter of order 70" at
70Hz attenuated high-frequency noise. An eye artifact
attenuation model was applied as described by Kobler et
al. [15], and the most frontal electrodes were excluded.
Pops and drifts were attenuated using the HEAR
algorithm [16] and noisy temporal electrodes were
removed. MRCPs were extracted using a Butterworth
lowpass filter of 4" order at 3Hz. Movement-triggered
epoching using the motion capture system produced 5.5s
trials (-2.5s to 3s around movement onset). Trials
exceeding a threshold of £100uV were rejected, and the
remaining trials were downsampled to 9Hz and re-
referenced to a common average reference. To address
the issue of unbalanced classes within each session,
between sessions and subjects, the number of trials per
gesture and session to include participants for further
evaluation was set to 46 trials. Fifteen out of twenty-two
participants fulfilled the criteria and were therefore
included in subsequent analysis.

C. Analysis of MRCPs

To evaluate significant changes in the MRCP shape, we
employed a Wilcoxon rank sum test to compare the
MRCP patterns from each session with session 6, which
served as the reference. We combined trials of all four
gestures across all participants. Statistical analysis was
performed for each channel and each timepoint within a
movement trial, therefore to correct for multiple
comparisons, we applied the Benjamini and Hochberg
[17] procedure that controls the false discovery rate and
yields greater power than the commonly used Bonferroni
technique [18].

D. Classification of gestures

For classification of the four gestures, we employed a
multiclass shrinkage linear discriminant analysis (SLDA)
[19,20]. The input consisted of causal 1-s windows of all
remaining electrodes that were shifted along movement
trials at a sampling rate of 9Hz. Classification was
performed offline on participants and sessions
individually.
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E. Analysis of temporal changes in classification

To show whether potential temporal changes in the EEG
during movement tasks affect decoding capabilities, we
investigated the performance of five classifiers trained on
each of the first five recording sessions and evaluated on
the last (Fig. 1). First, we implemented a trial-based 5-
fold cross-validation within each training/session set
(Fig. 1) to see the general performance of the
corresponding set (herein referred to as single session
results). Then, as a second step, a classifier was trained
on the whole training session and directly applied to
session 6 recorded at 12a.m. This procedure was repeated
for each one of the first five recording sessions and is
outlined in Fig. 1.

| Session 1 | Session2 | Sessiond | Sessiond [ Session§ | Session 6 |

2 Training set Test set

—  lation

3 Training set Test set
4 " Training set Test set

; 5 Training set | Test set

Sfold Cross-Yalidation
ViT T T .

Figure 1: Classification procedure of single classifiers
tested on session 6. Additionally, the trial based 5-fold
cross-validation procedure for the single session results
on session 3 is depicted.

F. Comparison between adaptive and unrevised
classification

As a preliminary step towards adaptive decoding, we
investigated the difference in classification accuracy
when employing an adaptive classifier in contrast to an
unrevised decoder. Therefore, as indicated in Fig. 2, we
shifted a window containing 46 trials per gesture across
the six recording sessions that were used for training of
the adaptive classifier. The subsequent 46 trials per
gesture served as a test set. This procedure was
performed in steps of one quarter of a session (12 trials),
resulting in a total number of 17 trained classifiers along
the duration of the study. For means of comparison, we
implemented an unrevised classifier trained once on the
very first window of 46 trials per gesture corresponding
to the first recording session (see Fig. 2 as indicated in
turquoise) that was further applied to every test set
obtained in the previous approach.

To assess whether the difference in decoding
performance between the two classifiers was statistically
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significant, we employed a Wilcoxon signed rank test on
the classification accuracies obtained by every pair of
classifiers. In order to correct for multiple comparisons
(number of classifiers), we made use of the procedure
developed by Benjamini and Hochberg [17].

| Session 1 | Session 2 Session 3 Session 4 Session 5 Session |

= leration

Test set

Test set

KTE

Test set
Test set

Test set

Figure 2: Adaptive (violet) and unrevised (turquoise)
classification approach. As an example, only the first
seven iterations of the adaptive classifiers are depicted.
The test sets were the same for both classification
approaches.

Lotesised| -2

| Training set

RESULTS

A. Analysis of MRCPs

In Fig. 3 we illustrate the temporal changes in MRCPs by
depicting the averaged MRCPs across participants for
measurement sessions 1 (at 2p.m.), 5 (at 10p.m.) and 6
(at 12a.m.), at electrode positions C1, Cz and C2 above
the sensorimotor areas. For comparison purposes, session
6 served as a reference. Timepoints exhibiting significant
(p<0.05) differences between the compared sessions are
highlighted in color. As sessions 1 and 6 lie the furthest
apart from each other, MRCPs of both sessions
demonstrate greater difference in progression than
MRCPs obtained during sessions 5 and 6.

B. Analysis of temporal changes in classification

The classification results when investigating the impact
of temporal EEG changes on movement classification
performance can be seen in Fig. 4. Fig. 4a depicts the
evolution of the cross-validated classification accuracies
of the five decoders trained within different measurement
sessions (Fig. 1). The temporal MRCP fluctuations were
captured by the variation in maximum classification
accuracy across time. The maximum accuracy at 2p.m.
(session 1) increased from 37.5% * 5.6% gradually to
39.7% + 3.2% at 8p.m. and declined by 10p.m. (session
5) t0 37.4% + 5.4%. In comparison, Fig. 4b visualizes the
performance of the five decoders when tested on the data
of session 6. Apart from the decoder trained on session 4,
recorded at 8p.m., which exhibited a decrease in accuracy
(34.6% = 5.1%) compared to the classifier trained on
session 3 (36.3% = 5.9%), we observed an increase in
maximum classification accuracy as the time interval
between training and test set recordings decreased.
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Figure 3: Average MRCPs across all participants for sessions 1 and 6 (top panel) and sessions 5 and 6 (bottom panel).
The movement onset occurred at t=0s. Statistically significant differences (p<0.05) between sessions at each time point
within a trial are indicated with color-coded dots on the zero-axis. In the top panel, we compared the MRCPs between
session 1 and session 6. In the bottom panel, we compared the MRCPs between session 5 and session 6.
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Figure 4: Classification results of different sessions. (a)
Single session results. (b) Results of classification when
tested on session 6. Indicated by the horizontal dashed
lines are the theoretical chance level (25%) and the level
of statistical significance (31.25%) as estimated using a
permutation-based approach [21].

For example, the decoder trained on the first session
achieved a maximum classification accuracy of 32.1% +
5.6% whereas the classifier trained on the fifth session
closest to session 6 used for testing yielded a maximum
accuracy of 38.4% + 4.7%.

C. Comparison between adaptive and unrevised
classification

Fig. 5 presents the variation in maximum classification
accuracy across time for both the adaptive and unrevised
classification model averaged across participants. In Fig.
5, one can observe that the adaptive decoder being trained
on the most recent data outperforms the unrevised
classifier which was kept constant throughout the process
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at every shift along the time axis. This difference reaches
statistical significance at some points, with a p-value less
than 0.05.

—Adaptive classifier ‘
—Unrevised classifier|

I I 1 ]
2 p.m. 4 p.m. 6 p.m. 8 p.m. 10 p.m.

Figure 5: Comparison of the maximum classification
accuracies obtained from both the adaptive (violet) and
unrevised decoders (turquoise) shifted along the time
axis. Depicted are the averages across participants (+
standard error). The horizontal dashed line at 25 %
indicates the theoretical chance level, the dashed line at
31.25% illustrates the level of statistical significance
[21]. The seven vertical lines marked (*) indicate
statistical significance (p < 0.05) differences between
adaptive and unrevised decoder accuracies.

DISCUSSION

We showed that throughout the day and night, MRCPs
varied, hence movement classification performance was
restricted, raising the necessity for adaptive classifiers
that proved to outperform unrevised decoders. These
findings are crucial for the development of BCI systems
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used in the home-environment that need to be
functioning at every day and nighttime to enhance the
patient’s independence.

A. Analysis of MRCPs

Analysis of MRCPs revealed that the frequency of
timepoints exhibiting statistically significant deviations
increased as more time elapsed between recording
sessions. This was shown by comparing the MRCPs
between sessions 1 (2p.m.) and 6 (12a.m.) and sessions 5
(10p.m.) and 6. Additionally, a variation in amplitude of
MRCPs across time was observed. Session 5 showed a
reduction in amplitude, especially highlighted by the
statistically significant deviation at the timepoint of the
motor potential when being compared to session 6. This
change can be attributed to the increasing level of mental
fatigue causing a decrease in amplitude of MRCPs [22].
Another factor influencing the amplitude of MRCPs is
long-time training [23—-25] meaning that experts require
a reduced amount of effort, resulting in reduced activity
at motor cortex sites involved in motor task preparation
and execution. The long-time training effect observed in
this study can be attributed to participants performing the
same task repeatedly, hence leading to a decrease in
MRCP amplitude over time. As this study was conducted
in an open-loop manner, learning processes associated
with controlling a BCI system could not be taken into
account due to the absence of neurofeedback [26]. To
account for the increase in MRCP amplitude observed
during the transition from session 5 to session 6, previous
studies have investigated the role of motivation [25,27].
It was shown that with rising levels of motivation
accompanied by an increase in interest and excitement,
P300 amplitudes increased. This phenomenon can also
be observed in session 6, where the MRCP amplitude
increases compared to session 5 possibly indicating the
rise in motivation of participants to finish the last
measurement. In general, we can eliminate the possibility
of gel drying to be responsible for the observed variations
in EEG dynamics as the gel was still wet after more than
12hours when the cap was removed.

B. Analysis of temporal changes in classification

As described previously, the variations in classification
accuracy across classifiers for the validation set (see Fig.
4a) arise due to temporal variation in the EEG dynamics
during movement tasks. Recordings that are
chronologically closer together exhibit less variability in
terms of MRCP patterns than recordings that have a
longer time interval between them. Therefore, as
depicted in Fig. 4b, the classifier trained on session 5 at
10p.m. performs the best on the data recorded at 12a.m.
in contrast to the other decoders trained on other sessions.
These findings strongly emphasize the importance of
adaptive decoding in the context of robust and stable
performance of BCls at all times.
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C. Comparison between adaptive and unrevised
classification

The maximum classification accuracies of the adaptive
classifiers evaluated on temporally shifted test sets
consistently outperformed the unrevised classifier at
every time step. This superiority arises from the influence
of MRCPs on decoding capabilities, and as these signals
fluctuate over time, a classifier trained only once is
incapable of capturing the evolving temporal dynamics
inherent in EEG signals. Conversely, when constructing
a classifier that incorporates the most recent data for
training, a noticeable improvement in classification is
observed. This underscores the positive impact of
adaptive decoding on overall classification performance.

CONCLUSION

In this preliminary work towards adaptive decoding for
temporal dynamics in EEG signals, we showed that due
to changes of MRCPs across time decoding needs to
adapt to build a robust and stable BCI system that
delivers reliable output for patients in their home-
environment. We demonstrated that the usage of most
recently collected data for means of training of a decoder
significantly improved decoding performance. This
paper using supervised adaptation which requires task
labels as ground truth serves as preparatory work for
future in-depth investigations regarding online
adaptations of decoders. Since in real autonomous BCI
use in the home-environment labels will not be available,
unsupervised adaptation could be realized by a trail-wise
update of the model’s parameters, as proposed by
Vidaurre et al. [28,29] or Hehenberger et al. [5].
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