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Welcome Note 

I 

Join Forces – Increase Performance 

We chose this year’s conference title to concisely reflect the current state of the BCI research field. 

Researchers from both, the invasive and non-invasive communities, have increasingly worked 

together, forming a unified community. Techniques from the non-invasive field are now being applied 

in invasive research and vice versa. Additionally, we are at a point where the definition of a BCI is 

being questioned and needs to be reformulated. These questions and many more are crucial and 

need to be addressed achieving progress in BCI research.  

The 9th Graz Brain-Computer Interface Conference (GBCIC2024) provides a platform for extensive 

discussions and exchanges among BCI experts from over 22 countries. We have received nearly 

100 scientific contributions from approximately 476 authors, all peer-reviewed by at least two 

different reviewers. Accepted papers will be openly accessible and published by Verlag der TU Graz. 

The present conference proceedings are the result of this rigorous review process. 

As a partnered event of the BCI Society, we have assembled a diverse and multifaceted program. 

We have organized several workshops as Satellite  Events before the conference. During the 

conference, researchers will present their work either as talks or posters. We are fortunate that 

renowned experts in the field such as Dr. Andrea Kübler, Dr. Jennifer Collinger, Dr. Camille Jeunet-

Kelway, Dr. Nick Ramsey, and Dr. Henri Lorach accepted our invitation to present keynote addresses 

at the conference. After a break of several years, GBCIC2024 will conclude with a tour to the South 

Styrian Vine Yards. 

The BCI conferences held in Graz, Austria, are considered an international initiative that fosters 

stronger scientific cooperation in the BCI field. 

We wish all participants an exciting and stimulating Graz BCI Conference  2024. 

 

 Gernot R. Müller-Putz 

 Conference Chair 
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Engineering (BCI-Lab). In 2017 she was visiting professor at SISSA (Scuola Internazionale 
Superiore di Studi Avanzati), Trieste. Her research interests are, neural correlates of covert actions, 
novel applications of BCIs for healthy users, passive BCIs, VR-based neuroadaptive systems and 
mental state detection. 

Kyriaki Kostoglou received her diploma degree in Electrical and Computer Engineering from 
Aristotle University of Thessaloniki (AUTH), Greece  and her M.Sc. degree in Computer Engineering 
from University of Cyprus (UCY), Cyprus. In 2017, she completed her Ph.D. studies and received 
her Ph.D. degree from the Department of Electrical and Computer Engineering, McGill University, 
Canada. The topic of her Ph.D. thesis was the identification of multiple-input time-varying systems 
and binary response systems for biomedical applications. She worked as a postdoc researcher in 
medical ultrasound imaging at the Institute of Signal Processing, Johannes Kepler University, Linz, 
Austria. Currently she is a postdoc at the Institute of Neural Engineering, Graz University of 
Technology, Graz, Austria. Her current research interests include system identification and signal 
processing for biomedical applications and brain computer interfaces. 

Markus Erwin Oberndorfer is university assistant at the Institute of Neural Engineering (BCI-Lab), 
Graz University of Technology, Austria. He received his M.Sc. in Biomedical Engineering, 
specializing in Computational Neuroscience, from the Graz University of Technology in 2024. His 
research primarily addresses the forward and inverse problems in EEG, as well as the study of 
electric potentials originating from the spinal cord. Currently he is working towards his PhD degree 
in Biomedical Engineering. 
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ABSTRACT: The mechanisms of word prediction have 

not been studied in the natural speech perception 

paradigm, which formed the aim of the study: to explore 

the connection between the function of the EEG 

responses and the omitted words during naturalistic 

speech perception, confidence score of trained language 

model. 14 neurotypical subjects (mean age - 23,5 years; 

5 males) participated in the research. EEG included 24 

channels. It was proposed to listen to the story and 

comprehend it. The obtained results show differences in 

listening to omitted and non-omitted words in T3, T5, 

P3 electrodes. For modelling the connection between 

neural signals and naturalistic speech stimuli, mTRF 

was applied. One of the possible future directions of the 

research is to explore the communication processes in 

this paradigm. 

 

INTRODUCTION 

 
The human brain is a complex dynamical system that 

continuously processes the input information. For 

acoustic stimuli, as with other types of sensory 

information, it is important to distinguish signal from 

noise; and by understanding the features of signal, a 

person can easily percept the speech. In recent years, 

researchers have started to shift their attention to the use 

of continuous, natural speech to explore the ways the 

brain assesses auditory stimuli [3]. One of the possible 

approaches, known as system identification, is to model 

the obtained data based on the speech stimuli [3]. In this 

vein, the brain is treated as a "black box", in which there 

are some mappings between the features of the input 

speech and neurophysiological responses. Such a black 

box may be represented as a linear time-invariant 

system with obtaining a so-called temporal response 

function (TRF) by the connections between EEG and 

both acoustic and linguistic features [3].  

      To the best of our knowledge, the mechanisms of 

word prediction have not been studied in this paradigm. 

During speech perception, words are embedded in a 

broader context which facilitates meaning 

interpretation. Recipients can also make predictions 

about specific lexemes that can appear in the upcoming 

discourse. This task is similar to masked language 

modeling, where a pre-trained model predicts a masked 

token in a sentence (usually it is marked as [MASK]), 

by attending to tokens bidirectionally. In this case, a 

model also makes predictions about the word by its 

context [7].  Now the neuroscience of perception and 

language widely uses an integrative modeling approach 

in which computation and brain function are reflected in 

computational models [6]. Moreover, direct evidence 

for alpha, beta and gamma bandwidth in predictive 

coding is accumulated from observations of increased 

gamma power to stimuli with prediction errors, but 

differences in these rhythms with stimulus predictability 

are not well known [1]. However, the brain responses 

and the possible link between their reactions and the 

reactions of trained language models in word prediction 

have not been simulated. 

      Thus, the aim of the following study is to explore 

the connection between the function of the EEG 

responses during naturalistic speech perception, 

confidence score of trained language model. It is 

hypothesized that the link between EEG signals and a 

trained language model naturalistic speech perception 

exists. The expected outcome is the approximation of 

the mentioned link.  

 
MATERIALS AND METHODS 

 
14 neurotypical subjects (mean age - 23,5 years; 5 

males) participated in the research. EEG recording was 

performed by a portable neuro-headset Mitsar-EEG-

SmartBCI (Mitsar LLC, St. Petersburg) in a 

soundproofed room shielded from electromagnetic 

fields. EEG included 24 channels, in the international 

10–20 system; impedance devices are maintained at a 

level below 10 kOhm. The experiment was 

implemented in the NeuroBureau program. During 

experiment, it was proposed to listen to the story about 

cosmonauts (duration = 5 min 2 sec, language - 

Russian), in which 48 words in word combinations were 

omitted (content words without functional ones). The 

words were chosen randomly, the main criterion was 

compliance with the context. The task was to 

understand the whole story. After listening to the 

recording, subjects were asked to complete a test with 

questions about the content of the story. Since all 

participants completed this task without mistakes, we 

can say with some probability that the missing words 

were recovered correctly during listening. 

The time periods with omitted words were 

taken by the duration of the omitted word, and the time 

periods with non-omitted words were taken by the 

making shift in one second. Tools from "MNE" Python 

library with integrated methods were used for following 

EEG analysis [10]. Data preprocessing included the 
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filtering, interpolation, artefact removal, re-referencing, 

and time frequency analysis (tfr_morlet). The high-pass 

filter is at 1 Hz, low-pass filter is at 40 Hz. During the 

recording of the study, participants sat motionless with 

their eyes closed. Artifacts associated with minimal 

movement were removed using independent component 

analysis. For each participant was performed this 

sequence of actions, after that the result data was 

aggregated in one dataset. 

Mann-Whitney U Test (w/ continuity 

correction) with Bonferroni correction for multiple 

comparisons and Machine learning classifiers ("Scikit-

learn" Python library) were applied to explore 

differences in EEG responses to the text (TP) and 

omitted words (OW) comprehension. For training and 

testing the data was chosen randomly; the size of testing 

set = 0.3, the size of training one = 0,7 respectively. The 

preprocessing stage included only applying Standard 

Scaler for train and test data. The reported results were 

not cross-validated. The aim of applying binary 

classification and using so many different classifiers is 

to additionally prove found by Mann-Whitney U Test 

differences.   

Spearman rank order correlations analysis was 

used to explore the link between separate electrodes. 

Next, the transformer python library was utilized 

(pipeline is fill-mask) [8] with a ruBert-base pre-trained 

model [9]. The omitted words of the text were marked 

by [MASK]. Separately, the score reflecting the model’s 

confidence about the selected word was added to the 

new dataset. Next, the results obtained from the model 

with the predicted EEG responses were compared. 

Underlying the computational modeling framework, 

implemented in the language domain, is the idea that the 

pre-trained language model can serve as hypotheses of 

the computations conducted in the brain. Time domain 

data and other used frequency-band signals analysis is 

used to investigate the data in terms of complex 

reactions. 

 

RESULTS 

 

The statistically significant differences were obtained in 

T3 (p = 0,00, z = -13,97), T5 (p = 0,00, z = 17,47), P3 

(p = 0,02, z = 10,91) electrodes in EEG responses to TP 

and omitted words OW comprehension. Additionally, 

spearman rank order correlations in OW show 

connections between T3 and T5 electrodes (r = 0,60, p = 

0,00). This first finding shaded light on what electrodes 

are informative in terms of omitted word prediction.  

 Next, to explore possibility of the clear distinction 

between EEG activity while TP and OW phases, 

machine learning algorithms ("Scikit-learn" Python 

library) were applied. Data was previously preprocessed 

by Standard Scaler. Random Forest Classifier, K-

Neighbors Classifier, Gradient Boosting Classifier, 

Logistic Regression, Decision Tree Classifier, 

MLPClassifier, and Gaussian NB showed high accuracy 

results among phases (table 1). 

 

Table 1: Machine learning classification results  

in distinguishing omitted (OW) and non-omitted (NW) 

words listening 

Algorithm Words F-score Accuracy 

Random Forest 

Classifier 

OW .99 .99 

NW .99 

K-Neighbors 

Classifier 

OW .99 .99 

NW .99 

Gradient 

Boosting 

Classifier 

OW .98 .98 

NW .98 

Logistic 

Regression 

OW .95 .95 

NW .95 

Decision Tree 

Classifier 

OW .90 .90 

NW .89 

MLPClassifier OW .90 .90 

NW .89 

Gaussian NB OW .87 .85 

NW .81 

 

      As distinct differences were found, the next aim 

was to model EEG responses and by this model try to 

predict the omitted word. For this purpose, mTRF [2] 

was used as a forward or encoding model to predict 

brain responses as the weighted sum of various acoustic 

and linguistic speech features. Continuous data was 

analyzed by dividing it into delta (0.5-4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (> 

30 Hz) rhythms. Initially, the linguistic speech feature 

was the frequency of the audio. Correlation between 

actual and predicted response for delta rhythm 

r_fwd=0.51, alpha rhythm r_fwd=0.508, beta rhythm 

r_fwd=0.734, gamma rhythm r_fwd=0.786. The best 

results are beta and gamma rhythms (fig.2), for them 

predicted EEG responses were obtained. Although 

correlation results in this mTRF analysis realization 

does not have p-values to reveal the significance of 

findings, it gives possible the connection between EEG 

activity and the core input (audio story), approximation 

of the response. 

 Transformers Python library predicted omitted 

words and in the model’s confidence score and EEG 

activity correlations were found (table 2). 

 

 

Table 2: Spearman rank order correlation results 

between predicted activity in P3, T5 and T3 electrodes 

and token score given by masked language modeling 

model. 

 

Rhythm Electrode r 

Gamma P3 

T5 

T3  

-0.0005 

-0.2530 

0.1546 

 

Beta 

 

P3 

T5 

 

0.1083 

0.0639 
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Rhythm Electrode r 

T3 -0.3162* 

 

* - statistically significant effect with p<0.05 marked 

 

      Statistically significant correlation was observed in 

beta-rhythm T3 electrode (r=-0.3162, p=0.00), but not 

in P3 (r=-0.0005, p>0.05), T5 (r=-0.2530, p>0.05), T3 

(r=-0.1546, p>0.05) gamma and P3 (r=-0.1083, p>0.05), 

T5 (r=-0.0639, p>0.05) beta electrodes. From the table 1 

we can observe the negative connection between the 

language model confidence and modeled EEG human 

language processing. 

 

DISCUSSION 

 

The purpose of this study was to investigate the 

possibility of connecting modeled EEG response and 

pre-trained language model to the word prediction task 

during naturalistic speech perception. For this purpose, 

the T3 electrode was the most informative, T5, P3 

electrodes showed statistically significant differences.  

      The T3 electrode is proximate to BA44, which 

might be linked with the prediction of the functional 

elements (determiners, prepositions, morphological 

particles) retained within the stimuli [4]. Increased 

activity in the left inferior frontal gyrus (T3) has been 

also reported as a function of word integration in the 

syntactic context [4]. Furthermore, increased directed 

connectivity from BA44 (T3) to the posterior left 

middle temporal gyrus (T5 is near this zone) is observed 

when two-word phrases start with a function word 

compared to a non-predictive element, possibly 

reflecting the top-down transmission of a categorical 

expectation [4]. Machine learning results also reflect the 

clear difference between OW and TP trials.  

      For modelling the connection between neural 

signals and naturalistic speech stimuli, mTRF was 

applied. The obtained correlation between predicted and 

real responses denotes neural function, a generalization 

of the event potential obtained from averaging 

responses to repetitions of stimuli for continuous data. 

The proposed EEG model is able to accurately predict 

activity across neuronal populations in the human cortex 

during the processing of sentences with omitted words. 

The proposed idea is similar with the concept of 

predictive coding, which suggests that the brain has an 

internal world model. This model encodes causes of 

sensory inputs as parameters of a generative model. 

Determining which combination of the many possible 

causes best fits the current sensory data is achieved 

through a process of minimizing the error between the 

sensory data and the sensory inputs predicted by the 

expected causes [11]. Regarding the current study, the 

results obtained should be refined in the future to create 

a more accurate model. 

      The highest correlation between actual and 

predicted responses was obtained in beta and gamma 

rhythms. As the next step, we applied the transformers 

python library to a similar prediction task with marked 

omitted words. The model confidence was compared 

with predicted EEG gamma and beta responses. The 

predicted EEG response was used to correlate with the 

language model instead of the actual EEG data to 

explore the quality of modelling and further possibility 

to apply predicted EEG response to language modelling 

domain. We assume that correlation in this case means 

that model results with prediction of EEG and 

transformers results have common base of the language 

perception, and such an approach could give fruitful 

direction for further investigation both cortical brain 

organization and the large language models domains. 

 Statistically significant, but not strong correlation 

was observed in the beta-rhythm T3 electrode. This is 

strong evidence for the involvement of beta oscillations 

across grammatical and semantic processing [5]. Power 

decreases in beta bandwidth occurring before speech 

onset within a picture naming task can be provoked by 

the semantic context provided by a preceding sentence 

[5]. In our study, we got a negative correlation between 

beta EEG response and confidence of the language 

model. The possible explanation is that more 

predictable words by the language model may be 

reflected in beta oscillations in modeled human EEG 

responses.  

      Such a match between modeled EEG human 

language processing and the language model may be the 

first step to creating a semantical network for speech 

rehabilitation among patients with some types of 

aphasia. In future it may be of interest to study the 

communication processes in the proposed paradigm. 

The main limitation of this research is the sample size. 

 

CONCLUSION 

 

An attempt was made to explore the connection 

between the function of the EEG responses and the 

omitted words during naturalistic speech perception. 

The statistically significant differences were obtained in 

T3, T5, and P3 electrodes. Machine learning 

classification algorithms also show distinct differences 

in EEG signals during audio text comprehension. 

Anticipatory, likelihood-driven processes are to 

contribute to lexical, syntactic, and discourse 

processing, which were studied by mTRF method. We 

got the modeled brain responses for gamma and beta 

rhythms as the highest correlation was obtained. This 

model was compared with the language model. The 

obtained result may be regarded as the possible solution 

for developing a semantical network for speech 

rehabilitation among patients with some types of 

aphasia. One of the possible future directions of the 

research is to explore the communication processes in 

this paradigm and to increase the sample size. 
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ABSTRACT: Locked-in patients rely on stable 

performance of BCIs to provide them with a means of 

communication. To build a robust BCI, we demonstrate 

the need for adaptive decoding that accounts for temporal 

variations in electroencephalogram (EEG) dynamics. We 

analyzed six consecutive EEG sessions recorded between 

2p.m. (afternoon). and 12a.m. (midnight) of 15 healthy 

participants engaged in a four-right-hand gesture task. 

We employed four-class classifiers trained on 

movement-related cortical potentials of different 

sessions and applied the decoders to the same session to 

evaluate the impact of temporal fluctuations in EEG on 

decoding capabilities. As a step towards adaptive 

decoding, we developed constantly updated classifiers by 

training on the most recently collected data and 

compared these to a stationary classifier trained once on 

the first session. Our findings revealed that temporal 

variations in EEG during movement tasks influence 

classification performance. In this context, we 

demonstrated that adaptive decoding provides a remedy 

to build a robust BCI usable for patients in the home-

environment. 

 
INTRODUCTION 

 
A brain-computer interface (BCI) is a system that 

establishes a means of communication between the 

human brain and external devices by capturing and 

interpreting bioelectrical signals such as non-invasive 

electroencephalography (EEG) or invasive electro-

corticography (ECoG) that are modulated by the user’s 

intention [1,2]. Such a BCI system provides an 

alternative way of communication for patients suffering 

from severe motor neuron disorders such as amyotrophic 

lateral sclerosis, trauma or stroke that risk losing 

complete muscle control and the ability to communicate 

while still being conscious leading to locked-in syndrome 

(LIS) [3,4]. The EU project INTRECOM aims for the 

development of a novel, fully implantable BCI 

technology to allow for real-time motor and speech 

decoding to provide LIS patients with a means of 

communication in the home environment. 

Communication enabled by motor decoding shall be 

realized by movement attempt and the usage of four to 

five different gestures for discrete cursor control to 

permit the selection of characters or words presented in 

matrix-format on a screen. In this study, the execution of 

four different right-hand gestures in healthy individuals 

is investigated as a preliminary work towards decoding 

of movement-related cortical potentials (MRCPs) for a 

four-directions cursor control in a BCI system. A 

prerequisite for BCIs integrated into the home 

environment is the stable and robust performance that 

enables the user to interact with their surroundings 

whenever necessary, e.g., to call a caregiver. Variations 

in the EEG directly influence the performance of such 

BCI systems, thereby affecting the communication 

abilities of users dependent on these systems. Changes in 

concentration, attentiveness, motivation [5], and fatigue 

[6,7], or the influence of direct or indirect feedback [8,9], 

are possible factors contributing to alterations in EEG. 

Previous literature has reported temporal variations in the 

delta [10], theta, alpha and beta [11,12] frequency bands 

during resting states that follow a diurnal pattern. We 

hypothesize that such temporal alterations also manifest 

in EEG signals during movement tasks and furthermore 

influence decoding capabilities of BCI systems based on 

MRCPs. Adaptive decoding has proven to be a useful 

tool in the context of alterations in EEG due to various 

factors [8,9], therefore we introduce adaptive decoding to 

enhance the performance stability of the BCI system. In 

this paper, we aim to capture changes in movement-

related EEG patterns throughout the day and night by 

recording six EEG sessions during gesture tasks at 2-hour 

intervals over a 10-hour period with fifteen healthy 

participants. Further, we demonstrate a preliminary 

approach towards adaptive EEG decoding by introducing 

a continuously adaptive classifier and hypothesize that 

decoders including most recent data for training purposes 

significantly outperform decoders that are not updated 

throughout the course of a day. 

 
MATERIALS AND METHODS 

 
A. EEG recordings throughout the day and night 

 

We recruited twenty-two healthy, right-handed 

participants (13 female, 9 male) that agreed with the 

inclusion criteria targeting a narrow age group from 20 to 

40 years and an early morning routine starting between 

5a.m. and 7a.m. each day. Additionally, we focused on a 

stable sleeping pattern by excluding candidates regularly 

working night shifts or feeling a physical or 

psychological effect in the absence of caffeine for more 

than 24hours. On the day of the measurement, 

participants arrived at the laboratory of the Institute of 
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Neural Engineering of Graz University of Technology at 

12p.m. They were clarified about the study procedure, 

had the opportunity to ask questions, and then provided 

their written informed consent. The study was approved 

by the local ethics review board. Subsequently, we 

equipped every participant with an EEG cap holding 60 

active, gel-based electrodes (actiCAP Brain Products 

GmbH, Germany) according to the 10-10 international 

electrode standard setup. For simultaneous recording of 

EEG and electrooculogram (EOG), four additional active 

electrodes were positioned at the outer canthi of the eyes 

as well as on the inferior and superior of the left eye. The 

ground and reference electrode were positioned on the 

forehead at the position of FPz and the right mastoid, 

respectively. The signals were sampled at 500Hz and 

amplified using biosignal amplifiers (BrainAmp, Brain 

Products GmbH, Germany). To monitor hand 

movements, we used a motion capture system developed 

at the institute. A green marker was glued to the 

participant’s right index finger, and a video camera 

recorded the movement at a sampling rate of 30Hz. Each 

participant performed six recording sessions every two 

hours starting at 2p.m. until 12a.m. on the measurement 

day, each one lasting approximately one hour. Between 

the recordings, the participants followed a strict 

experimental schedule and performed prespecified tasks 

that imitated a usual workday. These tasks involved 

demanding geometric and linguistic games during the 

first two breaks, followed by a standardized dinner after 

the third recording at 7p.m. During the last two breaks, 

participants were tasked with activities such as watching 

a documentary and listening to music to induce fatigue. 

At the beginning of each recording session, the electrode 

impedance was checked, and gel was applied if 

necessary. Then, the participant was asked to perform a 

psychomotor-vigilance task and answer questionnaires 

regarding emotions, hunger level, and tiredness’ 

symptoms. Further, 2min of resting EEG were recorded. 

To remove eye artifacts, a 6-min EEG measurement was 

performed to simultaneously record EEG and EOG while 

the participant was asked to blink or move the eyes 

vertically or horizontally. After the main paradigm, 

another 2min of resting EEG were recorded. The main 

paradigm involved four right hand gestures (fist, pistol, 

pincer grasp and “Y”-gesture of the American sign 

language). Participants were seated in front of a computer 

screen positioned 50 to 60cm away, with their right hand 

on a table inside a wooden box equipped with the video 

camera. They were asked to follow on-screen 

instructions and to refrain from blinking and swallowing 

during each trial. The paradigm followed the procedure 

outlined by Patrick Ofner et al. [13]. Each trial began 

with a 1-s presentation of a class cue, including a fixation 

cross displayed after the cue for 0.5 to 1s. Participants 

were asked to focus on the fixation cross to avoid eye 

movements. A 2- to 3-s preparation period followed, 

during which a filled green circle shrank to match the 

inner white circle. Participants performed the instructed 

gesture when the circles overlapped and kept the position 

for about 3s until the screen went black, signifying the 

end of a trial. A 1.5-s break between trials allowed 

participants to rest. The total trial duration ranged from 8 

to 9.5s. Each participant performed 8 movement runs of 

approximately 5min each with a 30-s break in between. 

In total, 64 trials per gesture and session were recorded 

for each participant. 

 

B. Processing of recordings 

 

The recorded signals were processed using MATLAB 

R2022b (Mathworks. Massachusetts, USA) and 

EEGLAB [14]. Initial steps included visual inspection, 

interpolation of noise-contaminated channels, and 

removal of 50Hz line noise and its first harmonic using a 

Butterworth bandstop filter of 2nd order. A Butterworth 

highpass filter of 5th order at 0.3Hz addressed the issue of 

drifts and a Butterworth lowpass filter of order 70th at 

70Hz attenuated high-frequency noise. An eye artifact 

attenuation model was applied as described by Kobler et 

al. [15], and the most frontal electrodes were excluded. 

Pops and drifts were attenuated using the HEAR 

algorithm [16] and noisy temporal electrodes were 

removed. MRCPs were extracted using a Butterworth 

lowpass filter of 4th order at 3Hz. Movement-triggered 

epoching using the motion capture system produced 5.5s 

trials (-2.5s to 3s around movement onset). Trials 

exceeding a threshold of ±100µV were rejected, and the 

remaining trials were downsampled to 9Hz and re-

referenced to a common average reference. To address 

the issue of unbalanced classes within each session, 

between sessions and subjects, the number of trials per 

gesture and session to include participants for further 

evaluation was set to 46 trials. Fifteen out of twenty-two 

participants fulfilled the criteria and were therefore 

included in subsequent analysis. 

 

C. Analysis of MRCPs 

 

To evaluate significant changes in the MRCP shape, we 

employed a Wilcoxon rank sum test to compare the 

MRCP patterns from each session with session 6, which 

served as the reference. We combined trials of all four 

gestures across all participants. Statistical analysis was 

performed for each channel and each timepoint within a 

movement trial, therefore to correct for multiple 

comparisons, we applied the Benjamini and Hochberg 

[17] procedure that controls the false discovery rate and 

yields greater power than the commonly used Bonferroni 

technique [18]. 

 

D. Classification of gestures 

 

For classification of the four gestures, we employed a 

multiclass shrinkage linear discriminant analysis (sLDA) 

[19,20]. The input consisted of causal 1-s windows of all 

remaining electrodes that were shifted along movement 

trials at a sampling rate of 9Hz. Classification was 

performed offline on participants and sessions 

individually. 
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E. Analysis of temporal changes in classification 

 

To show whether potential temporal changes in the EEG 

during movement tasks affect decoding capabilities, we 

investigated the performance of five classifiers trained on 

each of the first five recording sessions and evaluated on 

the last (Fig. 1). First, we implemented a trial-based 5-

fold cross-validation within each training/session set 

(Fig. 1) to see the general performance of the 

corresponding set (herein referred to as single session 

results). Then, as a second step, a classifier was trained 

on the whole training session and directly applied to 

session 6 recorded at 12a.m. This procedure was repeated 

for each one of the first five recording sessions and is 

outlined in Fig. 1. 

 

 

Figure 1: Classification procedure of single classifiers 

tested on session 6. Additionally, the trial based 5-fold 

cross-validation procedure for the single session results 

on session 3 is depicted. 

 

F. Comparison between adaptive and unrevised 

classification 

 

As a preliminary step towards adaptive decoding, we 

investigated the difference in classification accuracy 

when employing an adaptive classifier in contrast to an 

unrevised decoder. Therefore, as indicated in Fig. 2, we 

shifted a window containing 46 trials per gesture across 

the six recording sessions that were used for training of 

the adaptive classifier. The subsequent 46 trials per 

gesture served as a test set. This procedure was 

performed in steps of one quarter of a session (12 trials), 

resulting in a total number of 17 trained classifiers along 

the duration of the study. For means of comparison, we 

implemented an unrevised classifier trained once on the 

very first window of 46 trials per gesture corresponding 

to the first recording session (see Fig. 2 as indicated in 

turquoise) that was further applied to every test set 

obtained in the previous approach. 

To assess whether the difference in decoding 

performance between the two classifiers was statistically 

significant, we employed a Wilcoxon signed rank test on 

the classification accuracies obtained by every pair of 

classifiers. In order to correct for multiple comparisons 

(number of classifiers), we made use of the procedure 

developed by Benjamini and Hochberg [17]. 

 

 

Figure 2: Adaptive (violet) and unrevised (turquoise) 

classification approach. As an example, only the first 

seven iterations of the adaptive classifiers are depicted. 

The test sets were the same for both classification 

approaches. 

 
RESULTS 

 
A. Analysis of MRCPs 

 

In Fig. 3 we illustrate the temporal changes in MRCPs by 

depicting the averaged MRCPs across participants for 

measurement sessions 1 (at 2p.m.), 5 (at 10p.m.) and 6 

(at 12a.m.), at electrode positions C1, Cz and C2 above 

the sensorimotor areas. For comparison purposes, session 

6 served as a reference. Timepoints exhibiting significant 

(p<0.05) differences between the compared sessions are 

highlighted in color. As sessions 1 and 6 lie the furthest 

apart from each other, MRCPs of both sessions 

demonstrate greater difference in progression than 

MRCPs obtained during sessions 5 and 6. 

 

B. Analysis of temporal changes in classification 

 

The classification results when investigating the impact 

of temporal EEG changes on movement classification 

performance can be seen in Fig. 4. Fig. 4a depicts the 

evolution of the cross-validated classification accuracies 

of the five decoders trained within different measurement 

sessions (Fig. 1). The temporal MRCP fluctuations were 

captured by the variation in maximum classification 

accuracy across time. The maximum accuracy at 2p.m. 

(session 1) increased from 37.5% ± 5.6% gradually to 

39.7% ± 3.2% at 8p.m. and declined by 10p.m. (session 

5) to 37.4% ± 5.4%. In comparison, Fig. 4b visualizes the 

performance of the five decoders when tested on the data 

of session 6. Apart from the decoder trained on session 4, 

recorded at 8p.m., which exhibited a decrease in accuracy 

(34.6% ± 5.1%) compared to the classifier trained on 

session 3 (36.3% ± 5.9%), we observed an increase in 

maximum classification accuracy as the time interval 

between training and test set recordings decreased.
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Figure 3: Average MRCPs across all participants for sessions 1 and 6 (top panel) and sessions 5 and 6 (bottom panel). 

The movement onset occurred at t=0s. Statistically significant differences (p<0.05) between sessions at each time point 

within a trial are indicated with color-coded dots on the zero-axis. In the top panel, we compared the MRCPs between 

session 1 and session 6. In the bottom panel, we compared the MRCPs between session 5 and session 6. 

 

 

Figure 4: Classification results of different sessions. (a) 

Single session results. (b) Results of classification when 

tested on session 6. Indicated by the horizontal dashed 

lines are the theoretical chance level (25%) and the level 

of statistical significance (31.25%) as estimated using a 

permutation-based approach [21]. 

 

For example, the decoder trained on the first session 

achieved a maximum classification accuracy of 32.1% ± 

5.6% whereas the classifier trained on the fifth session 

closest to session 6 used for testing yielded a maximum 

accuracy of 38.4% ± 4.7%. 

 

C. Comparison between adaptive and unrevised 

classification 

 

Fig. 5 presents the variation in maximum classification 

accuracy across time for both the adaptive and unrevised 

classification model averaged across participants. In Fig. 

5, one can observe that the adaptive decoder being trained 

on the most recent data outperforms the unrevised 

classifier which was kept constant throughout the process 

at every shift along the time axis. This difference reaches 

statistical significance at some points, with a p-value less 

than 0.05. 

 

 

Figure 5: Comparison of the maximum classification 

accuracies obtained from both the adaptive (violet) and 

unrevised decoders (turquoise) shifted along the time 

axis. Depicted are the averages across participants (± 

standard error). The horizontal dashed line at 25 % 

indicates the theoretical chance level, the dashed line at 

31.25% illustrates the level of statistical significance 

[21]. The seven vertical lines marked (*) indicate 

statistical significance (p < 0.05) differences between 

adaptive and unrevised decoder accuracies. 

 
DISCUSSION 

 
We showed that throughout the day and night, MRCPs 

varied, hence movement classification performance was 

restricted, raising the necessity for adaptive classifiers 

that proved to outperform unrevised decoders. These 

findings are crucial for the development of BCI systems 
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used in the home-environment that need to be 

functioning at every day and nighttime to enhance the 

patient’s independence. 

 

A. Analysis of MRCPs 

 

Analysis of MRCPs revealed that the frequency of 

timepoints exhibiting statistically significant deviations 

increased as more time elapsed between recording 

sessions. This was shown by comparing the MRCPs 

between sessions 1 (2p.m.) and 6 (12a.m.) and sessions 5 

(10p.m.) and 6. Additionally, a variation in amplitude of 

MRCPs across time was observed. Session 5 showed a 

reduction in amplitude, especially highlighted by the 

statistically significant deviation at the timepoint of the 

motor potential when being compared to session 6. This 

change can be attributed to the increasing level of mental 

fatigue causing a decrease in amplitude of MRCPs [22]. 

Another factor influencing the amplitude of MRCPs is 

long-time training [23–25] meaning that experts require 

a reduced amount of effort, resulting in reduced activity 

at motor cortex sites involved in motor task preparation 

and execution. The long-time training effect observed in 

this study can be attributed to participants performing the 

same task repeatedly, hence leading to a decrease in 

MRCP amplitude over time. As this study was conducted 

in an open-loop manner, learning processes associated 

with controlling a BCI system could not be taken into 

account due to the absence of neurofeedback [26]. To 

account for the increase in MRCP amplitude observed 

during the transition from session 5 to session 6, previous 

studies have investigated the role of motivation [25,27]. 

It was shown that with rising levels of motivation 

accompanied by an increase in interest and excitement, 

P300 amplitudes increased. This phenomenon can also 

be observed in session 6, where the MRCP amplitude 

increases compared to session 5 possibly indicating the 

rise in motivation of participants to finish the last 

measurement. In general, we can eliminate the possibility 

of gel drying to be responsible for the observed variations 

in EEG dynamics as the gel was still wet after more than 

12hours when the cap was removed. 

 

B. Analysis of temporal changes in classification 

 

As described previously, the variations in classification 

accuracy across classifiers for the validation set (see Fig. 

4a) arise due to temporal variation in the EEG dynamics 

during movement tasks. Recordings that are 

chronologically closer together exhibit less variability in 

terms of MRCP patterns than recordings that have a 

longer time interval between them. Therefore, as 

depicted in Fig. 4b, the classifier trained on session 5 at 

10p.m. performs the best on the data recorded at 12a.m. 

in contrast to the other decoders trained on other sessions. 

These findings strongly emphasize the importance of 

adaptive decoding in the context of robust and stable 

performance of BCIs at all times. 

 

 

C. Comparison between adaptive and unrevised 

classification 

 

The maximum classification accuracies of the adaptive 

classifiers evaluated on temporally shifted test sets 

consistently outperformed the unrevised classifier at 

every time step. This superiority arises from the influence 

of MRCPs on decoding capabilities, and as these signals 

fluctuate over time, a classifier trained only once is 

incapable of capturing the evolving temporal dynamics 

inherent in EEG signals. Conversely, when constructing 

a classifier that incorporates the most recent data for 

training, a noticeable improvement in classification is 

observed. This underscores the positive impact of 

adaptive decoding on overall classification performance. 

 
CONCLUSION 

 
In this preliminary work towards adaptive decoding for 

temporal dynamics in EEG signals, we showed that due 

to changes of MRCPs across time decoding needs to 

adapt to build a robust and stable BCI system that 

delivers reliable output for patients in their home-

environment. We demonstrated that the usage of most 

recently collected data for means of training of a decoder 

significantly improved decoding performance. This 

paper using supervised adaptation which requires task 

labels as ground truth serves as preparatory work for 

future in-depth investigations regarding online 

adaptations of decoders. Since in real autonomous BCI 

use in the home-environment labels will not be available, 

unsupervised adaptation could be realized by a trail-wise 

update of the model’s parameters, as proposed by 

Vidaurre et al. [28,29] or Hehenberger et al. [5]. 
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ABSTRACT: Motivated by the challenge of seamless
cross-dataset transfer in EEG signal processing, this ar-
ticle presents an exploratory study on the use of Joint
Embedding Predictive Architectures (JEPAs). In recent
years, self-supervised learning has emerged as a promis-
ing approach for transfer learning in various domains.
However, its application to EEG signals remains largely
unexplored. In this article, we introduce Signal-JEPA
for representing EEG recordings which includes a novel
domain-specific spatial block masking strategy and three
novel architectures for downstream classification. The
study is conducted on a 54 subjects dataset and the
downstream performance of the models is evaluated on
three different BCI paradigms: motor imagery, ERP and
SSVEP. Our study provides preliminary evidence for the
potential of JEPAs in EEG signal encoding. Notably, our
results highlight the importance of spatial filtering for ac-
curate downstream classification and reveal an influence
of the length of the pre-training examples but not of the
mask size on the downstream performance.

INTRODUCTION

Electroencephalography (EEG) allows capturing neural
activity directly from the scalp, offering a high temporal
resolution signal to investigate brain functions. The in-
terpretation of EEG signals with machine learning meth-
ods opens the door to build brain-computer interfaces
(BCIs). Despite the potential of BCIs, their practical
application is hindered by the intensive requirement for
calibration data, which is both time-consuming and de-
manding for participants. Recently, transfer learning has
been explored to mitigate the constraints imposed by data
scarcity and calibration demands. Self-supervised learn-
ing (SSL) presents itself as a pivotal strategy to tackle
transfer learning, enabling models to learn rich represen-
tations from unlabeled data that can be used to efficiently
solve downstream tasks. A particular approach to SSL
consists in strategically masking parts of the input data
and training a model to predict these masked elements.
A key advantage of masking-based SSL methods is that
they can be applied to virtually any type of data.

Masking Strategies proved a determining factor for the
success of SSL methods in various domains, including
image [2–4], speech [2, 5], text [2], and video [1] pro-

cessing. For instance, random masking strategies, where
the regions to be masked are sparsely selected, typically
deliver inferior results compared to block masking strate-
gies, where larger continuous regions are masked, requir-
ing the model to gain a deeper understanding of the data
distribution [2].

Masked Autoencoders (MAEs) stand as the quintessen-
tial entry point to masking-based SSL [3]. These models
aim to reconstruct the masked sections of the input di-
rectly, and the training objective is computed by compar-
ing the original input sections to the reconstructed ones.
Unfortunately, reconstructing the input and comparing el-
ements in the original space is not without challenges.
When the original input space has a high dimensionality,
the reconstruction can be computationally expensive, and
necessitate the use of domain-specific constraints to pro-
duce valid signals. The original signals can also be noisy,
increasing the difficulty of encoding meaningful parts
of the signal. Moreover, the reconstruction’s difficulty
can vary significantly across different areas of the input
data: with images, reconstructing a monochromatic, non-
structured sky is less difficult than reconstructing a struc-
tured object like a hand. Such structural disparities are
one of the reasons, why conventional metrics like mean-
square error often fail to assess the reconstruction quality.
These challenges question the scalability and adaptability
of MAEs as a universal SSL approach.

Joint-Embedding Predictive Architectures (JEPAs) of-
fer a promising alternative to address the limitations as-
sociated with direct reconstruction. JEPA-like methods
avoid reconstructing the input in its original space and fo-
cus on predicting latent representations, or embeddings,
of the data [4]. This approach confers two major bene-
fits: first, it is computationally efficient, especially with
high-dimensional input spaces as the embeddings can re-
duce the dimensionality; second, the metric’s selection in
the embedding space is less critical, as the embeddings
are learned adaptively to the chosen metric. However, as
the "ideal" embedding vectors are unknown, the recon-
struction objective is undefined a priori. This challenge is
addressed by constructing target embedding vectors dur-
ing the training by using a bootstrapping procedure which
will be further explained in the S-JEPA Framework sec-
tion. The potential of JEPA-like frameworks has been
highlighted by their promising results with images [2, 4],
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Figure 1: S-JEPA training procedure. The framework takes as input EEG recordings with C channels and T time samples, and binary
masks of length L. First, the Local encoder independently transforms t windows from each channel into C× t = L embedding vectors,
called tokens, of dimensionality d. Then, the tokens are marked according to their originating channel and temporal position, and are
flattened into a sequence of length L. Subsequently, only the unmasked tokens are passed to the Contextual encoder, while the full
tokens sequence is given to the Contextual target encoder to generate training targets. Finally, the Predictor attempts to reconstruct
the masked tokens and its predictions are compared with the targets using an L1 loss. During the optimisation, the parameters of
the Contextual target encoder are not trained via gradient backpropagation but follow those of the Contextual encoder by Exponential
Moving Average (EMA). Figure inspired from [1].

speech [2, 5], text [2], and videos [1].
Applications to the EEG Domain of masking-based

SSL techniques have started to emerge. Pérez-Velasco
and colleagues used a masked autoencoder approach,
with random masking over the spatial and temporal di-
mensions [6]. Chien and colleagues experimented with
MAEs with block masking over the temporal dimen-
sion [7]. Kostas et al. and Foumani et al. also used block
masking over the temporal dimension but coupled it with
JEPA-like training strategies [8, 9].

Motivation. Despite the advancements in applying
SSL to EEG data, the exploration of block masking
strategies over EEG channels remains uncharted territory.
Such an approach holds the potential for developing ro-
bust channel attention mechanisms, and thus could fa-
cilitate dynamic spatial filtering. This capability could
prove instrumental in adapting to recordings with vary-
ing channel sets, thereby facilitating cross-dataset trans-
fer learning or tackling corrupted channels. This paper
seeks to bridge this gap by investigating the implications
of a channel-based block masking strategy on SSL effi-
cacy in EEG signal processing.
The main application of models trained with SSL is the
following fine-tuning on the actual task of interest, the so-
called downstream task. While most research within the
EEG domain has focused on fine-tuning for sleep stage
classification tasks, their application to a BCI context re-
mains largely untapped, with only two studies by Kostas
et al. and Pérez-Velasco et al. exploring the impact of
SSL on BCI tasks [6, 8]. As BCI systems suffer from
data scarcity there is a consistent goal to minimize the
amount of calibration data required before each online
session, specifically as the calibration phase requires sus-
tained attention from the participant and thus is tiring.
This highlights a significant opportunity to explore the ef-
fectiveness of SSL models across various BCI paradigms,
including but not limited to motor imagery protocols,
thereby contributing to the broader understanding and ap-

plication of SSL in enhancing BCI performance.
Furthermore, the application of pre-trained SSL mod-
els for solving downstream tasks often involves the ad-
dition of a linear layer atop the embedding dimension.
This practice, however, may not be optimal in high-
dimensional embedding spaces. Through a compara-
tive analysis of six different strategies for leveraging pre-
trained architectures in downstream tasks, this work aims
to support our understanding and application of SSL in
EEG data processing.

Research Questions and Plan. This manuscript is an
explorative study investigating what approaches should
be adopted for training SSL algorithms on EEG signals,
and what domain-specific considerations warrant atten-
tion. We approach this through three research questions:
1) What constitutes the most efficacious masking strategy
for SSL when applied to EEG data? 2) How does the tem-
poral length of examples used influence the SSL training
process? 3) What fine-tuning strategies lead to the best
downstream performance?
To answer these, we first propose a novel masking strat-
egy as part of the Signal-based Joint-Embedding Pre-
dictive Architecture (S-JEPA) framework in the S-JEPA
Framework section. Then, we introduce fine-tuning
strategies tailored for S-JEPA in the Downstream Eval-
uation section. The datasets used for pre-training and for
downstream evaluation are presented in the Datasets sec-
tion. Finally, the Results and Discussion sections will re-
port and critically discuss the outcomes and implications
of the experiments we conducted.

S-JEPA FRAMEWORK

The Signal-based Joint-Embedding Predictive Architec-
ture (S-JEPA) framework is illustrated in Figure 1. It is
used to pre-train models. Its architecture is inspired by
BENDR and MAEEG, introduced in the pioneering stud-
ies by respectively Kostas et. al. [8] and Chien et. al. [7].
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A key modification is introduced in the design of the lo-
cal encoder to enable our novel masking strategy. This
section details the architecture’s components, the spatial
masking strategy, and the training process.

Local encoder. The local encoder is implemented as
a convolutional neural network (CNN) with five layers,
each formed of a convolution with a Gaussian error linear
unit (GELU) non-linearity. Contrary to the encoders in
BENDR and MAEEG, which accept multi-channel input
windows, our encoder processes windows from a singular
channel. Each window is encoded into a 64-dimensional
embedding vector, hereafter referred to as a token. The
windows are 1.19 s long, with a stride of 1.0 s. The first
convolutional kernel covers 0.25 s while the following
ones simply combine feature vectors in pairs, i.e., both
the kernel temporal lengths and strides are 2.

Contextual encoder. This encoder consists of a trans-
former architecture with eight layers, as introduced by
Vaswani and colleagues [10]. It processes the unordered
sequence of tokens generated by the local encoder, ne-
cessitating the addition of position-encoding information
to localize them temporally and spatially. The temporal
positioning of each token is defined using a cosine en-
coding [10] over the first 34 dimensions, whereas spatial
positioning is achieved through trainable embeddings for
each channel, initialized using cosine encoding based on
their three-dimensional coordinates. The contextual en-
coder receives tokens that only contain local information;
its role is to establish relationships between them.

Spatial Block Masking strategy. Unique to our method-
ology is the independent encoding of each channel by the
local encoder. While it avoids the learning of spatial fil-
ters at early stages, it paves the way for innovative spatial
dimension masking strategies. Literature in both, image
processing [2] and EEG signal analysis [9] suggests that
block masking yields superior results compared to ran-
dom masking. Motivated by these findings, our novel ap-
proach extends block masking to the spatial domain of
EEG channels.
Given the irregular distribution of EEG channels, the con-
cept of a contiguous block of tokens does not translate di-

(a) Cz as center. (b) C6 as center. (c) Oz as center.

Figure 2: Visualisation of the spatial block masking strategy
for three example mask centres (red electrodes). The dark to
light green spheres represent masks of diameters 40 %, 60 %
and 80 % of the head size, as used in our experiments. Assum-
ing a top-down view upon the scalp, the depth of the electrodes
is denoted by their intensity (black: close, grey: distant). For a
given mask, all electrodes within the corresponding sphere are
hidden from the contextual encoder and must be predicted by
the predictor.

rectly from its application in images or temporal signals,
where the pixels and time samples are regularly spaced.
Thus our approach masks all channels within a predeter-
mined radius of a randomly chosen central channel, as
illustrated in Figure 2. In this work, we compare three
mask sizes with diameters approx. 40 %, 60 % and 80 %
of the head size. This strategy inherently introduces vari-
ability in the number of masked tokens.

S-JEPA pre-training. With the operational principles
of both the local and contextual encoders established, we
introduce two ancillary components exclusively utilized
during the training phase. The first, termed the Contex-
tual target encoder, is a non-trainable duplicate of the
contextual encoder which serves to generate the training
targets. Its parameters are updated via exponential mov-
ing average (EMA). The second component, the Predic-
tor, is a transformer decoder architecture with four layers
as delineated by Vaswani et al. [10]. The comprehensive
training methodology is illustrated in Figure 1.

The models are trained until no improvement of the vali-
dation loss is observed for 10 epochs (i.e., complete pass
through the entire dataset), at which point the best model
is saved for subsequent fine-tuning.

DOWNSTREAM EVALUATION

Upon completion of the network’s pre-training through
the SSL task, which holds no intrinsic value beyond train-
ing purposes, we proceed to evaluate its efficacy on prac-
tical downstream classification tasks which, in our case,
are BCI tasks. This step is crucial for determining the
real-world applicability of the pre-trained model.

Downstream classification architectures. Using pre-
trained models for downstream classification tasks ne-
cessitates altering their architecture to allow predicting
class probabilities. The most widely adopted modifica-
tion, linear probing, consists of adding a linear classi-
fication layer directly above the embedding space [4].
However, the individual tokenization of each channel in
our approach leads to a high-dimensional latent space,
close to the dimensionality of the raw input examples,
which would make linear probing inefficient. In response
to this challenge, we enrich the architecture with two
layers instead which are Spatial aggregation and Fully-
Connected, as explained in Figure 3.

The integration of these layers is explored in three dis-
tinct configurations. (a) The Contextual downstream ar-
chitecture places both layers after the contextual encoder
as depicted in Figure 3a. (b) The Post-local downstream
architecture discards the pre-trained contextual encoder
and adds the novel layers atop the local encoder as shown
in Figure 3b. (c) The Pre-local downstream architecture
also discards the pre-trained contextual encoder but then
places the spatial averaging layer before the local encoder
as illustrated in Figure 3c. This third alternative allows
the network to perform a spatial EEG filtering step, as
commonly present in BCI architectures.
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Figure 3: Downstream classification architectures. In each of
the three alternative alterations of the pre-trained networks, two
new layers are added. 1) Spatial aggregation is a convolutional
layer that realizes weighted combinations of the elements in the
channels dimension into V ≪ C "virtual" channels. 2) Fully-
connected is a linear layer that predicts c class probabilities.

Fine-tuning. We examine two distinct fine-tuning
strategies for these downstream architectures. The first
method, indicated by the prefix new-, involves exclu-
sively training the newly introduced layers, keeping the
pre-trained components frozen. The alternative strategy,
denoted with the prefix full-, consists in fine-tuning the
entire network. This second strategy starts with a warm-
up phase of 10 epochs where only the newly added lay-
ers undergo training, preventing the deterioration of the
pre-trained layers’ performance due to irrelevant feed-
back [11], before the previously existing layers are in-
cluded into the training.
For both strategies, the model is fine-tuned until no
improvement of the validation loss is observed for 50
epochs, at which point the best model is restored for test-
ing. Additionally, it should be noted that the temporal
length of examples used during the fine-tuning phase is
determined by the requirements of the downstream task,
which is independent of the length of examples utilized
during the SSL pre-training phase.

DATASETS

For the exploratory investigation in this work, we used
the dataset introduced by Lee and colleagues [12], sub-
sequently referred to as the lee2019 dataset. It contains
EEG recordings from 54 subjects, each undergoing three
distinct BCI paradigms: steady-state visual evoked po-
tentials (SSVEP) with four classes, visual event-related
potentials (ERP), and left vs. right hand motor im-
agery (MI). The recordings are from C = 62 EEG chan-
nels, the spatial distribution of which is detailed in Fig-
ure 2. The dataset was loaded from the MOABB frame-
work [13], bandpass filtered at 0.5 - 40 Hz and downsam-
pled to 128 Hz.

We used the first 40 subjects to pre-train any model. The
subsequent 7 subjects were used for the validation during
this pre-training phase. The remaining 7 subjects were
reserved for the downstream performance evaluation.

Pre-training data. SSL methods do not necessitate la-
bels. As such, the training and validation examples are
slices of the continuous recordings taken at a fixed inter-
val of 16.9 seconds. This study compared three exam-
ple lengths T approximately distributed on a logarithmic
scale, namely 1, 4, and 16 seconds. All allocated sub-
jects and all paradigms were used collectively during the
pre-training phase which yielded a total of 36,576 train-
ing examples and 6,528 validation examples. No artefact
rejection method was applied.

Downstream evaluation data. For each subject al-
located for downstream evaluation and each paradigm,
the fine-tuning performance of the different pre-trained
models is assessed using a 5-folds within-subject strati-
fied cross-validation procedure. The examples used are
4.19 seconds long for MI and SSVEP, and 1.19 seconds
long for ERP. These lengths are chosen to respect the du-
rations defined in the original dataset [12] while main-
taining compatibility with our tokenization process.

RESULTS

Experimental details. For pre-training, our setup com-
pares all combinations of signal durations (1s, 4s, and
16s) and mask sizes (40 %, 60 %, and 80 % of head size),
along with a no-pre-training baseline.

For downstream performance evaluation, we assess
each pre-trained model using the three downstream
architectures—contextual, post-local, and pre-local—
and the two fine-tuning approaches—full and new. The
no-pre-training is only assessed with the full fine-tuning
approach. A given pairing of pre-training and fine-tuning
configurations is referred to as a pipeline.
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Figure 4: Pre-training curves of the different configurations
tested. The solid and dashed lines indicate the loss on the train-
ing and validation sets. While the validation loss was tested
once per epoch only, the training loss was logged after every op-
timisation step. The train loss on individual optimisation steps
is visible in the background, corresponding epoch-wise aver-
ages are outlined in white. A star marks the lowest validation
loss per curve, the early stopping time point and consequently
the checkpoint from which any fine-tuning started.
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Pre-training dynamics. The pre-training phase, see
Figure 4, provides insights into the training process un-
der the S-JEPA framework. It reveals that training curves
under the 16s condition are significantly smoother than
the other configurations. Additionally, the early stopping
mechanism concludes the training of the 16s-80% config-
uration prematurely at 12 epochs due to an early trough in
the loss curve. Similarly, the 16s-40% setup also encoun-
ters an early trough yet manages to recover and complete
a longer training. The longest training durations are ob-
served in the 16s-40% and 16s-60% configurations, en-
during for 74 and 58 epochs, respectively, translating to
approximately 12 and 10 hours of training.

Pipelines ranking on downstream performances. The
comprehensive ranking of all tested pipelines is detailed
in Figure 5, offering a comparative overview of the per-
formance of the different combinations over the experi-
mental protocols. Notably, the top-performing pipelines
in the downstream tasks are the 16s-60% and 16s-40%
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Figure 5: Global downstream classification ranking of all
the combinations of pre-training configurations and fine-tuning
schemes. Each of the three test datasets has 7 subjects and 5
folds per subject, which makes a total of 105 folds. In the leg-
end, the combinations are ordered according to their average
rank over all folds. The vertical span of a coloured "pixel" in
the plot represents the number of folds in which this configura-
tion has obtained the rank indicated by the x-axis.

models, especially when paired with any pre-local fine-
tuning strategy. They notably occupy the first rank in
two-thirds of the cases. In contrast, lower-performing
pipelines feature new-contextual or full-contextual fine-
tuning, particularly when combined with 16s and no-pre-
training configurations.

Paradigm-wise downstream performances. on the in-
dividual paradigms is reported in Figure 6. For the sub-
sequent analysis, we discern several key observations:
1) The pipelines obtaining the best score on the ERP,
SSVEP and MI tasks are respectively 16s-40%-full-pre-
local with a 97% AUC, 16s-60%-new-pre-local with a
94% accuracy, and 16s-40%-new-pre-local with a 65%
accuracy. 2) Pipelines combining 16s or no-pre-training
with contextual architectures frequently result at chance
level on average. 3) Pipelines combining 1s or 4s with
contextual architectures also perform at chance level on
the SSVEP paradigm but above chance level on the MI
and ERP ones. 4) Most pipelines manage to achieve re-
spectable scores on the ERP dataset. 5) Only a select sub-
set of pipelines excel on the SSVEP dataset. 6) The MI
paradigm scores exhibit notable variability, as indicated
by the considerable standard deviation.
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Figure 6: Downstream classification scores of all the pipelines
on the three test datasets. The height of the coloured bars corre-
sponds to the average classification score over all the test sub-
jects and cross-validation folds, while the thin black bars corre-
spond to their standard deviation.

DISCUSSION

In the light of observations made in the Results section,
we aim to answer the research questions posed, draw con-
clusions, and provide guidelines for future research.
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Examples’ length largely influences downstream per-
formance. In particular, the 16s pipelines consistently
show the best performance, highlighting the advantage of
a longer context during pre-training. Conversely, when
considering solely the results using the contextual down-
stream architecture, the 16s pipelines often perform at
chance level. On the other hand, the 1s and 4s pipelines
yield better results, which may be attributed to their bet-
ter alignment of the attention mechanism’s training with
the short signal windows of the downstream tasks.

Mask radius’ impact on downstream performance un-
certain, as our results do not demonstrate a clear trend be-
tween the masks compared. It is possible that the range
of masks we compared is not optimal or that other fac-
tors are influencing the results. Future work should con-
sider comparing our spatial masking strategy with tem-
poral masking to better understand the relative strengths
and weaknesses of these approaches.

The best fine-tuning strategy implements spatial filter-
ing The pre-local architecture emerges as the best for
downstream classification. This architecture’s approach
to linearly combine channels before computing features
enables effective spatial filtering, thereby enhancing the
signal-to-noise ratio. This finding underscores the critical
role of spatial filtering in boosting model performance by
leveraging the inherent spatial properties of EEG data.

State-of-the-art comparison. According to Cheval-
lier and colleagues [14] who benchmarked numerous
decoding algorithms across all the datasets available in
MOABB [13], the current state-of-the-art (SOTA) perfor-
mances for within-session classification on the Lee2019
dataset are: ERP at 98.41± 2.03%, SSVEP at 89.44±
13.84%, and MI at 84.74 ± 13.19%. Notably, all
pipelines establishing the SOTA utilize Riemannian ge-
ometry. Our approach matches the SOTA for ERP, en-
hances it for SSVEP, but falls short on MI. A critical dif-
ference in our evaluation methodologies should be noted:
our downstream evaluation only focuses on the last 7 sub-
jects, unlike their analysis on all 54 subjects. Specifically,
Lee and colleagues have identified 6 out of these 7 sub-
jects as hard to classify on the MI task [12]. We believe
this exceptionally high rate of challenging subjects might
explain our low MI performance.

Choice of Dataset. The need for large datasets is
paramount when training transformers, potentially ex-
plaining the underperformance of the contextual down-
stream strategy. Although this exploratory study on the
Lee2019 dataset provides valuable insights, future re-
search should pivot towards larger datasets to fully har-
ness the capabilities of contextual architectures.

Conclusion. This exploratory work introduces a novel
masking strategy and three fine-tuning approaches, po-
sitioning our method competitively within the realm of
BCI tasks. We achieve SOTA performance on two out
of three evaluated downstream tasks. Our findings sug-
gest that long pre-training windows favor the local fea-
tures encoder, while short windows benefit the contextual
encoder. Therefore, future research should aim at suc-

cessfully training both the local and contextual encoders.
However, no influence of the mask radius on the down-
stream performance was found. Finally, the best down-
stream architecture includes a spatial filtering step and
discards the contextual encoder.
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ABSTRACT: Monitoring the spectral characteristics of 

brain signals can provide insights into the underlying 

processes responsible for their generation. In brain-

computer interface (BCI) applications, this is relatively 

important in decoding neural activity as it can provide a 

means to differentiate between various tasks or mental 

states. To capture spectral variations, herein, we focus on 

time-varying autoregressive models (TVAR). We 

introduce a framework designed to efficiently optimize 

and apply these models to multi-trial and multi-channel 

data, including electroencephalography (EEG) signals. 

Our approach was validated using EEG data from motor 

imagery tasks.  

 

INTRODUCTION 

Time-varying autoregressive (TVAR) models are 

widely utilized in brain-computer interface (BCI) 

research, serving various purposes including time-

varying power spectral density estimation to analyze 

shifts in brain dynamics [1], [2], [3], as well as feature 

extraction crucial for online BCI applications [4], [5], [6], 

[7], [8], [9], [10]. AR models, known for their ability to 

capture prominent frequency components in the signals, 

provide a powerful tool for brain activity analysis. The 

integration of TV estimation techniques further enhances 

their effectiveness, enabling real-time monitoring of 

temporal variations in these components. 

The central focus of these models revolves around the 

autoregressive (AR) coefficients, which play a 

fundamental role in shaping the power spectrum 

characteristics of the analyzed signal. By segmenting the 

data into overlapping quasi-stationary windows, one can 

monitor the temporal evolution of these coefficients. This 

approach facilitates the detection of changes in the signal 

dynamics associated with alterations in the user's 

cognitive processes or task-related activities. The 

estimated coefficients can subsequently be used for 

classification purposes. Alternatively, to streamline the 

process and eliminate the need for data segmentation, 

recursive techniques such as Recursive Least Squares 

(RLS) and Kalman Filtering (KF) can be employed. 

These methods provide at each time sample an estimate 

of the AR coefficients without the necessity of dividing 

the data into separate windows, which typically results in 

increased processing time. 

Despite the widespread application of TVAR models, 

limited studies have focused on optimizing their use, 

particularly in the context of feature extraction and 

classification within BCIs. Many studies resort to 

windowing approaches due to the absence of clear 

guidelines on employing recursive techniques. They also 

rely on predefined model structures derived from 

previous literature, potentially compromising model 

performance. One of the primary questions that we will 

try to answer here is how to effectively tune and integrate 

these models into multi-channel signals and apply them 

to unseen datasets and online BCI scenarios. Schlögl et 

al. [4], Pfurtscheller et al. [5] and Brunner et al. [7] were 

among the first to provide a comprehensive framework 

on TVAR models for single-trial electroencephalography 

(EEG) classification. They proposed methods to 

optimally tune the model hyperparameters, as well as 

strategies for integrating recursive techniques, as these 

techniques also impact the estimation results.  

Inspired from [4], [5] and [7], we herein, explore 

further the application of these models and we present a 

concise methodological approach that can be readily 

implemented and extended to other TVAR model 

variants such as TV multivariate AR models [11], [12] 

and root tracking techniques [13], [14] for offline and 

online BCI applications. We furthermore propose the 

incorporation of an additional feature derived from the 

tracking process, in addition to the commonly employed 

TVAR coefficients, for classification purposes. This 

recommendation arises from our observation of increased 

accuracy when incorporating this additional feature. To 

validate our approach, we used a publicly available EEG 

dataset that consists of four different motor imagery tasks 

[7], [15]. 

 
MATERIALS AND METHODS 

Time-varying Autoregressive Model (TVAR): In a 

TVAR model, the current value of a time-series 𝒚 is 

expressed as a linear combination of its past values [16], 

𝑦(𝑛) = ∑ 𝑎𝑘(𝑛)𝑦(𝑛 − 𝑘)

𝑝

𝑘=1

+ 𝑒(𝑛), 𝒆~𝑁(0, 𝑅)  (1) 

where 𝒂(𝑛) = [𝑎1(𝑛) … . 𝑎𝑝(𝑛)]
𝑇
 are the AR 

coefficients at time point 𝑛, 𝑝 denotes the model order 

which specifies the number of past lags considered and 

𝑒(𝑛) is zero mean, white gaussian noise with variance 𝑅. 
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In practical terms, Eq. 1 assumes that the analyzed signal 

is the output of a TV filter driven by white gaussian noise. 

The characteristics of the filter as well as its temporal 

variations are captured by the TVAR coefficients.  

Kalman Filter (KF): One common technique used to 

estimate and track the coefficients of Eq. 1 is the KF. The 

KF models the temporal evolution of the AR coefficients 

as a random walk driven by white gaussian noise (also 

known as process noise) with variance 𝑄, 

𝒂(𝑛) = 𝒂(𝑛 − 1) + 𝒘(𝑛), 𝒘~𝑵(0, 𝑄)     (2) 

𝑄 essentially dictates the magnitude of the expected 

coefficient variations. Eq. 1 can thus be expressed as, 

𝑦(𝑛) = 𝒂𝑇(𝑛)𝝋(𝑛) +  𝑒(𝑛),      𝒆~𝑁(0, 𝑅)     (3) 

where 𝝋(𝑛) = [𝑦(𝑛 − 1) …  𝑦(𝑛 − 𝑘)]𝑇 is the regressor 

vector, at time point 𝑛, containing past lags of the time-

series. Using the AR state-space representation of Eqs. 2-

3, the KF algorithm can be employed to estimate the AR 

coefficients (i.e., state variables) at each time point,  

𝑒̂(𝑛) = 𝑦(𝑛) − 𝝋𝑻(𝑛)𝒂̂(𝑛 − 1)                   (4) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝝋(𝑛)

𝑅 + 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)
                (5) 

𝑷(𝑛) = 𝑷(𝑛 − 1) + 𝑄𝑰 − 𝑲(𝑛)𝝋𝑻(𝑛)𝑷(𝑛 − 1)  (6) 

𝒂̂(𝑛) = 𝒂̂(𝑛 − 1) + 𝑲(𝑛)𝑒̂(𝑛)                     (7) 

where 𝑒̂(𝑛) is the one-step ahead prediction error, 𝒂̂(𝑛) 

are the tracked TVAR coefficients and 𝑲(𝑛) is the 

Kalman gain matrix which minimizes the a posteriori 

error covariance 𝑷(𝑛). The combination of KF and AR 

models will be referred to, herein, as KF-TVAR. 

KF-TVAR hyperparameters: As indicated in [4], the 

performance of the KF-TVAR approach depends on 

several factors. Here, we focus on the following model 

hyperparameters: 

• The AR model order 𝑝 as it impacts the representation 

of the captured underlying dynamics. 

• The values 𝑅 and 𝑄 of the measurement and process 

noise, respectively. 𝑄 defines the magnitude of the 

AR coefficient variations, whereas 𝑅 represents the 

variance of the underlying noise. 

• The initial value of the covariance matrix 𝑷. A 

common practice is to set the initial covariance matrix 

𝑷(0) to a diagonal matrix 𝑷(0) = 𝑃0𝑰 where 𝑃0 is 

typically assigned a large value. This choice 

determines the initial uncertainty associated with the 

estimated coefficients and affects the early KF 

tracking behavior. 

• The initial coefficient estimates 𝒂̂(0). If the initial 

coefficients approximate the true values at the 

analyzed time point, the KF-TVAR model is more 

likely to quickly converge or adapt to changes in the 

AR coefficients over time. 

Other factors influencing the KF-TVAR performance: 

In addition to the aforementioned hyperparameters, the 

performance of the KF-TVAR model can be influenced 

by various signal preprocessing steps. For instance, the 

choice of sampling rate has been demonstrated to impact 

the KF-TVAR tracking accuracy [17]. Here, we focus on 

spatial filtering methods and particularly on the common 

average reference (CAR) filtering technique which is 

widely applied in BCI research. 

Adapting and tuning the KF-TVAR method on multi-

channel and multi-trial signals: BCI systems typically 

rely on multi-channel signals. These systems are built 

upon a training dataset to establish associations between 

the features and the desired target tasks. Once adequately 

trained, they can make predictions or classifications on 

unseen data. This study focuses on extracting TVAR 

coefficients as key features for classification purposes. 

Since the data includes multi-channel and, typically, 

multi-trial signals we propose a two-step approach. The 

first step involves optimizing the KF hyperparameters, 

namely 𝑅, 𝑄, 𝑃0, 𝒂̂𝑇(0) in a data-driven manner for 

varying AR model orders. The second step includes 

extraction of the TVAR coefficients and classification. 

During this step, the optimal AR model order is selected 

based on cross-validation (CV). Our proposed approach 

can be summarized as follows, 

Step 1) Select the first, in chronological order, trial from 

each class of the training set.  

Step 2) For an ascending model order 𝑝 (e.g., 𝑝 =
1 … 12) , apply the KF-TVAR approach to each channel 

and tune the model hyperparameters 𝑋𝑝 =

[𝑅, 𝑄, 𝑃0,𝒂̂𝑇(0)] using a genetic algorithm (GA) [18] or 

any other global optimization technique. As objective 

function, based also on the work of Schlögl et al. [4], we 

propose the average normalized mean squared error 

(NMSE) within the selected trials defined as, 

𝐽(𝑋𝑝) =
1

𝐶
∑

‖𝒆̂𝑘‖2
2

‖𝒚𝑘‖2
2

𝐶
𝑘=1                           (8)  

where 𝐶 is the number of classes (and therefore trials 

used for model optimization), 𝒆̂𝑘 is the a priori error of 

Eq. 4 and  𝒚𝑘 the corresponding channel signal belonging 

to the kth class/trial. The optimization process can be 

performed separately for each channel, yielding different 

sets of hyperparameters. However, an alternative strategy 

involves averaging Eq. 8 across all channels to obtain a 

unified set of hyperparameters.  

Step 3) For each model order 𝑝, use the obtained 

hyperparameter set/sets 𝑋𝑝 and apply the KF-TVAR 

technique to all subsequent training trials to extract the 

TVAR coefficients from each channel. Furthermore, as 

an additional feature we propose the TV trace of the 

covariance matrix 𝑷(𝑛) (Eq. 6). Within each trial, the 

feature vector at each time point consists of the 

concatenated AR coefficients and KF covariance traces 

from all channels resulting into a vector of dimension 𝑀 ·
𝑝 + 𝑀, where 𝑀 is the number of channels. If the 

covariance trace is excluded, the vector's dimensionality 

becomes 𝑀 · 𝑝.  

Step 4) For each model order 𝑝, employ a machine 

learning algorithm to map the relationship between 

TVAR coefficients and the various target classes. The 

optimal AR order 𝑝𝑜𝑝𝑡  can be selected through cross-

validation within the training set. Note that the same AR 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-004

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

18



model order is applied across all channels. 

Step 5) Use 𝑝𝑜𝑝𝑡  and the set of hyperparameters 𝑋𝑝𝑜𝑝𝑡
 

obtained in step 2 on a new dataset or for online tracking. 

Data: The proposed KF-TVAR methodology was 

applied to dataset 2a of the BCI competition IV 

(https://www.bbci.de/competition/iv/) [15]. This dataset 

consists of EEG recordings from nine subjects during 

four cue-based motor imagery tasks, namely movement 

imagination of the tongue, the left and the right hand and 

both feet. The recordings were obtained on two different 

days. Each session consisted of 72 trials from each class. 

At the start of each session, a recording lasting 

approximately 5 minutes was conducted to assess the 

influence of the electrooculogram (EOG). The EEG data 

comprised 22 channels, sampled at a rate of 200 Hz, and 

bandpass-filtered within the range of 0.5 to 100 Hz. 

Signal preprocessing: All the analysis was conducted 

in Matlab (The Mathworks Inc.). The EOG from the 

initial 5-minute recordings was utilized to perform linear 

regression on the EEG. The coefficients obtained from 

this regression were then applied to remove the influence 

of EOG artifacts from all subsequent EEG recordings 

during the session. The EEG signals were then resampled 

to 64Hz and were temporally aligned around the cue 

onset, with a window spanning from -2 to 7 seconds. We 

analyzed the data with and without CAR filtering. 

Applying the KF-TVAR methodology: Initially, the 

KF-TVAR optimization was employed to each channel 

separately (single-channel optimization) and we 

extracted as features for classification only the TV-AR 

coefficients. To examine the effect of the initial 

coefficient estimates 𝒂̂(0), we first set them to 0 and then 

we allowed the GA to optimize them. We then included 

the TV trace of the 𝑷(𝑛) matrix as an extra feature for 

classification. Finally, we examined the approach of 

obtaining one set of KF-TVAR hyperparameters for all 

channels (multi-channel optimization). The different 

approaches were categorized as follows: 

Single-channel optimization and feature extraction: 

For each channel and each investigated model order, the 

GA provided an optimal hyperparameter set 𝑋𝑝 by 

minimizing Eq. 8. These values were then used to extract 

KF-TVAR features. We examined the following 

scenarios,  

• sC0W0: 𝒂̂(0) set to 0, TV-AR coefficients 

extracted for classification. 

• sC0W1: 𝒂̂(0) optimized by the GA, TV-AR 

coefficients extracted for classification. 

• sC1W0: CAR rereferencing, 𝒂̂(0) set to 0, TV-AR 

coefficients extracted for classification. 

• sC1W1: CAR rereferencing, 𝒂̂(0) optimized by the 

GA, TV-AR coefficients extracted for 

classification. 

• sC1W1+: CAR rereferencing, 𝒂̂(0) optimized by 

the GA, both TV-AR coefficients and TV 𝑷(𝑛) 

trace extracted for classification. 

Multi-channel optimization and feature extraction: 

For each model order, the GA provided a unified set of 

hyperparameters 𝑋𝑝 by minimizing the average of Eq. 8 

across all channels. The scenarios we examined are 

summarized below. 

• mC1W1: CAR rereferencing, 𝒂̂(0) optimized by 

the GA, TVAR coefficients extracted for 

classification. 

• mC1W1+: CAR rereferencing, 𝒂̂(0) optimized by 

the GA, both TVAR coefficients and TV 𝑷(𝑛) trace 

extracted for classification. 

Finally, for both single-channel and multi-channel 

approaches, the optimal model order 𝑝𝑜𝑝𝑡  was selected 

based on the CV performance. Subsequently, the KF-

TVAR 𝑋𝑝 set provided by the GA, corresponding to 𝑝𝑜𝑝𝑡 , 

(i.e., 𝑋𝑝𝑜𝑝𝑡
) was used to estimate KF-TVAR features. 

Classification: By applying the KF-TVAR 

methodology within each trial of the first session 

(Session 1) we obtained features at each time sample (see 

Step 3). Since all trials were aligned to the cue onset, we 

utilized a sample-by-sample classification approach 

wherein a shrinkage linear discriminant analysis (sLDA) 

model was trained on each individual time sample 

relative to the cue onset (covariance shrinkage was 

applied using the Matlab toolbox covShrinkage [19]). 

Additionally, we employed a trial-based 10x1 fold CV 

scheme. This enabled us to estimate the CV accuracy 

within a trial over time (referred to as Session 1 CV). 

As described earlier, the dataset included also a second 

session of EEG measurements obtained on a different day 

(Session 2). Using the optimized KF-TVAR 

hyperparameters from the first session we extracted TV 

features from trials of the second session (without 

reapplying the KF-TVAR optimization procedure). We 

investigated two scenarios. In the first scenario, for each 

participant we predicted the motor imagery task within 

each trial at the time point of maximum accuracy 

identified in the first session. The sLDA classifier was 

derived at that specific time point using all the data from 

the first session (referred to as Session 2 Prediction). In 

the second scenario, we retrained the sLDAs through 

10x1 fold CV (similarly as Session 1 CV) on the second 

session (referred to as Session 2 CV). These scenarios 

were both analysed to understand whether decreases in 

accuracy resulting from session transfer stem from the 

features extracted or indicate the need for recalibration of 

the sLDA classifier. A similar approach was also 

followed in Brunner et al. [7]. 

Statistics: For statistical testing we employed 

Wilcoxon’s signed-rank test, along with Benjamini-

Hochberg [20] correction for multiple comparisons. 

RESULTS 

Fig. 1 depicts the average runtime (over all 

participants) in seconds for the single-channel and the 

multi-channel optimization approaches as a function of 

the model order 𝑝. As the model order increases, runtime 

increases in both methods, with a slightly lesser impact 

observed for the multi-channel approach. Nevertheless, 
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the overall runtime remains under 1 second. It’s 

important to note, however, that runtime, is also 

influenced by factors such as the number of channels 

(here 𝑀 = 22), sampling rate and trial length. 

In Fig. 2, we present the classification accuracies (%) 

obtained for different scenarios using different 

optimization approaches (single-channel vs multi-

channel optimization). Fig. 2a depicts the maximum 

value of the TV CV accuracy in Session 1 for all 

participants (Session 1 CV). In Fig. 2b, we identified, for 

each participant, the time point of maximum accuracy on 

Session 1 and utilized this time point to predict imagined 

movement in trials of Session 2. The KF-TVAR features 

were extracted from the EEG signals of Session 2 using 

the optimal hyperparameter sets obtained in Session 1 

(Session 2 Prediction). Fig. 2b illustrates the resulting 

prediction accuracies. In Fig. 2c, KF-TVAR features 

were extracted from the EEG signals of Session 2 using 

the optimal hyperparameter set obtained in Session 1; 

however, the sLDA models were retrained using a 10x1 

fold CV approach on Session 2 (Session 2 CV). The 

maximum accuracies acquired for each participant are 

depicted in Fig. 2c.  

 
Figure 1: Average runtime (over all participants) for the single-

channel and multi-channel KF-TVAR optimization approaches 

as a function of the AR model order 𝑝 (on a 13th Gen Intel(R) 

Core TM i7-1355U using MEX files and a parallel pool of 10 

workers). The GA was executed for 50 generations using the 

default ga Matlab settings. The upper and lower bounds for the 

hyperparameters were set as 𝑄: [0, 𝑖𝑛𝑓], 𝑅: [0, 𝑖𝑛𝑓], 
𝑃0: [0, 𝑖𝑛𝑓], 𝒂̂(0): [−2,2]. 

First, we observed that CAR rereferencing led to 

increased accuracies (see results from sC0W0/ sC0W1/ 

sC1W0/ sC1W1 – significant increases (p<0.027) were 

found in Session 1 CV and Session 2 Prediction). 

Optimizing the initial AR coefficients 𝒂̂(0), resulted into 

significant increases only in Session 1 CV, suggesting a 

possible dependence on session specific characteristics. 

Second, multi-channel optimization frequently resulted 

in higher predictive performance compared to single-

channel optimization (see sC0W0/ sC0W1/ sC1W0/ 

sC1W1 vs vs mC1W1 and sC1W1+ vs mC1W1+). Third, 

the augmented feature set containing both the TVAR 

coefficients as well as the TV KF covariance trace led to 

significantly higher accuracies compared to considering 

only the TVAR coefficients (see sC0W0/ sC0W1/ 

sC1W0/ sC1W1 vs sC1W1+ and mC1W1 vs mC1W1+). 

Overall, mC1W1+ exhibited superior performance 

compared to all other methods (p<0.05 except for the 

scenario Session 1 CV, where sC1W1+ and mC1W1+ had 

similar performance). 

By applying session transfer from Session 1 to Session 

2 (Session 2 Prediction) we observed an anticipated 

statistically significant decrease (p=0.007) in accuracy in 

all methods. However, after retraining the sLDA models 

on Session 2 while maintaining the same extracted KF-

TVAR features as before, the differences were no longer 

statistically significant.  

To provide a more holistic view of the temporal 

evolution of the classification results within each trial, in 

Fig. 3, we present the TV accuracies obtained for the 

various scenarios across each participant. Here, we used 

the proposed multi-signal mC1W1+ approach. The 

optimal AR model orders were found to be 5, 5, 10, 7, 12, 

3, 10, 4 and 2 for Participants P1, P2, P3, P4, P5, P6, P7, 

P8 and P9, respectively. 

DISCUSSION 

We presented a framework for optimal application 

of the KF-TVAR models on cue-based motor imagery 

tasks for the purposes of synchronous classification and 

prediction. Schlögl et al. [4] and Brunner et al. [7] have 

extensively examined the performance of these models 

and outlined a detailed process for optimizing them. 

Additionally, Brunner et al. [7], applied their 

methodology to the same motor imagery dataset analysed 

here. The difference of our study lies in the number of 

channels included in the analysis, the speed of the 

optimization process, as well as the methods applied for 

it. Brunner et al. [7] focused solely on channels C3, Cz, 

and C4, optimizing all relevant hyperparameters based on 

CV classification outcomes. In our approach, we allowed 

the inclusion of multiple channels, and we decoupled the 

KF optimization, enabling it to operate independently of 

the classification process (Fig. 1). Moreover, the 

utilization of GAs facilitates faster processing by 

eliminating the need to iterate through various 

hyperparameter values. The only hyperparameter that 

was selected based on CV was the AR model order 𝑝.  

We decided to use single trials to optimize the KF 

hyperparameters in order to reduce computation runtime. 

We specifically selected the first trials from each class of 

the training set, assuming they were relatively free from 

significant artifacts. Our main goal during optimization 

was to identify the most suitable initialization 

hyperparameters for the KF. While the initialization 

phase influences tracking performance, the KF’s 

adaptability and recursive nature, enables it to adjust to 

variations in the data. Thus, incorporating additional 

trials into the optimization process is unlikely to lead to 

significant changes in the final results. Regarding 

including single trials from all classes, the decision aimed 

to identify appropriate initialization hyperparameters that 

equally accommodate the signal characteristics of all 

classes, without favoring any specific class over others. 

We further observed that using a single set of 

hyperparameters for all channels increased classification 

accuracies. We hypothesize that imposing uniform rate 
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of AR changes across all channels enhances 

discriminability in classification tasks and improves 

robustness against noisy channels. We also opted to 

apply the same AR model order across all channels, as 

assigning a unique order to each channel resulted in 

inferior classification performance (not shown here). 

Instead of relying on traditional model selection criteria 

such as the Akaike or Bayesian information criterion, we 

chose the optimal model order based on CV classification 

results. In [9], conventional AR model selection methods, 

typically applied in time-series analysis, were found 

inadequate for capturing discriminative EEG features 

related to motor imagery tasks. This implies that 

traditional system identification and signal analysis 

approaches may not always translate effectively for 

classification purposes. In some cases, complex tasks 

may necessitate a higher-order AR model to capture 

informative temporal patterns, whereas simpler tasks 

may be adequately represented by a lower-order model.  

Lastly, we propose including the TV trace of the KF 

covariance matrix 𝑷(𝑛) (Eq. 6) as an additional feature 

alongside the TVAR coefficients. This recursively 

estimated feature contributes positively to the 

classification performance. Changes in the trace of this 

matrix over time indicate fluctuations in the variability of 

the estimated coefficients. Large trace variations may 

correspond to periods of significant changes in the 

underlying EEG signals, such as transitions between 

 
                                         (a)                                                        (b)                                                (c)  

Figure 2: Boxplots depicting the (a) maximum CV accuracy (%) across participants on Session 1 using different KF-TVAR 

optimization approaches (Session 1 CV), (b) prediction accuracy (%) on Session 2, defined as the accuracy obtained on the time 

point of maximum accuracy identified in Session 1, along with the classifier derived at that specific time point (Session 2 

Prediction) and (c) maximum CV accuracy (%) across participants on Session 2 (Session 2 CV). Features were extracted using the 

KF-TVAR hyperparameter sets obtained from Session 1. The sLDA was trained on Session 2 using a 10x1 fold CV procedure. 

The various colored lines represent different participants and depict the accuracy changes resulting from the application of different 

optimization approaches within the specific participant.  

 
Figure 3: Temporal evolution of the accuracy (%) for each participant based on the proposed mC1W1+ optimization method. The 

plotted curves depict the instantaneous accuracy achieved using a sample-by-sample classification approach. The black vertical 

line at n = 0s denotes the cue onset. Session 1 CV (red line) refers to the TV accuracy obtained through CV in Session 1. Session 

2 Prediction (purple line) represents the TV accuracy estimated by extracting KF-TVAR features using the optimal hyperparameter 

sets obtained from Session 1, as well as the sLDA models trained on Session 1. Session 2 CV (cyan line) refers to the TV accuracy 

estimated by extracting KF-TVAR features using the hyperparameter sets obtained from Session 1, and training the sLDA models 

through CV on Session 2. The theoretical chance level was 25% (dashed horizontal black line at 25%). 
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different states or tasks. Based on our results (Fig. 2), this 

feature augmentation led to significantly higher 

classification accuracies. In terms of signal 

preprocessing, we found that CAR filtering generally led 

to improved classification performances compared to no 

spatial filtering.  

We observed a significant decrease in accuracy 

when predicting Session 2 motor imagery tasks using 

optimal KF-TVAR hyperparameter sets and sLDA 

models from Session 1 (Session 2 Prediction). This 

outcome was anticipated, considering Session 2 was 

conducted on a separate day. To determine whether this 

decrease stemmed from the TVAR estimation procedure 

or the classification algorithm, we extracted KF-TVAR 

features on Session 2 using the hyperparameters of 

Session 1 and retrained the sLDA models. The CV 

accuracy was found to be similar to that of Session 1, 

suggesting no necessity to readjust the KF-TVAR 

tracking, but rather the sLDA algorithm (e.g., using an 

adaptive sLDA). 

While direct comparisons may not be feasible due to 

variations in CV strategies and the number of channels 

employed, we reference the results obtained in [7]. For 

scenarios Session 1 CV, Session 2 Prediction and Session 

2 CV the average, across participants, 0.9 quantile of the 

classification accuracy was 54.28%, 39.3% and 51.12%, 

respectively. In contrast, the proposed mC1W1+ 

algorithm achieved 63.4%, 58.3% and 63.4%, 

respectively.  

Our approach, initially designed for synchronous 

classification, can be readily adapted to asynchronous 

BCI applications. This can be achieved by either 

optimizing KF-TVAR on continuous data or by 

segmenting the data and extracting optimal KF-TVAR 

hyperparameters, as described here. Once the optimal 

KF-TVAR hyperparameters are determined, the TVAR 

coefficients can be continuously tracked. Finally, the 

method can be extended to other TVAR variants such as 

the multivariate TVAR models [7], [11]. Rather than 

using TVAR coefficients for classification, future work 

will explore AR-based root tracking techniques [13], 

[14], [21]. These techniques directly track the poles and 

zeros of the signal-generating system, capturing its 

dominant spectral components. This transition from AR 

coefficients to poles and zeros, could offer additional 

predictive value in discriminating various EEG tasks. 

 
CONCLUSION 

In conclusion, the methods discussed offer a robust 

framework for effectively applying TVAR models on 

BCI tasks. Future work will focus on further optimizing, 

speeding up and improving their application.  
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ABSTRACT: Prior studies have explored the capability 

of decoding balance perturbations using 

electroencephalography (EEG) in single-trial 

classifications. The potential for real-time detection of 

perturbation-evoked potentials (PEPs) could facilitate 

the implementation of brain-computer interfaces (BCIs) 

in everyday assistive systems. Achieving the detection of 

these potentials in a subject-independent manner is 

crucial for this advancement. A key step towards this 

objective is the development of a model capable of 

identifying balance loss without requiring individual 

calibration for each subject and enabling online analysis. 

Deep neural networks have recently achieved significant 

milestones and have been successfully applied in neural 

engineering. In this study, we propose a lightweight 

neural network to assess the viability of single-trial 

classification of PEPs in a subject-independent manner. 

Our model was tested on three balance perturbation 

datasets, demonstrating superior performance in subject-

independent classification compared to EEGNet, rLDA, 

and RBF-SVM classifiers. 

 

INTRODUCTION 

 
Early detection of balance loss offers a promising avenue 

for preventing falls by enabling brain-computer 

interfaces (BCIs) as an assistive technology. In recent 

years, progress has been made in investigating EEG 

studies related to balance loss [1], [2], [3], [4], [5]. These 

studies have shown that perturbation-evoked potentials 

(PEPs) appear in brain signals during balance 

perturbations [2]. Such event-related potentials (ERPs) 

comprise different EEG components, including the N1 

amplitude -a large negative potential in the fronto- 

central electrodes, with PEPs primarily characterized by 

this component. N1 is followed by a positive component, 

P2, and finally a negative wave called N2. Numerous 

studies have examined how the brain responds to 

different balance perturbations and have explored the 

effects of various stimuli on PEPs. Traditionally, 

research aimed to uncover the neuroscientific 

characteristics of PEPs by studying the grand average 

signals of PEPs [1], [4], [6], [7]. However, few studies 

have explored the feasibility of incorporating these brain 

potentials into BCI systems [8], [9]. One of the main 

steps to achieve this goal is being able to predict balance 

perturbation in single trials prior to muscle activation to 

maintain balance. Previously, single trial classification of 

PEPs was investigated from spontaneous EEG data [9], 

[10], [11]. In another study, we attempted to classify 

PEPs in single trials in a simulated asynchronous task and 

further evaluated the detection of different types of 

perturbation such as angle and direction by using the 

brain signals [8], [12].  

Given the low signal-to-noise ratio (SNR) in EEG 

recordings and differences between persons, a 

classification model trained with EEG data from one 

person is not transferable to another. This requirement for 

individual calibration of the BCI system for each user can 

be both time- and energy- consuming, as it involves 

collecting sufficient data for every participant. This 

challenge motivated researchers to develop methods that 

can mitigate this issue. 

Domain adaptation and transfer learning are two 

techniques developed to address the differences in 

distribution between target and source domains [13]. 

However, these methods face challenges that limit their 

practical application in real-world scenarios [14]. For 

instance, these techniques rely on the offline adaptation 

of feature distribution and typically apply adjustments to 

the pre-built model. To address the challenge of subject-

independent classification, we propose a novel neural 

network designed to detect balance perturbation through 

subject-independent classification using single trials.  

Our model is designed based on neurophysiological 

principles in a manner that keeps the number of 

parameters low while simultaneously extracting subject-

independent PEP features. We evaluated our model on 

three EEG balance perturbation datasets: two open-

access datasets, and data collected during our two 

previous studies. We then compared the performance of 

our model against traditional classification methods, 

including rLDA and SVM, in addition to well-

established neural networks like EEGNet. 

  

 

MATERIALS AND METHODS 

 
Datasets: We evaluated the models' performance using 

three datasets. In the first and second datasets, thirty 

healthy participants were instructed to stand and walk on 

a treadmill-mounted balance beam [15], [16]. Two 

electromechanical motors, positioned on the left and 

right sides of the treadmill, and they were connected to 

the participants' waists via steel cables. These motors 

were programmed to rotate a bar attached to the cables 
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by 90 degrees, inducing mediolateral pull perturbations. 

During both the standing and walking scenarios, each 

participant experienced 150 perturbations over a session 

lasting 10 minutes. Brain activity throughout these 

sessions was recorded using a 128-electrode EEG system 

(BioSemi ActiveTwo, BioSemi) with a sampling rate of 

512 Hz. 

The third dataset includes neural recordings from 30 

healthy participants, collected through two separate 

experiments, with each study involving 15 participants 

[8], [17]. The experimental setup was similar across both 

studies, where participants were seated in a glider that 

was tilted in both left and right directions in a simulated 

aviation scenario. An industrial robot was used to impose 

these perturbations by tilting the glider at angles of 5 and 

10 degrees to simulate balance disruptions. In both 

experiments, participants completed six blocks, with 

each block consisting of 40 perturbations in the first 

study and 50 in the second study, respectively. Brain 

activity was measured at a sampling rate of 512 Hz with 

63 electrodes using an EEGO amplifier (ANT-neuro, 

Enschede, Netherlands). 

To simplify the discussion of dataset-specific findings 

and analyses, we will adopt specific notations. "Dataset 

1" and "Dataset 2" will be used to denote the stand and 

walking waist perturbation conditions, respectively. 

"Dataset 3" will represent data from whole-body balance 

perturbations in simulated aviation scenarios. This 

notation will ease the discussion of dataset-specific 

findings and analyses. 

 

Pre-processing: For each dataset, the preprocessing steps 

were consistent: data was first bandpass-filtered from 0.5 

to 30 Hz and subsequently downsampled to 64 Hz. PEP 

epochs were extracted from the time range of 0 to 1.5 

seconds following the perturbation's start. Moreover, rest 

epochs were segmented before each perturbation onset. 

Bad EEG channels were detected and eliminated from 

the rest of analysis. To filter out noise and artifacts, we 

initially applied Artifact Subspace Reconstruction (ASR) 

with a threshold value of 30 [18]. This step was followed 

by the application of independent component analysis 

(ICA) [19] combined with ICLabel [20] for the removal 

of eye and muscle artifacts from the EEG data. The 

processed data were then re-referenced using the 

common average reference (CAR) technique, and the 

removed channels were reconstructed through 

interpolation. 

 

Proposed model: The proposed model begins with a two-

dimensional convolutional neural network (CNN) to 

capture the initial temporal and spatial dependencies of 

EEG data. This CNN layer uses 15 filters with size of 

(2,3), followed by batch normalization and the activation 

function of exponential linear units (ELUs) and a dropout 

layer with rate of 0.3. Drawing inspiration from the 

mixed depthwise convolutions introduced by Google 

researchers [21], the model divides the 15 filters into 

three tensors, with each tensor comprising 5 filters. 

Subsequently, depthwise convolutions are applied to the 

spatial dimension of each tensor individually, with a 

kernel size denoted by C, which corresponds to the 

number of channels. Following the extraction of spatial 

features, the model applies depthwise convolutions to the 

temporal dimension of the data, employing varying 

temporal kernel sizes. The sizes of these temporal kernels 

are 4, 8, and 16, representing temporal durations of 62, 

125, and 250 milliseconds, respectively. These temporal 

kernels were chosen to enable the model to extract the 

long and short temporal representation of the data. The 

output features are then subjected to adaptive averaging 

with a size of 40 and a dropout layer with a rate of 0.65. 

Afterward, pointwise convolutions with filter size of 5 

were applied to the concatenated output from the three 

tensors, and followed by a dropout layer of 0.5.  

All depthwise and pointwise convolutions incorporate 

batch normalization, the ELU activation function, and a 

novel attention mechanism known as simAM [22]. 

Inspired by findings in visual neuroscience, simAM is 

based on the observation that informative neurons exhibit 

distinct firing patterns compared to their neighbors, 

leading to the spatial suppression of surrounding 

neurons. 

In our research, we aim for the model to focus on key 

electrodes and time periods that are critical for PEP 

detection. In EEG balance studies, the N1 component 

appears with high negative amplitude in the frontocentral 

part of the brain, creating a contrast with other time 

points and brain areas. This feature allows the simAM 

mechanism to highlight these crucial periods and 

electrodes, thereby enhancing PEP identification. 

The simAM method compute the importance of each 

neuron by using the energy function to obtain the linear 

separability among neurons 

𝑒𝑡
∗ =

4(𝛽2+𝜆)

(𝑡−𝛼)2+2𝛽2+2𝜆
         (1) 

In the above formula, t represents the target neuron, and  

λ denotes a coefficient with a value of 1e −4.  

α and β indicate the mean and variance, respectively, 

obtained by the formula provided below: 

𝛼 =  
1

𝑀
∑ 𝑥𝑖

𝑀
𝑖 = 1      (2) 

𝛽
2

=  
1

𝑀
∑ (𝑥𝑖 − 𝛼)𝑀

𝑖 = 1    (3)
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Figure 1. The architecture of proposed model 

 

Where i is the index of the neuron, and M indicates all 

the neurons within each filter. 

Finally, simAM transforms the input feature map into a 

new feature of the same size by applying the sigmoid 

function to the energy function. 

𝑋 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (
1

𝐸
)  ⊙  𝑋         (4) 

 

The last layer of the model consists of a flatten layer and 

a fully connected layer to generate prediction scores for 

the PEP and non-PEP classes. The architecture of the 

model is illustrated in Fig. 1. 

 

Training and Evaluation Approaches: The model was 

implemented in PyTorch on a GeForce RTX 3080 GPU. 

AdamW optimizer with a learning rate of 0.001 and 

weight decay of 1e-2 were used to optimize the 

parameters. Additionally, we utilized a batch size of 50, 

and the model was trained for 250 epochs. The evaluation 

of each model's (classifier's) performance was conducted 

through the accuracy metric for binary classification 

tasks.  

 

EXPERIMENTAL RESULTS 

ERP Analysis: In Figure 2, we displayed the grand 

averaged EEG potentials in relation to the onset of 

perturbations across the three datasets. The analysis 

revealed that in the first and second datasets, the 

Perturbation Evoked Potentials (PEPs) consisted of three 

distinct components: P1, N1, and P2. Notably, the 

standing condition exhibited higher PEP amplitudes 

compared to the walking condition. For the third dataset, 

the PEPs were predominantly characterized by the N1 

component located in the brain's central region. These 

observed differences can be linked to the task designs' 

variations; specifically, perturbations in the first and 

second datasets targeted the participants' waist, while the 

third dataset involved perturbations affecting the entire 

body. Additionally, the N1 component in the third dataset 

demonstrated the highest negative amplitude compared 

to those in the first and second datasets. 

Classification: For the first and second dataset, we 

utilized a leave one subject out approach with 30 

participants to assess our model's PEP detection. In this 

approach, data from one subject served as the test set 

while data from the remaining 29 subjects constituted the 

training set. For the third dataset, we employed the 

recorded data from the first study as the training set and 

the data collected from the second study as the test set. 

As a foundation for comparison, we selected shrinkage 

LDA, RBF-SVM, and EEGNet [23] as baseline models 

to evaluate the performance of our proposed model.  In 

addition to accuracy, we compared each model's number 

of trainable parameters. For the sLDA and SVM 

classifiers, we limited the number of features to 600 

using the Fisher algorithm to select the best 600 features. 

This was done to prevent overfitting, maintaining a 

feature-to-sample ratio of 1/10. Tab. 1 and 2 shows the 

obtained accuracy for the standing and walking 

conditions for 4 models respectively. In the standing 

condition, it can be seen that neural network models can 

improve the accuracy substantially in comparison with 

traditional machine learning algorithms such as sLDA 

and SVM. The model exhibited superior performance 

compared to sLDA and SVM, with improvements of 

9.2% and 8%, respectively. The proposed model 

achieved the highest performance, with an average 

accuracy of 86.9%, and it outperformed the EEGNet 

model by achieving a 1.6% increase in accuracy while 

having 16% fewer parameters.
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Figure 2. The scalp topography of three datasets in the time range of 0, 100, 200, 300, 400 and 500 ms. For improved visualization, 

we adjusted the amplitude scales differently for each dataset. The scales range from [-4.7, 4.7], [-2.2, 2.2], to [-12.2, 12.2] microvolts. 

 

 

Table 1: Results of Dataset 1 (standing condition) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

 

77.7 

 

600 

SVM 78.9 600 

EEGNet 85.3 3248 

Our model 86.9 2727 

   

 

Tab. 2 presents the average subject-independent 

classification accuracy for the walking condition, noting 

that due to the smaller PEP amplitude compared to the 

standing condition, the accuracy in detection of 

perturbation was lower than the standing condition. For 

this dataset as well, the proposed model led in 

performance, attaining an accuracy of 71.8%. EEGNet 

came in second with a 70% accuracy rate. Following 

these, SVM and LDA demonstrated accuracies of 66.7% 

and 65.3%, respectively. 

 

Table 2: Results of Dataset 2 (walking condition) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

 

65.3 

 

600 

SVM 66.7 600 

EEGNet 70 3248 

Our model 71.8 2727 

   

 

Lastly, the model's performance was assessed on the third 

dataset, which involved participants experiencing 

balance perturbations in a simulated cockpit scenario. 

Our model demonstrated superior performance 

compared to other models. Within neural networks, our 

model achieved 3.2% higher accuracy than EEGNet 

while maintaining 20% fewer parameters. Additionally, 

SVM showed comparable performance to the neural 

network models, with only 4% difference in accuracy. 

 

Table 3: Results of Dataset 3 (whole body perturbation) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

SVM 

 

87.8 

92.4 

 

600 

600 

EEGNet 92.8 2208 

Our model 96 1752 

   

 

 

DISCUSSION 

 

In this research, we investigated the potential of detecting 

PEPs in a subject-independent manner through EEG 

single trials, by employing a lightweight CNN-based 

model. Our approach initially involves extracting spatio-

temporal patterns from the data, followed by the 

implementation of temporal mixed depthwise 

convolutions using three distinct temporal kernel sizes to 

accommodate the variability of ERP durations. 

Additionally, we incorporated a novel attention 

mechanism, simAM, designed to focus on discriminative 

features. This attention mechanism is unique in its ability 

to introduce 3D weights into the model without 

increasing its parameter count, thereby maintaining a low 

parameter structure for the model. To assess our model's 

efficacy, we applied it to three balance perturbation 

datasets and compared its performance against traditional 

models like sLDA and SVM, as well as advanced neural 

networks such as EEGNet. Our findings indicate that 
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neural networks surpass traditional machine learning 

methods in subject-independent classification across all 

datasets. Moreover, our model achieved accuracy 

improvements over EEGNet by 1.3%, 1.8%, and 3.2% 

for the first, second, and third datasets, respectively. 

Future endeavors will focus on evaluating our model 

across additional ERP datasets, also subsequent research 

will aim at enhancing the model's capability to extract 

complex spatial patterns of the data. 

 

CONCLUSION 

 

We introduced a novel CNN model that utilizes mixed 

depthwise convolutions and the simAM attention module 

to enhance the detection of PEPs from spontaneous EEG 

data. The efficacy of this model was evaluated across 

three distinct datasets and its performance was 

benchmarked against both traditional machine learning 

techniques and advanced neural networks. Our findings 

demonstrate that our model achieved the highest 

accuracy rates when compared with the other models 

examined. 
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ABSTRACT: The auditory BCI spellers are considered
the only means of communication for late-stage patients
with severe neurological disorders such as amyotrophic
lateral sclerosis (ALS). To date, several auditory BCI
spellers have been proposed. However, they require mul-
tiple steps, visual support, or multi-channel audio sys-
tems. In this study, we proposed an ASME-speller, which
stands for Auditory Stream segregation, Multiclass, ERP
speller, that uses an auditory BCI paradigm based on au-
ditory stream segregation to detect the target of the user’s
selective attention by presenting a QWERTY keyboard-
like audio stimuli. The 64-channel electroencephalo-
gram was measured while the six subjects carried out 15-
character ASME-speller paradigms. Offline simulation
using dynamic stopping showed that the ASME speller
achieved an average accuracy of 0.73 and an average ITR
of 3.78 bits/min. The best results were achieved with an
accuracy of 0.97 and an ITR of 7.61 bits/min. These re-
sults indicate that the ASME speller can be used as a new
auditory BCI speller. This study provides more users with
a high-accuracy and intuitive new speller option.

INTRODUCTION

Brain-computer interfaces (BCIs) give their users com-
munication and control channels that do not depend on
the brain’s normal output channels of peripheral nerves
and muscles [1]. Many BCIs aimed to restore commu-
nication for locked-in patients suffering from progres-
sive motor diseases such as amyotrophic lateral sclerosis
(ALS) [2]. Many spelling protocols using visual stimuli
have been proposed [3] to realize the application of BCI
in communication. However, it is known that patients
with late-stage ALS have unreliable gaze control [4], and
the BCIs using visual stimuli are not adequate for those
patients. On the other hand, auditory BCIs do not occupy
their sight and can be used by visually impaired patients.
Thus, it is meaningful to realize the auditory BCIs for
spelling application.
Furdea et al. [5] proposed an auditory speller BCI similar
to a visual P300 speller [6]. In this system, a display of a
5 × 5 matrix containing 25 alphabet characters and voices
two number words coded with each character’s position
in the matrix was presented. One corresponded to the
row, and one corresponded to the column. The system

detected which character the users paid attention to with
two steps. The target row was detected in the first step,
and the target column was detected in the second step.
Klobassa et al. did a similar study but with a 6 × 6 matrix
containing all 26 alphabet characters and miscellaneous
[7]. Also, they changed the human voice to environmen-
tal sounds. Schreuder et al. [8] utilized the AMUSE
paradigm [9] for a spelling application. This system also
detected the target character using a two-step procedure.
They divided alphabet characters into six groups. The
target group was detected in the first step, and the target
character was detected in the second step. Each charac-
ter group and character was presented from one of the six
loudspeakers surrounding the subjects’ heads.
Some auditory speller BCIs have been proposed; how-
ever, these studies had one of the following issues. —(1)
One trial cannot determine the target character. (2) The
mapping from the character to sound streams or stimuli
is not intuitive and requires memorization or visual sup-
port. (3) It requires a multi-channel audio system, com-
plicating setup and making it unavailable to patients who
have hearing impairment in one ear.— Thus, we propose
a novel auditory speller BCI protocol for solving these
issues, the ASME-speller.

ASME paradigm: ASME (for Auditory Stream seg-
regation, Multiclass, ERP) is the paradigm for auditory
BCI based on auditory stream segregation. The auditory
stream segregation is one of the auditory illusions that
alternately presented sounds can be perceived as segre-
gated multiple streams [10]. e.g., when sounds that have
different frequencies (A and B) are presented alternately
(ABABAB...), they can be perceived as two segregated
sound streams (AAA... and BBB ...). The authors pro-
posed an auditory BCI paradigm utilizing auditory stream
segregation [11–14]. In this system, the oddball sequence
was put into segregated streams and presented simultane-
ously to the subjects, and the subjects paid attention to
the target stimuli in the target stream. The target stream
was estimated by detecting ERP responses elicited by the
target stimuli. To date, we tested the ASME paradigm
with two streams [11, 12], three streams [13], and four
streams [14].

The ASME speller:
The QWERTY is a keyboard layout widely used in com-
puters and smartphones, and many personal computer
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Figure 1: The conceptual diagram of the ASME-speller.

and smartphone users are expected to be familiar with the
QWERTY layout. Since all 26 characters are mapped to
three-row keys, the entire keyboard layout can be repre-
sented with three streams ASME paradigm. Fig. 1 shows
the QWERTY layout and the corresponding tone stream
on the ASME-speller. Three key rows are assigned to the
sound stream, and the top, middle, and bottom rows cor-
respond to the stream, which has high, middle, and low-
frequency bands, respectively. Within each stream, each
character is presented as a spoken voice. When the user
is going to type "T," the user thinks of which row "T" is
located in the QWERTY layout. Since the character "T"
is in the top row, the user will listen to the corresponding
stream (the stream with a high-frequency band) and pay
attention to the "T" sound stimuli. Since one stimuli are
paid attention to and the others are ignored, this sequence
can be considered an oddball, and the target stimuli elicit
ERPs, including P300 [11–14]. The target character can
be estimated by detecting ERP responses with a machine
learning approach. This study tested the ASME-speller
paradigm with 15 characters as a pilot study.

MATERIALS AND METHODS

Experimental Design: Two different conditions were
conducted. (1) The ASME condition: Each row of the
QWERTY layout was spoken by a different person and
had a different pitch, so each row could be perceived as
a different sound stream. (2) The control condition: all
stimuli were spoken by the same person and had the same
pitch. In a session, four runs were conducted with chang-
ing conditions. In total, two ASME runs and two control
runs were conducted. In a run, 15 trials were conducted.
Before starting each trial, the target character was shown
on the display in front of the subject, and the subject was
instructed to pay attention to the target stream and the
target character. All subjects were familiar with the QW-
ERTY layout, and no visual support was provided. 225
stimuli (15 targets and 210 nontargets) were delivered in
a trial, and the trial length was about 46 seconds.

Stimuli: The fifteen characters (E, R, T, I, O, A, S, D,
H, L, C, V, B, N, and M) were selected for this study.
Each voice stimuli were generated by Amazon Web Ser-
vices (AWS) Amazon Polly. AWS Amazon Polly is a
cloud service that converts text into synthesized spoken
audio. The voice stimuli of characters corresponding to
the top (E, R, T, I, and O), middle (A, S, D, H, and L), and
bottom (C, V, B, N, and M) row on the QWERTY layout
were generated with the voice ID of Ruth (Female), Kevin
(Male child) and Joey (Male), respectively. The voice IDs
were selected as the top, middle, and bottom rows could
be perceived as higher, middle, and lower pitch streams.

Figure 2: The time chart of presented stimuli block.

To enhance the difference between each stream, the char-
acters corresponding to the top and bottom are shifted in
pitch with +2 halftones and −2 halftones, respectively.
Fig. 2 shows the "block" of the sequence. Each block had
15 stimuli in total. Within each stream, the order of the
characters was randomized. For both ASME and control
conditions, the stimuli were presented in the order of the
characters corresponding to the top, middle, and bottom
rows of the QWERTY layout. In a trial, 15 blocks were
played. The stimulus onset asynchrony (SOA) was set to
0.2 s. All 15 characters were generated with the voice ID
of Kevin for the control condition, and no pitch shifting
was applied. All other parameters for the control condi-
tion were the same as the ASME condition. All sound
stimuli were delivered by Fireface 802 (RME, Germany)
with headphones (MDR-EX800ST, Sony, Japan).

Signal Acquisitions: The following 64-channel (Fp1,
Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2,
F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8,
TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8,
TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz, and O2) electroencephalogram
(EEG) were measured with Ag-AgCl passive electrodes
(Easycap, Easycap GmbH, Germany). The vertical and
horizontal electrooculogram (EOG) were also measured.
All EEG and EOG signals were amplified and recorded
with BrainAmp DC and BrainAmp MR plus (Brain Prod-
ucts GmbH, Germany). The reference and the ground
electrodes were placed on the right and left ear mastoid,
respectively. The signals were recorded at a sampling
frequency of 1000 Hz. Subjects sat on a comfortable
chair placed in a soundproofing electromagnetic shielded
room.

Subjects: Six subjects (ages 22 – 27, mean: 24.0) par-
ticipated in this study. This study protocol was approved
by the Review Board on Bioengineering Research Ethics
of Shibaura Institute of Technology and was conducted in
accordance with the Declaration of Helsinki. Before the
experiment, subjects were given information orally and in
writing, and written informed consent was obtained from
all subjects. No subject had known neurological disor-
ders or hearing problems.

ERP Analyses: The EOG artifacts were removed with
independent components analysis (ICA). The measured
signals were bandpass filtered by 2nd order Butterworth
filter in the range of 1–30 Hz, and responses to each stim-
ulus were epoched in the range of −0.1–1.0 s relative to
stimulus onset. Then, all epochs were downsampled to
250 Hz. To assess the separability between the responses
to the target and nontarget stimuli, signed-r2 values [15]
were obtained.

Binary Classification: The EOG artifacts were re-
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moved using independent components analysis (ICA).
The measured signals were bandpass filtered by 2nd or-
der Butterworth filter in the range of 0.1–8Hz, and re-
sponses to each stimulus were epoched in the range of
0–1.0 s relative to stimulus onset. Then, all epochs were
downsampled to 250 Hz. The mean amplitude in the fol-
lowing ten intervals ([0.0, 0.1; 0.1, 0.2; 0.2, 0.3; 0.3,
0.4; 0.4, 0.5; 0.5, 0.6; 0.6, 0.7; 0.7, 0.8; 0.8, 0.9; 0.9,
1.0] seconds relative to the stimulus onset) were used as
the classification feature. The dimension of the feature
vector was 10intervals×64channels= 640. The classifi-
cation accuracy (AUC: area under the receiver operating
characteristic curve) between the responses to the target
and nontarget stimuli was obtained by a shrinkage linear
discriminant analysis (Shrinkage-LDA) [15] with 4-fold
chronological cross-validation. For the binary classifica-
tion, the chance level was 0.5. The information transfer
rate (ITR) was calculated using the equation proposed by
Wolpaw et al. [16].

BCI simulation (target character detection): In the
BCI simulation, the target character of the trial was es-
timated. For both ASME and control conditions, 30 tri-
als were conducted. The BCI simulation was conducted
with chronological 3-fold cross-validation by training
data from 20 trials and testing with data from 10 trials.
From the training data, the mixing and unmixing matri-
ces were derived using ICA to remove EOG artifacts. The
mixing and unmixing matrix was applied to the training
data to remove EOG artifacts, and the feature vector was
obtained with the same method described in the section
"Binary Classification", and Shrinkage-LDA was trained.
The classification output f (xi) = wT xi + b was defined
as follows, where xi is a feature vector, w is the weight
vector obtained by LDA, and b is a bias. Each feature
vector xi had a corresponding class label yi ∈ {−1,1},
and assumed that class label +1 is the target and −1 is
nontarget. The LDA was trained as f (x)≥ 0 if xi was in
class +1 and f (x)< 0 if xi was in class −1. The mixing
and unmixing matrix derived using ICA was applied for
epoch data in each trial in test data, and the feature vec-
tors were obtained. Then, the classifier output f (xi) for
each feature was computed, and the class with the largest
mean value of classifier output was estimated as the final
classification result. The classification results were eval-
uated by accuracy. For the BCI simulation, the chance
level was 0.067.

Dynamic Stopping: To optimize the trial length, the
dynamic stopping strategy [17, 18] was also tested for
BCI simulation. Dynamic stopping could be triggered
after presenting the 75 stimuli in each trial. A one-sided
Welch’s t-test was applied to the classifier outputs f (x) of
the class, between which the mean value of f (x) was the
largest and second largest. If the difference was signifi-
cant (p < 0.05), the classification procedure was stopped,
and the classification result for the trial was determined
with the data up to that stimuli.

RESULTS

Table 1: Binary classification results. The classification accu-
racy (AUC) for the ASME and control conditions are shown.
The chance level was 0.5.

Subject ASME control
A 0.72 0.53
B 0.71 0.52
C 0.86 0.63
D 0.76 0.58
E 0.63 0.56
F 0.74 0.61

Average 0.74 0.57

Fig. 3 shows grand averaged ERP responses to the tar-
get and nontarget stimuli. In the time range from 0.2 to
0.4 seconds, N2 was observed in the ASME condition.
Furthermore, in the time range from 0.4 to 0.8 seconds,
P300 was observed. The amplitude of N2 and P300 were
larger for the target stimuli than for nontarget stimuli,
and the absolute value of the signed-r2 was also larger,
which implies it was informative for the machine learn-
ing model for classification. In contrast, a clear differ-
ence between the responses to the target and the nontarget
stimuli was not observed in the control condition. The ab-
solute value of the signed-r2 was small compared to that
for the ASME condition; the separability between the re-
sponse to the target and nontarget stimuli was small com-
pared to that for the ASME condition. Tab. 1 shows the
binary classification accuracy (AUC) for the ASME and
control conditions. The accuracy for the ASME condition
was significantly larger than that for the control condition
(p = 0.031, two-sided Wilcoxon signed-rank test). Fig.
4 shows the result of the BCI simulation (detecting the
target character of the trial) without dynamic stopping.
The average accuracy was 0.72 (ASME) and 0.31 (con-
trol), and the accuracy of the ASME condition was sig-
nificantly larger (p = 0.031, two-sided Wilcoxon signed-
rank test). The average ITR was 2.79 bits/min (ASME)
and 0.726 bits/min (control), and the ITR of the ASME
condition was significantly larger (p = 0.031, two-sided
Wilcoxon signed-rank test). Fig. 5 shows the result of
the BCI simulation using dynamic stopping. The aver-
age accuracy was 0.73 (ASME) and 0.31 (control), and
the accuracy of the ASME condition was significantly
larger (p = 0.031, two-sided Wilcoxon signed-rank test).
The average ITR was 3.78 bits/min (ASME) and 0.775
bits/min (control), and the ITR of the ASME condition
was significantly larger (p = 0.031, two-sided Wilcoxon
signed-rank test). After applying dynamic stopping, the
ITR (Information Transfer Rate) was improved without
any drop in accuracy. The best ITR was reached at 7.61
bits/min with an accuracy of 0.97 (subject C). The worst
ITR was 0.902 bits/min with an accuracy of 0.40 (sub-
ject E). Fig. 6 shows the results of BCI simulation using
dynamic stopping in the confusion matrix.

DISCUSSION

The letters in each row of the QWERTY keyboard layout,
mapped to three sound streams, were presented as voice
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Figure 3: The grand averaged ERP responses to the target (solid line) and nontarget (dashed line) stimuli on electrode Cz (Orange)
and F3 (Blue). (a) ASME condition. (b) control condition. Timepoint 0 is the stimulus onset. Stimuli were delivered with SOA of 0.2
s. The colormap below each ERP plot shows the signed-r2 values on each electrode. The topography map shows the responses to the
target, nontarget stimuli, and the signed-r2 values from the top in each time range denoted as blue and orange mesh in the ERP plot.

stimuli, and it was shown that it is possible to pay selec-
tive attention to a single target letter stimulus. In addi-
tion, ERPs such as P300 and N2 were elicited only to the
target stimuli by paying attention to them. Furthermore,
the target letter could be detected with a machine learn-
ing approach with high accuracy. It can be concluded that
the ASME-speller can be realized. However, the number
of characters in this study was limited to 15. Thus, the
speller with 26 letters needs to be tested. By applying
the dynamic stopping procedure, the average Information
Transfer Rate (ITR) was found to be 3.78 bits/min. Tab. 2
shows ITRs achieved in previous studies. The ITR of this
study is superior to other studies except for the work by
Schreuder et al. [8]. However, the best ITR was higher
than theirs (7.61 bits/min v.s. 7.55 bits/min). ASME-
speller has the capability to achieve higher or competitive
ITR (Information Transfer Rate) and deliver high perfor-
mance.

Necessity of stream segregation: The ASME-speller
was achieved by dividing the sound stimuli into three
groups, corresponding to each row of the QWERTY key-
board layout. However, these stimuli can also be deliv-
ered with a single stream, and it was not clear whether
the sound stimuli needed to be delivered with segregated
groups. Therefore, as a control, the condition of deliver-
ing all stimuli with a single stream was also tested in this
study. Compared to the ASME condition, the amplitude
of ERPs was smaller in the control condition, resulting

Table 2: ITRs achieved in previous studies. The ITR of [19]
was read from a figure.

Average ITR (bits/min) Authors
1.54 Furdea et al. [5]
2.0 Klobassa et al. [7]
3.4 Höhne et al. [20]

5.26 Schreuder et al. [8]
about 1.3 Höhne et al. [19]

1.11 Kleih et al. [21]
2.38 Markovinović et al. [22]
3.78 Kojima et al. (this paper)

in low classification results. In this study, the SOA was
set to 0.2 s; however, in ASME condition, SOA within
the stream was 0.6 s. It is expected that this slower SOA
within the stream made the subject find the target stim-
uli easier and feel less overlap between stimuli. It can
be concluded that utilizing the ASME paradigm makes
SOA within the stream slower and making easier to find
the target stimuli from the sequence.

CONCLUSION

In this study, the ASME-speller, which detects the users’
target letter from 15 characters mapped to three sound
streams corresponding to the QWERTY keyboard layout,
can be realized as an auditory speller BCI. The achieved
ITR was faster than most of the proposed auditory BCI
spellers. This study also proved to provide stimuli di-
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Figure 4: The results of the BCI simulation (estimating the target character of the trial) without dynamic stopping. (a) Accuracy and
(b) ITR.

Figure 5: The results of the BCI simulation (estimating the target character of the trial) using dynamic stopping. (a) Accuracy and (b)
ITR.

Figure 6: The confusion matrix for conditions (a) ASME and (b) control in the BCI simulation using dynamic stopping.

viding into groups by using auditory stream segregation,
drastically improving the ASME-speller’s performance.
Furthermore, the target letter can be determined with a
single trial, and no visual support is required if the users
are familiar with the QWERTY layout. Additionally, All
sound stimuli can be delivered with a monaural audio
channel, solving the issues proposed by the auditory BCI

spellers. This system has the potential to be used by pa-
tients who have severe motor impairment or hearing im-
pairment in one ear with high ITR, and it provides users
with more choices of auditory BCI spellers.
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ABSTRACT: The authors have proposed an auditory
brain-computer interface (BCI) based on stream segrega-
tion which detects users’ selective attention to one the
multiple segregated streams. In this system, several odd-
ball sequences with different frequency bands were pre-
sented to users. To detect the target stream, this system
needed to wait for the arrival of deviant stimuli in odd-
ball sequences. In this study, auditory steady-state re-
sponse (ASSR) was utilized to achieve a higher infor-
mation transfer rate (ITR) system. Two streams con-
sisting of sinusoidally amplitude-modulated (SAM) tones
were presented to subjects, and they were requested to
attend to one of the two streams. From the results of
the electroencephalogram (EEG) measurement experi-
ment, it was found that the user’s selective attention en-
hanced ASSR corresponding to the modulation frequency
of SAM sounds in the target tone stream, and the target
stream which subject paid attention to was detected at an
average accuracy of 0.77. The best accuracy was 0.92. It
was concluded that an auditory BCI based on stream seg-
regation utilizing ASSR is feasible, and it provides high
performance and practical BCI options to users.

INTRODUCTION

Brain-computer interfaces (BCIs) provide their users
communication and control channels without using
brain’s normal output channels of peripheral nerves and
muscles [1]. Since Vidal et al. [2] proposed electroen-
cephalogram (EEG) based noninvasive BCI, it has at-
tracted interests by a number of researchers.
Among BCIs, reactive BCI detects a stereotypical brain
response elicited by sensory stimuli presented to users
[3]. To date, a number of studies on visual-based BCI
have been conducted since it is easy to present visual
stimulus to users with a precise time resolution. As the
visual modality is the most important sense in daily life,
users can not do anything else when they use such visual-
based BCIs. On the other hand, as auditory BCIs do
not rely on visual modality, they might not disturb users’
daily activities during operations.
The authors have proposed an auditory BCI based on
stream segregation. Stream segregation is one of the il-
lusory phenomena in auditory perception, on which mul-
tiple tone sequence with different frequencies which are
alternately presented in time tend to be perceived as mul-

Figure 1: Schematic diagram of auditory stream segregation

tiple segregated sound streams. For example, when two
kinds of sounds that have different frequencies (A and
B) are presented alternately in time (ABABAB...), such a
sound sequence can be perceived as two segregated sound
streams (AAA... and BBB...) (Fig. 1) .
The authors have proposed an auditory brain-computer
interface (BCI) based on stream segregation which de-
tects users’ selective attention to one the multiple segre-
gated streams [4, 5]. In these studies, two different odd-
ball sequences perceived as segregated streams were pre-
sented to one ear of subjects, and they were requested to
pay attention to one of the streams. It was shown that the
target stream of selective attention could be estimated by
detecting ERPs (event-related potentials) including P300
component which was elicited by the deviant stimuli em-
bedded in the target stream. The authors proposed 2-class
[4, 5], 3-class [6], and 4-class [7] BCI systems based on
auditory stream segregation.
The feature of the auditory BCI based on segregation is
that it operates in the frequency domain of the incoming
monaural sound. As human auditory system have a rich
capability to perceive pitch and melody of the sounds as
well as location and movement in three dimensional au-
ditory space, it is expected that such a system could en-
hance conventional auditory BCIs.
However, since such an auditory BCI detects P300 re-
sponses to the deviant stimuli in the oddball sequence
perceived as stream, the system needs to wait for the de-
viant stimuli to detect the target of selective attention. As
the frequency of the presentation of the deviant stimuli is
low in oddball sequences, the average response time for
P300 detection is long and it causes lower information
transfer rate (ITR).
Therefore, in this pilot study, an auditory BCI system
based on stream segregation without using oddball se-
quences was proposed and tested. In this proposed sys-
tem, instead of P300 components, auditory steady-state
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(a) Experiment 1

(b) Experiment 2

Figure 2: Time chart of presented stimuli used in Experiment 1
(a) and Experiment 2 (b)

Figure 3: Schematic diagram of SAM tone and intermittent
SAM tones. For viaualization, the following parameters are
used: tone (carrier) frequency 25 Hz, modulation frequency 5
Hz, duration of intermittent SAM tone 0.5 s. Red line shown in
the upper figure is an envelope of the amplitude modulation.

response (ASSR) was used to detect user’s selective at-
tention to the segregated stream. ASSRs are elicited by
temporally modulated auditory stimulation, such as an
amplitude-modulated (AM) tone [8].
After starting the presentation of a sustained AM tone,
EEG or magnetoencephalogram (MEG) rapidly entrains
to the modulation frequency and phase of the stimulus
[8]. Lopez et al. [9] reported that ASSR is modulated by
selective attention and can be utilized as a BCI paradigm.
If ASSR is elicited by segregated AM tone streams and
is modulated by selective attention, P300 component can
be replaced by ASSR as a new identifier of the target of
selective attention on auditory BCI based on selective at-
tention. And it is expected that the target of the users’
attention can potentially be detected in a shorter time pe-
riod than our proposed system [4, 5].
In this paper, the results of two experiments are shown.
Experiment 1 is a preliminary experiment to confirm AS-
SRs elicited by the intermittent tones can be observed and
detected. And in Experiment 2, the feasibility of the au-
ditory BCI based on stream segregation utilizing ASSR
was investigated.

EXPERIMENT 1:
ASSR TO AMPLITUDE-MODULATED
INTERMITTENT TONE SEQUENCE

Objective: In the previous studies [4–7], sequence of
intermittent short sounds perceived as segregated streams
were presented to subjects. To apply ASSR to such an
auditory BCI, it is required that ASSR is elicited by a se-
quence of intermittent short sound. However, it is general
to measure ASSR by presenting long lasting AM tones to
subjects, and whether ASSRs are evoked using intermit-
tent short sound stimuli has not been evaluated. Hence,
in Experiment 1, the ASSRs to amplitude-modulated in-
termittent sound stimuli were evaluated as a preliminary
experiment.

Methods: Three males participated in this experi-
ment. The subjects sat on a comfortable chair in a
soundproofing electromagnetically shielded room, and 9-
channel EEG (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4)
were recorded with passive Ag-AgCl electrodes (Easy-
cap, Easycap GmbH, Germany). Reference and ground
electrodes were placed on the right and left ear mastoid,
respectively. EEG signal was amplified and recorded
with an biosignal amplifier (BrainAmp MR plus, Brain
Products, Germany) at a sampling frequency of 1000 Hz.
Before sampling, bandpass filter (0.1–100 Hz) was ap-
plied to the recorded data.

Fig. 2(a) shows the time chart of the tone sequence pre-
sented to subjects in Experiment 1. Sequence of tones
(duration 180 ms) was presented to subjects, and they
were requested to listen to the presented tones. The stim-
ulus onset asynchrony (SOA) was set to 400 ms.

The length of a trial was 35 s. Frequency of each tone
was set to 987.767 Hz (musical pitch B5). The first 25
tones (10 s) were pure tone without amplitude modula-
tion, and the following 75 tones (30 s) were sinusoidally
amplitude-modulated (SAM) tones (schematic diagram is
shown in Fig. 2). Two kinds of modulation frequency (37
Hz or 43 Hz) were tested in different trials.

All stimuli were generated by MATLAB (Mathworks,
USA). Tone stimuli were presented to subjects’ left ear
by an audio interface (Fireface 802, RME, Germany) and
headphones (HDA200, Sennheiser, Germany).

MATLAB (Mathworks, USA) and EEGLAB [10] were
used for analysis. The recorded EEG signal was bandpass
filtered at 20–150 Hz.

The data of 30 s during which SAM tones were presented
(colored red in Fig. 2(a)) was analyzed by the follow-
ing way. Additionally, EEG data with removing gaps
(EEG data during presentation of each SAM tone was ex-
tracted and concatenated, total duration 13.5 s) was also
analyzed and results were compared.

EEG signal was segmented into 5 s intervals with an over-
lap of 4.5 s. Then, canonical correlation analysis (CCA)
was applied to the segmented data. The reference signal
Y( ft) was set as follows.
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(a) Using the whole period of EEG data

(b) Using the EEG data with removing gaps

Figure 4: An example of the time courses of the power spectrum value of CCA canonical variables at 43 (red) and 37 Hz (blue) (Subject
A). Top row: results of analysis using the whole period of EEG data (30 s) . Bottom row: results of analysis of EEG data with removing
gaps (13.5 s). The results when this subject was presented SAM tones modulated at 37 Hz (left) and 43 Hz (right) are shown.

Y( ft) =


sin(2π ftt)
cos(2π ftt)
sin(4π ftt)
cos(4π ftt)
sin(6π ftt)
cos(6π ftt)

 t =
1
fs
,

2
fs
, · · · , Ns

fs
(1)

where, fs is the sampling frequency, Ns is the number of
samples of the 5 s segmented data, and ft ∈ {37,43} Hz
is the target frequency to be detected by CCA, since SAM
tones were modulated at 37 or 43 Hz. Fast Fourier trans-
form (FFT) was applied to canonical variable obtained by
CCA, and the time course of the power spectrum value at
each target frequency ft was obtained. If the target fre-
quency to be detected is fd , corresponding power spec-
trum value if FFT power spectrum of canonical variable
using reference signal Y( ft) at frequency ft .

Results: Fig. 4 shows the time courses of the power
spectrum value of CCA canonical variables at 37 and 43
Hz of Subject A.
In Fig. 4 (a), the results of analysis using the whole pe-
riod of data (30 s) are shown. And the responses during
the time range when subjects were presented intermittent
sounds were discarded are shown in Fig. 4 (b).
When the data from the whole trial was analyzed, there
was no clear difference between the power spectrum val-
ues of CCA components at two modulation frequencies

(Fig. 4 (a)). However, the CCA power values at cor-
responding modulation frequency were increased if the
segments when the sounds were delivered to this subject
were concatenated and analyzed (Fig. 4 (b)). The same
tendencies were also observed on the other two subjects,
however, the time course of the power spectrum values of
CCA components were varied across subjects.
As a result, despite the short length of each SAM tone
(180 ms), ASSRs were evoked while the stimuli were
played. Thus, it can be concluded that intermittent short
tone can also evoke ASSR. It was also confirmed that
the power of ASSR corresponding to the modulation fre-
quency of presented tones was increased, and it could be
observed clearly if the data was analyzed when the data
during the presentation of each intermittent sound was
extracted and concatenated.

EXPERIMENT 2:
DETECTION OF SELECTIVE ATTENTION
TO SEGREGATED STREAM OF SAM TONES

Objective: In this experiment, tone sequence of SAM
tones, which were perceived as two segregated tone
streams, were presented to subjects, and pattern classifi-
cation to detect subjects’ target of selective attention was
estimated offline. This experiment aimed to evaluate the
feasibility of the auditory BCI paradigm based on stream
segregation utilizing ASSR.
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Figure 5: An example of the power spectrum of the CCA canonical variable on 37 and 43 Hz, and time courses of the power spectrum
value at 37 (blue) and 43 Hz (red) which a time windows of 20 s (Subject B). Results when the subject pays attention to and Stream 1
(modulation frequency 37 Hz) and Stream 2 (43 Hz) are shown in left and right column, respectively.

Methods: Eight male subjects (aged between 21–23)
participated in this experiment. The subjects sat on a
comfortable chair in a soundproofing electromagnetically
shielded room, and 64-channel EEG (Fp1, Fp2, AF7,
AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6,
F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6,
FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9,
TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10,
P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4,
PO8, O1, Oz, and O2) were recorded with passive Ag-
AgCl electrodes (Easycap, Easycap GmbH, Germany) .
Other conditions for measurement were the same as in
Experiment 1.

Two kinds of SAM tones, 987.767 Hz (musical pitch B5)
pure tones amplitude-modulated at 37 Hz and 440 Hz
(musical pitch A4) of pure tones amplitude-modulated at
43 Hz were used. The duration of the tones was 180 ms.
Fig. 2(b) shows the time chart of the sequence used in
this experiment. The stimulus onset asynchrony (SOA)
was set to 200 ms. All stimuli were presented to sub-
jects’ left ear by an audio interface (Fireface 802, RME,
Germany) with headphones (HDA200, Sennheiser, Ger-
many). The length of a trial was 70 s, and the subjects
were requested to pay attention to the instructed stream.
The unmodulated tones were presented for the first 10 s.

MATLAB (Mathworks, USA) and EEGLAB [10] were

used for analyses. The recorded EEG signals were band-
pass filtered in a range of 20–150 Hz. The data of 60
s during which SAM tones were presented was used.
Based on the result of Experiment 1, EEG data during
gap period was removed and concatenated before analy-
sis. To find the optimal length of the window for analysis,
four window lengths (5, 10, 15, and 20 s with the overlap
of 4.5 s, 9.5 s, 14.5 s, and 19.5 s, respectively) were used
for segmentation. Then, CCA was applied to the seg-
mented data. The same reference signals as Experiment
1 were used.

The subjects’ target of selective attention was estimated
with linear discriminant analysis (LDA). Two features
(the power spectrum of CCA canonical variables at 37
and 43 Hz) of each data segment were used for classifica-
tion. The classification accuracy was evaluated by 5-fold
cross-validation.

Results: Fig. 5 shows an example of the result from
Subject B. The power spectrum of the CCA canonical
variable on ft = 37 and 43 Hz, and time courses of the
power spectrum value at 37 (blue) and 43 Hz (red) which
a time windows of 20 s are shown. It was shown that the
CCA canonical variable at the modulation frequency of
the attended stream was larger than that of the unattended
stream. On 5 subjects out of 8, the same tendency was ob-
served. However, like in Experiment 1, the time course
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Table 1: Classification accuracy for each length of time window.
Subject 5 s 10 s 15 s 20 s

A 0.65 0.64 0.72 0.73
B 0.69 0.72 0.82 0.92
C 0.66 0.70 0.73 0.84
D 0.56 0.65 0.77 0.83
E 0.56 0.63 0.67 0.80
F 0.64 0.62 0.70 0.68
G 0.55 0.58 0.68 0.72
H 0.57 0.54 0.57 0.62

Average 0.61 0.64 0.71 0.77

Figure 6: An example of the feature distributions with 20s of
the time window (Subject B)

of the power spectrum values of CCA components were
varied across subjects.
Table 1 shows the classification accuracy for each length
of time window. When 20 s time window was used, the
average accuracy reached 0.77. Fig. 6 shows the fea-
ture distribution of the data from subject B using 20 s
time window. Feature vectors of the two classes were
distributed differently in feature space and could be dis-
criminated by linear function.

DISCUSSION

When subjects paid attention to one of the streams con-
sisting of SAM tones, ASSR at modulation frequency
was increased, and the subjects’ target of selective atten-
tion to the stream could be detected with high accuracy
by the machine-learning approach. It was proved that the
auditory BCI based on stream segregation utilizing ASSR
is feasible. Compared to the previous study which detects
P300 component by using oddball sequence as presented
tone stimuli, the ASSR-based paradigm doesn’t need to
wait for the deviant stimuli to be presented. Furthermore,
it does not require the precise timing of stimulus onset,
while the oddball-based paradigm requires accurate tim-
ing of stimulus onset. Therefore, it is expected that an
ASSR-based BCI using stream segregation can realize
higher ITR with a simple setup.
In this pilot study, classification accuracy was below 0.7
when the length of time window to observe power spec-

trum of CCA canonical variable was 10 s (Table 1). Be-
cause it was needed to observe EEG data for the width
of time window, power spectrum values could not be cal-
culated at the beginning of the data (on offline analysis
in this study, power spectrum values were lacked for half
width of the time window at the beginning and at the end
of the EEG data. See Figs. 4 and 5).
Two different target frequencies ft could be discriminated
by relative power spectrum values of ASSR at corre-
sponding the the modulation frequencies (37 or 43 Hz)
of SAM tomes (Fig. 6). It was shown that the val-
ues of the feature vector (i.e. power spectrum value of
CCA canonical variable at two modulation frequencies)
changed over time during attending to the target segre-
gated stream (Figs. 4 and 5), and it was different between
subjects. Such phenomenon might reflect the temporal
change of the degree of attention on each individual sub-
ject.
However, to improve both classification accuracy and
ITR, optimization of feature extraction of EEG using
CCA is required. This is left for the further study.

CONCLUSION

An auditory BCI system based on stream segregation of
SAM tone sequence was proposed and tested. In this pro-
posed system, instead of P300 components[4–7], ASSR
was used to detect user’s selective attention to the seg-
regated stream. It was found that the power spectrum
of ASSR at the modulation frequency of the target SAM
tone stream is increased by selective attention, which is
perceived as segregated streams by stream segregation.
This result shows that an auditory BCI based on stream
segregation utilizing ASSR is feasible.
With this approach, the target stream can be estimated
without waiting for special stimuli (e.g., deviant stimuli
in oddball sequence), and it can achieve high ITR in prin-
ciple. Furthermore, as opposed to an ERP-based system,
precise timing of stimulus presentation is not required,
and it is beneficial for making the system simpler. In
principle, it will lead the auditory BCI based on stream
segregation to high-performance and more practical and
offers users more options for auditory BCIs.
Further investigations on feature extraction and optimiza-
tion of presenting auditory tone stimuli are needed to im-
prove the performance of the present auditory BCI sys-
tem.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant
Number JP23K11811.

REFERENCES

[1] Wolpaw J et al. Brain-computer interface tech-
nology: A review of the first international meet-
ing. IEEE Transactions on Rehabilitation Engineering.
2000;8(2):164–173.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-007

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

39



[2] Vidal JJ. Toward Direct Brain-Computer Communi-
cation. Annual Review of Biophysics and Bioengineer-
ing. 1973;2(1):157–180.
[3] Rao RPN. Brain-Computer Interfacing: An Introduc-
tion. Cambridge University Press: Cambridge (2013).
[4] Kanoh S, Miyamoto Ki, Yoshinobu T. A brain-
computer interface (BCI) system based on auditory
stream segregation. In: 2008 30th Annual International
Conference of the IEEE Engineering in Medicine and Bi-
ology Society. Aug. 2008, 642–645.
[5] Kanoh S, Miyamoto Ki, Yoshinobu T. A Brain-
Computer Interface (BCI) System Based on Auditory
Stream Segregation. Journal of Biomechanical Science
and Engineering. 2010;5(1):32–40.
[6] Kanoh S, Kojima S. Evaluation of auditory BCI sys-
tem based on stream segregation. In: Proceedings of the
8th Graz Brain-Computer Interface Conference 2019.
Graz, 2019.
[7] Kojima S, Kanoh S. Towards realizing multi-class
auditory brain-computer interface paradigm based on
stream segregation: A preliminary study. In: 2023
15th Biomedical Engineering International Conference
(BMEiCON). IEEE: Tokyo, Japan, Oct. 2023, 1–5.
[8] O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Het-
rick WP, Morzorati SL. Chapter 6 - The auditory steady-
state response (ASSR): A translational biomarker for
schizophrenia. In: Supplements to Clinical Neurophysi-
ology. Elsevier, Jan. 2013, 101–112.
[9] Lopez MA, Pomares H, Pelayo F, Urquiza J, Perez
J. Evidences of cognitive effects over auditory steady-
state responses by means of artificial neural networks
and its use in brain–computer interfaces. Neurocomput-
ing. 2009;72(16):3617–3623.
[10] Delorme A, Makeig S. EEGLAB: An open source
toolbox for analysis of single-trial EEG dynamics includ-
ing independent component analysis. Journal of Neuro-
science Methods. 2004;134(1):9–21.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-007

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

40



A NOVEL CHATGPT-DRIVEN COMMUNICATION AID BASED ON
CODE-MODULATED VISUAL EVOKED POTENTIALS (CVEP)

Atilla Cantürk, Ivan Volosyak

Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, Kleve, Germany

E-mail: ivan.volosyak@hochschule-rhein-waal.de

ABSTRACT: Brain-computer interface (BCI) systems,
including applications based on visual evoked potentials
(VEPs), have proven to provide reliable and accurate con-
trol. In recent years, communication has remained one of
the main application areas of modern BCIs, with a lot
of advancements based e.g., on the incorporation of dic-
tionary support and text prediction. This study explores
the integration of BCIs with artificial intelligence (AI),
specifically focusing on the development and evaluation
of an innovative spelling interface powered by the Chat-
GPT application programming interface (API). Aimed
at enhancing communication for individuals with severe
motor impairments, this interface combines the precision
of code-modulated visual evoked potentials (cVEPs) with
the predictive capabilities of AI to offer a more intuitive
and efficient user experience. The performance of 13
healthy participants (10 females) was evaluated in an on-
line experiment. The participants successfully completed
all spelling tasks using the cVEP BCI with aid from Chat-
GPT, achieving a mean information transfer rate (ITR) of
33.16 bpm, a mean accuracy of 87.49%, and an average
output of 8.74 output characters per minute (OCM) for
unique sentence tasks. This was slower than in our previ-
ous research using an n-gram model which achieved 18.9
characters per minute.

INTRODUCTION

A BCI system detects, analyzes and decodes brain ac-
tivity in real time to provide communication with the
external environment, without involving normal output
pathways of the human nervous system or muscle activ-
ities [1]. Modern BCIs can be used as communication
tools for severely impaired people suffering for exam-
ple from spinal cord injuries, brain stem strokes, amy-
otrophic lateral sclerosis (ALS), or muscular dystrophies.
For the practical use of such BCI applications their ac-
curacy and speed are the most important factors. Visual
evoked potentials (VEPs) allow the fastest BCI realisa-
tion, between them the code-modulated VEPs (cVEPs),
where all stimuli are modulated with different time lags
of the same code sequences, typically the m-sequences,
yield potentially higher accuracies [2]. Further increase
in the communication speed, usually measured in terms
of information transfer rate (ITR) is possible by using
word prediction methods, particularly based on n-gram

models. In our previous paper [3], c-VEP based BCI
system was further extended by several methods for en-
hanced target identification, including dynamic sliding
windows and software-based stimulus synchronization,
coupled with an ensemble-based classification. Integrat-
ing a dictionary-driven n-gram word prediction model,
the system demonstrated improved usability, with signif-
icantly better results when the dictionary integration was
used. Unfortunately, this software implementation of the
signal processing and the dictionary support in form of
a single custom-made application limits the transfer of
this code into newer BCI applications, necessitating the
re-development of the dictionary support. Another issue
is that until recently, it was not technologically feasible
to accurately reproduce sentences generated using such
communication aids, especially concerning the proper
verb declension, which requires a complete understand-
ing of the sentence’s information content. However, with
the advent of new AI-based language systems, it is now
possible to bridge this gap and produce stylistically and
grammatically correct sentences.
In recent years, AI has garnered significant attention
across various domains, revolutionizing the way we in-
teract with technology and transforming traditional work-
flows. From chatbots for libraries [4] to recommendation
system for farms [5], AI-driven solutions have demon-
strated remarkable capabilities in understanding and pro-
cessing human language. The combination of BCIs and
AI marks a significant shift in human-computer inter-
action, especially for individuals with severe motor im-
pairments. Advanced AI models like ChatGPT enhance
this synergy, revolutionizing interactions from healthcare
to customer service. Its applications, aiding clinical di-
agnoses to supporting medical education, highlight AI’s
utility, though ethical and legal considerations accom-
pany it [6]. The introduction of ChatGPT has sparked
a robust debate over its potential applications and limita-
tions, underscoring the need for a nuanced exploration of
AI’s role in healthcare and medical research.
This paper presents an innovative spelling interface that
leverages the ChatGPT API, demonstrating the seamless
integration of cVEP-based BCIs with AI to create a more
intuitive and efficient communication tool. By examin-
ing the advantages, limitations, and effects of employing
ChatGPT and AI in such interfaces, alongside their prac-
tical applications and future prospects in medicine and
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(a) “Training” mode, awaiting initiation.
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(b) Online “Two-Steps Speller” interface with dictionary hints (top right).

Figure 1: Fig. 1a shows 1st selection field highlighted in green and waiting for “F1” key press to start the training session. Once training
begins, all text outside of the selection fields will be hidden. In Fig. 1b, API word suggestions appear in selection fields 5 to 7, with
dictionary hints also shown in the 1st selection field (placed inside the field, under the letter groups).

healthcare, we aim to contribute to the ongoing discourse
on the responsible and effective use of AI technologies
in enhancing human-computer interaction and healthcare
outcomes.

MATERIALS AND METHODS

Participants: 13 participants (10 females) participated
in this study; the average age of the subjects was 24.46
years, with a standard deviation (SD) of ±4.2. All partic-
ipants provided written consent in adherence to the Dec-
laration of Helsinki, and the study received approval from
the ethical committee of the medical faculty at the Uni-
versity Duisburg-Essen. The collected data for analysis
purposes were stored anonymously, ensuring the confi-
dentiality of the participants. Subjects received compen-
sation for their involvement in our study. Since this was
not addressed in the ethical approval, the EEG data can-
not be published.

Hardware: The computer in use was a Dell Precision
Desktop with NVIDIA RTX3070 graphics card that op-
erated on Microsoft Windows 10 (21H2) Education run-
ning on an Intel processor i9-10900K (3.70 GHz). For
the purpose of presenting the stimuli, a modern display
(Asus ROG Swift PG258Q, Full-HD, 240 Hz maximal
refresh rate) was used.
An EEG amplifier (g.USBamp medical engineering
GmbH, Schiedlberg, Austria) was used, utilizing all 16
signal channels which were placed according to the inter-
national system of EEG electrode placement at positions:
P7, P3, Pz, P4, P7, PO7, PO3, POz, PO4, PO8, O1, Oz,
O2, O9, Iz and O10. Additionally, the reference elec-
trode was positioned at Cz, while the ground electrode
was placed at AFz. During the preparation stage, regular
abrasive electrolytic electrode gel was used between the
electrodes and the scalp to reduce impedances to less than
5 kΩ.

GUI: The graphical user interface (GUI) is illustrated
in Fig. 1b. An eight target spelling interface as pre-
sented in [3] was utilized. Selecting individual charac-

ters required exactly two steps (“two-steps speller”). The
graphical user interface (GUI) was designed with its first
row featuring 28 characters, including the 26 letters of
the alphabet, an underscore, and a full-stop character, or-
ganized into four boxes, each containing seven charac-
ters. The second row provided three suggestions gener-
ated by the ChatGPT API (dictionary suggestion boxes),
along with an option for correction. Utilizing the correc-
tion option allowed users to delete the last typed character
or word, enhancing the typing experience by integrating
both predictive text and error correction functionalities.
By selecting a letter group from the first row, the associ-
ated characters were presented individually in the “sec-
ond step”. The GUI includes dictionary hints that present
the same recommendations as the ChatGPT API at the
bottom of the lastly selected letter, facilitating easier se-
lection without the need to divert attention. An illustra-
tion of this feature is provided in Fig. 1b (top-left cor-
ner selection field). Each selection triggers audio and vi-
sual feedback (the selected field briefly enlarges and turns
green for correct selections, or turns red for incorrect se-
lections).

Stimulus Presentation: The stimuli targeted in the ex-
periment were comprised of eight selection fields(boxes)
(230 × 230 pixel) arranged as 2 × 4 selection field matrix
(see Fig. 1). 63 bit m-sequences ci, i = 1, . . . ,K (K = 8
for our case) were assigned to the selection field matrix
employing a circular shift of 4 bits (c1 had no shift, c2 was
shifted by 4 bits to the left, c3 was shifted by 8 bits, etc.).
The codes were allocated to the matrix in a row-wise
manner, beginning with the upper left target labeled as
c1, and subsequent targets were labeled following a row-
major sequence. The stimuli linked to the codes switched
between “black” (the background color, denoted by “0”)
and “white” (indicated by “1”). Here, c1 was defined as

c1 = 10101100110111011010010011100010
1111001010001100001000001111110

(1)

The duration of a stimulus cycle in seconds can be calcu-
lated by dividing the code length by the monitor refresh
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rate r in Hz; in this experiment, 63/60 = 1.05s (the used
refresh rate was 240 Hz, so the stimulus changed in accor-
dance with the bit sequence, but for every fourth frame).
Spatial filters were developed using the information gath-
ered during the recording phase for classification. Canon-
ical correlation analysis (CCA) was used on the training
trials in this regard. Further details about used cVEP sig-
nal processing methods can be found in [2].

Training: During the recording phase, eight stimuli
were observed sequentially from 1 to 8 by the partici-
pants, as illustrated in Fig. 1a. The recording was divided
into six blocks of training, denoted as nb = 6. Within each
block, every stimulus was focused on once, resulting in a
total of 6∗8 = 48 trials. Each trial lasted for 2.1 seconds,
during which the code pattern was displayed for two cy-
cles. A visual cue, represented by a green frame, indi-
cated the specific box towards which participants were re-
quired to direct their gaze. Following each trial, the sub-
sequent field the user needed to focus on was highlighted,
and the flickering paused for one second. After com-
pleting each block of eight trials (all eight targets), the
software transitioned to the next block of training, with a
one-second pause until 48 trials were accomplished.

ChatGPT API: The ChatGPT application program-
ming interface (API) works by sending a prompt, typi-
cally a piece of text or a question, to the API endpoint.
The model then processes this input and generates a re-
sponse that continues the conversation or provides rel-
evant information based on the context provided in the
prompt.
In order to be able to construct API requests, we modified
our C++ based software with the help of the documenta-
tion provided by OpenAI [7]. We used libcurl to enable
our software to be able to communicate with the API and
used a JSON parser to make it easier to work with the
response from the API. We made adjustments to certain
parameters to facilitate the use of the API. For detailed
information on the parameters modified and their specific
functions, please refer to Table 1.
The word completion algorithm functions by identifying
words demarcated by underscore (“_") characters. When
a user selects a suggested word via the dictionary buttons
(see Fig. 1b), the algorithm updates the text by replacing
the characters entered after the most recent underscore
character with the selected suggestion. When the user
selects the correction button after choosing a suggested
word, the software restores their manually typed text to
its original form before the suggestion was applied.
Once user types a letter, the typed sentence is added into
the API request and sent. Once the response is received
the contents are extracted and separated into 3 different
words and pushed into the dictionary suggestion boxes
and also into dictionary hints text, giving the user the
chance to type the word recommended by ChatGPT.

Experimental Protocol: The experiment was con-
ducted in the BCI-Lab of Rhine-Waal University of Ap-
plied Sciences (HSRW). Firstly participants filled a ques-
tionnaire with questions regarding their experience with

Table 1: Key ChatGPT API Parameters
Model: “gpt-3.5-turbo-0125”. Chosen for its low
cost and high speed.
Instruction: “We are trying to realise the speller.
Always return suggestions for just the most likely
last word of the query starting with letters of the
query, having in mind previous words of the query.
Do not return previous words of the query. Always
return only three comma-separated words, no
further information, no line skips." Customized for
spelling suggestions (52 tokens). This parameter
guides the model on how to generate its response
depending on the input prompt.
Max tokens: Set to 100. Max tokens parameter
represents the maximum number of tokens that
can be generated in the chat completion.
Presence_penalty and Frequency_penalty:
Set to -0.1 to fine-tune response variability. Both
parameters slightly increase the likelihood of repea-
ting information, promoting a less random output.
Top_p: Adjusted to 0.1 for focused response gener-
ation. This parameter controls the diversity of the
model’s responses by limiting the probability mass
considered for sampling the next token. Setting
it to 0.1 ensures that the model’s outputs are highly
focused and relevant to the given prompt, by
choosing the response from the top 10%.

BCI systems. Participants were also asked to provide
insights into their experiences with the BCI technology
and describe their level of fatigue prior to initiating the
study; their answers were recorded. Then, participants
were briefed about the procedure and the operation of
the speller. Following these explanations, participants en-
gaged in a preliminary test run to accustom themselves to
the speller, during which they freely composed a sentence
of their choice and got familiar to the use of ChatGPT
word recommendations. The threshold, gaze shift, and
time window settings were calibrated as necessary during
the familiarization. During this study, participants were
told to spell the words “BCI”, “KLEVE” then spelled
the pangram “THE_QUICK_BROWN_FOX_JUMPS_
OVER_THE_LAZY_DOG”. After successfully finishing
the spelling of the pangram, a unique sentence for each
participant was randomly chosen from a pool of sen-
tences that were inspired by news article titles.

After successfully completing the spelling session, par-
ticipants completed the post-questionnaire containing
questions regarding their impressions, opinions and their
experience towards the BCI systems. The questions re-
garding their experience composed of questions regard-
ing the flickering lights and how it affected them and
questions regarding the effect of the assistance from the
API and the dictionary hints functionality.

Spelling phases concluded automatically upon correct
word spelling. On average, each subject’s spelling ses-
sion (just spelling) lasted 20 to 25 minutes. Resulting ac-
curacy, ITR, and OCM values were recorded for all com-
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Figure 2: Individual spelling task’s accuracy, Information Transfer Rate (ITR) and their average values are presented in sequence. Par-
ticipants were assigned the following typing tasks:“BCI”, “KLEVE” “THE_QUICK_BROWN_FOX_JUMPS_OVER_THE_LAZY_
DOG” and a unique sentence for each participant.

pleted tasks.
Evaluation Measures of the BCI Performance: The

BCI system’s performance was evaluated using com-
monly used accuracy (Acc.), Information Transfer Rate
(ITR), and in form of the output characters per minute
(OCM).

Accuracy: The accuracy was calculated by dividing
the total number of correct selections (word comple-
tions were considered a single command), including user-
necessary corrections during speller execution, by the
overall commands classified. The resulting accuracy
value was displayed as a percentage value on the speller
interface.

ITR: The Information Transfer Rate (ITR) was calcu-
lated in bits per minute (bits/min) using the formula:

B = log2 N +P log2 P+(1−P) log2

[
1−P
N −1

]
, (2)

where:
B= information transferred in bits,
N= number of targets (for this study it is equal to 8),
P= classification accuracy.

To obtain the ITR in bits/min, B is multiplied by the
average classification time in minutes. For more in-
formation and tools to calculate ITR, visit our web-
page: https://bci-lab.hochschule-rhein-waal.

de/en/itr.html.
OCM: The Output Characters per Minute (OCM) mea-

sures typing speed by dividing the total number of output
characters by the time taken to type them. OCM accounts
for error correction time, as participants will require ad-
ditional time for corrections if mistakes are made.

Evaluation of the Questionnaire: A questionnaire was
designed to collect participant feedback, with sections
dedicated to both pre-experiment and post-experiment
questions. These sections are intended to be completed
respectively before and after the experiment, focusing on
assessing user experience and the improvements Chat-
GPT has made to user comfort. For further informa-
tion, refer to Table 2, which outlines these pre- and post-
experiment questions.

RESULTS

The results indicating BCI performance are shown in the
Fig. 2 and Fig. 4. Fig 2 illustrates the ITR and accu-
racy values achieved by participants, along with average
values per task. As tasks lengthened, average ITR de-
creased, and sentence accuracies were lower compared to
single-word tasks. Fig 4 displays the output characters
per minute (OCM) values and their averages per task, re-
vealing that the average OCM values are lower for the
first two tasks compared to the last two. This difference is
attributed to ChatGPT’s inability to predict these words,
likely due to their uncommon usage. However, Chat-
GPT notably enhanced participants’ performance in the
final two tasks compared to its performance in previous
tasks. This was especially noticeable in the pangram task,
where the average Output Characters per Minute (OCM)
increased dramatically, more than tripling from 5.72 char-
acters per minute to 17.72 characters per minute, having
in mind the total numbers of spelled characters.
Results from the questionnaires indicate that eight out of
13 participants felt more tired after the experiment, while
the rest reported no change in their fatigue levels. Four
out of 13 considered the flickering disturbing. Majority
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Table 2: Used Questionnaires.

Pre-Questionnaire

Have you ever used a BCI system?
If yes, please add some information about it.

Do you have a vision prescription?
If yes, are you wearing a reading aid now?

How tired do you feel right now?
1: not at all, 6: very much

How many hours did you sleep last night?

Post-Questionnaire

How tired do you feel right now?
1: not at all, 6: very much

Did you find the flickering disturbing?
1: not at all, 6: very much

Was it easy for you to concentrate on the boxes?
1: not at all, 6: very much

Did dictionary hints improve word completion?
1: not at all, 6: very much

Do you prefer the speller with or without ChatGPT aid?
With / Without

Would you repeat the experiment?
Yes / No / Maybe

Could you use the system daily?
Yes / No / Maybe

In your opinion, how long can the system be
used without breaks?

What was the unique sentence you had to type?

Do you think the BCI is a reliable control method?
Yes / No / Maybe

found concentrating on the boxes easy. Everyone pre-
ferred spelling with the aid of ChatGPT and 12 out of
13 found dictionary hints helpful. 12 out of 13 partici-
pants reported that they would like to take the experiment
again. On average, participants reported that they could
use the system for approx. 1.2 hours. Majority of the par-
ticipants found dictionary hints helpful. Findings related
to fatigue levels are presented in Figure 3. Eight partic-
ipants had no vision prescription, two had prescriptions
but opted not to use any corrective wear, and the remain-
der used their prescribed vision aids.

DISCUSSION

The general use of digital technologies owned by private
companies and located overseas raise many data protec-
tion, ethical, safety and security questions. E.g., it is
well known that OpenAI has recently removed accounts
of hacker groups from China, Russia, North Korea, and
Iran. The use of ChatGPT as a language model for the
BCI purposes is of course not comparable to this exam-
ple, but, on the other hand, texts produced by the target
group of users with disabilities, a most vulnerable group,
need much more privacy and require careful ethical con-
siderations.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

After

Before

How tired do you feel right now?

6:very much 5 4 3 2 1:not at all

Figure 3: Participant feedback on fatigue levels before and after
the experiment, measured on a scale from 1 (not fatigued at all)
to 6 (very much fatigued).

We encountered several challenges during the experi-
ments and development phases. One notable issue was
ChatGPT’s occasional difficulty in accurately following
instructions, leading to incorrect recommendations. For
instance, in some instances, instead of generating the
complete word as instructed, it would only output the
missing part of the word, despite clear instructions to
do the opposite. We tested many different instructions
to minimize this issue, but there might be of course a
better instruction set. Using a different ChatGPT ver-
sion will also likely require a completely different set of
queries. We fine-tuned several supplementary parame-
ters (see Tab. 1), to refine and control the API’s behav-
ior. We should note that although ChatGPT occasion-
ally failed to adhere strictly to instructions, it sometimes
succeeded in enhancing typing speed by suggesting cor-
rections and even predicting the next word before the
user began typing it. This behavior became evident to
us during some instances when participants were recit-
ing pangrams (see Fig. 4), where the OCM values were
the highest. Additionally, it demonstrated the ability to
switch languages seamlessly, without needing explicit
commands (for instance, recommending German words
upon typing "KLEVE"), while still managing to follow
instructions to a satisfactory extent. Another challenge
encountered was occasional unresponsiveness of the soft-
ware due to high network traffic impacting the ChatGPT,
leading to delays while awaiting responses. For best per-
formance it is recommended to have a good network con-
nection and the API status should be checked (https:
//status.openai.com/). Following an extended pe-
riod of time spent attempting to type the initial words
“BCI” and “KLEVE”, two participants opted to withdraw
from the experiment (therefore, in total 15 participants
were recruited for this study). Some factors that affected
the performance include the frequent need for words to
be in plural form or to have different endings, which re-
quired additional typing for ChatGPT to suggest the ap-
propriate word forms. Another common issue was partic-
ipants ignoring suggestions and opting for manual typing,
resulting in lower characters per minute. When compar-
ing our average OCM with [8], which used an n-gram
prediction model, a clear difference is observed. Specifi-
cally, for sentences aided by ChatGPT, the average OCM
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Figure 4: For each task, the Output Characters per Minute (OCM) are represented by bars, and the average values are illustrated with
lines. Participants were assigned the following typing tasks:“BCI”, “KLEVE” “THE_QUICK_BROWN_FOX_JUMPS_OVER_THE_
LAZY_DOG” and a unique sentence for each participant. The average values of the lines can be found above them.

was 8.74 cpm for unique sentences (see Fig. 2), while
the n-gram model study showed an average of 18.9 cpm
for their unique sentence tasks. This indicates that Chat-
GPT did perform worse compared to n-gram prediction
model, but these differences may also be described by
the ChatGPT communication delays.Future steps could
involve the implementation of another API that is specifi-
cally designed for auto-correction or integrating a locally
executed artificial-intelligence(AI) model tailored for au-
tomatic text correction, potentially addressing many of
the data protection concerns previously mentioned, and
also increasing the performance. Additionally, exploring
the power consumption and comparing it to the n-gram
model.

CONCLUSION

We successfully developed a cVEP based spelling inter-
face that incorporates the ChatGPT API to assist users
with spelling tasks. The integration of ChatGPT expands
the software’s functionality, potentially improving com-
munication efficiency. However, it’s noteworthy that its
assistance didn’t come close to that of an n-gram model
in terms of output characters per minute (OCM) in unique
sentence tasks. Despite this limitation, it simplifies future
development and reduces processing power requirements
for local machines, potentially enhancing the typing ex-
perience. Our study underscores the potential of BCI-AI
collaboration to enhance communication, autonomy, and
quality of life for individuals with physical disabilities,
though further research is needed.
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ABSTRACT: This study deals with the adoption of deep
learning and transfer learning in motor imagery-based
brain-computer interfaces to develop a robust system with
a zero-calibration approach. Deep neural networks would
be also sought to improve the classification accuracies of
these interfaces. However, these approaches are affected
by inherent variability in their performance, so that dom-
inating uncertainty sources appears crucial. To assess the
performance variability of deep neural networks, the ef-
fects of parameter initialisation and pre-processing were
studied. EEGNet and Sinc-EEGNet were used for this
purpose. The results highlight that network’s weight ini-
tialisation significantly affect the performance. For in-
stance, classification accuracy can improve from 67 % ±
3 % to 73 % ± 3 % by just changing the weight initial-
isation. Meanwhile, EEG pre-processing does not im-
prove the performance, thus it can be avoided to reduce
the computational effort. These results pave the way for
real-time application scenarios.

Keyword: brain-computer interface, motor imagery, deep
learning, transfer learning, uncertainty.

INTRODUCTION

A motor imagery-based Brain-Computer Interface (BCI)
measures voluntarily modulated brain signals generated
while imagining a movement [1]. Notably, non-invasive
and wearable BCIs based on motor imagery have been in-
vestigated more and more [2, 3]. These typically exploit
electroencephalographic (EEG) signals acquired through
electrodes placed on the scalp [4]. During the execution
of a motor imagery task, spectral power changes occur in
the µ (7 Hz to 13 Hz) and β (13 Hz to 30 Hz) bands of
the signals recorded over the sensorimotor brain area. In
particular, event-related desynchronisation and synchro-
nisation can be observed immediately before and after
motor imagery, respectively [5]. Therefore, the interface

attempts to detect the imagined movement through the
analysis of temporal, frequency, and spatial features of
the acquired signals.
Despite their potential in several fields [3, 6–8], motor
imagery-based BCIs still suffer from many limitations.
Firstly, the user must learn how to modulate sensorimo-
tor rhythms. Secondly, motor imagery signals are hin-
dered by noise, which can be either baseline neural ac-
tivity [9] or artefacts. In addition, a large amount of data
are needed for an effective training and testing of pro-
cessing pipelines, typically relying on machine learning
[10–12]. Hence, long calibration periods (20-30 minutes)
are needed before properly using the BCI system [10].
Moreover, EEG signals suffer from a significant inter-
and intra-subject variability [13]. This implies that cal-
ibration data should be acquired for each new user and
new session of the same user. The highlighted challenges
are exacerbated when the BCI system has to discriminate
as the number of motor imagery tasks increases [14].
In this framework, research has recently focused on
deep learning methods to improve motor imagery clas-
sification, especially in multi-class problems [12, 14,
15]. However, deep learning techniques require a bigger
amount of data with respect to classical machine learning
approaches [14–16].
EEG data are typically acquired in controlled experimen-
tal conditions, but the experimental burden make it dif-
ficult to obtain large and significant datasets in practice
[16]. Therefore, common strategies to compensate for the
lack of data are data augmentation and transfer learning
(TL) [10, 16, 17]. In particular, TL is based on training a
model by relying on the knowledge gained from another
pre-trained model. This approach has the advantage of
reducing training time [12, 16, 18] or neglecting it in a
"zero calibration" scenario, where the EEG data of a sub-
ject are classified by a model identified on independent
data from other subjects.
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Figure 1: Adopted deep neural network architectures for motor imagery EEG processing, namely EEGNet and Sinc-EEGNet. The only
difference between the two is in Block 1, which is a standard convolutional layer for EEGNet and a Sinc-layer for Sinc-EEGNet. The
remaining blocks are identical in both architectures.

The combination of TL methods with deep learning-
based processing pipelines appears promising in the BCI
context [14, 16, 19]. However, it is worth emphasis-
ing that deep neural networks performance is very sen-
sitive to the weight initialisation and data pre-processing:
the former affects the training process [20–22], while the
latter improves the quality of the data [12, 15, 23, 24].
Unfortunately, in context of TL applications for motor
imagery-based BCI, there is a lack of studies investigat-
ing those performance variations [15, 21, 22], especially
regarding the pre-processing [24].
This paper thus focuses on performance variability due
to weight initialisation and pre-processing in the context
of TL for motor-imagery BCI towards a zero-calibration
approach. Notably, EEGNet [25] and Sinc-EEGNet [26]
were investigated. As common pre-processing strategies
for EEG signals consist of the use of basic filtering tech-
niques, this paper focuses on the use of band-pass filter
[27, 28] and Laplacian filter [29].
Therefore, the remainder of the paper is organised as fol-
lows. Sec. MATERIALS AND METHOD describes EEG-
Net and Sinc-EEGNet architectures as well as the anal-
ysis conducted on them by involving TL. Sec. RESULTS
presents the exploited dataset and discusses inherent re-
sults.

MATERIALS AND METHODS

The purpose of this Section is to present the architec-
tures used in the study and the analyses performed on
them. It is worth remarking that all the analyses were per-
formed under zero calibration. The Section is structured
as follows: in Sec. Architectures, EEGNet [25] and Sinc-
EEGNet [26] are presented (Fig. 1), while the methodol-
ogy proposed for comparing different setting is detailed

in Sec. Experimental Setup.
Architectures: EEGNet is one of the most commonly

used deep learning architectures in BCI [25]. It is a
low-density convolutional neural network designed to ro-
bustly extract information from EEGs. It uses both depth-
wise and separable convolutions to extract EEG features.
The architecture is structured in four blocks. In the first
block, two sequential convolutional layers are used as a
temporal filter. In the second block, a depth-wise convo-
lutional layer is used. In EEG-specific applications, this
type of layer provides a direct way to learn the spatial fil-
ters for each temporal filter, allowing for efficient extrac-
tion. The third block uses a separable convolution, which
reduces the number of parameters to be fitted and explic-
itly decouples relationships within and between feature
maps. Finally, in the classification block, the features are
passed directly to a softmax function.
Interestingly, the architecture of EEGNet resembles the
steps of the well-known filter bank common spatial pat-
tern algorithm [30], adding flexibility thanks to the end-
to-end training procedure of deep learning models. The
strengths of this architecture with respects to general-
purpose convolutional neural networks include (i) re-
duced number of trainable parameters due to the use of
depthwise and separable convolutions, (ii) applicability
to low-dimensional data, and (iii) adaptability across dif-
ferent EEG datasets and tasks [25, 31, 32].
An EEGNet variant called Sinc-EEGNet was also re-
cently proposed [26]. It consists of merging EEGNet [25]
with Sinc-Net [33], which is characterised by a convolu-
tional layer having learnable sinc functions as filters. The
main strength of Sinc-Net consists in deriving a custom
filter bank, specifically tuned for the desired application
[33]. Sinc-EEGNet consists of an EEGNet architecture in
which the first convolutional layer has been replaced by
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a sinc-layer, resulting in a reduced number of trainable
parameters [26]. Different ways for combining the two
architectures were proposed in literature [34–36]. This
works focused on the version proposed in [26]. It faith-
fully reproduced the original version of EEGNet except
for the first block, in which the first traditional convo-
lutional layer was replaced by a sinc layer [33]. The
structures of the two architectures are jointly illustrated
in Fig. 1 to stress that the only difference resides in the
first block. Such architectures are both suitable for TL,
with the Sinc-EEGNet variant that is more prone to ex-
plainability [26].

Training hyperparameters Values
n. of training epochs 1000

learning rate 0.0001
batch size 32
optimizer Adam

early stopping patience 150
weight decay 0.02

Table 1: Training setup for the conducted analyses.

Experimental Setup: The analyses performed in this
work were based on EEGNet and Sinc-EEGNet with ei-
ther 4 or 32 filters in the first block. In particular, 4 is
the optimal number of filters for EEGNet [25] and 32
is the optimal number of filters for Sinc-EEGNet [26].
The name of the architecture followed by the number of
filters is used to refer to the specific architectures (e.g.
EEGNet-4 refers to EEGNet with 4 filters in the first con-
volutional layer). Training hyperparameters were opti-
mized in a previous work [26] and they are recalled for
clarity in Tab. 1. All the analyses were done in the zero
calibration TL scenario. Notably, the leave-one-subject-
out [37] technique was used for this purpose. Once the
dataset is selected, all samples relating to a single sub-
ject are removed and the model is then trained on the re-
maining samples. The performance of the model is then
evaluated on the independent samples from the left-out
subject. Such an offline analysis simulates the straight-
forward usage of a BCI on a previously unseen subject.
Two comparative analyses were carried on by using the
above mentioned architectures. The first one consisted
of analysing the models’ performances with different
weight initialisation. The He initialisation [38] was used
in this work. To this aim, the seed for pseudo-random
generation of initial parameters was firstly varied from
42 to 56 (15 values). Then, by exploiting the optimal
seed for each model, a second analysis step was carried
on. This consisted of analysing the models’ performance
as the EEG pre-processing strategy was varied. In par-
ticular, the following three cases were tested: (i) no pre-
processing, (ii) band-pass filter from 4 Hz to 40 Hz, and
(iii) Laplacian filter.
For all the analyses, the metric adopted to assess mod-
els’ performances was the mean classification accuracy
across subjects of the selected dataset and its associated
type A uncertainty, i.e. the standard deviation divided by
the square-root of the number of averaged accuracies.

Figure 2: Mean classification accuracies and associated uncer-
tainties obtained as a function of the seed (i.e. weight initialisa-
tion) for each architecture. The dotted line refers to the random
accuracy.

RESULTS

This Section presents the results of the analyses. In
details, Sec. Dataset describes the data and its usage,
Sec. Weight initialisation impact presents the results
of the first analysis step, and Sec. Pre-processing im-
pact presents the results associated with different pre-
processing techniques.

Dataset: the benchmark dataset BCI competition IV,
2a was used for the analyses [39]. It includes EEG sig-
nals from nine healthy subjects recorded using 22 wet
electrodes. The sampling rate was 250 Sa/s. The sub-
jects performed four motor imagery tasks during two ses-
sions recorded on two different days. As the present
study adopts an inter-subjective approach, the investiga-
tions considered the only first session. Moreover, two
classes of motor imagery were used, namely left and right
hand motor imagery. Finally, each trial was epoched from
2 s to 6 s, thus including the cue and the motor imagery
windows.

Weight initialisation impact: Fig. 2 shows the re-
sults obtained for each configuration (i.e., EEGNet-
4, EEGNet-32, Sinc-EEGNet-4, and Sinc-EEGNet-32)
when varying the seed. In particular, each point rep-
resents the mean classification accuracy across the nine
subjects of the dataset together with its type A uncer-
tainty. The dotted line shows the random accuracy. As
previously found [26], Sinc-EEGNet-32 is the most ef-
fective configuration architecture, even as the seed varies.
This result was confirmed by the Kruskal-Wallis test (see
Tab. 3).
Fig. 2 shows the results obtained for each configuration
(i.e., EEGNet-4, EEGNet-32, Sinc-EEGNet-4, and Sinc-
EEGNet-32) when varying the seed. In particular, each
point represents the mean classification accuracy across
the nine subjects of the dataset together with its type
A uncertainty. The dotted line shows the random accu-
racy. As previously found [26], Sinc-EEGNet-32 is the
most effective configuration architecture, even as the seed
varies. This result was confirmed by the Kruskal-Wallis
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Figure 3: For each configuration, the results obtained for each subject with seed variation are presented in box plots, each containing
the 15 associated classification accuracy values for each seed. The dotted line refers to the random accuracy.

min (%) max (%)
EEGNet-4 67 ± 4 72 ± 4
EEGNet-32 68 ± 4 73 ± 4
Sinc-EEGNet-4 67 ± 3 73 ± 3
Sinc-EEGNet-32 76 ± 3 81 ± 3

Table 2: Minimum and maximum classification accuracies
across seed values and for each configuration. Uncertainties
associated with these mean accuracies, estimated by using the
standard deviation of the mean, are reported too.

Group A Group B p-value

EEGNet-4 EEGNet-32 0.966
EEGNet-4 Sinc-EEGNet-4 0.955
EEGNet-4 Sinc-EEGNet-32 < 0.001

EEGNet-32 Sinc-EEGNet-4 0.100
EEGNet-32 Sinc-EEGNet-32 < 0.001

Sinc-EEGNet-4 Sinc-EEGNet-32 < 0.001

Table 3: Results of post-hoc analysis with Kruskal-Wallis test.

test as extensively reported in Tab. 3.
It is important to stress that, for a specific architecture,
the performance can vary significantly with different ini-
tialisation. Tab. 2 displays the minimum and maximum
results obtained as the seed varies for each configuration.
This analysis demonstrates the importance of testing the
model’s performance with different seeds before effec-
tively using them. For example, in [26] all analyses were
performed with a fixed seed of 42, which was found to be
the worst case for most of the configurations. However,
once the seed was fixed, the accuracy resulted repeatable.
Fig. 3 also shows the results obtained for different seeds,
subject by subject. Each box plot represents the 15
classification accuracies, while the dotted line indicates
the random classification accuracy reference. Although
results are consistent among different architectures for
some subjects, there is significant variability in others.
For instance, subject A09 displays several outliers when
EEGNet is employed, resulting in performance differ-
ences of over 15 % when just varying the seed. Next, it
can be noted that the zero calibration scenario changes
the discrimination between "good" and "bad" subjects

with respect to previous literature evidence [40]. For
instance, for the notoriously good subject A03, Sinc-
EEGNet model leads to a good performance but the EEG-
Net model does not. In other case, like for A08, perfor-
mance is relatively low with the proposed approaches,
while other literature approaches led to higher perfor-
mance. In this regard, it is important to recall that the
results were obtained by training the models on data from
other subjects, which could be associated with a non-
compatible probability distribution.

Pre-processing impact: Fig. 4 shows the variations in
models’ performance by varying the pre-processing for
each configuration. The networks were initialised with a
random seed (seed = 0), but it is worth noting that com-
patible results were obtained when the best seed from the
previous step was selected. Each box plot contains the
results obtained for the nine subjects. The dotted line
indicates the random classification accuracy. As usually
proposed, one type of pre-processing has been used for
each experiment [12]. This also facilitates online classifi-
cation in terms of computational effort. The models per-
formance resulted reduced by applying a band-pass filter.
This is in contrast to what is observed by using classi-
cal machine techniques, where filtering the data trial by
trial is often recommended [15, 24, 30]. The application
of the Laplacian filter, instead, led to compatible perfor-
mance than the "no pre-processing" case. Hence, this ev-
idence suggests that pre-processing can be avoided. It is
worth noting that EEGNet was originally proposed with
a band-pass filter [25], whereas Sinc-EEGNet was pro-
posed without any kind of pre-processing [26].

CONCLUSION

Deep learning has attracted more and more attention in
the processing of EEG data for motor imagery-based
BCIs, and transfer learning promises to improve classi-
fication accuracy while reducing the calibration burden.
This would disclose a very large use of such BCI tech-
nologies in practice. However, literature results are still
quite variegated and uncertainty sources are not domi-
nated yet.
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Figure 4: For each configuration, the box plots contains the results obtained using different pre-processing. The dotted line refers to
the random accuracy.

To make a further step towards the repeatability and
reproducibility of deep neural network results, a com-
parative analysis of the performance has been proposed
for two relevant networks, namely EEGNet and Sinc-
EEGNet, when varying fundamental settings. All the
analyses were carried out under a zero-calibration ap-
proach, hence exploiting the leave-one-subject-out tech-
nique on the benchmark dataset BCI competition IV, 2a
limited to two motor imagery tasks.
It was found that the performance varies significantly
with different weights initialisation. Then, by analysing
models’ performance for varying pre-processing strate-
gies, the performance of the deep network models was
unchanged by Laplacian filter and even reduced by band-
pass filtering. This finding is in contrast to what is ob-
served by using classical machine learning, where filter-
ing the data is recommended to improve classification re-
sults. This outcome suggests the use of pre-trained deep
architectures on a new subject without the need for any
preliminary data processing. This would reduce the pre-
processing time of the data and foster an online classifica-
tion. Overall, it is worth noting that Sinc-EEGNet-32 re-
sulted the most effective architecture in accordance with
previous studies.
This preliminary analysis emphasised the importance of
carefully investigating the variability of deep neural net-
works adopted in BCI. Nonetheless, future works will
deal with extending these analyses to more dataset to
collect more evidence. Moreover, an experimental plan
will be designed for a more comprehensive uncertainty
assessment as the main networks settings vary.
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ABSTRACT: Motor imagery (MI) is the most popular 

paradigm for brain-computer interfaces (BCIs) based on 

scalp electroencephalography (EEG), while this 

paradigm is missing for stereo-electroencephalography 

(sEEG)-based BCIs. Recently, the first public dataset of 

sEEG has become available for MI-based BCIs. 

However, the performance using traditional methods is 

still inferior. In this study, we employed some state-of-

the-art methods based on deep learning to improve the 

classification accuracy of MI for sEEG-based BCIs. Six 

different deep learning models were developed, which 

include Shallow ConvNet, DeepNet, ResNet20, 

conformer, vision transformer (ViT) and ViT with pre-

trained parameters. Among six deep learning models, we 

achieved an average accuracy of 0.83 in the hand 

open/closed binary classification task with the conformer 

model. Compared to the available work, our approach 

demonstrated a remarkable 16% increase in accuracy. 

 
INTRODUCTION 

 

Brain-computer interface (BCI) technology serves as a 

promising solution, enabling direct communication 

between the human brain and external devices or 

computer systems. In general, there are two categories of 

BCI technology, i.e., invasive and non-invasive. Non-

invasive BCI relies on capturing brain signals from the 

scalp in a user-friendly way. Invasive BCI, on the other 

hand, involves direct implantation into the brain for 

signal acquisition, which can result in intracranial signals 

with less noise interference and a higher spatial-temporal 

resolution. Examples of invasive BCIs include signals 

such as stereo-electroencephalography (sEEG) and 

electrocorticography (ECoG) [1], [2]. 

Current sEEG-based BCIs primarily focus on motor-

related decoding, such as various hand gestures, tongue 

movements, and foot movements [3], [4]. Combrisson et 

al demonstrated that motor execution, intention 

movement and rest status can be differentiated by 

decoding sEEG signals [5]. The authors discovered a 

relationship between phase, amplitude and PAC during 

the planning and execution phases of the goal-directed 

movement. Additionally, they were able to predict 

continuously changing grasp force through decoding 

sEEG signals [6].  

However, there have been relatively few studies on sEEG 

decoding of imagined movements using sEEG. Murphy 

et al. employed a Support Vector Machine (SVM) to 

classify the imagined force and rest status in two different 

grasp configurations, achieving an average accuracy of 

over 0.6, which was higher than the chance level [7]. 

When analysing imagined single feature modulation, the 

alpha band showed a higher modulation level compared 

to other bands. Ottenhoff et al. demonstrated that non-

motor areas contain sufficient information for motor 

decoding [8]. To avoid the effect of the motor area, they 

excluded all electrodes originating from the central 

sulcus and its adjacent area. They used a Riemannian 

decoder as the classifier, which achieved an average area 

under curve of 0.68 for imagined movements, with 

details extracted from the beta band. Individuals with 

movement disorders or speech impairments often rely on 

imagery movement as a means of communication. This 

work aims to enhance the accuracy of sEEG imagined 

movement decoding by using a deep learning model. 

Considering the capability of deep learning models to 

extract sophisticated features without manual feature 

extraction, we propose using the same to decode 

imagined movements. Furthermore, after the advent of 

the Transformer model, it was demonstrated to be highly 

effective in sequence-to-sequence tasks due to its 

attention mechanism. Recent research has shown 

promising results for deep learning models based on 

Transformers in reconstructing trajectories of imagined 

movement [9]. Therefore, the purpose of this study is to 

evaluate whether a deep learning model can enhance BCI 

performance for each participant. By utilizing algorithms 

that have previously been successful in executed 

movement decoding and regression tasks, they can 

improve the classification and recognition of imaginary 

motions with some optimizations. By comparing six 

different deep learning models with different structures, 

we have identified a more suitable structure for 

recognizing imaginary movements which will be 

valuable for future studies. In summary, our main 

contributions can be outlined as follows: 

1) We explore the application of deep learning 

methods on sEEG motor imagery datasets. 

2) We demonstrate improvements in recognition 

results compared to previous studies. 

The remainder of the article is organized as follows. In 

the Methods section, we introduce the deep learning 

models utilized in this study, along with details regarding 

the dataset and data preprocessing methods. The Result 

section presents the experimental findings of the models. 

Finally, we discuss the outcomes and summarize the 
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contributions of this article. 

 

METHODS 

 

To assess the performance of deep learning on MI-based 

BCIs using sEEG, this study implemented five different 

state-of-the-art (SOTA) models and an improved model 

with pre-trained weights. The results were then compared 

with those obtained from the Riemannian classifier in 

reference [8]. 

 

     Shallow ConvNet 

The ConvNet shown in Fig. 1 is a model that utilises 

temporal convolution and spatial filtering in its initial 

layers, similar to the bandpass phase in the filter bank 

common spatial pattern (FBCSP) [10]. The shallow 

ConvNet’s use of a larger kernel size in temporal 

convolution allows for a broader range of 

transformations. Additionally, incorporating multiple 

pooling regions per trial enables the learning of the 

temporal structure of band power changes, thereby 

enhancing classification. 

 

 
Figure 1: The model structure for shallow ConvNet [10]. 

 

     DeepNet  

The deepNet model utilized in this study featured a more 

intricate architecture with a substantial increase in the 

number of layers compared to the shallow model [10]. 

The architecture includes temporal convolution, spatial 

convolution, a fully connected layer and basic blocks 

which are used to extract the spatial features. Fig. 2 

shows the model structure with one basic block. A 

dropout rate of 0.5 was employed to improve the model’s 

robustness. The process of optimization involves 

experimenting with different quantities of basic blocks to 

determine the optimal configuration of the model. For 

this work, we utilized the deepNet model with two basic 

blocks. 
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Figure 2: The model structure for DeepNet model with 

changing depth. 

     ResNet20 

ResNet architectures have demonstrated success in 

various computer vision tasks due to their ability to 

mitigate the vanishing gradient problem and facilitate the 

training of exceptionally deep networks [11]. The ResNet 

model, with its residual connections, aims to leverage 

these advantages to enhance the performance of the 

imagining motion task. As the ResNet model has been 

previously used for emotion classification based on EEG 

image recognition, we incorporated a 20-layer Residual 

Network (ResNet) into our model, as shown in Fig. 3 [12].  
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Figure 3: The model structure for Resnet20. 

 

     Conformer 

The Conformer model  comprises three modules: a 

convolution module, a self-attention module, and a 

classifier module, as shown in Fig. 4 [13]. The 

convolution module uses both spatial and temporal 

convolutions to capture local spatial and temporal 

features of EEG signals. This is followed by an average 

pooling layer to reduce feature dimension and mitigate 

noise interference. The self-attention module utilizes 

multi-head attention mechanisms to capture global 

temporal dependencies of EEG features, complementing 

the local features learned by the convolution module. The 

classifier module includes two fully connected layers to 

output the probability of different EEG categories, such 

as motor imagery or emotion recognition tasks. 

 

 
Figure 4: The model structure for conformer [13]. 

 

     ViT (Vision Transformer) 

ViT is a hybrid model that combines a two-step 

convolution block with a transformer block, depicted in 

Fig. 5 [14]. The two-step convolution block is composed 

of two convolutional layers, one for the temporal 

dimension and one for the channel (spatial) dimension. 

This block generates patch embeddings that capture the 

frequency and spatial information of the sEEG data. The 

transformer block utilises the ViT architecture, which 

divides the input into patches and processes them as a 

sequence using self-attention and multi-layer perceptron. 

Additionally, it also captures global dependencies and 

patterns in the patch sequence. The final representation 

of the input is the hidden state of a special token. 
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The transformer block was pre-trained on the ImageNet 

dataset, which contains millions of natural images. This 

pre-training allows the model to utilise prior knowledge 

learned from image data and transfer it to the BCI field. 

 

 
Figure 5: The model structure for ViT [14]. 

 

     Dataset 

The sEEG dataset was collected from eight subjects 

performing two motor imagined tasks [8]. Specifically, 

subjects were instructed to imagine opening and closing 

their left and right hands, with each action lasting for 3 

seconds. Tab. 1 provides additional details about the 

dataset, including the distribution of contacts for each 

subject, as well as the number of electrodes in the left and 

right hemispheres and the presence of electrodes in the 

motor area. Each participant imagined 30 trials of 

opening and closed actions for each of their hand, with 

each action lasting 3 seconds. Consequently, each 

participant generated a total of 60 movements and 60 rest 

events throughout the entire experiment. 

 

Table 1: Electrode details of subjects after removing 

noisy and abnormal signals. Number of contacts also 

includes the electrodes which are located in the motor 

areas. 

Patient 

ID 

Motor 

Left 

Motor 

Right 

Contacts 

Left 

Contacts 

Right 

1 4 6 37 90 

2 0 0 103 24 

3 9 0 66 0 

4 0 0 54 0 

5 6 0 117 0 

6 0 0 63 63 

7 3 5 67 60 

8 0 3 40 75 

 

     Data processing 

For each subject, any abnormal signals, including flat 

signals and signals with abnormal amplitudes, were 

removed. In brief, the logarithm of the root mean square 

(LRMS) of each channel's signal was calculated. Then, 

we normalized these LRMS values, and calculated the 

corresponding p-values based on a normal distribution 

assumption. Channel with p-values less than or equal to 

0.05 were flagged as having abnormal amplitudes. For 

the channel where 50Hz frequency band power exceeded 

two times the interquartile range of the signal, it would 

be removed as well. The remaining signals underwent 

detrending, mean removal, and were subjected to a notch 

filter at 50Hz, 100Hz, 150Hz, and 200Hz to minimize 

interference from noise.  

Subsequently, the data was downsampled to 500Hz, and 

each experiment was segmented from -0.5s to 3s. The 

entire dataset is segmented by selecting fixed window 

size and stride size and stored as DataLoader formatted 

data for subsequent input into deep models for training 

and evaluation. By utilizing a fixed stride size, the 

optimal window size was identified among 200, 400, 

600, 800, 1000 and 1200. With the best window size, best 

stride size can be found among 20, 50, 100, 200, 300, 

400, 500. Based on the performance of all models, 800 

and 400 are selected as the window size and stride size 

respectively. In this work, a learning rate of 0.0001 was 

employed with a weight decay set to 0.0005. The 

optimizer used was Adadelta, and the cross-entropy loss 

was used for loss function calculation. To prevent data 

leakage from affecting model training and prediction, 

trials were classified before splitting. 60% of the trials 

were assigned to the training set, 20% to the validation 

set, and 20% to the test set. After determining these sets, 

each trial was further divided into one-second 

overlapping intervals to simulate data obtained during 

online experiments. The desktop computer that was used 

in the tests has the following configuration: 11th Gen 

Intel i9-11900 16 core CPU, 64 GB of RAM and a 

NVidia RTX 3080 GPU. 

 

RESULT 

 

The performance evaluation of six deep learning models 

was conducted to investigate their effectiveness in the 

task of imagining motion. Tab. 2 summarizes the 

performance metrics for each model, including the 

performance of the original Riemannian decoder. Our 

results indicate that shallow ConvNet and deep models 

have a relatively lower performance in imagining motion, 

with average test accuracy of 0.52 and 0.62, respectively, 

slightly above the chance level (0.5). Among the other 

deep learning models, ResNet, Conformer and ViT 

achieved performance levels of 0.75, 0.83 and 0.71, 

respectively, demonstrating superior effectiveness in the 

task. The ViT model with pre-trained parameters 

achieved an accuracy of 0.76, higher than the ViT model 

without pre-trained.  

Given that the experiment involves movements of both 

hands, the binary classification only focuses on 

distinguishing hand movements, neglecting the 

distinction between left and right hands. Hence, Fig. 6 

presents the classification performance of four gestures 

across six models, considering both the left- and right-

hand movements. Additionally, Fig. 7 illustrates the 

classification performance of the Conformer model on 

the dataset from Subject 8 (S8). 
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Table 2: Comparison of classification accuracy results among 6 deep learning mode. The chance level for the 

classification is 0.5. ViT_p model refers to ViT model with pretrained data. 

Subject Shallow ConvNet DeepNet ResNet20 Conformer ViT ViT_p Ref [8] 

S1 0.45 0.55 0.7 1.0 0.8 0.8 0.82 

S2 0.4 0.5 0.7 0.8 0.5 0.8 0.7 

S3 0.7 0.7 0.8 0.7 0.7 0.7 0.64 

S4 0.35 0.65 0.8 0.9 0.6 0.8 0.64 

S5 0.4 0.6 0.8 0.8 0.8 0.7 0.58 

S6 0.65 0.65 0.8 0.7 0.7 0.8 0.65 

S7 0.7 0.6 0.7 0.9 0.7 0.8 0.61 

S8 0.5 0.7 0.7 0.8 0.9 0.7 0.7 

Avg 0.52 0.62 0.75 0.83 0.71 0.76 0.67 

 

 
Figure 6: Comparison of 4-gestures classification 

accuracy results among 6 deep learning mode with red 

dot line represents for the chance level of 0.25. 

 

 

 
Figure 7: Confusion matrix for 4 gestures classification 

on S8 with conformer model. Label 0 and label 1 

represents the close and open status for left hand 

respectively. Label 2 and label 3 represents the close and 

open status for right hand respectively. 

 

 

DISCUSSION 

 

For the 2-gesture classification, it suggests the need for 

sophisticated feature extraction capabilities, which 

transformer architectures appear to provide, especially 

when no electrode is located in the motor area. And the 

result from the ViT with pre-trained data suggests that 

leveraging pre-training significantly enhances the ViT 

model's performance in the imagining motion task. 

Therefore, these results have displayed potential 

advantages of deep learning models in the imagery 

motion task. By comparing our findings to previous 

results, it can be suggested that given limited sEEG 

dataset, not only the model expressiveness can be 

improved through data augmentation on dataset itself but 

also through pretraining on other datasets, such as 

ImageNet for an EEG regression task [15]. This approach 

proves effective in improving the classification 

performance of MI tasks. While transformer-based 

models may not perform as well as models relying solely 

on convolutional modules for four-class classification, 

this can possibly be explained by the electrode 

distribution. For example, some participants only have 

electrode implantation on single side of the brain and 

only some have a limited number of electrodes presented 

in the motor cortex. Due to contralateral control, the left-

hand movements are dominated by the right hemisphere 

of the brain. As shown in Fig. 7, more than half of the 

left-hand closing gestures are incorrectly recognized as 

right-hand closing gestures. 

While our study makes valuable contributions, it is 

essential to acknowledge certain limitations. Due to the 

limited availability of public sEEG motor imagery 

datasets, our research focused solely on evaluating the 

model's performance in classifying two types of gestures 

within a single dataset. Future investigations should aim 

for a more comprehensive exploration of task specificity, 

dataset characteristics, and the impact of model 

hyperparameters on the ultimate performance. This 

would allow the exploration of various deep learning 

architectures, particularly the advantages and limitations 

of transformer-based models in motor imagery tasks. 

However, with the varied performance of different 
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models, especially the enhanced accuracy with pre-

trained ViT, we provide more opportunities for further 

explorations and optimisation. 

 

CONCLUSION 

 

In this work, we evaluate the performance of sEEG-based 

imagery motion classification by using multiple deep 

learning models. By comparing six different deep 

learning models, we used the conformer model to achieve 

an accuracy of 0.83 in the binary classification of 

imagined movements, which is 0.16 higher than the 

performance of the previous work. This work provides a 

reference for using deep learning models in BCI imagery 

movements with sEEG signals. 
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ABSTRACT: Brain-computer interfaces (BCIs) can
help people with locked-in syndrome to communicate.
While continuous speech decoding can be used in
everyday communication, navigating a computer menu
or interacting with external devices may be easier and
more reliable using a small set of distinct command
keywords.
In this preliminary study, two able-bodied epilepsy
patients, temporarily implanted with high-density
electrocorticography (ECoG) electrodes, spoke 14
potential keywords out loud in Dutch. With optimized
Support Vector Machines (SVMs), the maximal
decoding accuracy reached was a median of 93.3% for
50 repetitions per word (practical chance level 9.6%).
We also identified that a minimum of 30 repetitions was
needed to achieve this result, and determined that the
most relevant electrodes for decoding were on the
ventral sensorimotor cortex, close to the central sulcus.

INTRODUCTION

People with a neurodegenerative disease, such as
amyotrophic lateral sclerosis (ALS), can over time lose
their ability to communicate verbally. Such a loss of
communication has a direct negative impact on their
perceived quality of life [1]. Fortunately, this effect can
be assuaged: using communication devices has been
shown to have a positive impact on quality of life and
mood in dysarthric people with ALS [2].
Recently, there have been advancements in
large-vocabulary decoding using brain-computer
interfaces (BCIs) [3,4]. However, these large language
models have not yet been shown to work in a home-use
scenario. For daily communication or for controlling the
home environment, a more robust and stable solution
may be preferred. A very robust solution, using high
gamma signals for one-dimensional cursor control, has
been utilized successfully over several years [5].
However, such one-dimensional control limits the
agency of the user. The next step allowing for more
complex computer control could be the use of a limited
set of keywords. For example, using six-keyword
navigation with commands “up”, “down”, “left”,
“right”, “enter” and “back” decoded from ECoG
signals has recently demonstrated reliable control of
computer menus and environment at high accuracy
(median accuracy of 90.59%) over several months [6].
However, scaling up the individual word decoding from

ECoG has proven rather challenging due to inter-subject
variability, limited amounts of data and inherent
limitations of decoding from brain signals. Further
recent studies of keyword decoding from brain signals
achieved 47.1% accuracy decoding 50 words in a
paralyzed person with anarthria [7], 74.1% accuracy in a
person with vocal paralysis [8], and 92%–100%
decoding accuracy of 12 words in able-bodied
participants [9].
One very relevant question both for researchers working
with limited time and for BCI patients wanting to utilize
their assistive devices with as little delay as possible is
how much data is necessary to reach an acceptable
decoding accuracy. Current decoding attempts are often
limited by the small amounts of data researchers are
able to collect with transient ECoG recordings.
Therefore, determining the minimum amount of data
necessary for satisfying decoding accuracies is one of
our main goals.
In this study, we acquired high-density ECoG data from
two subjects who spoke 14 Dutch words out loud, with
S1 repeating each word 50 times. Using this data, we
investigated three specific questions: 1. What is the
highest accuracy of decoding 14 individual words? 2.
How much data is needed to reach this accuracy, and 3.
Which cortical areas are relevant for decoding?
We found that an accuracy of 93.3% (chance level
9.6%) could be reached with optimized SVMs with only
30 repetitions per word and that the electrodes
contributing to the decoding performance the most were
located on the postcentral gyrus of the ventral
sensorimotor cortex, close to the central sulcus.

MATERIALS AND METHODS

Two human subjects S1 and S2 (1 male, 1 female, 26
and 46 years old, respectively) with medication-resistant
epilepsy were implanted with 32-electrode high density
(HD-)ECoG grids with platinum-iridium electrodes, a 4
mm inter-electrode distance and 1 mm exposed
diameter. The grids were located on the left hemisphere
covering the ventral sensorimotor cortex. Participant S1
had a previous tissue resection in the left temporal
cortex. The study was approved by the Medical Ethical
Committee of the University Medical Center Utrecht in
accordance with the Declaration of Helsinki (2013). The
subjects gave written informed consent to participate in
research tasks.
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The 14 words were candidates for navigational words in
Dutch, namely (in alphabetical order): "beneden"
(down), "boven" (up), "kiezen" (choose), "links" (left),
"noord" (north), "omhoog" (upwards), "omlaag"
(downwards), "oost" (east), "rechts" (right), "selecteer"
(select), "terug" (back), "verwijder" (“remove”),
"west" (west) and "zuid" (south). During each repetition
of the task, the 14 words and “-” (for rest trials, referred
to as “rest” hereafter) were shown 5 times each in
random order and read aloud by the participant. For S1,
the task was repeated 10 times over the course of four
days, resulting in a total number of 10*5 = 50
repetitions per word. For S2, one run was recorded,
resulting in 5 repetitions of each word. HD-ECoG data
was recorded using a Micromed system at 2048 Hz.
Simultaneously, microphone data was recorded to
determine the voice onset times. Voice onsets were
defined manually as the first moment during which
speech could be audibly perceived. In S1, one trial of
the word “terug” was excluded from further analysis,
since the subject did not say it during this trial.
Data pre-processing consisted of notch filtering of line
noise (50 Hz) and its harmonics, common average
re-referencing, and high frequency band (HFB)
component extraction (70-170 Hz) using a Morlet
wavelet decomposition in 1 Hz frequency bins,
implemented via MNE-Python [10]. The
high-frequency components were then averaged across
frequencies, log-transformed and downsampled to 100
Hz.
The HFB signals of each run were “re-calibrated”, i.e.
normalized individually per run using the mean and
standard deviation of a 2-second rest period prior to the
beginning of the task. The signals were then
concatenated across runs and split into trials of 0 to 1
second after each voice onset time. Extending the trial
length and including signals from before the voice
onset, namely from 0.5 seconds before to 2 seconds
after, did not change the accuracy results and was
therefore not further pursued.
Due to the limited sample size, theoretical chance levels
and practical chance levels differ [11]. Therefore, we
used a binomial cumulative distribution to derive
statistical significance thresholds for the obtained
accuracies [11]. The practical chance levels were set at
p < 10−3 for the given sample sizes.
One repetition of every word was used as validation,
and another as part of the test set, resulting in as many
folds as there were repetitions per word. The flattened
trial data (vectorized electrodes x time-points) was used
to train an optimized Support Vector Machine (SVM)
with a linear kernel in a one-vs-one approach with
leave-one-group-out nested cross-validation. In the
inner loop, the SVM regularization parameter was
optimized using an automatic hyperparameter selection
library Optuna [12], while the outer loop was necessary
for cross-validating the classification results.
Since SVMs do not inherently provide probability
estimates, the class membership probability estimates
for the SVM were calculated with Scikit-learn [13],

which uses Platt scaling and five-fold cross-validation.
The electrode weights were determined by the L2 norm
of the respective coefficients in the trained SVM. As per
calculation of the L2 norm, we summed over the time
dimension. The electrodes with the largest absolute
classifier weights have the biggest impact on the
classification.

RESULTS

Accuracy and Misclassified Trials
In S1, when trained and tested using all 50 repetitions
per word or rest trial, the SVM reached a median
accuracy of 93.3 ± 6.7% across folds. For S2 with 5
repetitions, a median accuracy of 73.3 ± 6.7% across
folds was reached. The practical chance levels were
9.6% and 17.3% for S1 and S2, respectively - thus, both
results were well above chance.
Not performing the re-calibration, which normalized the
HFB data per run for S1, did not change the decoding
accuracy.

Figure 1: Normalized confusion matrix for S1 for 14
words and rest, with 50 repetitions for every word but
“terug” (49 repetitions).

Figure 2: Normalized confusion matrix for S2 for 14
words and rest, with 5 repetitions for every word.
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As can be seen in Figures 1 and 2, the prediction
accuracy varied between different words. Although for
S1, the highest accuracy was a 3-syllable word,
“selecteer”, there was no significant correlation between
decoding accuracy and length of the words (Pearson
coefficient of 0.16, p-value 0.90).
To see how uncertain the trained SVM for S1 was about
its predictions, we visualized the calculated class
probabilities for each trial, sorted by words (Figure 3).
For trials classified correctly (in gray), the probability
often peaked at the near-maximum for the target class
and was quite low for all non-target classes. For the
misclassified trials (in red), there were often several
probability peaks that included the target class.
Quantitatively, across all misclassified trials, the target
class was assigned the second or third highest
probability in 78% of cases, showing that even in trials
with incorrect predictions, correct patterns were still
being picked up by the SVM. In total, in 98.3% of trials,
the correct class was among the top three predictions.

Figure 3: The probability distributions of the SVM
predictions for each word and rest-trials for S1. The
target words are on the y axis, the predicted words on
the x axis. Correctly classified trials are plotted in gray,
the misclassified trials are plotted in red, and the
incorrect predictions are marked with red crosses.

Amount of Data Necessary
How much data is necessary in order to reach an
acceptable decoding accuracy? For S1, 50 repetitions
per word were recorded across 10 runs over the course
of several days (5 word repetitions per run). When
trained with the data from successive runs cumulatively,
the decoding accuracy increased (Figure 4). This
analysis uses mean accuracy values instead of medians
since the mean provides a smoother statistic over the
number of repetitions.
A mean accuracy of 68.0 ± 9.8% for S1 and 66.6 ±
11.2% for S2 was reached after the first run. A similar

result was achieved for the calculations based on
median values.
Notably for S1, even after the decoding accuracy
reached the ceiling, the variance in performance
decreased as more trials were added, suggesting a
further stabilization of the decoding performance.

Figure 4: Cumulative accuracy for SVMs as a function
of number of word repetitions.

Electrodes Relevant for Decoding
Not all of the 32 electrodes in each grid contributed to
the decoding performance in the same proportion.
In Figures 5 and 6, the positions of the grids for S1 and
S2 on the left hemisphere are shown. In addition, we
visualize the normalized absolute SVM weights to
highlight electrodes most relevant for the decoding
performance. For both subjects, the most relevant
electrodes were located close to the central sulcus on the
ventral sensorimotor cortex, an area associated with the
cortical control of articulation [14]. Importantly,
electrodes with highest SVM weights were located on
the postcentral gyrus.

Figure 5: The electrode grid of S1, with darker colors
corresponding to higher normalized SVM weights of
the electrode. The central sulcus is highlighted in
yellow.
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Figure 6: The electrode grid of S2, with darker colors
corresponding to higher normalized SVM weights of
the electrode. The central sulcus is highlighted in
yellow.

DISCUSSION

In this study, we set out to answer three questions
concerning decoding of individual words from
HD-ECoG, namely: what is the highest decoding
accuracy, what is the minimal amount of data necessary
and what are the locations of the most informative
electrodes.
We were able to reach a median accuracy of 93.3% for
decoding 14 words with 50 repetitions per word. Upon
closer inspection, we saw that in over 98% of all trials,
the correct words were among the top three SVM
predictions. This result could be used to improve
predictive performance even further, for example by
giving the user a list of top-ranking alternatives or
combining top predictions with statistics of previous use
to enable quick corrections by the user in case of
misclassification.
For controlling external devices, an accuracy of
command identification of at least 90% has been
determined as the acceptable threshold in a survey
among ALS-patients [15]. This threshold was reached
after 6 runs, corresponding to 30 repetitions per word,
see Figure 4.
For both subjects, we obtained a mean accuracy of over
66% with only five repetitions per word, which is well
above chance. While this accuracy does not yet
approach the threshold desired for long-term use, a
model trained on only five repetitions could already be
used to provide immediate feedback to the user while
continuing to update the decoder in the background. In
our experience, participants find tasks with feedback
more engaging, leading to a higher quantity of data
collection. The concrete influence of such early
feedback on both motivation and performance could be
further investigated in a future work.
The most relevant electrodes in both subjects were
located on the dorsal part of the ventral sensorimotor
cortex, with the highest weights found closest to the
central sulcus. This mirrors the results of another

ECoG-study for keyword decoding [6]. Interestingly,
most contributing electrodes seemed to be located on
the postcentral gyrus – the somatosensory area of the
brain. Since our subjects were able-bodied people, one
might attribute this result to the sensory feedback from
mouth movements. However, motor decoding from the
somatosensory cortex has previously been shown both
for amputees [16] and people with paralysis due to ALS
[17], suggesting that there is information about
movement in somatosensory areas even in the absence
of direct sensory feedback. This is in line with work on
an efference copy of voluntary movements in the
somatosensory cortex [18, 19]. It remains to be seen
whether comparable decoding performance from the
sensorimotor cortex can be achieved in locked-in
individuals using a BCI.
One important difference between our study subjects
and future locked-in users is that the voice onset times
will not be available as ground truth for training the
classifiers. As an alternative, different methods of
extracting activity onset directly from brain signals have
already been proposed and used [4,6].

CONCLUSION

In the present study, we achieved a high accuracy of
decoding 14 individual words from HD-ECoG brain
activity recorded from the ventral sensorimotor cortex
of two able-bodied subjects. For a subject with 50
repetitions per word, 30 repetitions per word were
sufficient to reach a decoding accuracy of over 90%,
and the most informative electrodes for both patients
were located in the ventral postcentral gyrus.
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ABSTRACT: Augmented reality (AR) allows users to
display additional digital information about their phys-
ical environment. We present an interactive AR study,
in which participants manipulated a Rubik’s cube which
served as a physical referent for presented digital infor-
mation showing the current status of the cube. In 30%
of the instances, the presented information did not match
its status. We recorded the electroencephalographic data
of 19 participants to study their responses to incongru-
ent stimuli and assessed if they could be classified on a
single-trial level. We found that the processing of incon-
gruent data in AR elicits both N400 and P600 compo-
nents. Further, we could classify them in 15 out of 19
participants with accuracies above chance. These results
contribute to the design of brain-computer interfaces, as
the decoding of such correlates could inform the system
about the current mental context of the user.

INTRODUCTION

Augmented reality (AR) allows the integration of virtual
content into the real world [1]. With the increasing num-
ber of head-mounted displays (HMDs) and other personal
electronic devices that can create AR visualizations, the
technology has become a widely available tool with man-
ifold applications [2]. One goal of situated AR visual-
izations is to communicate information about physical
objects to users or assist them in specific tasks [3]. To
give two practical examples, this information could guide
users through procedural tasks via visual cues [4] or sup-
port them, e.g., in their purchasing decisions by display-
ing relevant details directly next to products [5].
Efforts have been made to study users’ electroencephalo-
graphic (EEG) responses to the presentation of data, e.g.,
showing anomalous information. A particularly promi-
nent component of the event-related potential (ERP)
caused by incongruent stimuli is the N400. It is a negative
deflection relative to congruent stimuli that peaks approx-
imately 400 ms after stimulus onset in centro-parietal ar-
eas of the scalp [6]. The N400 component has been found

in response to numerous types of conflicting stimuli, such
as incongruent words in sentences [7], incongruent solu-
tions of simple mathematical problems, [8], pictures [9],
or gestures [10]. Hence, Kutas et al. [7] described the
N400 as “an electrophysiological sign of the ‘reprocess-
ing’ of semantically anomalous information”. This is rel-
evant in the context of brain-computer interfaces (BCIs)
[11], as decoding incongruent stimuli could allow sys-
tems to infer information about the user’s mental context
without making it explicit.
However, only a few studies attempted to decode seman-
tic incongruencies on a single-trial level. Geuze et al.
[12] found an N400 effect in a word association task us-
ing related and unrelated word pairs and could decode
them with accuracies between 54% and 67%. In a similar
task, Dijkstra et al. [13] studied the responses to multiple
consecutive word stimuli after presenting a target word.
They reported similar neural responses and achieved a
classification accuracy of 59.5%. Both works used an
L2 regularized logistic regression algorithm for classifi-
cation. Finally, Tanaka et al. [14] presented semantically
correct and incorrect sentences and found both N400 and
P600 components. Using a multilayer perceptron, they
could correctly identify them in up to 59.5% of the in-
stances. Interested readers are referred to [15] for an
overview of N400 for BCIs.
All three above-mentioned papers explored EEG corre-
lates of semantic anomalies in language processing. In
this work, we studied the neural responses to incongruent
information in an AR scenario. In particular, we investi-
gated the following two research questions (RQs):
RQ1) Can we find EEG responses to the presentation of
incongruent information using AR?
RQ2) Can we use these responses to discriminate congru-
ent and incongruent information on a single-trial level?
For this, we designed an interactive paradigm, in which
users were visually instructed on how to manipulate a
physical Rubik’s cube and presented situated information
related to the cube, which could either match the users’
expectations or not.
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MATERIALS AND METHODS

Participants: Twenty healthy volunteers (20 to 45
years old, 28.2 years on average, 14 male and six fe-
male) participated in the study. The study was conducted
in accordance with the Declaration of Helsinki (1975)
and approved by the ethics committee of the University
of South Australia. All participants gave their written
consent before conducting the experiment and received
vouchers worth 40 AUD as compensation.

AR HMD: AR visualizations were presented using a
HoloLens 2 (Microsoft, Redmond, WA, USA) and de-
signed in Unity 2021.1.31. We used the HMD to record
gaze signals at 30 Hz during the data presentations.

EEG recordings: EEG signals were acquired using a
BrainAmp amplifier (Brain Products, Munich, Germany)
at 500 Hz. We positioned 32 electrodes according to the
international 10-10 system at AFz, F3, F1, Fz, F2, F4,
FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz,
C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3,
P1, Pz, P2, and P4. Reference and ground electrodes
were placed at Fpz and the right mastoid, respectively.
EEG signals, gaze data, and markers from the experimen-
tal paradigm were synchronized utilizing the lab stream-
ing layer (LSL) protocol2.

Experimental setup: Participants sat at a table such that
they could easily reach a tricolor (red, blue, white) Ru-
bik’s cube (see Fig. 1). A camera (Canon EOS 200D II,
Tokyo, Japan) pointed at the cube to detect the nine col-
ors of its top surface (camera not visible in Fig. 1). Color
detection was performed based on the Qbr Rubik’s cube
solver3, implemented in Python and OpenCV.

Figure 1: Experimental setup. A participant wearing an EEG
cap and an HMD. The tricolor Rubik’s cube is in its starting
position.

Experimental procedure: First, participants took an
Ishihara test4 to assess their color vision [16]. After suc-
cessful completion, participants performed one training
run consisting of ten trials to familiarize themselves with
the experimental paradigm. The following experiment
consisted of 6 runs of 33 trials (23 congruent, 10 incon-

1https://unity.com
2https://github.com/sccn/labstreaminglayer
3https://github.com/kkoomen/qbr
4https://www.colorblindnesstest.org/ishihara-test/

gruent). The order of the trials was randomized. Between
runs, the participants could take short breaks of usually
one to five minutes to avoid fatigue.

Experimental paradigm: The timings of one trial of the
paradigm are shown in Fig. 2. Each trial started with the
presentation of one or two visual cues indicating which
one or two cube manipulations the participants should
perform. Manipulations included rotating a specific row
or column of the cube, or the whole cube in a given di-
rection. Depending on the number of manipulations, the
visual cues were presented for 1 or 2 seconds (s). There-
after, participants were instructed to take the cube, per-
form the indicated manipulations, and return it to its start-
ing position. At this point, participants should count the
number of red, blue, and white squares on the cube’s top
surface. For example, in Fig. 2, after performing the ma-
nipulations the count would be three red, two blue, and
four white squares. The participants indicated that they
knew the correct count by pressing a physical button on
the keyboard. This triggered the presentation of a fixation
cross and a frame on the left side of the cube. After 1.3 to
1.7 s (randomized), a congruent or incongruent count was
presented inside the frame for .75 s following the order
red-blue-white. Incongruent answers deviated strongly
from congruent answers, i.e., 1-1-1 or 0-8-0, which are
impossible counts per se. Participants were instructed to
fixate their gaze on the cross and to avoid gaze shifts dur-
ing the data presentation as much as possible. Each data
presentation was followed by a break of .75 s before a
new trial was introduced with a countdown from two to
zero (1.5 s).

EEG data preprocessing: The data processing and
analysis were performed offline using Matlab R2022a
(The MathWorks, MA, USA) incorporating the EEGLAB
toolbox (v2022.0) [17].
EEG data were filtered between 1 and 25 Hz using a zero-
lag Butterworth filter of order 4. We applied two notch fil-
ters at 30 Hz and 50 Hz to suppress noise from the HMD
and the power line (zero-lag, Butterworth, second order).
After resampling the signals to 125 Hz, we applied the
extended Infomax algorithm [18] to perform independent
component analysis (ICA) [19]. Based on visual inspec-
tion, we rejected components corresponding to eye move-
ments or blinks. Thereafter, we segmented the data into
epochs of 1.5 s ([-.5, 1] s relative to the stimulus onset).
We rejected contaminated epochs through visual inspec-
tion and based on amplitude (± 35 µV), kurtosis, and
joint probability (both 5 times the standard deviation)
[20], similar to [21]. To avoid the influence of possible
residual eye-related artifacts, we rejected trials with ex-
cessive eye movements. For that, we computed the vari-
ance of the eye movements of each trial and removed
epochs with a z-score outside ± 3. On average, we re-
jected 9% of the trials per participant.
One participant could not identify the incongruent stimuli
and was subsequently removed from the analysis.

Classification: We performed stimulus-locked classifi-
cation with two classes (congruent and incongruent). As
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Figure 2: Timing of one trial. Each trial started with the presentation of one or two visual cues (green arrow) (1). In the given example, the participant is instructed to rotate the right column 

upwards. After performing the manipulation (2), participants returned the cube to its starting position and counted the colors on the top surface. In the example, the count is 3 red, 2 blue, and 3 

white. As soon as the participants knew the correct count, they pressed a physical button (3). Thereafter, a fixation cross and a frame for the following data presentation were presented for 1.3 to 

1.7 s (4). Finally, (5) a correct (top) or incorrect (bottom) count was presented for .75 s. 

Figure 2: Timing of one trial. (1) Each trial started with the presentation of one or two visual cues (green arrow). In the given example,
the participant was instructed to rotate the right column upwards. (2) After performing the manipulation, participants returned the cube
to its starting position and counted the colors on the top surface. In the example, the count is 3 red, 2 blue, and 4 white. (3) As soon
as the participants knew the correct count, they pressed a physical button. (4) Next, a fixation cross and a frame for the following data
presentation were presented for 1.3 to 1.7 s. (5) Finally, a correct (top) or incorrect (bottom) count was presented for .75 s.

features, for each channel, we computed the average am-
plitude of overlapping windows of 152 ms in steps of
32 ms, where the first window started at 252 ms af-
ter the stimulus and the last window after 844 ms (e.g.,
252-404 ms, 284-436 ms, etc.) [22]. These features were
z-scored and used to train a shrinkage linear discriminant
analysis (sLDA) classifier [23]. For every participant, we
trained and tested the personalized classifier ten times in
a 5-fold cross-validation approach on balanced datasets
by choosing a random sample of congruent trials for each
of the ten iterations.
We report the true positive rates (TPR) as the fraction of
incongruent trials that were correctly classified. Anal-
ogously, the true negative rate (TNR) is the fraction of
correctly classified congruent trials. The accuracy is the
mean of the TPR and the TNR. TPR, TNR, and accuracy
are calculated from the average of the 50 folds.

Statistics: We performed Wilcoxon signed-rank tests
for a sample-wise comparison of the ERPs following con-
gruent and incongruent stimuli (Fig. 3). To correct for
multiple comparisons, we applied the false discovery rate
(FDR) procedure (α = .05). To assess if the classifica-
tion accuracies are significantly above chance [24], we
computed the 95% confidence interval of the chance level
using a cumulative binomial distribution [25]. We calcu-
lated the significance level (SL) for each participant indi-
vidually (Tab. 1).

RESULTS

Figure 3 shows the grand average EEG results, i.e., the
mean of the 19 participant averages. The grand average
ERPs at CPz are depicted for both classes (mean ± 2
times the standard error of the mean (SEM)) as well as
their difference computed by subtracting congruent from
incongruent (Fig. 3a). This difference signal has a neg-
ative peak with a maximum amplitude of -2.53 µV at
t = .47 s and a positive peak with a maximum of

1.82 µV at t = .68 s, relative to the stimulus onset.
Congruent and incongruent responses differ significantly
(p < .05) in the intervals [.40, .52] s, [.64, .72] s, and
[.76, .77] s. For the first two, we show the mean topo-
graphical distributions of the intervals, revealing mainly
centro-parietal responses (Fig. 3b).
Table 1 summarizes the classification accuracies for each
participant, including the TPR, TNR, and SL. On aver-
age, 63.3% (TPR = 62.3%, TNR = 64.3%) of the trials
were correctly classified, which exceeds the average SL
by 5.3%. In 15 out of 19 participants (79%), incongru-
ent stimuli could be distinguished from congruent ones
above chance, five achieved accuracies of 70% or higher.

Table 1: Classification results. Participants with accuracies
exceeding the SL are marked with ‘*’.

Participant
TPR TNR Accuracy SL

% % % %

P1* 76.0 76.8 76.4 58.0
P2 51.6 56.8 54.2 57.6
P3* 59.6 60.6 60.1 57.6
P4* 60.0 56.1 58.1 58.0
P5 47.6 52.4 50.0 58.2
P6* 63.8 64.4 64.1 58.0
P7 55.3 54.1 54.7 58.0
P8* 56.5 60.3 58.4 57.5
P9* 67.1 72.9 70.0 58.2
P10* 59.1 61.8 60.4 57.6
P11* 57.5 63.9 60.7 58.3
P12* 73.5 77.3 75.4 58.3
P13 57.5 55.3 56.4 58.0
P14* 63.3 63.6 63.5 58.0
P15* 72.5 70.3 71.4 58.0
P16* 59.8 61.8 60.8 58.2
P17* 63.4 63.8 63.6 58.0
P18* 56.8 61.6 59.2 57.8
P19* 82.4 88.0 85.2 58.2

Average 62.3 64.3 63.3 58.0
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Figure 3: Grand average EEG results. (a) ERPs at CPz following the presentation of congruent (blue) and incongruent (orange) stimuli, and their difference incongruent-congruent (dashed black). 

Shaded areas indicate +/- 2*SEM. Significant differences (p < .05) are highlighted in gray. (b) Average topographical distributions of the significant intervals [.40, .52] s (top row) and [.64, .72] s 

(bottom row) for incongruent (left column), congruent (middle column) and their difference (right column).

Figure 3: Grand average EEG results. (a) ERPs at CPz following the presentation of congruent (blue) and incongruent (orange)
stimuli, and their difference incongruent − congruent (dashed black). Shaded areas indicate ± 2 · SEM. Significant differences
(p < .05) are highlighted in gray. (b) Average topographical distributions of the significant intervals [.40, .52] s (top row) and [.64, .72]
s (bottom row) for incongruent (left column), congruent (middle column), and their difference (right column).

DISCUSSION

We developed an interactive AR task incorporating situ-
ated information related to a Rubik’s cube. In situ data
presentation is an application area for AR technologies
that offers complementary information about the user’s
physical environment [26]. The information is usually
derived from available data and may not match the ex-
pectations of the users, given their mental context in their
current situations.

Subsequently, to answer RQ1, we studied the partici-
pants’ neurophysiological responses following incongru-
ent stimuli and found centro-parietal N400 and P600 ef-
fects. The N400 has previously been linked to the pro-
cessing of incongruent information. Since the current ex-
periment yielded very similar patterns, we conclude that
participants perceived the erroneous counts as incongru-
ent with their semantic context, i.e., the Rubik’s cube. For
instance, both the N400 and P600 components have been
reported for arithmetic incongruencies, found after sim-
ple multiplication errors, e.g., "7 ·8 = 54" [8]. Judged by
its scalp distribution, the authors hypothesized that the
positive peak belongs to the family of P300 effects and
subsequently reflects the participants’ surprise following
improbable stimuli, which is likely to be the case in our
work too. Similarities in time course, topography, and
polarity have already been suggested earlier [27]. This
aligns with Coulsen et al. [28], whose experiments re-
vealed the sensitivity of the P600 amplitude to the fre-
quency of improbable stimuli, similar to the P3b, a sub-
component of the P300. The increased latency was ex-
plained by differences in the stimulus complexity [29].
However, counterevidence was provided when different
neural generators were found to play crucial roles in the
modulation of the P600 and the P300 [30]. The debate on
whether the P600 is a form of a P3b is still ongoing, we
refer to Leckey and Federmeier [31] for an overview.

For RQ2, we studied the feasibility of distinguishing
congruent and incongruent responses on a single-trial
basis. Using personalized classifiers, i.e., trained and
tested with data of the same participant, we could de-
code incongruent stimuli with accuracies between 50%
and 85%. Given the relevance of the N400 and P600
in neuroscience research, these components have not yet
been granted much attention in the BCI community. To
our best knowledge, only three works have attempted
time-locked classification of incongruent information us-
ing linguistic stimuli, achieving accuracies of nearly 60%
[12–14]. Our classification results are in a similar range,
exceeding their reported accuracies slightly by about 4%.
However, we provide first evidence that decoding the pro-
cessing of incongruent in situ information in AR is feasi-
ble.

CONCLUSION

In this work, we demonstrated that neural correlates of
the processing of incongruent information can be mea-
sured in AR scenarios. These correlates are consistent
with the existing literature that focuses on monitor-based
tasks. Further, we showed that the classification of incon-
gruent trials on a single-trial level above chance is possi-
ble for most participants. This can be relevant for the
design of BCIs since these correlates could allow to infer
active mental concepts of users.
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ABSTRACT: Motor imagery brain-computer interfaces 

(BCIs) face challenges in practical application, notably 

in decoder training. Traditionally, decoders are trained in 

a supervised manner. This approach requires labeled data 

and restricts users to predefined actions during the 

training period. Moreover, regular decoder updates are 

needed. To address these issues, the auto-adaptive BCI 

(aBCI) infers training labels directly from brain signals 

using a neural response (NR) decoder, eliminating the 

need for supervised sessions. This study investigates the 

performance and replicability of the aBCI and explores 

labeling strategies using electrocorticography data from 

three spinal cord injured patients across diverse 

paradigms. Results demonstrate that aBCI can be used to 

significantly increase decoding performance above 

chance level in all three patients. Performance depended 

on patients and labeling strategy. The labeling strategy, 

focusing on correct neural responses (CNR), 

demonstrates significantly improved performance 

compared to correct/error neural responses (CENR) 

labeling strategy. Despite limitations of pseudo-online 

simulation, our findings underscore the aBCI's promise 

in advancing BCI technology. 

 

INTRODUCTION 

 

Motor brain computer interfaces (BCIs) come with a 

number of recognized limitations that hinder their 

practical use in everyday situations. Many of these 

limitations relate to the need for training of BCI decoders. 

Traditionally, motor control (MC) decoders in BCIs are 

trained using supervised learning. In such a framework, 

access to the neural data along with the labels is required. 

Labels are derived from the user’s intention. 

Consequently, during MC decoder training, BCI users 

are constrained to perform predefined actions under the 

supervision of researchers or the dedicated environment 

[1] [2]. In addition, the MC decoder must be regularly 

updated due to the degradation of performance over time. 

Facing these limitations, the use of neural responses (NR) 

to BCI task performance for unsupervised updating of 

BCI decoders has been explored [3] [4] [5]. The majority 

of studies use event-related NR, namely event-locked 

error-related potentials, e.g. [6]. Most studies focus on 

NR in brain areas outside the sensorimotor cortex using 

electroencephalography (EEG)-based BCIs [7]. A 

limited number of studies investigates NR within the 

sensorimotor cortex. Invasive electrocorticography 

(ECoG)-based [8] [9] or microelectrodes array-based 

BCIs [10] reveal detectable NR following discrete 

erroneous events in a sensorimotor cortex. 

 

Continuous in time NR (in contrast to event-locked NR) 

is explored by Rouanne et al. [11] [12], demonstrating 

detectability of such NR in the sensorimotor cortex using 

ECoG recording device. For complex BCI auto-

adaptation, access to continuous in time NR is powerful 

as it would provide performance assessments at each 

time point, whereas event-locked NR would have to 

extrapolate performance around measured points. On the 

bases of such continuous in time NR, an auto-adaptive 

BCI (aBCI) framework with the objective of training the 

MC decoder during the free use of ECoG-based motor 

BCI is proposed [11] [12]. The core idea is to infer the 

training labels directly from the brain signals rather than 

from the environment, thus removing the necessity for 

training sessions. Within this aBCI framework, the user 

can update the MC decoder at will, enabling greater user 

autonomy in determining their actions. This first proof-

of-concept study demonstrated in offline simulation that 

aBCI can be used to train in an unsupervised manner a 

MC decoder from scratch, eliminating the necessity for 

precise label assignment. However, to evaluate the aBCI 

framework, Rouanne et al. worked on data from a single 

patient. In order to build a robust and replicable aBCI 

framework, several questions are still to be addressed. In 

this paper, we explore the replicability of the aBCI 

framework [11] [12] with three patients. In addition, we 
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compared two aBCI labeling strategies to improve aBCI 

performance, and make the aBCI framework more 

versatile and compatible across different paradigms. 

 

MATERIALS AND METHODS 

 

     Experimental recordings: To investigate the 

replicability, we tested the aBCI on datasets from three 

patients implanted with two ECoG-recording 

WIMAGINE implants, one on each hemisphere, on the 

sensorimotor cortex [1] [13]. Two of these patients, 

referred as BCI001 and BCI002, are involved in the “BCI 

and Tetraplegia” clinical trial at CEA/Clinatec 

(NCT02550522). Data for the third patient (BSI001) was 

collected in the STIMO-BSI clinical trial 

(NCT04632290). Both clinical trials focus on recording 

and decoding motor intentions with different effectors 

respectively. Consequently, experimental paradigms 

slightly differed between BCI and BSI patients. 

 

For the BCI001 and BCI002 patients, we used the dataset 

collected during the Runner paradigm experiments 

(Fig. 1A). Runner represents a binary classification test 

where the BCI user controls a human avatar to either 

walk or stand still. BCI001 dataset spans a period of 5 

months, from September 2019 to January 2020, 

comprising 13 half-day sessions for a total of 142 

minutes of recordings. BCI002 dataset spans a period of 

12 months, from November 2019 to October 2020, 

comprising 34 half-day sessions for a total of 653 

minutes of recordings. For the BSI001 patient, we used a 

dataset collected during the Gait paradigm (Fig. 1B). In 

this paradigm, the patient used the BCI system to 

modulate electrical stimulation of the spinal cord 

enabling walking. A 3-class decoder (left/right hip 

flexion and rest) was used to decode the intention to 

perform each independent step and modulate the 

amplitude of stimulation according to the decoder 

prediction [13]. This dataset spans a period of 4 months, 

from September 2022 to January 2023, comprising 19 

sessions for a total of 518 minutes of recordings. 

 

 

During real time BCI experiments, time–frequency 

information was extracted for each of the 64 electrodes 

used [1] from each 1s-long epoch (spaced by 0.1s, 90% 

overlap), using continuous complex wavelet transform 

(Morlet) with 15 central frequencies 10 Hz apart from 10 

to 150 Hz for patients BCI001 and BCI002. 0.2s-long 

epoch (spaced by 0.1s, 50% overlap) with 24 central 

frequencies (2, 5:5:100, 125, 150, 200 Hz) were used in 

BSI001 patient sessions. Recursive Exponentially 

Weighted Markov-Switching multi-Linear Model (REW 

MSLM) was employed as MC decoder as in [2]. 

 

The aBCI framework have been evaluated across these 

three labeled datasets, shortly noted Runner BCI001, 

Runner BCI002 and Gait BSI001. 

 

     aBCI framework description: The overview of the 

aBCI framework [12] is given in Fig. 2. In the aBCI 

framework, the labels for the MC decoder training are not 

acquired through traditional training paradigm employed 

in supervised learning. Instead, they are estimated thanks 

to the auto-adaptive module. This module consists in a 

neural response (NR) decoder, also known as task 

performance decoder or satisfaction decoder. Its role is to 

interpret from the input features how well the effector’s 

actions match the user’s intentions. In other words, the 

NR decoder predicts from the brain signals whether the 

user is satisfied or dissatisfied with the action decoded by 

the MC decoder. The NR decoder is trained in a 

supervised manner. The MC decoder is then 

trained / updated in real time in an unsupervised manner, 

relying on the labels estimated by the NR decoder during 

the free use of the BCI. 

 

In the current system, the same feature space described 

above is used by both decoders, which are trained using 

the REW MSLM algorithm [2]. 

 

     aBCI labeling strategy: The process of automatic 

labeling of the training data for the MC decoder update 

is not a straightforward task. Indeed, the estimated labels 

are derived from the output of the NR decoder, noted 

𝑦̂𝑁𝑅, which have not a perfect accuracy. Therefore, the 

derived labels cannot be expected to be perfect either. To 

limit this imperfection, the epochs with high level of 

uncertainty on the task performance estimation from the 

NR decoder are not labeled, and thus, discarded from the 

MC decoder update dataset. In this study, we compare 

two discarding strategies, resulted in two labeling 

strategies. 

 

The first labeling strategy (Fig. 3A), proposed in [12], 

considers correct and error neural responses (CENR). It 

relies on the use of two thresholds, thcorr and therr, for 

the classification of epochs respectively as correct and 

erroneous. Epochs are considered correct when 

𝑦̂𝑁𝑅 > thcorr  and erroneous when 𝑦̂𝑁𝑅 < therr . Epochs 

for which therr < 𝑦̂𝑁𝑅 < thcorr are unlabeled and so not 

included in the MC training / update dataset. To evaluate 

the thresholds, the output of the NR decoder 𝑦̂𝑁𝑅  is 

modeled as a mixture of two Gaussians, 𝒩(μcorr, σcorr
2 ) 

for the correct class and 𝒩(μerr, σerr
2 ) for the error class. 

The parameters of the two Gaussians are estimated on the 

training data for each class. Then, the thresholds are 

defined as thcorr = μcorr + 𝑎 σcorr  and 

therr = μerr −  𝑎 σerr , where 𝑎  is a hyper-parameter to 

balance accuracy and data inclusion. Similarly to [12], 

  
Figure 1: Experimental paradigms of datasets included 

to the study. (A) Runner paradigm, binary classification 

of human avatar to either walk or stand still. (B) Gait 

paradigm, 3-class classification of left/right hip flexion 

and resting to control spinal cord stimulator. 

(A) 

 
(B) 
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we set 𝑎 = 1 in this study. Finally, the fixed thresholds 

are used during the update of the MC decoder. When the 

epoch is estimated correct, the true MC label is the most 

probable MC output, while when it is estimated 

erroneous, the true MC label is the second most probable 

MC output. 

 

The second labeling strategy (Fig. 3B), that we propose, 

is more restrictive and focuses exclusively on correct 

neural responses (CNR). It relies on the use of only one 

threshold for the classification of epochs as correct when 

𝑦̂𝑁𝑅 > thcorr and unlabeled when 𝑦̂𝑁𝑅 < thcorr. The rest 

of the conditions and parameters employed with the CNR 

labeling strategy were consistent with those from the 

CENR one. We have headed for the CNR labeling 

strategy to make the aBCI framework more generic and 

adapted to multiclass classification, regression problems 

or combinations, where wrong decoded motor actions are 

very hard to relabel. 

 

     Pseudo-online simulation: We conducted a pseudo-

online simulation to evaluate the performance of the 

aBCI framework, aiming to replicate conditions closely 

resembling online uses. To achieve this, we divided each 

dataset into three non-overlapped splits containing 

approximately the same number of recording sessions. 

The first split was dedicated to train the NR decoder. The 

second split was allocated to train the MC decoder from 

scratch within the aBCI framework, i.e. without 

knowledge of the real labels for the MC decoder. The 

third split was reserved for evaluating the performance of 

the newly trained MC decoder. The training data for the 

NR decoder were labeled according to the decoded MC 

outputs obtained during the online experiment: an epoch 

with a decoded MC output being consistent with the 

desired MC output was labeled correct, while it was 

labeled error when inconsistent. We chose to train the 

MC decoders from scratch, meaning that no prior training 

was required, using solely the aBCI framework to 

highlight its capacity in training MC decoders. 

 

In a typical online use, the neural data corresponding to 

the second split would be gathered during free use of the 

BCI. However, in our simulation study, we utilized pre-

existing labeled datasets. The MC decoder training 

process was emulated in a pseudo-online fashion, where 

neural data was iteratively fed into the algorithm to 

mimic online acquisition. Labels are continuously 

estimated and training of the MC decoder were 

conducted using the aBCI framework every fifteen 

seconds, corresponding to the acquisition of labeled data. 

Notably, the newly updated MC decoder did not 

influence BCI actions, as the datasets were pre-recorded. 

 

     Performance evaluation: Cross-validation with the 

three splits by permuting their roles, which leads to six 

performance measures, was used to evaluate aBCI 

performances. For the Runner paradigm (binary 

classification), the performance was evaluated using the 

AUC of the ROC curve of the MC decoder. For the Gait 

paradigm (3-class classification), the performance was 

evaluated using a generalized version of the AUC of the 

ROC curve for multi-class classification [14]. The final 

performance of the aBCI for each paradigm was assessed 

with the mean AUC of the ROC curves over each test 

split. For a comparative evaluation, the MC decoder 

trained from scratch using the aBCI framework was 

compared to MC decoders trained in two other ways. The  

Figure 2: Diagram of the aBCI framework. An extra auto-adaptive module is added to the classic BCI framework, 

which is usually composed of a (motor) control (MC) decoder and an updater. The aBCI module includes a neural 

response (NR) decoder aiming at detecting continuous in time NRs to task performance and estimating the labels to 

update the MC decoder, instead of using the ones supplied by the researcher’s supervision or the dedicated 

environment as it is commonly done in a classic BCI framework. 
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first  one  was  a  supervised  training  of  the  MC  decoder 

using the true labels of each epoch from the recorded 

dataset. The second one was a MC decoder trained 

following the aBCI framework, but with random outputs 

of the NR decoder (chance level). For each dataset, the 

three training strategies were tested against each other 

through two-sided Wilcoxon Mann Whitney tests. 

 

RESULTS 

 

Fig. 4 shows the mean AUC of the ROC curves for the 

MC decoding of the three compared training methods 

(random aBCI training / aBCI training / supervised 

training), across the three examined datasets (Runner 

BCI001 / Runner BCI002 / Gait BSI001) and using both 

labeling strategies (CENR / CNR). 

 

     Replicability study across patients: First, we could 

remark performance variations among patients, 

especially looking at the supervised trainings with mean 

AUC of the ROC going from 0.650 to 0.894. The aBCI 

decoding performances follow a similar trend. Second, 

we could also note that the aBCI decoding performances 

consistently exceed chance levels (50%, whatever the 

number of classes) and almost always in a significant 

manner (p-values < 0.05), except for the CENR labeling 

strategy on the Runner BCI002 (p-value > 0.05). 

 

     Comparison of labeling strategies: First, one should 

note that the aBCI decoding performances for the CENR 

labeling strategy always fall short of the gold standard 

performances achieved through supervised training, 

sometimes very significantly as for the Runner BSI001 

and the Gait BSI001 (p-values < 0.01). Second, a direct 

comparison of aBCI decoding performances using both 

labeling strategies reveals a discernible improvement 

when exclusively using correct neural responses. 

Notably, this enhancement is particularly pronounced in 

the case of the Runner BCI001 dataset, with the AUC of 

the ROC increasing from 0.637 to 0.819. Although not 

displayed on the figures, a p-value of 0.0022 for this 

dataset means significance when comparing the results of 

both labeling strategies through a two-sided Wilcoxon 

Mann Whitney test. No significant difference were 

observed when comparing CENR and CNR for the other 

datasets. Third, CENR presents high AUC variabilities in 

terms of standard deviation compared to low AUC 

variabilities for CNR. 

 

DISCUSSION 

 

     Replicability across patients: We showed over three 

patients that the aBCI control decoding performances are 

significantly higher than the random auto-adaptive 

trainings. This result demonstrates the potential of the 

aBCI framework for replication across different patients 

and its capacity to train / update MC decoders. aBCI 

performance is lower than supervised BCI, with essential 

cross-patient differences observed for the CENR labeling 

strategy (-29%, -12% and -15%, respectively). However, 

the cross-patient results are rather consistent for the CNR 

labeling strategy with smaller differences, down to -8%, 

-0.3% and -9% for the three patients respectively. 

 

     Improvements using CNR labeling strategy: The CNR 

labeling approach resulted in an improvement of 29%, 

13%, and 8% in AUC compared to the CENR labeling 

approach, also reducing drastically AUC variabilities as 

indicated by lower standard deviations. These 

improvements brought aBCI decoding performance 

closer to supervised ones in terms of mean AUC and 

standard deviation of AUC. Several reasons may explain  

(A)     CENR labeling strategy 

 

(B)     CNR labeling strategy 

 

  

Figure 3: Two aBCI labeling strategies, one (A) focusing on correct/error neural responses (CENR) and the other (B) 

on correct neural responses (CNR). These histogram examples show the outputs of the neural response (NR) decoder, 

𝑦̂𝑁𝑅, on one training fold (top) and its associated test set (bottom). The thresholds for the inclusion of epochs in the 

training set of the aBCI-based motor control (MC) decoder are based on a tradeoff parameter 𝑎 and the means and 

standard deviations of the Gaussians fitted to the correct and error class (for the CENR labeling strategy) or only the 

correct class (for the CNR labeling strategy) on the training set. 
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this performance improvement.  First, the distribution of

class ‘correct’ is possibly better evaluated as it is better 

presented in the recordings. Therefore, the model of class 

‘correct’ may have better generalization ability compared 

to the model of class ‘error’. Second, in case of detection 

of class ‘error’ by the NR decoder, supplementary 

relabeling is needed: the second most probable class is 

used as label in the CENR labeling strategy. In case of 

more than two classes in the MC decoder, it may increase 

the probability of erroneous labeling. 

 

In addition, we suggest that using the CNR labeling 

strategy, the aBCI becomes more versatile and 

compatible across different paradigms, including 

classification, regression problems and combinations. On 

the other hand, the CNR labeling strategy is more 

selective and keeps less data for the model update 

compared to the CENR labeling strategy. It may result in 

a slower MC decoder adaptation. 

 

     Limitations and perspectives: By modifying the aBCI 

labeling strategy to the only use of correct neural 

responses, we get rid of the uncertainty on relabeling 

error ones but we also reduce the quantity of data used 

for updating the MC decoder. This reduction of data 

could be dramatic for cases with lots of error neural 

responses. The labeling strategies should be further 

explored. 

 

According to the results of this study, on simple BCI 

paradigms with three patients, the aBCI framework 

seems highly promising. However, it remains essential to 

validate this approach on more complex datasets, 

featuring additional degrees of freedom and a 

combination of discrete and continuous tasks, through 

classification and regression. Such paradigms will be 

tested with our aBCI framework in the near future. 

 

A significant limitation of the study lays in the pseudo-

online simulation rather than actual online use. While 

pseudo-online simulation studies allow for greater 

parameter exploration, they may not fully capture the 

variability of online experiments, even if it was designed 

to closely mimic the online use. In the near future, we 

will test the online version of the proposed aBCI 

framework. 

 

On another hand, a more in-depth cross-paradigm and 

cross-patient study of features extraction should be 

conducted in terms of frequency and spatial 

characterization, for NR decoders. Indeed, the NR 

decoder is of critical importance in the aBCI framework 

and features extraction have not been optimized yet. For 

now, extracted features are the same as for the MC 

decoder. Therefore, studying other feature extraction 

methods would allow better interpretation of the aBCI 

performance results. 

 

CONCLUSION 

 

The aBCI framework addresses critical limitations 

associated with traditional BCIs, especially the need for 
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Figure 4: Motor control (MC) decoding performances for three MC training methods, on three datasets (as columns) 

and using two aBCI labeling strategies (as rows). Performances are given in terms of mean AUC of the ROC curves 

of the MC decoders trained using the aBCI (in red) compared to MC decoders trained using supervised learning (in 

yellow) or using random outputs of the neural response decoders (in gray). CENR stands for correct/error neural 

response and CNR stands for correct neural response. Stars denote significant differences between training methods 

(two-sided Wilcoxon Mann Whitney test, * p-value < 0.05, ** p-value < 0.01). 
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supervised retraining sessions by allowing MC decoders 

to be updated during the free use of the BCI. This 

innovation not only offers greater user autonomy but also 

the potential for more natural and intuitive control. 

 

In the continuation of the initial work of Rouanne et 

al. [12], the present paper provides valuable insights into 

the replicability and performance of the aBCI 

framework. Our investigation into using data from 

multiple patients and diverse paradigms with varying 

number of degrees of freedom, demonstrates the 

framework's adaptability. However, the variation of 

performance observed across patients and paradigms, 

highlights the need for further research to enhance the 

framework's robustness and generalizability. 

 

Furthermore, we delved into refining the labeling 

strategy for training the MC decoder, emphasizing the 

use of correct neural responses exclusively. This 

approach yielded significant improvements in aBCI 

control decoding performance, showcasing the potential 

of this labeling strategy for future development. 

 

In summary, the aBCI framework represents a promising 

avenue for advancing BCI technology, offering the 

potential for greater user autonomy and more natural 

control. Current and further exploration of the 

framework's capabilities and optimization strategies will 

undoubtedly contribute to its continued development for 

real-world applicability. 
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ABSTRACT: Decades of research thoroughly established
various neural correlates of processing discrete errors,
i.e., events that may be classified as either correct or
wrong. However, despite many successful demonstra-
tions of brain-computer interfaces (BCIs) utilizing these
discrete correlates, a range of everyday tasks (e.g., car
driving) requires fine-tuned feedback control that al-
ready transgresses such coarse distinction. Following
up on recent research in the field of continuous erro-
neous feedback processing, we propose the regression
of continuous feedback-target deviations from the elec-
troencephalogram (EEG). Within thirty pre-recorded ses-
sions of data in ten participants, employing a 2D target-
tracking task that offered online feedback, we thus uti-
lized a convolutional neural network to infer ongoing
feedback-target deviations and correct the feedback’s po-
sition accordingly in an offline evaluation. The presented
correction approach significantly improved correlations
between feedback and target kinematics - a first indica-
tion that continuous error-related cortical activity can be
utilized in BCIs as well.

INTRODUCTION

Over the last thirty years, a large body of research ex-
tensively documented the cortical response to discrete er-
roneous stimuli [1, 2]. In this context, the error-related
negativity (ERN) and error positivity (Pe) – frontocen-
tral and centroparietal deflections in the scalp potentials,
respectively – quickly emerged as two key markers for
error processing and error awareness [3, 4]. Arising ap-
proximately 100ms (ERN) and 300-500ms (Pe) after an
erroneous stimulus, the sequence of these two potentials
was termed the error-related potential (ErrP) and met in-
creasing interest as a control signal within the field of
brain-computer interfaces (BCIs) [5–7]. However, while
various approaches emerged to utilize the ErrP as a con-
trol signal - seeking, e.g., to prevent the execution of er-
roneous commands altogether, or recalibrate the interface
in response to errors [5] - a number of issues surrounding
the discrete correlates to error processing persist.
For one, the neurophysiology of the ErrP proved notably
sensitive to a range of factors. Advanced age [8], low-
ered levels of attention [9], or reduced attributed signifi-
cance to an error [10] reportedly alter the measured po-

tentials, leading to corresponding difficulties in BCI oper-
ation [11]. Furthermore – and arguably the biggest limita-
tion to utilizing ErrPs for BCI applications – the presence
or absence of the ErrP intrinsically encodes binary infor-
mation only. However, various tasks such as car driving
or moving a cursor on-screen demand minute adjustments
depending on the perceived discrepancy between inten-
tion and outcome rather than a coarse distinction into er-
ror or no error.
While some literature already attempted an expansion to
continuous error processing within BCIs, this predom-
inantly encompassed the presentation of discrete stim-
uli in a continuous paradigm [12–15]. Recent work by
our group first reported the occurrence of cortical modu-
lations with continuous feedback-target deviations [16],
however, the usefulness of this neural substrate within
BCIs remains to be established.
In this work, we thus aimed to close the gap in knowl-
edge and answer two major questions. First, is it pos-
sible to regress target-feedback discrepancies from neu-
ral markers of continuous erroneous feedback process-
ing within the electroencephalogram (EEG)? And sec-
ond, can these inferences be used to subsequently correct
the initial feedback and alleviate the feedback-target mis-
match? Using thirty sessions of previously recorded data
of an online target-tracking task with different feedback
conditions, we trained a convolutional neural network
(CNN) to infer the discrepancy (error signal) between
feedback and target position in two spatial dimensions
from the EEG. We then adjusted the recorded feedback
trajectories as decoded and presented during the online
measurements by the inferred error signal to obtain cor-
rected feedback trajectories. Compared to the recorded
feedback trajectories, correlations with the target trajec-
tories significantly improved for the corrected feedback
trajectories, indicating notable merit to using neural sig-
natures of continuous erroneous feedback processing for
automated correction of interface-related errors within a
BCI.

MATERIALS AND METHODS

Dataset: The prerecorded dataset [17] consisted of
the 60-channel EEG (10-10 electrode system) and 4-
channel electrooculogram (EOG) of ten able-bodied,

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-014

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

74



a

(1,200)
temporal

(43,1)
spatial

(1,8)
temporal

(92,2)
dense

Δxpred

Δypred

in
pu

t (
64

,1
,4

3,
30

0)

2028 
(46)

1518 
(37)

1514 
(40)

d Trials per CV fold

Network architecturec

E
E

G

Delayed feedback

run = 12 trials (21s each)

Slight error Severe errorb

target recorded feedback

21s

error pred. error

target corrected feedback

Figure 1: (a) Experimental setup. Participants attempted cursor-like movement of their strapped dominant arm to trace a moving object on-screen (snake, white) with
real-time feedback (red dot). (b) Feedback conditions and approach. Target and feedback kinematic (grey box), as well as EEG, were previously recorded within the three
different feedback conditions Delayed feedback, Slight error, and Severe error. Distances in x and y between recorded target and feedback trajectories are calculated as error
signals (red box) and predicted from a convolutional neural network (c). Corrected feedback trajectories are obtained from initial feedback and decoded error signals (red
framed box). (d) Average number and standard deviation of available trials per cross-validation fold for each participant and session (training: 4 folds, validation: 1 fold,
testing: 1 fold). Exemplary trajectories for the correction approach in (b) are taken from session 1 of participant P2 (y coordinate, Slight error condition).

right-handed participants in total of 30 sessions, sam-
pled at 200Hz. The dataset was chosen due to previously
unveiled cortical modulations with the ongoing target-
feedback deviations [16], indeed suggesting error-related
brain activity elicited within the employed task.

Paradigm: During each session of this previously
recorded online study, participants attempted cursor-like
movement as if wielding a computer mouse to track a
moving target on-screen (snake). An encasing around
their dominant arm (see Fig.1a) limited overt movement.
Utilizing a combination of partial least squares regres-
sion and an unscented Kalman filter (PLSUKF) [18], es-
timates for the snake’s trajectory were decoded in real
time from the EEG and delivered within different feed-
back conditions in the form of a feedback dot on-screen.
Each participant underwent three separate sessions of
measurements within the time span of a week. The mul-
tiple sessions (each employing the identical paradigm
conditions) were initially designed to evaluate session-
to-session differences in performance; as no significant
changes were found in the initial work [17], we disre-
garded the session information and pooled all data to a
total of 30 sessions for the current work.

Feedback conditions: Each session commenced with
four calibration runs, followed by three 50% and three
100% EEG-decoded online feedback runs (see Fig.1b).
One run comprised 12 trials of 23s length, respectively,
during which participants tracked the moving snake on-
screen. The first and last second in each run were omit-
ted from further analysis to further minimize movement-

related artifacts as the participants became aware of the
start and end of each run, leading to 21s of data per run.
Within the calibration runs, EEG data to fit the PLSUKF
online-decoder was recorded; as such, no EEG-decoded
trajectory information was available yet to display as
feedback. To accustom the participants to the addi-
tional visual input of the feedback dot from the begin-
ning nonetheless, fake feedback in the form of a slightly
delayed snake was presented during the calibration runs.
As feedback dot and snake largely coincided through-
out the calibration runs, leading to minimal discrepancy
between target and feedback, calibration runs are hence-
forth termed Delayed feedback.
After fitting the PLSUKF decoder with the calibra-
tion data, the measurement proceeded with online EEG-
decoded feedback. To transition smoothly between fake
and online-decoded feedback, three intermediate 50%
EEG-decoded feedback runs were introduced, wherein
the arithmetic mean between actual (snake) and EEG-
decoded target positions was displayed. Due to the EEG-
decoded information, the discrepancy between target and
feedback increased notably with respect to the calibration
runs. We thus term the 50% EEG-decoded feedback runs
Slight error in the following.
In the final three runs, 100% EEG-decoded feedback was
displayed. In contrast to the mixed information shown
during the 50% EEG-decoded feedback runs, participants
were now faced with considerable discrepancy between
target and feedback due to limitations in decoding. We
thus term the 100% EEG-decoded feedback runs Severe
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error in the following.
Data processing: Both EEG and EOG data were band-

pass filtered between 0.2-10Hz (10th order Butterworth).
Subsequently, noisy channels of the EEG as identified
during the online experiment were spherically interpo-
lated from neighboring channels. Eye artifacts were simi-
larly attenuated utilizing the stored correction matrices of
the SGEYESUB algorithm [19] from the online measure-
ment, after which the EOG channels were removed. Per-
sistent eye artifacts as well as muscle artifacts at periph-
eral EEG channels were identified via independent com-
ponent analysis (ICA) and removed. To further eliminate
any eye- or muscle-related influence, the outermost EEG
channels (i.e., positions AF7-AF8, F7/8, FT7/8, T7/8,
TP7/8, P7/8, PO7/8) were excluded from our analysis
scheme, leading to a remaining number of 43 EEG chan-
nels.
The recorded x and y coordinates of the target (snake), as
well as of the displayed feedback dot, were smoothed us-
ing a Savitzky-Golay filter (second order polynomials, 21
sample window ∼100ms). The distance vector

#»

∆(t) be-
tween feedback (fb) and target (tg) position in each time
point t, i.e., the error signal in two dimensions, was then
derived via:

#»

∆(t) =
#»
X (t) f b −

#»
X (t)tg ∈ R2. (1)

Neural network architecture: The aim of this work was
to utilize the continuous error-related brain activity repre-
senting the ongoing target-feedback discrepancy to cor-
rect the initially recorded EEG-decoded predictions for
the target position. To this end, we modified EEGNet [20]
and changed the output layer to simultaneously regress
the x and y coordinates of the error signal (

#»

∆ ) from 300-
sample windows of EEG data (i.e., 1.5s). Importantly,
several other architectures, such as Deep ConvNet [21] or
EEG-TCNet [22], could have been employed as well; as
the current study however mainly corresponds to a proof
of concept, benchmarking has not been undertaken in the
scope of this work.
In detail, the utilized network consisted of three layers.
Within the first layer, the temporal dimension of the in-
put frames was zero-padded (75 samples at both edges)
and temporally convolved in 16 filters to extract temporal
features from the EEG (kernel size (1,200)). The large
kernel size corresponding to a 1s window was chosen
to enable the model to learn from frequency information
down to 1Hz, as previous findings revealed contributions
of predominantly the delta band for the used dataset [16].
In the second layer, a consecutive depthwise convolution
(kernel size (43,1)) extracted spatial features in 8 filters
by condensing the information of all considered channels
to one single value, followed by subsequent temporal av-
erage pooling (kernel size (1,4)). In the final third layer,
a second temporal convolution in 4 filters was employed
(kernel size (1,16)), followed by average pooling (kernel
size (1,2)). Each mentioned convolutional layer was fol-
lowed by batch normalization to accelerate convergence
[23], as well as dropout to impede an overfit on the train-

ing data (rates of 0.25, 0.35, and 0.45 for 1st, 2nd and 3rd
layer). For activation functions in each neuron, exponen-
tial linear units were used [24]. Finally, the outputs of the
third layer were flattened and passed through a fully con-
nected layer (92 input features, 2 output features), return-
ing the 2D prediction

#»

∆ pred of the error signal. For each
batch, the predictions were smoothed with a Savitzky-
Golay filter to alleviate noise (2nd order polynomials, 21
samples). All network models were implemented, trained
and evaluated using PyTorch.

Network training procedure and regression perfor-
mance: For each participant, session, and condition, we
sliced the EEG data into windows containing 300 sam-
ples with a stride of 15 samples (i.e., 1.5s windows, sam-
pled every 75ms). We retained the last sixth of the re-
sulting windows for testing in a causal fashion, while the
optimum model - i.e., the model maximizing the valida-
tion correlation (mean of both x and y coordinate) be-
tween actual (

#»

∆ ) and predicted (
#»

∆ pred) error signal - was
found via 5-fold cross-validation on the remaining data.
For each fold, we trained a model for 30 epochs using a
batch size of 64 and a learning rate of 1e-4. Notably, pre-
dicting the error signal for 64 consecutive 1.5s-windows
at a stride of 75ms per batch lead to 64·0.075s=4.8s-long
trajectories of predictions, for which both the correlation
and the RMSE values with the ground truth were eval-
uated. To optimize the model’s parameters with respect
to the mean squared error loss, we used the Adam opti-
mization algorithm [25]. The overall performance of each
regression model was then assessed via Pearson’s corre-
lation coefficient, as well as the root mean square error
(RMSE) between actual (

#»

∆ ) and predicted (
#»

∆ pred) error
signal within each batch. The overall testing performance
then corresponded to the average across all batches within
the testing set.
To additionally analyze each EEG channel’s contribution
to the regression performance, we iteratively set one of
the 43 channels within the testing data to zero (i.e., we
simulated one dead channel at a time) and reevaluated the
regression performance. The absolute difference between
the optimum model’s testing performance and the dead-
channel performance for each removed channel then pro-
vided an estimate for the specific channel’s importance.

Trajectory correction and correction performance:
Utilizing the prediction

#»

∆ pred of the error signal acquired
via the neural network (Fig.1c), we obtained corrected
feedback trajectories (i.e., new target predictions1) via
Equ.(1) as:

#»
X f b,corr =

#»
X f b −

#»

∆ pred =
#»
X tg,pred ∈ R2. (2)

The overall merit of our correction approach was judged
by comparing Pearson’s correlation coefficients and the
RMSE values between a) target and recorded feedback

1Note that from the relation in Equ.(2), we indeed gain target predic-
tions. However, to keep consistent terminology (the recorded feedback
#»
X f b depicted during the measurement corresponded to target predic-
tions as well, if from the PLSUKF regressor), we term these new target
predictions corrected feedback.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-014

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

76



(i.e.,
#»
X tg and

#»
X f b) and b) target and corrected feedback

(i.e.,
#»
X tg and

#»
X f b,corr).

Chance level estimation: To establish whether the net-
work models truly discern cortical activity rather than
noise, we estimated individual chance levels for the re-
gression performance in each participant, session, and
condition. To this end, we randomly shuffled the target
information (i.e., the error signal

#»

∆ ) across batches of
testing data, effectively breaking any causal relation be-
tween brain activity and corresponding target-feedback
discrepancy without changing the frequency content of
#»

∆ (equivalently, the input signals could have been shuf-
fled as well, leading however to the same results at a
higher computational cost). The previously trained op-
timum model for the corresponding participant, session,
and condition was then evaluated on the shuffled data.
This approach was repeated for 100 times, yielding a
chance distribution of correlations and RMSE values be-
tween actual (

#»

∆ ) and predicted (
#»

∆ pred,shu f f ) error sig-
nals. The chance levels for the correlations and RMSE
values within each regression model were then identi-
fied as the 95th and 5th percentiles of the corresponding
chance distributions, respectively.
We further investigated the nature of possible improve-
ments in correlations and RMSE values due to our ap-
proach in Equ.(2). Specifically, improvements in cor-
relation or RMSE values between target and corrected
feedback (i.e.,

#»
X tg and

#»
X f b,corr) compared to those be-

tween target and recorded feedback (i.e.,
#»
X tg and

#»
X f b)

may merely correspond to spurious fluctuations in per-
formance due to the addition of the smoothed (low-
frequency) predictions to the recorded feedback. To erad-
icate this concern, we once more exploited the previously
outlined shuffling approach. We randomly shuffled the
pairs of recorded target and feedback information across
batches, breaking all causal relations with the EEG in-
put while retaining the temporal structure within each
batch. The optimum model then predicted the error sig-
nals

#»

∆ pred , which in turn served to obtain randomly cor-
rected feedback trajectories according to Equ.(2). The
shuffling was repeated for 100 times, yielding chance
distributions for the correlation and RMSE values be-
tween target (

#»
X tg ) and randomly corrected feedback

(
#»
X f b,corr,shu f f ) trajectories. The chance levels for the

correlations and RMSE values within the correction ap-
proach for each participant, session, and condition were
then found as the 95th and 5th percentiles of the chance
distributions, respectively.
Table (1) summarizes all utilized evaluation approaches.

RESULTS

Regression performance: Individual CNN models
were trained for each participant, session and condi-
tion; the overall regression performance for each feed-
back condition is outlined in Fig.2(a-b). The single dots
correspond to the 30 sessions (pooling all three sessions
per participant in the 10 participants); mean and median

Table 1: Summary of evaluation approaches
Assessment Correlation/RMSE between
Regression #»

∆ ,
#»
∆ predperformance

Regression
#»
∆ ,

#»
∆ pred,shu f f

chance level (p95 for correlation, p5 for RMSE)
Correction #»

X tg,
#»
X f b,corrcompared to

#»
X tg,

#»
X f bperformance

Correction
#»
X tg,

#»
X f b,corr,shu f f

chance level (p95 for correlation, p5 for RMSE)

are displayed as dashed and solid lines within the boxes,
respectively, solid black lines denote the corresponding
chance levels.
On average, we obtained mean correlations across both
coordinates of 0.36, 0.32 and 0.23 between actual (

#»

∆ )
and predicted (

#»

∆ pred) error signals for Delayed feedback,
Slight error and Severe error conditions, each of which
ranges above the corresponding chance level (approxi-
mately 0.15, 0.17 and 0.17). Similarly, the observed
mean RMSE values across both coordinates of 56px,
106px and 187px for Delayed feedback, Slight error and
Severe error condition cut beneath their corresponding
chance levels (64px, 115px and 193px; see Fig.2b).
Notably, the regression performance worsened for both
metrics with increasing discrepancy between target and
feedback (note the different scales). In this context, our
feature analysis unveiled growing scalp regions of impor-
tance across feedback conditions, displaying increasing
central and parietooccipital engagement as the feedback
deviates from the target (see Fig.2(e)). Left (bright) and
right (dark) topographical maps correspond to the most
relevant EEG channels for predicting x and y coordinate
of the error signal

#»

∆ , respectively.
Correction performance: The mean correction perfor-

mance due to our approach is displayed in the white panel
of Fig.2. Light and dark gray results correspond to the x
and y coordinate results pertaining to the recorded feed-
back (

#»
X f b); light and dark red display the x and y coor-

dinate results for the corrected feedback (
#»
X f b,corr).

A right-tailed paired Wilcoxon signed rank test,
Bonferroni-corrected for six tests (three conditions in
two coordinates), revealed significantly higher correla-
tions with the target trajectories (

#»
X tg ) for our corrected

feedback trajectories (
#»
X f b,corr) compared to the recorded

ones (
#»
X f b) (see Fig.2(c); significance levels of 0.05, 0.01,

and 0.001 are marked as *, **, and ***).
Overall, we observed an average improvement in correla-
tion across both coordinates of approximately 0.03, 0.07,
and 0.08 for Delayed feedback, Slight error, and Severe
error conditions due to the feedback correction; however,
only the corrections for the first two conditions range on
average above chance. In terms of RMSE values, signifi-
cant differences arose only for the Delayed feedback con-
dition and one coordinate within the Slight error condi-
tion, even though all mean values fell beneath the chance
levels (see Fig.2(d)).

DISCUSSION AND CONCLUSION
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Figure 2: (a-b) Correlations and RMSE values between actual and decoded error signal as obtained by the CNN-regression. Bright and dark red color indicate results in
the x and y coordinate, respectively. (c-d) Correlations and RMSE values for the correction approach. Measures between target and recorded feedback trajectories are shown
in gray, measures between target and corrected feedback trajectories in red. Bright and dark colors indicate results in the x and y coordinate. For all box plots, single session
means are depicted as dots, dashed and solid lines denote mean and median of the distributions, respectively. Black horizontal lines indicate the corresponding chance levels.
(e) Averaged normalized channel importance maps for the error signal regression as obtained by setting one channel at a time to zero and evaluating the resulting drop in
performance. Left and right topographical maps correspond to the importance in predicting the x and y coordinate of

#»
∆ , respectively.

Within the offline analysis of 30 sessions of EEG record-
ings, we present a first attempt at correcting previously
inferred feedback trajectories during a target tracking
task by utilizing markers for continuous erroneous
feedback processing within the brain.
Using an adaption of the well-known neural network
architecture of EEGNet, we presented evidence for
the successful inference of continuous feedback-target
deviations (error signals) from the EEG for the first
time. Achieving mean correlations with the actual error
signals of between 0.23 and 0.36 for the investigated
conditions (Fig2(a)), the obtained predictions proved to
range above chance level, indicating that the regression
of this type of error-related information from the EEG is
indeed feasible.
Interestingly, the regression performance peaked within
the only minor deviations during the Delayed feedback
condition and dropped steadily across conditions with
increasing feedback-target deviation. However, previous
neurophysiological findings for the used dataset indicated
an opposing effect, e.g., increasingly prominent cortical

modulations with increasing absolute distance from the
target [16]. While the obtained channel importance
maps affirm the previous findings with the emergence
of increasing central and centrooccipital relevance with
increasing error severity and indeed indicate that the
models learned from error-related features, our overall
results might suggest that the error signal’s x and y
components are not sufficiently encoded within the
brain. Future approaches will have to clarify whether
better performance could be achieved by taking the
modulus, i.e., the Euclidean distance between feedback
and target, into account; possible implementations could
for example switch to radial coordinates or add the error
signal’s modulus to the network’s training procedure.
Despite the moderate correlations for the regression
itself, the correction approach nonetheless proved to
be of merit. We observed significant improvements in
correlations with the target trajectories for our corrected
feedback compared to the initially recorded feedback
trajectories across all feedback conditions. A chance
level evaluation certified these improvements as better
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than random for all but the Severe error condition.
However, for this condition, initial correlations between
recorded target and feedback trajectories already failed
to meet the chance level, which could be improved
considerably due to our approach nonetheless.
In summary, we conclude that the use of continuous
error-related brain activity can significantly improve the
performance of a BCI and that further work in this field
will be of great value for future implementations.
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ABSTRACT: Comprehension of performance 

variabilities across subjects and sessions is crucial for 

real life brain-computer-interfaces (BCI) applications. 

This study compared three subjects that underwent 

implantation of minimally invasive WIMAGINE ECoG 

recording implants. Three training strategies to discern 

best achievable performance, session drift, and 

variability were evaluated offline using datasets recorded 

during real-time closed-loop BCI experiments. Results 

revealed distinct BCI profiles across patients, consistent 

with qualitative observations made during online 

training. These performances were correlated with two 

indicators computed in feature space during idle periods 

of BCI sessions: Euclidean distance between the current 

session and the session of model creation in a low-

dimensional UMAP embedding, and intrinsic dimension. 

Between sessions distances demonstrated statistically 

significant correlation with models’ performances, then 

recalibration need may be potentially anticipated from 

the characteristics of idle state periods. Additionally, the 

intrinsic dimension was significantly correlated to 

subjects' overall BCI capabilities. The results are 

consistent with pre-implantation MEG-BCI experiments, 

which could make it useful for patient selection. 

 

INTRODUCTION 

 
     Brain-computer-interface (BCI) technology has 

shown promising advances in the past years, in terms of 

rehabilitative potential, performances and usability [1], 

[2], [3]. Despite the progress, there are still challenges to 

overcome before BCI use in day-to-day scenarios. In 

particular, the need to regularly train / update decoders 

poses a significant obstacle to translate BCI into real-life 

applications [4]. Minimally invasive 

electrocorticography (ECoG) based BCI, provides a 

much higher signal stability than electroencephalography 

(EEG) based BCIs, or than highly invasive 

Microelectrode Array (MEA) based BCIs [5]. ECoG-

BCIs showed their ability to properly decode brain 

activity without recalibration for several months [6], [7]. 

However, these studies included only one subject who 

was intensively trained to control the BCI. It is well 

known, however, that BCI control performances and 

motor imagery capabilities can vary significantly across 

subjects, 15-30% of patients even being described as 

BCI-illiterated or inefficient [8]. Furthermore, although 

studies [6], [7] showed globally stable performances over 

time, inter-sessions variability remained significant. 

     While the community widely acknowledges issues of 

inter- and intra-subject variability, characterization of 

good or poor BCI performance is still not well 

established. Several studies investigated potential 

neurophysiological EEG-based predictors of inter-

subjects BCI performances variability, associating the 

frontal theta rhythm (4-8Hz) [9] and the amplitude of the 

motor cortex mu band peak in the power spectrum [10], 

[11] during a relax condition to the ability of the subject 

to control a BCI. At the subject level, it has been shown 

that quality of motor imagery within a session (assessed 

by classification of left and right motor imagery) was 

correlated with gamma power during the task [12]. While 

these studies presented promising results for patient 

selection, it also shows that a multitude of currently 

unknown brain processes most likely affects BCI 

performance, and may vary across experimental 

paradigms. Furthermore, none of these studies 

investigated the neurophysiological markers of session-

to-session variability of subjects’ performances. 

Recently, some studies explored transfer learning 

approaches to compensate for this drift over sessions in 

EEG [13] and MEA [14]. However, these methods 

performs systematic domain adaptation and model 

retraining which requires labelled data and computation 

time. In an online perspective with patients chronically 

implanted with ECoG recording implants, in which it is 

possible to keep the same decoder functioning for several 
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sessions, establishing predictors that can be rapidly 

estimated on an idle state period could help determine if 

the decoder needs to be recalibrated and predict how well 

a previous decoder would fit the incoming data. 

Implementing predictors of day's performance of a 

subject using a former model is also crucial to develop 

better session-to-session variability compensation 

techniques, and to elaborate more effective and 

personalized training procedures. 

     In this study, we propose to compare BCI 

performances across sessions of three patients implanted 

with chronic ECoG implants, and relate them to data-

driven characteristics extracted from idle state. We 

hypothesize that idle state signals recorded in motor and 

sensorimotor cortices are informative both on inter- and 

intra-subjects performances variability, and in particular 

that idle state characteristics can explain this variability. 

Interestingly, we relate these long-term ECoG-BCI 

results to MEG-BCI sessions that subjects performed 

before implantation, speculating that individual long-

term performances was somehow predictable. 

 
MATERIALS AND METHODS 

 
     Subjects: Three subjects who underwent bilateral 

implantation of chronic wireless WIMAGINE implants 

on the motor and sensorimotor cortices were included in 

this study. Subjects 1 and 2 (S1 and S2) were respectively 

28 and 29 years-old males (at the time of surgery), with 

traumatic sensorimotor tetraplegia which were included 

within the ‘BCI and Tetraplegia’ clinical trial 

(clinicaltrials.gov, NCT02550522) and implanted over 

the upper limb region of the cortex [15]. Subject 3 (S3) 

was a 38-year-old male who had sustained an incomplete 

cervical (C5/C6) spinal cord injury and was included 

within the ‘STIMO-BSI’ clinical trial (clinicaltrials.gov, 

NCT04632290) [1]. He was implanted more centrally to 

approach the legs motor regions. 

     Online experiments: During online BCI-sessions, the 

three subjects were trained to control different effectors. 

In the data considered in this study, S1 was controlling 

an avatar in a 3D virtual environment over eight 

continuous degrees of freedom (right and left hand 3D 

translations, and right and left wrist rotations) using 

motor imagery of both hands fingers. S2 controlled a 

virtual keypad in four directions, each of them being 

associated to a discrete state of the controller (up, down, 

left, right) using motor imagery of shoulders, legs and 

both hands. As for S3, he controlled directly his own legs 

independently through an epidural stimulator of the 

spinal cord allowing two discrete stimulation patterns 

(left leg and right leg) using direct motor imagery. For 

the three subjects, in addition to the controlled degrees of 

freedom, the decoders were trained to discern an idle 

class, corresponding to the periods of recordings in which 

the patient was relaxing. These periods were used to 

implement idle state indicators that are described below. 

ECoG was sampled at 585Hz. For each subject each BCI-

session lasted approximately 2h, but only parts of data 

were labelled (rest of data was online testing). Prior to 

implantation, the three subjects performed a ~1h single 

magneto-encephalography (MEG) BCI session, sampled 

at 1kHz, in which they controlled a runner avatar through 

motor imagery of walking (2-states brainswitch control). 

     Offline dataset: In order to obtain comparable results, 

the online ECoG dataset of each subject was narrowed to 

three discrete states: idle for every subject and motor 

imagery of right and left hand for subjects 1 and 2 and 

right and left hip for subject 3. Since one subject had only 

one functioning implant due to an electronic dysfunction, 

only data from left implant were kept for all subjects, 

leading to 32 electrodes per subject. For S1 and S2 

recorded electrodes were distributed following a 

checkerboard-pattern over the implant and for S3 more 

central electrodes were favored to get a better coverage 

of leg motor area [1]. Datasets were also balanced in 

terms of number of sessions and number of samples per 

states in each session. Finally, this led to a dataset 

comprising 15 sessions of 1800 labelled motor imagery 

samples per subject (one each 0.1s; 600 per state), 

acquired over 6,  10 and 5 months for subjects 1,2 and 3 

respectively.  

     Feature extraction: Feature extraction procedure is 

described in details in [6]. After interpolation of missing 

points in the raw ECoG data, 1s-long epochs of neural 

signals with a 100ms sliding step, were mapped to the 

temporal frequency space using a complex continuous 

wavelet transform (CCWT) (Morlet) with a frequency 

range from 10 to 150 Hz (10 Hz step). The absolute value 

of the CCWT coefficients was then decimated along the 

temporal modality to obtain a 10-timepoints description 

of the epoch for each frequency band and each channel, 

resulting in the temporal-frequency-spatial neural feature 

tensor 𝑋𝑡 ∈ ℝ10∗15∗32. Same features were used during 

online experiments and offline analyses, except for 

subject 3 for which 0.2s-long  epoch and 24 frequency 

bins were used in online experiments leading to 𝑋𝑡 ∈
ℝ2∗24∗64 (offline features were recomputed to match the 

other two subjects). Similar features were extracted from 

MEG experiments, with feature tensor 𝑋𝑡 ∈ ℝ10∗9∗105 

(10 temporal steps, 9 frequency steps distributed between 

1 and 40Hz, and 105 MEG channels). 

     BCI performances evaluation strategies and criteria: 

To assess subjects’ performances across sessions, 3 

classes classification models were trained offline for each 

subject. As previously explained, BCI performances 

were assessed offline on equivalent datasets to have a fair 

comparison between subjects that performed different 

online experiments. Similar to online experiments, 

Hidden Markov Models (HMM) combining emission 

and transition probabilities were trained and used for 

classification in a pseudo-online manner [6]. Emission 

probability was computed using REW-NPLS with one-

hot encoded class labels, post-processed by softmax 

function [16]. Transition probability matrix was 

estimated by counting the number of transition in the 

training set. The class prior was established to ensure 

equal probability distribution among classes. In order to 

evaluate general performances but also their session-to-

session variability, three training strategies were carried 
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out: 

- Within-session training: models were trained and 

tested on the same session, with a 5-folds cross-

validation scheme. 

- Session-1 training: models were trained only with 

data of session 1 and tested on every next sessions. 

- Session-to-session training: models were trained 

each session, and tested on the following session. 

Subjects’ performances were assessed with the accuracy 

of classification (total number of correct predictions 

divided by the total number of samples). They were also 

evaluated in prior MEG experiments with two states 

classification models using within-session training 

strategy. As the different states were balanced, the 

chance level was of 1/3 for all classifications. 

     Idle state variability evaluation: All idle state samples 

of the three patients were projected together in an 

unsupervised manner from the feature space into a low 

dimensional (2D) space using Uniform Manifold 

Approximation & Projection for dimension reduction 

(UMAP [17]). The centroid of each session for each 

patient was identified, and idle state variability was 

evaluated through the Euclidean distance between each 

session’s centroid and the centroid of session 1, and 

between each pair of consecutive sessions’ centroids 

(Fig. 2). Measure of distances in a 2D UMAP embedding 

was chosen to investigate variability over sessions 

because we showed in a previous study on a comparable 

dataset that the projected patterns were remarkably stable 

over time [18].  

     Idle state dimensionality: Intrinsic dimension (ID) 

was computed in the feature space for idle state samples 

of each session. ID can be defined as the minimum 

number of parameters needed to describe the data with a 

minimal loss of information. This was done using two 

widely used classical estimators, MLE and DANCo [19]. 

ID was also assessed in MEG experiments to evaluate to 

what extent the dimensionality is predictable before 

implantation.  

     Correlations: To investigate if idle state 

characteristics could explain inter-sessions and inter-

subjects variability, linear regressions were estimated 

between BCI performances, both distances in the UMAP 

embedding as well as the ID. Specifically, we 

investigated relationships between 1) within-sessions 

training performances and idle state ID indicators, 2) 

session-1 training performances and distances between 

each session’s centroid and the centroid of session 1, and 

3) session-to-session training performances and distances 

between each pair of consecutive sessions’ centroids. 

Goodness of fits were estimated using the Pearson 

correlation coefficient 𝑅.  

     Statistical tests: Differences in performances, 

distances and ID between subjects (mean across sessions) 

were assessed using one-way analysis of variance 

(ANOVA), followed by post-hoc Tukey’s honestly 

significant difference tests when ANOVA were 

significant. Statistical significance threshold was set to 

𝑝 < 0.05. 

 

RESULTS 

 

     BCI performances: BCI performances (models 

accuracy on test sets) of the three subjects with the three 

training strategies are presented in Fig. 1. S1 and S3 had 

significantly better performances than S2 in the within-

session training (p<0.001; S1: 0.79±0.08; S2: 0.63±0.10; 

S3: 0.79±0.06). When model was trained on day 1 only, 

performances of S1 were significantly better than S2 and 

S3 (p<0.001 and p = 0.02 respectively; S1: 0.79±0.08; 

S2: 0.61±0.12; S3: 0.69±0.10). Only performances of S3 

dropped in this scenario compared to within-session 

training, For session-to-session training, S1 

performances were significantly better than S2 and S3 

(p<0.001 and p = 0.03 respectively; S1: 0.75±0.13; S2: 

0.60±0.08; S3: 0.65±0.08). Again, performances of S3 

dropped particularly with this training strategy compared 

to within-session training. Regarding prior to 

implantation MEG experiment, BCI performances were 

better for S1 in comparison to S2 and S3 (S1: 0.80; S2: 

0.58; S3: 0.59). 

     Idle state variability: Distances between centroids of 

idle state features projected into the 2D UMAP 

embedding are presented in Fig. 2. Whether comparing 

distance to first session or session-to-session distances, it 

appeared that idle state features of S1 remained more 

stable over time, with a smaller average distance and a 

smaller variability of distances. Distance to session 1 was 

significantly lower for S1 than for S2 and S3 (p = 0.01 

and p = 0.02 respectively; S1: 0.73±0.41; S2: 1.99±1.78; 

S3: 1.33±1.13), while session-to-session distance was 

significantly lower for S1 in comparison to S3 only 

(p<0.01; S1: 1.11±0.58; S2: 1.49±1.07; S3: 1.95±1.38).  

     Idle state dimensionality: ID was globally stable over 

ECoG sessions for the three subjects with a gradation 

between them (Fig. 3). Whether computed with MLE or 

Figure 1: Models’ decoding accuracies over sessions (left) and 

average across sessions (right) with the three training 

strategies. Bar graph are presented as mean ± standard dev. * 

reports significant differences. For comparison purposes, grey 

dotted lines on the top bar graph represents models’ decoding 

accuracies in MEG experiments. 
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DANCo estimator, ID was significantly lower for S1 

compared to S2 and S3, and significantly lower for S2 

than for S3 (p<0.001 for all cases; MLE-ID: S1: 

15.3±1.8; S2: 31.3±4.8; S3: 24.7±2.9; DANCo-ID: S1: 

19.2±4.5; S2: 53.7±11.4; S3: 39.9±7.4). ID was also 

evaluated during prior to implantation BCI-MEG 

experiments, and seemed to follow a similar pattern 

between subjects, especially with DANCo estimator 

(MLE-ID: S1: 34.0; S2: 36.3; S3: 36.8; DANCo-ID: S1: 

27.2; S2: 43.3; S3: 37.2). 

     Correlations: When pulling subjects’ together, 

significant correlations between cross-sessions models’ 

accuracies and variability of idle state between sessions 

as well as between subjects’ performances and intrinsic 

dimensions were found (cf. Fig. 4 – Pearson correlation 

coefficient and associated p-values are indicated in the 

figure). These correlations remained insignificant for 

individual subjects. 

 

DISCUSSION 

 

     The main objective of this study was to investigate if 

markers of inter and intra-subjects’ BCI performances 

could be unraveled from idle state. To do so, we 

compared different indicators of idle state brain signals 

between sessions and patients, and related them to the 

BCI performances. BCI performances were assessed 

offline, with three training strategies to disentangle 

subjects’ best achievable performance (within-session 

training), drift over time (session-1 training) and session-

to-session variability (session-to-session training). Note 

that for the purpose of this study, subjects’ best 

achievable performance were assessed with relatively 

small training sets (5 folds of 1440 features, i.e.  2.4 min 

of data) and do not reflect the best performances they 

could achieve with a longer training.  

     The three training strategies allowed us to observe that 

the patients presented distinct BCI profiles. S1 showed 

high BCI capabilities with no drift and only low 

variability over sessions. S2 performances were lower, 

but we did not observe strong drift or variability between 

sessions either. Regarding S3 high BCI performances 

were observed, with an important drop of performances 

when the model of a previous session was used, 

indicating a drift and/or variability over sessions.  

Interestingly, these observations are consistent with what 

was noticed in online experiments. Indeed, S1 was able 

to control accurately up to 8 continuous degrees of 

freedom without recalibration of the model for up to 6 

months [6], while S2 controlled models with 5 discrete 

states with fluctuant performances even in the same 

session. As for S3, he was somewhere in between, and 

controlled with good performances 7 continuous states 

[1], although regular model recalibration (approximately 

every 2 weeks) was necessary. 

     This more frequent need for recalibration was also 

coherent with more fluctuations of idle state, measured 

as distances between centroid features of sessions in a 

low-dimensional projection. Indeed, S2 and S3 presented 

higher variability in idle state features over sessions. 

Furthermore, the performances in a session using a 

decoding model of another session was significantly 

negatively correlated with the distance between these 

sessions. Thus, measuring the distance with model’s 

calibration session through an idle state recording 

acquired prior to the BCI experiment could be a good 

predictor of session expected performances, and of the 

need to recalibrate the model. Although this has to be 

confirmed on more sessions, we believe to have obtained 

here a session-to-session predictor of subjects’ 

performances, in contrast to previous studies that 

investigated only inter-subjects predictors of 

performance [10], [11], [20]. In addition, this distance is 

a data-driven indicator that is not based on 

neurophysiological hypotheses, and then could be 

adapted to other recording techniques.  

     Regarding ID of the idle state in features space, we 

observed a clear gradation between subjects, with a lower 

ID for S1, higher for S2, and relatively stable across 

sessions. Crosschecking this result with subjects’ 

Figure 2: (A) Unsupervised UMAP of all idle state features of the three patients in a 2D-space; (B) Representation of the centroids of 

each BCI-ECoG session for each subject separately; (C) Euclidean distance between centroid of session 1 and centroids of the 

following sessions (top) and distance between each session and the previous one (bottom) in the UMAP embedding. Average across 

sessions is presented as bar graphs on the right (mean ± standard dev). * reports significant differences). 
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performances indicated that ID could be a good global 

predictor of subject BCI capabilities: the lower ID, the 

more decodable and stable brain signals. This was 

confirmed by correlation between model’s accuracy and 

ID. This is in agreement with previous results that 

reported the same relationship in images dataset [21]. 

     Although predicting the global long-term 

performances of implanted patients through ECoG 

experiments could be of interest, it would be much more 

valuable to assess it before implantation. With this in 

mind, we examined prior to implantation MEG-BCI 

experiments that were performed by the three subjects. 

This session was the first BCI experiment of patients and 

was performed to assess their adhesion. While S1 and S2 

presented similar MEG-BCI performances than in 

ECoG-BCI, S3 presented much lower performances (in 

comparison to within-session training, which is the same 

strategy than in MEG). This tends to indicate that, if high 

MEG-BCI performances would ensure high ECoG-BCI 

performances, lower MEG-BCI performances does not 

necessarily leads to lower ECoG-BCI performances. This 

is not surprising as the patients certainly have a different 

BCI learning potential, which cannot be estimated within 

a single session. Thus, MEG-BCI sessions seems to be an 

important step for subjects prior to the implantation to 

assess their BCI “compatibility” (in addition to their 

adhesion), but we strongly suggest to perform more than 

one BCI sessions (ideally, enough to observe a learning 

curve). Interestingly ID of idle state during these MEG-

BCI experiments was also estimated and showed the 

same gradation between patients than in ECoG-BCI 

experiments (especially with DANCo estimator). Since 

ID seems to remain relatively stable and discriminating 

across subjects after implantation, it could be a strong 

predictor of subjects’ global BCI long-term 

performances. Although this need to confirmed on more 

patients, this could be an important finding as it could 

help identifying BCI-inefficient patient for whom an 

implantation would be an unnecessary risk in addition to 

a waste of time and resources. A simple assessment of 

subject’s brain signals complexity in MEG (or EEG) in a 

relax state could participate to reveal these patients 

before implantation.  

 

CONCLUSION 

 

 To our knowledge, this work is the first study 

investigating session-to-session BCI performance 

predictors on implanted ECoG patients. Even though this 

was based on offline analysis, on patients that used 

different motor imagery, effectors and online decoding 

models, the conclusions drawn here on narrowed 

comparable datasets are reflecting our experimental 

observations done during the online experiments. Based 

on idle state features variability over sessions, we first 

uncovered a predictor of the performances of a previous 

decoding model on current session. Then, analyzing the 

dimensionality of brain signals in idle state, we revealed 

a more “long-term” indicator, which predicted the global 

BCI-capabilities of the patients. Furthermore, although 

this must be confirmed on more subject, the latter 

followed the same pattern between patients in MEG-BCI 

experiments performed before implantation. These 

results are of particular importance on one hand to 

anticipate the need of model recalibration in ECoG-BCI 

training experiments, and on the other hand for selecting 

patients to be implanted with BCI neuroprosthesis.  
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ABSTRACT: Uncertainty Quantification aims to deter-
mine when the prediction from a Machine Learning
model is likely to be wrong. Computer Vision research
has explored methods for determining epistemic uncer-
tainty (also known as model uncertainty), which should
correspond with generalisation error. These methods the-
oretically allow to predict misclassifications due to inter-
subject variability. We applied a variety of Uncertainty
Quantification methods to predict misclassifications for a
Motor Imagery Brain Computer Interface. Deep Ensem-
bles performed best, both in terms of classification perfor-
mance and cross-subject Uncertainty Quantification per-
formance. However, we found that standard CNNs with
Softmax output performed better than some of the more
advanced methods.

INTRODUCTION

Machine Learning systems for Brain Computer Interfaces
(BCI) are normally optimised to their predictive accuracy.
The availability of public datasets and benchmarking sys-
tems allow for faster progress in this direction. However,
for successful BCI systems there are more aspects that
need to be explored.
This study explores the options of Uncertainty Quantifi-
cation (UQ) for Machine Learning models [1] as applied
to non-invasive Motor Imagery BCIs. Uncertainty Quan-
tification aims to estimate how likely a prediction from
a Machine Learning model is to be correct. For this two
types of uncertainty are commonly considered.

Two types of Uncertainty: Aleatoric uncertainty (also
referred to as data uncertainty) is the uncertainty inher-
ent in the data. This cannot be reduced by better models,
only by better EEG recordings or better paradigms. Noisy
EEG recordings or extracted features that are poorly cor-
related to the to-be-predicted classes introduce aleatoric
uncertainty.
Epistemic uncertainty (also referred to as model uncer-
tainty) is the uncertainty in the model. This kind of un-
certainty can be reduced by collecting more training sam-
ples that are similar to what the model is being evaluated
on. In BCI contexts this uncertainty can come from lim-
ited amounts of training data [2], but also from between-
subject variability [3].

*These authors contributed equally to this work

While there is some Motor Imagery BCI research dedi-
cated to UQ [2–5], it is worth noting that simple methods
of estimating aleatoric uncertainty are often readily avail-
able. For example, Neural Networks used for classifica-
tion generally use Softmax or Sigmoid activation func-
tions for the output, which also gives a crude estimate of
aleatoric uncertainty.
This study, like most research on modelling epistemic un-
certainty is mostly done in the domain of Deep Learning.

Using Uncertainty for Rejection: UQ is often consid-
ered as a method for improving interpretability of predic-
tions from a Machine Learning model [6]. There, the goal
is to have a precise and well calibrated prediction of the
class probability. This means that a prediction with 90%
certainty should be correct 90% of the time. This results
in methods aimed at addressing overconfidence of Neural
Networks [7].
However, for BCIs there is often no time for human inter-
pretation of the classification. Instead, the system should
automatically deal with certain and uncertain predictions.
Typically this means "rejecting" the uncertain predictions
and abstaining from sending a control command to the
device. We focus on this rejection case, as it aligns with
how BCIs are implemented in practice, and highlight that
it comes with different methods and metrics.

Research Aim: This paper investigates whether UQ
methods that account for epistemic uncertainty can iden-
tify wrong predictions in cross-subject classification.
This expands on previous work [3, 5] by exploring a
larger variety of UQ methods and by applying a leave-
one-subject-out cross validation paradigm to get a more
realistic estimate of model performance.
We investigate whether available UQ methods for CNNs
that account for epistemic uncertainty are actually able
to reject the uncertain predictions when applied cross-
subject better than the crude methods readily available.
Previous work has shown success with rejection methods
[5], but a comparison with simple baseline methods such
as Softmax is missing. Moreover, by using different mea-
sures of uncertainty we can see how much aleatoric and
epistemic uncertainty contribute to the total uncertainty.
This disentangling of uncertainties has not been applied
to BCIs before [8]. Lastly, we cover a wider range of UQ
methods and explain how they have different underlying
assumptions.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-016

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

86



(a) Discriminative model (b) Generative model

Figure 1: An illustration of a discriminative and a generative
model. The yellow and purple dots indicate the training sam-
ples of two different classes. The background indicates the pre-
diction. The green color indicates uncertainty.

Background on uncertain models: Following [9] we
consider two assumptions for how epistemic uncertainty
may be modelled. [9] calls these two assumptions dis-
criminative and generative models.
Discriminative models learn a boundary that optimally
separates the classes. Samples that are far away from
this boundary are considered "certain", whereas samples
that are close to this boundary are considered uncertain.
When the model uncertainty is considered, these methods
consider multiple decision boundaries that are all valid
with the training data. When samples fall between differ-
ent decision boundaries this is considered epistemic un-
certainty. Figure 1a shows what this looks like in a 2D
feature space. This could be the band power following
2 CSP filters, but a similar concept can also be applied
at a higher dimensional space for Neural Networks. In
contrast, generative models learn the distribution of each
class. A sample that matches the distribution of the train-
ing data is considered "certain", whereas a sample that is
far away from the training data is considered "uncertain".
Figure 1b visualises this concept.
Both approaches have similar behaviour under aleatoric
uncertainty. This is seen in the parts where the two
classes overlap. However, they exhibit very different
behaviour under epistemic uncertainty. Since it is not
known which of these underlying assumptions is most
suitable it is important to consider models from either
family.

Bayesian Neural Networks: Bayesian Neural Net-
works (BNNs) fall under the category of discriminative
models. Standard Neural Networks learn a single opti-
mal vector θ of the parameters learned on the training
data D. They then do classification according to the Soft-
max function to capture aleatoric uncertainty.
BNNs instead consider a weight distribution p(θ |D).
This captures all possible weights for the Neural Net-
works, based on how well they fit the data. Inference
is then made according to the predictive posterior distri-
bution:

p(y = c|x) =
∫

p(y = c|x,θ)︸ ︷︷ ︸
aleatoric

p(θ |D)︸ ︷︷ ︸
epistemic

dθ . (1)

Truly Bayesian Neural Networks are computationally in-
feasible, so instead various methods to approximate it

have been proposed [1, 8]. We will be considering MC-
Dropout [10], MC-DropConnect [11], Deep Ensembles
[12] and Flipout [13].
While they have differences in approximation quality, im-
plementation complexity, and computational cost, they
all rely on BNN fundamentals.

Deterministic Uncertainty Quantification (DUQ):
DUQ [14] uses a different approach to Uncertainty Quan-
tification in Neural Networks. DUQ uses a standard Neu-
ral Network as a feature extractor, and then learns a cen-
troid for each class. Samples that are far away from the
centroids are deemed uncertain, whereas samples that are
close to a centroid are deemed certain.
This different underlying assumption of how uncertainty
should arise is inspired by generative models, though
DUQ is not actually a generative model. A true genera-
tive model models the distribution of the training samples
directly, whereas DUQ only models class centroids. Still,
this makes it fundamentally different from the discrim-
inative BNNs, and may therefore give different results
than the BNN approach. It also means that aleatoric and
epistemic uncertainty cannot be clearly distinguished, but
they are both included in the predicted uncertainty.

METHODS

Dataset: We used the public Motor Imagery dataset:
BCI Competition IV, dataset 2a [15]. This dataset con-
tains 22 channel EEG and 3 monopolar EOG channel
recordings of 9 subjects performing one of 4 different
motor imagery tasks— left hand (class 1), right hand
(class 2), both feet (class 3) and tongue (class 4).
The sampling rate was 250Hz and the dataset comes pre-
applied with a 50Hz notch filter and a bandpass filter of
0.5Hz to 100Hz.
The Braindecode [16] and MNE [17] Python libraries
were used to load and pre-process the data.
The training setup (shown for a single subject in figure
2) was designed to allow the observation of aleatoric un-
certainty and the combination of aleatoric and epistemic
uncertainty. This allows the impact of epistemic uncer-
tainty to be observed in isolation.
We used leave-one-subject-out cross-validation with a
slight variation. Normally leave-one-subject-out involves
splitting N −1 subjects into a training set and leaving the
last subject as the out-of-population (cross-subject) set.
Our variation to this procedure is as follows: 10% of the
data from each training set subject is used as a within-
population test set*. This within-population dataset al-
lows for an observation with minimal epistemic uncer-
tainty, and comparing it to the cross-subject set allows us
to isolate the impact of cross-subject generalisation.

Preprocessing: Some EEG pipelines employ extensive
signal processing and feature extraction in order to op-
erate with ML algorithms. However, it is often unclear
what value each processing step introduces, and various

*The remaining training data was in turn split into 90% train and
10% validation for hyperparameter optimisation
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Figure 2: Training setup for a single subject. One subject is
excluded and used as an out-of-population set while the other
10% of the data from each subject is separated into a within-
population set. The data of the remaining subjects are concate-
nated and split 90-10 into a training and validation set. This
procedure is repeated for every subject.

researchers and labs use different pipelines. The use of
CNNs (and DL methods in general) in EEG is promising
because of their ability to automatically extract features
from raw data and perform classifications, with minimal
preprocessing required [18, 19].
Hence the following preprocessing steps are very mini-
mal. It consists of: dropping the EOG channels, con-
verting the EEG signals from volts to microvolts (µV ),
applying an exponential moving standardisation with pa-
rameters described by [16] and epoching from 0.5 sec-
onds before the trial cue at t = 2s to end of the trial at
t = 6s (for a total trial window of 4.5 seconds). Creating
epochs as such leads to a single trial being a matrix (C,T )
with C = 22 being the number of channels and T = 1125
being the number of timestamps.

Model Architecture: We used Keras [20] to implement
the Shallow ConvNet CNN [16], and the Keras Uncer-
tainty library [21] to implement the UQ adaptations. *

Although all UQ methods followed the same Shallow
ConvNet architecture, minor differences existed in the
implementation of the UQ layers. Two standard models
regularised with Dropout and DropConnect were used as
baselines.
MC-Dropout and MC-DropConnect and their standard
counterparts both had only a single UQ layer. In
MC-Dropout this layer was positioned before the dense
classification layer with a drop rate of 0.2. In MC-
DropConnect it was positioned after the second convo-
lutional layer with a drop rate of 0.1. A grid search was
done on a single subject (due to computational complex-
ity) to decide this configuration. Normal Dropout and
DropConnect sets the value of a node or weight to 0 dur-
ing training. The equivalent UQ versions retain this dur-
ing testing, resulting in slightly different predictions each
forward pass, thereby representing epistemic uncertainty.
The Ensemble model simply consisted of 10 standard
Shallow ConvNet CNNs, regularised with dropout identi-
cal to the dropout baseline model. Disagreement between

*All code is available at https://github.com/p-manivannan/
UQ-Motor-Imagery

these 10 models represents epistemic uncertainty.
Flipout changes the final dense classification layer to a
standard dense layer using ReLU activation with 10 units,
following which are two flipout layers. Both flipout lay-
ers use a prior P(θ) = N (0,1.02)+π N (0,2.52) with
π = 0.1. Additionally, the first flipout layer had 10 units.
Both sets of parameters were determined using a grid
search.
MC-Dropout, MC-Dropconnect and Flipout are stochas-
tic during inference. Therefore, a number of forward
passes T needs to be selected. T was chosen to be 50
as it has been found to be point where the improvement
in accuracy stabilises [3].
DUQ changes the final layer of the Shallow ConvNet
CNN to a dense layer with 100 units using a ReLU ac-
tivation, following which is an RBF classification layer
with a length scale of 0.4 with trainable centroids of di-
mension 100. These parameters were found using a grid
search. Additionally, compared to the categorical cross-
entropy loss used by the other methods, DUQ utilizes bi-
nary cross-entropy.
Other hyperparameters follow common practice in Deep
Learning literature. Specifically we set the learning rate
(1×10−4), loss function (categorical cross entropy), and
optimiser (Adam).

Uncertainty Measures: The BNN-based methods rely
on T forward passes from a stochastic model. Each for-
ward pass predicts class probabilities pc, resulting in a
distribution over probabilities. To this we can apply vari-
ous Uncertainty Measures to measure either aleatoric un-
certainty, epistemic uncertainty or the total uncertainty
[8].
The total uncertainty is based on the mean of the pre-
dicted probability for each class and is measured by the
Predictive Entropy:

Hpred(p) =−∑
c

p̄c log p̄c. (2)

The Expected Entropy first determines the uncertainty of
each forward pass, and then takes the average over those
uncertainties.

HE(p) =−T−1
∑

t
∑
c

pct log pct (3)

In this approach, Expected Entropy takes the "average
uncertainty" of each individual model. As such, it only
corresponds to aleatoric uncertainty [22].
Lastly, subtracting the aleatoric uncertainty from the to-
tal uncertainty results in the remaining epistemic uncer-
tainty. This measure is referred to as Mutual Information
[23]:

I(p)≈Hpred(p)−HE(p) (4)

Predictive Entropy and Expected entropy may be applied
to a standard Neural Network, but they will result in the
same prediction. This approximation for Mutual Infor-
mation cannot be applied to standard Neural Networks.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-016

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

88

https://github.com/p-manivannan/UQ-Motor-Imagery
https://github.com/p-manivannan/UQ-Motor-Imagery


Because DUQ does not follow the same discriminative
assumptions for uncertainty, these measures of uncer-
tainty do not apply. Instead, it gives a single uncertainty
measure that responds to both aleatoric and epistemic un-
certainty.

RESULTS

Classification accuracy for each method is given in ta-
ble 1. It can be seen that performance is higher within-
population than out-of-population, with Ensembles out-
performing all other methods for both groups. The per-
formance of the Ensemble is in-line with benchmarks for
out-of-population and within-population accuracies [19]
while the other methods are slightly underperforming.
To find out whether UQ can improve performance, un-
certainty estimation was treated as a binary classification
task, where the aim was to classify wrong predictions as
uncertain. Therefore, the Area Under the ROC curve
(AUROC) is considered as a performance metric [24].
Note that this can never approach 100 as the uncertain
samples are "guessed", which will be correct 25% of the
time. These would be labelled as false positives in this
framework.
This metric is chosen in place of common metrics like
Expected Calibration Error [7], because our goal is to de-
tect misclassifications, whereas ECE aims to detect over-
confidence or underconfidence.
The uncertainty AUROC scores for each method and each
uncertainty measure on the within-population set is given
in table 2a. This table shows that Mutual Information
(which corresponds only to epistemic uncertainty) per-
forms the worst. Predictive Entropy and Expected En-
tropy perform similarly, suggesting that the modelling of
epistemic uncertainty is not beneficial to the uncertainty
estimation. It also shows that DUQ has the worst un-
certainty estimation, and that most discriminative models
show similar performance.
Table 2b shows the performance of uncertainty estima-
tion on the out-of-population dataset. The performance
of uncertainty estimation is consistently lower here than
on the within-population set. Mutual Information, which
represents epistemic uncertainty, still does not offer bet-
ter uncertainty estimation. This suggests that none of the
available models are able to fully account for the epis-
temic uncertainty introduced by cross-subject classifica-
tion. We again see that DUQ has noticeably worse UQ
performance.
It can be seen that the quality of uncertainty estimation
is worse cross-population than within-population. This
behaviour is inevitable for measures of aleatoric uncer-
tainty, but measures of epistemic uncertainty should be
more robust to this [25].
When predictive entropy is disentangled into aleatoric
and epistemic uncertainty, it can be seen that epistemic
uncertainty based thresholding is consistently slightly
worse than aleatoric uncertainty based thresholding. This
suggests either that aleatoric uncertainty is more preva-

Table 1: Mean accuracy per subject for each method. Within-
population accuracy is higher overall than cross population ac-
curacy, with ensembles outperforming other methods in both
categories. Standard DropConnect performs noticeably worse,
but most methods perform similar to Standard Dropout.

Method Within pop. Acc% Cross pop. Acc %
Dropout 68.98 ± 2.73 55.54 ± 7.95
MC-Dropout 69.00 ± 2.73 55.56 ± 7.94
DropConnect 66.67 ± 2.23 53.51 ± 11.67
MC-DropConnect 69.27 ± 1.34 54.96 ± 9.76
Flipout 69.90 ± 2.55 54.99 ± 8.67
Ensembles 73.05 ± 2.22 59.05 ± 8.11
DUQ 70.47 ± 2.93 55.42 ± 9.16

lent than epistemic uncertainty, or that epistemic uncer-
tainty is not captured well by the models. Since the accu-
racy does go down when moving to cross-population, it
is clear that there must be an increase in epistemic uncer-
tainty which the models are not accounting for.
It can be seen that no BNN method is substantially bet-
ter than another at uncertainty quantification. Only DUQ
performs substantially worse than other methods, per-
forming even lower than standard neural networks.

DISCUSSION

Surprisingly, we find that the specific UQ methods de-
signed to observe epistemic uncertainty are not able give
better uncertainty estimations than a similar Neural Net-
work with Softmax activation. It is still possible for all
methods to reject some of the uncertain samples to in-
crease accuracy, but this is trivial.
A possible reason for this is that since aleatoric uncer-
tainty seems more prevalent, the ability of these UQ
methods to take into account epistemic uncertainty does
not help, hence explaining how standard models are able
to achieve comparable performance. However, it is clear
that the decrease in accuracy should be attributable to an
increase in epistemic uncertainty. This could be caused
by how these methods model uncertainty, but the results
show that the discriminative models and DUQ suffer the
same problems.

Relation to background: Our findings contradict the
expectation that cross-subject classification should in-
troduce epistemic uncertainty, and that therefore BNNs
should perform better.
Epistemic uncertainty should arise when a model is tested
on data that is different from the data it was trained on.
In this case, the cross-subject testing samples are differ-
ent from the data that the model is trained on, but the
models capturing epistemic uncertainty were not able to
offer better uncertainty estimates.
It is difficult to attribute this to problems with a specific
approximation of BNNs, as a variety of approximations
show this effect consistently. We also cannot attribute this
to flaws in the discriminative model as shown in Figure
1a, because this problem is consistent even when using
DUQ which has a fundamentally different assumption of
uncertainty.
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Table 2: Uncertainty AUROC scores for each method both within-population and out-of-population. Predictive Entropy and Expected
Entropy both perform equally well for all BNN models. At the same time Mutual Information performs noticeably worse, and shows
more difference for the different models. The uncertainty of all models and all uncertainty measures is consistently worse when moving
out-of-population.

(a) Within-population

Method Predictive Entropy (Ale+Epi) Expected Entropy (Ale) Mutual Information (Epi)
Standard Dropout 76.07 ± 2.918 76.07 ± 2.918 -
MC-Dropout 76.07 ± 2.927 76.06 ± 2.927 74.24 ± 3.398
Standard DropConnect 75.44 ± 2.691 75.44 ± 2.691 -
MC-DropConnect 75.3 ± 3.303 75.29 ± 3.297 73.33 ± 2.835
Flipout 75.56 ± 2.461 76.70 ± 2.460 70.56 ± 2.488
Ensembles 76.92 ± 2.868 76.66 ± 3.046 70.02 ± 2.064
DUQ 73.19 ± 2.379 - -

(b) Out-of-population

Method Predictive Entropy (Ale+Epi) Expected Entropy (Ale) Mutual Information (Epi)
Standard Dropout 67.46 ± 4.646 67.46 ± 4.646 -
MC-Dropout 67.43 ± 4.611 67.43 ± 4.611 66.6 ± 4.164
Standard DropConnect 68.23 ± 4.532 68.23 ± 4.532 -
MC-DropConnect 68.48 ± 4.625 68.48 ± 4.626 66.82 ± 5.311
Flipout 67.79 ± 5.156 67.79 ± 5.152 63.95 ± 4.024
Ensembles 67.39 ± 5.446 67.29 ± 5.564 63.86 ± 4.354
DUQ 65.30 ± 4.01 - -

The previous studies in this direction [3, 5] show more
positive findings for approximations of BNNs, but by
considering an equivalent CNN and using Softmax as a
baseline we were able to that those results can also be
achieved with simpler methods.

Limitations: Our study also only focuses on the use
of uncertainty for rejecting difficult samples, and does
not actively look at the absolute epistemic uncertainty.
It may be that the epistemic uncertainty did increase for
cross-subject samples, but if this happens uniformly for
a given subject we are not able to capture it. This does
not affect the validity of the findings, but does make it
harder to know why these Bayesian Neural Networks are
not performing well.
There may also be limitations underlying how Predictive
Uncertainty is disentangled into aleatoric and epistemic
uncertainty. The proposed approach follows a line of
existing work [22, 23], but there is also a line of work
that assumes an entirely different formulation for disen-
tangling uncertainty [26, 27]. There, the BNNs have two
outputs. One for predicting the prediction, and one for the
variance. The mean of the variances is then the aleatoric
uncertainty, and the variance of the predictions is then
epistemic uncertainty. This approach explicitly models
aleatoric and epistemic as part of the model, which may
give more favourable results.

Directions for future research: We showed that UQ did
not work to reject the cross-subject samples with the most
epistemic uncertainty. However, it may still be usable for
deciding whether or not to make a prediction under noisy
EEG, or for identifying a model well suited for a certain
subject, or even for detecting off-task thoughts.

CONCLUSION

Available Deep Learning methods that capture and disen-
tangle epistemic uncertainty are not able to improve the
robustness of within-subject nor cross-subject Motor Im-
agery BCIs in the context of a benchmark dataset. How-
ever, there are other contexts in BCIs where epistemic
uncertainty may be expected. Off-task thoughts, rare ar-
tifacts, or insufficient training data can all introduce epis-
temic uncertainty, and the methods demonstrated here
may be able to improve robustness in those cases. This
has not yet been investigated.
We want to emphasise the need to study the behaviour
and uses of uncertainty estimates from non-Deep Learn-
ing models. Classical Machine Learning models for clas-
sification often come with an adaptation to return class
probabilities, but the behaviour of these may vary sub-
stantially. Assessing their ability to reject segments of
EEG that are likely to be false positives may allow for
more robust BCI systems. The robustness promised by
good UQ may be a step towards making BCIs more us-
able outside of the lab.
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ABSTRACT: Among all the operations carried out un-
der general anesthesia worldwide, some patients have had
the terrible experience of Accidental Awareness during
General Anesthesia (AAGA), an unexpected awakening
during the surgical procedure. The inability to predict
and prevent AAGA before its occurrence using only con-
ventional measures, such as clinical signs, leads to the
use of brain activity monitors. Given AAGA patients’
first reflex to move, impeded by neuromuscular-blocking
agents, we propose using a new Brain Computer Interface
with Median Nerve Stimulation (MNS) to detect their
movement intentions, specifically in the context of gen-
eral anesthesia. Indeed, MNS induces movement-related
EEG patterns, improving the detection of such intentions.
In this article, we compared MNS effects on the motor
cortex before and during surgery under general anesthe-
sia. Then, a Riemannian Minimum Distance to the Mean
classifier achieved 97% test balanced accuracy in distin-
guishing awake and anesthetized states. Additionally, we
observed how the classifier’s response evolves with anes-
thesia depth, in terms of distance to the awake class cen-
troid. This distance appears to track the patients’ aware-
ness level during surgery. This holds promises for devel-
oping a future one-class classifier using only awake EEG
data, as anesthesia EEG data are usually unavailable for
classifier training, to detect AAGA.

INTRODUCTION

Accidental Awareness during General Anesthesia
(AAGA) is an unexpected awakening during surgery
that can be a truly traumatic experience for the patients.
It occurs in about 1% of high-risk interventions [1],
although the incidence remains controversial as it is a
subjective experience that may be underestimated in
the absence of the necessary questionnaires to follow
the patients [2]. During an AAGA, the patient may
experience pain, and recall events related to the surgery,
which can lead to potentially devastating psychological
sequelae, such as Post-Traumatic Stress Disorder (PTSD)

[3]. The risk of AAGA is higher with Total Intravenous
Anesthesia (TIVA), such as propofol, in comparison
to volatile-based anesthesia [4]. In addition, the use
of Neuromuscular-Blocking Agents (NMBAs) further
increases this risk [2]. The first reaction to noxious
stimulation when anesthesia depth is insufficient is
the patient’s movement, which may act as a potential
detector of AAGA, but this response is suppressed by
NMBAs, which paralyze the patient [5]. Besides, tradi-
tional clinical signs like hypertension, tachycardia and
lacrimation are also unreliable indicators of anesthesia
depth [5]. As a result, electroencephalography (EEG)
has been used to monitor the depth of anesthesia [6], but
awareness may still occur with current monitors [7, 8].

Since the first reflex of a patient experiencing AAGA is to
attempt to move to prevent what is happening [2], using a
Brain-Computer Interface (BCI) based on motor imagery
could be relevant [9, 10]. Indeed, the power variations
within the mu and beta frequency bands, called Event-
Related Desynchronizations (ERD) and Event-Related
Synchronizations (ERS) could be useful markers for de-
tecting whether the patient is experiencing AAGA [11].
Interestingly, Median Nerve Stimulation (MNS) is a pain-
less stimulation of the median nerve that generates a sim-
ilar ERD/ERS pattern to the one induced by an intention
to move (MI) [12]. Combining both MI and MNS has a
significant impact on the patterns generated by the MNS,
resulting in a better classification accuracy in MI detec-
tion [9, 13]. Also, MNS intrinsically provides a trigger
to know when to analyze the signal [14], which leads to
better classification (+18%) results than those obtained
with asynchronous BCI [9]. The originality of this BCI
paradigm is to exploit this MNS induced phenomenon
to accurately detect the patient’s motor intention during
an AAGA. In preliminary results, we have shown that
propofol sedation (at 0.5 µg/ml and 1 µg/ml) has no nega-
tive impact on the ability of an MNS-based BCI to detect
movement intention. Concretely, at relatively low propo-
fol concentrations, ERD/ERS patterns are still present in
the sensorimotor cortex [15, 16]. However, it appears that
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high doses of propofol strongly affect the oscillatory ac-
tivity generated by the MNS [17], which makes it difficult
to detect MI under anesthesia.
Current BCIs require a subject-specific calibration due
to large between-subject variabilities. However, before
a surgery, patients’ EEG examples of MNS during anes-
thesia are not available. In the long term, we thus need
to develop new machine learning tools that can detect MI
under anesthesia without any EEG example from this pa-
tient. With this future objective in mind, in this paper, we
first propose to use a Riemannian Minimum Distance to
the Mean (MDM) classifier [18] to differentiate the EEG
activities induced by the two types of stimulations: pre-
operative MNS when the patient is awake (MNS-awake),
from intraoperative MNS when the patient is under differ-
ent stages of general anesthesia (MNS-anesthesia). Our
findings suggest that an MDM classifier is indeed capa-
ble of distinguishing between these two classes with high
accuracy. Additionally, the distance to the MNS-awake
class centroid (which does not require data under anes-
thesia) varies according to the concentration of propo-
fol throughout the surgery. These results are promising
for the future development of a one class MNS based-
BCI that detects AAGA, as EEG covariance matrices ap-
pear to contain information related to the patients’ level
of awareness throughout the surgery under propofol.

MATERIALS AND METHODS

Participants: 13 volunteers (7 females; 50±7.39 years
old) were enrolled for surgery at the CHU Brugmann,
Brussels, Belgium, and accepted to participate in this
protocol. This study was approved by the ethical com-
mittee of the CHU Brugmann (CE 2021/225) and was
registered at EUDRACT (2021-006457-56). The study
protocol [14] was also registered on ClinicalTrials.gov
(NCT05272202) and follows the principles of the Dec-
laration of Helsinki and the Medical Research Involving
Human Subjects Act [19]. Subjects 1, 2, and 5 were
excluded either due to technical issues or because the
surgery was canceled, resulting in only 10 subjects being
included. 2 of them (subjects 10 and 11) were stimulated
on the right median nerve, and the remaining 8 on the
left. This was due to difficulties in placing the electrodes
on the left median nerve and limited time in order not to
delay the surgical intervention.

Protocol: The patients were equipped with a TMSi
64-channel EEG cap covering the entire scalp, and the
signals collected through an eego mylab system (ANT
Neuro) at 4096 Hz. MNSs consisted of square electrical
pulses of 0.2 milliseconds of duration, and were gener-
ated by Micromed device SD Ltm Stim Energy and de-
livered through a pair of grass gold cup electrodes (cath-
ode [-] placed proximally) to the right/left median nerve
at the wrist [12]. The intensities were adjusted to elicit
visible small thumb twitches, below 15 mA [14].
First, a preoperative EEG recording session (approxi-
mately 1 hour) was conducted by stimulating the median
nerve of the awake patient during 1 or 2 runs. This was

followed by a second intraoperative session recorded dur-
ing the entire surgery under general anesthesia; the dura-
tion and number of runs depended on the length of the
surgery (from 3 to 10 runs, depending on the subject).
One run consisted of 150 stimulations, spaced by 3 to 4
seconds. The anesthesia protocol was left at the anes-
thesiologist’s discretion, except for the loss of conscious-
ness, which was achieved using propofol with a Target-
Controlled Infusion (TCI) pump with the Schnider phar-
macokinetic model designed to predict propofol concen-
tration at the effect-site [20]. If necessary, NMBA agents
were used (patients n°4, 6, 7, 8, 11, 13). Data collec-
tion of the target propofol concentration administered to
the patients was directly recorded alongside the EEG sig-
nals. After the surgery, sedation was discontinued, allow-
ing the patient to recover and to be monitored afterward
in the post-anesthesia care unit.

Time-frequency EEG analyses: Time-frequency analy-
ses to identify the differences in MNS patterns between
preoperative and intraoperative sessions were performed
using the EEGLAB toolbox [21] and MATLAB R2023a
(The MathWorks Inc). EEG signals have very low am-
plitudes and are thus susceptible to external interference.
For example, the use of electrocautery during a surgery
produces visible noise in the EEG signals [22]. In order to
clean these electrocautery-related artifacts, all trials were
visualized and those affected were rejected. Then, EEG
signals were downsampled to 128 Hz and epoched into
4.5 s windows (1.5 s before and 3 s after MNS).
Because Event Related Spectral Perturbation (ERSP)
time-frequency analyses are conducted at the group level,
it is essential for the subjects to have homogeneity, mean-
ing they should be stimulated in the same hand. There-
fore, ERSP time-frequency analyses were averaged only
across the 8 participants where the left median nerve was
stimulated, the electrode of interest being C4 (Fig. 1).

Classification: Offline BCI performances for MNS-
awake vs. MNS-anesthesia classification were analyzed
to determine if the MNS pattern might be used to track
the patient awareness level throughout surgery. Classifi-
cations were performed using the MNE [23], Scikit-learn
[24] and pyRiemann [25] packages in Python 3.10. EEG
signals, with trials affected by electrocautery-related ar-
tifacts rejected, were downsampled to 128 Hz, band-pass
filtered (8-30 Hz), and epochs for MNS-awake and MNS-
anesthesia were extracted from 250 to 1000 ms after the
stimulation. Epochs do not start at time 0 ms to avoid
MNS-induced electrical artifacts. All 64 electrodes were
used for the classification, and since the algorithm cali-
bration is subject-specific, all 10 subjects were included.
A Riemannian MDM [18, 26] was used, as Riemannian
classifiers are currently the state-of-the-art in EEG-based
BCIs [27, 28]. Each EEG trial X is represented by a
covariance matrix P ∈ Rn×n, with n the number of elec-
trodes, s the number of sampled time points in each trial
and the superscript T as matrix transposition:

P =
XXT

s−1
(1)
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Figure 1: Grand average Event-Related Spectral Perturbation (ERSP) time-frequency analysis across 8 subjects for both conditions:
preoperative (left figure) and intraoperative (central figure) median nerve stimulation, for electrode C4. The flash icon indicates the
beginning of the stimulation. Statistical differences at a significance level of 0.05 are shown on the right figure. Red color corresponds
to a strong ERS and blue to a strong ERD.

Such matrices are symmetric-positive definite matrices,
that can be manipulated using Riemannian geometry, and
compared using a dedicated Riemannian geodesic dis-
tance δR:

δR(P1,P2) = ||log(P−1/2
1 P2 P−1/2

1 )||F (2)

where ||A||F is the Frobenius norm of a matrix A. For al-
gorithm training, the MDM algorithm first estimates the
mean covariance matrix Pk

G for each class k (here, MNS-
awake or MNS-anesthesia). This is performed using the
covariance matrices of the I ≥ 0 training EEG signals
from class k, as follows:

Pk
G = argmin

Pk

I

∑
i=1

δ
2

R(Pk,Pk
i ) (3)

These two mean covariance matrices, one for each class,
can then be used as class centroids. For algorithm test-
ing, covariance matrices are also estimated for each trial.
Thus, the class k̂ of an unseen EEG covariance matrix P
is determined based on the nearest centroid’s class:

k̂ = argmin
k

δR(P,Pk
G) (4)

The number of training and testing trials differs among
subjects, depending on the quantity of clean trials
recorded preoperatively or during their surgery. The clas-
sifier was trained with the first half of preoperative trials
for the MNS-awake class (65 to 148 trials), and the first
half of deep-anesthesia intraoperative trials for the MNS-
anesthesia class (113 to 535 trials). It was then tested on
the remaining trials (279 to 1192 trials). Standard cross-
validation was not used to remain realistic and more sim-
ilar to an actual online use, where no future data would be
available for cross-validation. Employing this technique
might lead to an overestimation of the accuracy [29].

RESULTS

Impact of general anesthesia on ERD/ERS induced by
MNS: During the preoperative condition (i.e., before the
general anesthesia), the ERSP analysis (Fig. 1) revealed
the usual EEG pattern associated with median nerve stim-
ulation [9, 30]. In particular, immediately after the MNS,
a powerful ERS appears between 0 and 250 ms, in the
whole 8 to 30 Hz frequency band. For the remainder of
this article, this very first ERS will be referred to as the
post-stimulation rebound (PSR; see [9, 30]) and could be
due partially to an electrical artifact. The PSR is followed

by an ERD period of approximately 500 ms in both the al-
pha and beta frequency bands (8-30 Hz). Finally, a post-
movement beta rebound (PMBR) occurs in the beta fre-
quency band (18-23 Hz) about 500 ms after stimulation
and lasts 1 s. According to a permutation test comparing
the two surgical conditions, for p≤ 0.05 with a correction
for false discovery rate for multiple comparisons, both
ERD and PMBR seem to disappear significantly during
the intraoperative condition.

MNS-awake vs MNS-anesthesia classification: The
MDM algorithm is able to correctly distinguish the pre-
operative MNS pattern (MNS-awake) from the intraoper-
ative pattern (MNS-anesthesia), with an average test set
balanced accuracy of 97% (Fig. 2). The test set balanced
accuracy for each subject is never below 85%, which is
not surprising given the clear difference in the MNS pat-
tern between these two sessions (Fig. 1).

Distances to the MNS-awake class centroid: The dis-
tances to the MNS-awake class centroid of the test tri-
als of subjects S6, S8 and S9 over the whole experiment
are shown in Fig. 3. When a trial is classified as MNS-
awake by the MDM classifier, a bar is presented below
it, beneath the graph. The corresponding test set bal-
anced accuracies of subjects 6, 8 and 9 are 96%, 98% and
86%, respectively, with the latter being the lowest accu-
racy among the 10 subjects. For S6 and S8, the MDM
classifier correctly identified the patients as awake dur-
ing the preoperative session and at the beginning of the
intraoperative session. For S6, this prediction persisted
until the propofol concentration reached approximately
1.5 µg/ml, and for S8 until it reached 3 µg/ml. At the
end of the intraoperative session, S8 was also identified as
awake for a few trials. As for S9, the preoperative session
was accurately labeled. Towards the end of the surgery,
with propofol below 1.5 µg/ml, the subject was identi-
fied as awake, which is consistent with reality, as the pa-
tient was already responding. However, the classifier as-
sociated some trials that were part of the induction (with
propofol concentration between 2 and 8 µg/ml), as part
of the MNS-awake class. The evolution of the distance is
congruent with anesthetic concentration evolution, sug-
gesting that covariance matrices might indeed reflect the
progression of the MNS pattern throughout the surgery.
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Figure 2: Riemannian MDM test set balanced accuracy of the
10 subjects, for MNS-awake vs MNS-anesthesia classification,
where the EEG signals were filtered in the mu+beta band (8-30
Hz), and all 64 electrodes were used. The yellow line indicates
the average test set balanced accuracy (97%).

DISCUSSION

According to these results, a Riemannian MDM is in-
deed capable of distinguishing the MNS pattern of an
awake patient from the MNS pattern when the same pa-
tient is under propofol. This distinction varies through-
out the surgery, according to the propofol concentration.
The classifier accurately identifies the patient as awake
during the preoperative session, at the beginning of the
induction and at the end of the emergence phases. Fur-
thermore, trials of deep anesthesia are farther away from
the MNS-awake class centroid than trials corresponding
to induction or emergence. We will suggest a few hy-
potheses that may explain the changes in MNS patterns
between the two sessions and how to make the algorithm
more robust. Additionally, we will discuss the possibility
of evolving this algorithm into a one-class model, as well
as future analyses to be explored.

ERD/ERS differences between preoperative and intra-
operative conditions: As mentioned, sensorimotor mod-
ulations after stimulation are strongly modulated by gen-
eral anesthesia. First, the amplitude of the PSR (i.e., ERS
following the MNS) completely disappears in the pres-
ence of propofol. This is also the case for the post-MNS
ERD and for the PMBR (Fig. 1). Our previous results had
shown that with light propofol sedation (concentrations
below 1.5 µg/ml), ERD/ERS patterns were still present
in the sensorimotor cortex [16]. However, at deepest
concentrations, propofol decreases excitatory inputs from
the thalamus to the cortex [6], leading to a decrease in
the metabolic activity of the central nervous system, thus
making the ERD/ERS disappear after MNS.
In addition to the effects of general anesthesia, other fac-
tors could explain the modulations of ERD/ERS. For ex-
ample, this could be attributed to a change in skin con-
ductance, for instance due to stress. Skin conductance
increases in response to stress [31], as is the case right
before the intervention, and decreases during the surgery
when the patient is no longer conscious. This remains a
hypothesis to be further analyzed. It might also result
from the change in environment between the two ses-
sions, with the preoperative session conducted in a differ-
ent room than the operating one because of the high cost

of the operating rooms. Also, the position of the patient’s
arm was not exactly the same in the two sessions.

Robustness of the classification: The MDM classi-
fier is indeed capable of correctly identifying the periods
when the patient is awake (preoperative session, begin-
ning of induction and end of emergence). It is impor-
tant to note that the MNS-anesthesia class was trained
with trials under deep anesthesia, which are not easily
obtained under clinical conditions. Moreover, for certain
subjects such as S9, it mistakenly classifies some trials
where the patient is at a propofol concentration of 2 to
6 µg/ml as MNS-awake. During this period, some ex-
ternal elements occurred that could explain why these
covariance matrices were closer to the centroid of the
MNS-awake class rather than to the one associated with
MNS-anesthesia. For example, the patient raised an arm,
MNS electrodes were repositioned, the patient was intu-
bated, and the medical team adjusted the patient’s posi-
tion on the operating table. Even though the biggest ar-
tifacts were rejected from the EEG, the signals remained
considerably noisy. Furthermore, there is minimal dif-
ference between S9 and the other subjects, except for its
age of 75, compared to an average of 50. Age-related
variations in the effects of anesthesia on the EEG have
already been shown to impact the effectiveness of EEG-
based monitors [32]. Additionally, S9 had notably fewer
training trials (77 for MNS-awake and 137 for MNS-
anesthesia) compared to S6 and S8, which had 2 to 4
times more trials, making them the subjects with the high-
est number of training trials. Despite this, Spearman’s
correlation revealed no significant relationship between
the number of training trials and accuracies. Thus, while
S9’s lower accuracy compared to S6 and S8 may be due
to its fewer training trials, this explanation cannot be gen-
eralized across all subject’s. Burst suppression, a high-
voltage activity alternating with isoelectric flat EEG [33],
is related to deep levels of general anesthesia [6, 34].
Thus, current depth of anesthesia monitors have a burst
suppression sub-variable to avoid a paradoxical increase
[5]. In our algorithm, we have not yet taken into account
this paradoxical increase in amplitude.

One-class classifier: In a real-world application, the
MNS-anesthesia class trained with deep anesthesia trials
will not be available to calibrate the BCI. Therefore, a
one-class approach [35] calibrated only with MNS-awake
trials will be required. Given that the distance to class
MNS-awake appears to evolve logically in relation to the
anesthesia concentration evolution, one could imagine a
one-class method that only takes into account preopera-
tive data to compute an MNS-awake centroid using a Rie-
mannian distance, as in the MDM algorithm. A threshold
would then be defined, beyond which the trials of the test-
ing set no longer match, meaning the MNS pattern cor-
responds to an anesthetized patient. We will explore this
approach in future works.

Future analyses: To detect the propofol concentration
at which the MNS patterns are no longer visible, we will
further analyze an average time-frequency across subjects
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Figure 3: Distances of each test trial to the MNS-awake centroid, for subjects 6, 8 and 9. The real labels are presented by colors:
green for the preoperative session (MNS-awake) and red for the intraoperative session (MNS-anesthesia). Below, a bar indicates
when the classifier predicted MNS-awake. When propofol reaches the target concentration, a gray line with a label indicating the
corresponding concentration (in µg/ml) is displayed. Each run is differentiated by alternating background colors (white, gray), and
labeled as preoperative (P) or intraoperative (I) runs.

for each concentration. This will allow us to observe the
pattern evolution. An extension of this MNS-based BCI
will also be explored by integrating other EEG features,
still visible under deep levels of propofol. Some of these
features might be the signal entropy, already used in some
monitors [36], functional connectivity or somatosensory
evoked potentials. Further analyses will also aim to iden-
tify the specific frequency band and the most relevant
electrodes to correctly detect the changes in the MNS
pattern when a patient is anesthetized. In order to val-
idate this MNS-based BCI, a protocol will be carefully
conceived to try to simulate an AAGA and observe if the
BCI will indeed be able to detect it.

CONCLUSION

In this paper, we evaluated the feasibility of a new MNS-
based BCI to detect intraoperative awareness during gen-
eral anesthesia by tracking the EEG pattern in the motor
cortex associated to MNS during the surgery. We com-
pared this MNS pattern when the subject is awake (MNS-
awake) with the MNS pattern when the same patient is
undergoing a surgical procedure at different concentra-
tions of propofol (MNS-anesthesia). The two patterns are
indeed very different from each other, more particularly,
the ERD and PMBR present after the stimulation seem
to disappear at deeper concentrations of propofol. A Rie-
mannian MDM was used to differentiate the MNS-awake
and MNS-anesthesia classes. The average test balanced
accuracy was of 97%, which was expected considering
how different the two patterns are. The evolution of the
classifier was further analyzed, by tracking the distance
between the centroid of the MNS-awake class and covari-
ance matrices of other trials throughout the surgery. This

distance is greater during the maintenance phase, under
deeper concentrations of anesthesia, compared to the in-
duction or emergence phases. This indicates that co-
variance matrices associated with the MNS pattern seem
to evolve consistently with the patient’s level of aware-
ness. Hence, a one-class approach only based on MNS-
awake trials, utilizing this distance to detect when the
patient is awake during the surgery might be developed.
Such a one-class method will be necessary, as the MNS-
anesthesia trials will not be available to calibrate the BCI.
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ABSTRACT:  
Current features used in motor imagery-based Brain-
Computer Interfaces (BCI) rely on local measurements 
that miss the interactions among brain areas. Such 
interactions can manifest as bursts of activations, called 
neuronal avalanches. To track their spreading, we used 
the avalanche transition matrix (ATM), which contains 
the probability that an avalanche would consecutively 
recruit any two brain regions. Here, we proposed to use 
ATMs as a potential alternative feature. We compared 
the classification performance resulting from ATMs to a 
benchmark model based on Common Spatial Patterns. 
In both sensor-and source-spaces, our pipeline yielded an 
improvement of the classification performance 
associated with reduced inter-subject variability. A 
correspondence between the selected features with the 
elements of the ATMs that showed a significant 
condition effect led to higher classification performance, 
which speaks to the interpretability of our findings. 
In conclusion, working in the sensor space provides 
enough spatial resolution to classify. However the source 
space is crucial to precisely assess the involvement of 
individual regions. 
 
INTRODUCTION 
Neuroscientists have been exploring and researching 
Brain-Computer Interface (BCI) since the70s as a way to 
restore communication and motor capabilities for 
severely disabled people., such as patients affected by 
amyotrophic lateral sclerosis, stroke, or spinal cord injury 
[1].  
In non-invasive BCI, Event Related 
Desynchronization/Synchronization, Event Related 
Potentials, and Steady State Evoked Potentials are the 
most informative brain activity patterns for 
communication and control applications to design 
electroencephalography (EEG)-based BCI. One of the 
main drawbacks of the current systems lies in the high 
inter/intra-subject variability, notably in terms of 
performance. Indeed, multiple studies reported that 
15%–30% of the subjects fail in controlling a BCI device. 
This is a phenomenon referred to as the “BCI 
inefficiency” [2]. Among the potential causes are the 
selected data features. Indeed, relying mostly on local 
measurements might not effectively capture brain 
functioning, as some information is encoded in the 
interactions between areas [3]. 
To overcome these limitations and to take advantage of 
the EEG time-resolution, in a recent work, we proposed 

to use a metric that captures the dynamic nature (i.e. 
changing in space and time) of the brain activities: the 
neuronal avalanches. Neuronal avalanches are 
characterised by the propagation of cascading bursts of 
activity [4]. Previous studies show that their spreading 
preferentially across the white-matter bundles [5] and 
that neuronal cascades are a major determinant of 
spontaneous fluctuations in brain dynamics at rest [6]. 
Furthermore, in our previous work we showed that 
neuronal avalanches, estimated from source-
reconstructed data, spread differently according to the 
task performed by the user, demonstrating the potential 
relevance of neuronal avalanches as an alternative feature 
for detecting the subjects' intent [7].   
Here, we investigated to which extent this framework 
would be compatible with a BCI experiment. For this 
purpose, instead of working in the source domain that 
requires additional data (e.g. individual magnetic 
resonance imaging) and computational resources, we 
tested the performance of neuronal avalanches directly in 
the sensor domain. Indeed, the methodological validity 
of sensor space measures is especially relevant for online 
studies in a clinical setting due to time and economic 
constraints. We hypothesised that despite a reduction of 
the spatial resolution, using the neuronal avalanches in 
the sensor space could help in classification performance, 
and that the selected features could be 
neurophysiologically interpretable and relevant. 
 
MATERIALS AND METHODS 
Participants 
The research was conducted in accordance with the 
Declaration of Helsinki. A written informed consent was 
obtained from subjects after explanation of the study, 
which was approved by the ethical committee CPP-IDF-
VI of Paris. All participants received financial 
compensation at the end of their participation. Twenty 
healthy subjects (27.5 ± 4.0 years old, 12 men), with no 
medical or psychological disorder, were recruited. 
 
Experimental protocol 
The dataset used in our study originates from Corsi et al. 
[8] and involves a BCI task structured around a two-
target box task. Participants were required to adjust their 
brain's alpha and/or beta activity levels to control a 
cursor's vertical movement, aiming to reach a vertical 
bar, referred to as a target displayed on the screen. 
Achieving the upper target necessitated the subjects to 
engage in continuous motor imagery (MI) of right-hand 
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grasping. Conversely, reaching the lower target required 
the subjects to remain in a resting state. Each session 
comprised 32 trials, evenly and randomly split between 
the up and down targets, correlating with the MI and Rest 
conditions, respectively. For a complete description of 
the protocol, the reader can refer to [8]. 
 
EEG data acquisition & pre-processing 
EEG data were captured using a 74-channel EEG system 
equipped with Ag/AgCl passive sensors (Easycap, 
Germany), arranged according to the 10-10 standard 
montage. Reference electrodes were placed on the 
mastoids, with the ground electrode on the left scapula. 
Recordings took place in a magnetically shielded room, 
utilising a 0.01-300Hz bandwidth and sampling at 1kHz. 
Two channels (namely T9 and T10) were identified as 
bad and rejected based on the amplitude of the signals 
recorded, with a threshold of three standard deviations. 
For a complete description of the pre-processing steps, 
please refer to [8]. 
 
Neuronal Avalanches extraction  
The neuronal avalanches analysis consists of identifying 
large signal excursions beyond a given threshold. The 
cascades are captured by clustering these discrete supra-
threshold events based on temporal proximity, thus, 
defining neuronal avalanches as periods of collective 
spatio-temporal organization. Each signal was z-scored 
(over time), and set to 1 when above a threshold, and to 
0 otherwise. An avalanche was defined as starting when 
at least one channel is above threshold (referred here as 
active channel), and as finishing when all channels were 
inactive [4,5,6]. For each avalanche, we estimated a 
transition matrix A, called Avalanche Transition Matrix 
(ATM), structured with channels in rows and columns, 
and the ijth element of matrix A defined as the probability 
that the electrode j would be active at time t+1, given the 
electrode i was active at time t.      For each subject, we 
obtained a transition matrix over all avalanches for each 
condition (MI and Rest conditions).  
 
Classification Analysis      
To explore the applicability of the ATM method in the 
context of a BCI training, we performed a subject-
specific analysis.  
The classification step was done using a Support Vector 
Machine (SVM). To assess the extent to which the ATMs 
might be considered as an alternative feature for BCIs, 
we compared our approach (ATM+SVM) to a framework 
that relies on spatial filters, namely Common Spatial 
Patterns (CSP+SVM) [9, 10]. 
For each approach (namely ATM+SVM or CSP+SVM), 
we classified different tasks at the individual level. To 
evaluate the classification performance, we divided the 
dataset to include 80% of the trials in the train split and 
20% of the trials in the test split. The classification scores 
for all pipelines were evaluated with an accuracy 
measurement using a random permutation cross-
validator. To assess the robustness of our framework, we 
also tested a different number of re-shuffling & splitting 
iterations (5/25/50/75). 

For each subject, the CSP method decomposes signals 
using spatial filters, and then selects the n modes that 
capture the highest inter-class variance. Here, we 
selected eight spatial modes and returned the average 
power of each.  
As for the ATMs, to consider the subjects’ specificity, we 
optimised two parameters, namely: the threshold applied 
to the z-scored signals (ranging from 1.0 to 4.0), and the 
minimal duration of the considered avalanches (ranging 
from 2 to 8) [11]. Inside the ATM pipeline the choice of 
the best decoding parameters relied on a posteriori 
classification accuracy performance rate.  
Finally, we individually compared the classification 
performance obtained with the CSP+SVM and with the 
ATM+SVM approaches, respectively. We run t-tests 
under the null hypothesis that, for a given subject, 
CSP+SVM and ATM+SVM would not yield statistically 
significant differences in classification. We repeated the 
comparison for all the subjects and corrected these 
statistical comparisons for multiple comparisons across 
subjects using the False Discovery Rate (FDR) [12]. 
Such an analysis has been performed across 25, 50, and 
75 splits. However, given its poor statistical power, it is 
not possible to apply a statistical test over 5 splits 
classification. Therefore, to evaluate whether the 
difference between the two pipelines could be considered 
as significant, we calculated the averaged classification 
performance across splits using both CSP+SVM and 
ATM+SVM and we determined the difference for each 
subject. Ultimately, we compared the absolute value of 
the difference with our predefined threshold, considering 
the classification performance not statistically different if 
the magnitude of the difference between the two methods 
was less than a threshold. We established the threshold at 
an arbitrary value of 0.05. As a sanity check, we 
performed this analysis in the source space, as we did in 
[7]. For a complete description of the source-
reconstruction steps, the reader can refer to [8].  
 
In this work, we used preprocessed signals that were 
bandpass filtered between 3 and 40Hz. To investigate the 
potential effect induced by the choice of the frequency 
band, we performed the same analysis in the  μ band (8 – 
13 Hz) and in the beta band (13 – 30 Hz) [not shown]. 
We performed a one way ANOVA (df = 2) among these 
three-frequency bands under the null hypothesis (H0) 
that these groups came from the same population. For 
both approaches (CSP+SVM and ATM+SVM), no 
frequency band effect on the classification performance 
was observed (p-value > 0.05). Therefore, in the next 
sections, we will report the results were obtained within 
the 3-40 Hz band. 
 
Decoding: Features importance analysis 
To investigate the interpretability of the classification 
performance, we examined the relative importance of the 
features derived from the absolute values of the 
classification coefficients in the model. To better 
understand the features importance across subjects, we 
carried out a quantitative reliability analysis across the 
cohort to identify the repetition of the selected features in 
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at least half of the subjects. To investigate features 
importance from a nodal point of view we set as a 
threshold the median value across channels and subjects, 
then we evaluated which nodes were over threshold in 
the majority of the subjects
We computed this analysis over the entire dataset (20       
subjects) but also independently on two different sub-
groups: on the 10 most responsive subjects according to 
ATM classification performance and on the 10 least 
responsive subjects respectively. All these investigations 
were also performed in the source space.  
 
Encoding: Quantification and statistical analysis 
To identify the edges (i.e. functional links) that are more 
likely to be recruited during a hand motor imagery task 
as compared to resting state, for each participant, we 
calculated the variance in the probability of perturbations 
traversing a specific edge between resting state and MI 
task. To assess the statistical significance, we 
randomized the labels of individual avalanches for each 
person. This shuffling was repeated 10,000 times to 
generate a distribution of differences for each edge under 
the null hypothesis that the transition matrices revealed 
no distinction between the two conditions. We then 
determined statistical significance for each edge against 
this null distribution, applying Benjamini-Hochberg 
correction for multiple comparisons across edges. This 
process yielded a matrix for each subject, highlighting Si,j 
values (here referred to as edges) with statistically 
significant differences between conditions. We assessed 
the consistency of these matrices across individuals, 
concentrating on edges consistently implicated in the 
task. Then, we performed a node-wise analysis to 
identify the nodes over which significant differences 
were clustered. These nodes were referred to as ‘‘task-
specific’’ areas. 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
RESULTS 
Classification performance      
Working on the entire dataset of 20 subjects, as a 

standard configuration, we used 50 random splits.  
 
At the group-level, the classification performance in the 
sensor space, between CSP+SVM and ATM+SVM is 
similar (t-test, pval > 0.05). Nevertheless, we observed a 
larger inter-subject variability with CSP+SVM 
(71%+/15%) as compared to ATM+SVM (71% +/- 9%). 
In the source-space, ATM+SVM (80%+/-8%) led to a 
statistical improvement of the classification performance 
as compared to CSP+SVM (75%+/-14%) (t-test, 
pval<0.05) such as a reduced inter-subject variability. 
At the individual level, in the sensor-space ATM+SVM 
yielded a statistically better classification accuracy than 
CSP+SVM for 9 subjects. In 8 subjects, CSPs yielded 
better accuracy than ATMs. In 3 subjects, there was not 
any statistically significant difference between the two 
approaches (Fig. 1B). In the source-space, ATM+SVM 
yielded significantly higher classification accuracy than 
CSP+SVM for 13 subjects, while the opposite was true 
for 4 subjects. For the remaining 3 subjects, there was not 
any statistically significant difference between the 
decoding performances of the two approaches (Fig. 1E).  
 
To investigate the possibility to reduce the computational 
time to get closer to a configuration more compatible 
with the online requirements, we investigated the 
accuracy performance across different random splits 
configurations (5, 25, 50, 75) both at the individual and 
at the group level. As shown in Fig. 1A & D the 
performance was robust across splits for both CSP+SVM 
and ATM+SVM pipelines (one-way ANOVA p>0.05), 
and we observed a higher accuracy score for most of the 
subjects with 5 splits both in sensor and source space. 
Based on the observations made on the inter-subject 
variability, we validated the significant difference of the 
variance of these two populations via the F-test 
(pval<0.05). The statistical difference between the two 
pipelines was achieved both in the sensor and in the 
source space. 
 

Figure 1: Classification performance. (A/D) Effect of splits tested on ATM+SVM and CSP+SVM at group level in sensor-space (A) 
and source-space (D). (B/E) Individual level classification performance in sensor-space (B) and source-space (E) using 50 random splits. 
(D/F) Individual level classification performance in sensor-space (D) and source-space (F) using 5 random splits.  
Color coded: in salmon, ATM+SVM pipeline; in violet, CSP+SVM pipeline. Statistical difference between CSP + SVM & ATM + SVM: 
* pval < 0.05, ** pval < 0.01. 
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When considering 5 splits, at the group level, in the 
sensor space, no significant difference was observed 
between the two pipelines (t-test, p-value > 0.05) but 
CSP+SVM (72% +/- 15.55%) showed a larger inter-
subject as compared to ATM + SVM (73% +/- 9.14%). 
In the source space, ATM + SVM (81% +/- 7.5%) led to 
a statistical improvement of the performance (t-test, 
pval<0.01) as compared to CSP + SVM (75% +/- 14%) 
and a significant reduction of inter-subject variability.  
At the individual level: in the sensor-space (Fig.1C), with 
5 splits, ATM+SVM yielded a statistically better 
classification accuracy than CSP+SVM for 9 subjects. In 
7 subjects, CSPs yielded better accuracy than ATMs and 
in four subjects, there was not any significant difference 
between the two approaches. However, CSP+SVM 
pipeline led to a larger number of subjects with a 
performance below the chance level, set to 58% here [13] 
(6 subjects) than with ATM+SVM (1 subject). In the 
source space, ATM+SVM showed an improved 
performance in 12 subjects, while the opposite was true 
for 3 subjects with CSP+SVM (Fig. 1F).  
 
From now on, unless specified otherwise, the chosen 
configuration will involve 5 splits to closely mimic a 
real-time setup, and the subsequent sections will deal 
with ATM data only.    
 
Sensor and source space selected features  
To investigate the interpretability of the decoding 
performance, we estimated the weights attributed to each 
feature. A preliminary probabilistic analysis showed that 
most of the selected features presented a lower feature 
importance and that only a few were notably higher, 
suggesting that only a reduced number of features were 
relevant. When considering the features selected in at 

least half of the cohort, an edge involving left central 
electrodes (C5) and occipital electrodes (O2) was 
obtained in 13 subjects (Fig. 2A). We observed a 
predominant involvement of left central electrodes 
connected to occipital electrodes, between left and right 
central electrodes connected to parietal electrodes. 
Similar observations were possible in the source-space. 
Looking for a recurrent path across most of the subjects, 
see Fig 2B, in 15 subjects, most of the connections 
involved left paracentral, rostral anterior cingulate 
cortex, caudal middle frontal gyrus and medial lateral 
orbito-frontal regions.  
 
These interactions correspond to edge clusters that were 
task-dependent and consistent across subjects in 
encoding investigation shown in our previous paper [7]. 
Moreover, the features with higher weight often involved 
the left paracentral and the precentral areas. 
To get a more synthetic vision of these results, we 
performed a similar analysis at the nodal level, 
confirming the results previously obtained. To increase 
the statistical validity of such observations, in this part, 
we worked with the 50-split configuration. In the sensor-
space, the electrodes with highest features’ importance 
were C5 and P8. Nevertheless, it is possible to observe a 
general activation in electrodes over the bilateral motor 
cortex, and the bilateral parietal lobe. In the source-space, 
the most frequently selected brain regions were the right 
paracentral area, the left frontal pole and the right rostral 
anterior cingulate. 
 
Encoding-Decoding Match in sensor-space 
To investigate the neurophysiological validity of the 
selected features, we compared them with the results 
obtained with an encoding framework. To achieve this, 
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Figure 3: Encoding analysis in sensor-space. 
 (A) Encoding reliably different edges cluster at 
group level in sensor-space 
 (B) Encoding at nodal and group level in 
sensor-space 

Figure 2: Features selection. 

 (A) Edges-wise, valid at group 
level in sensor-space  

(B) Edges-wise, valid at group 
level in source-space 
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we examined differences between the two experimental 
conditions in the probabilities of perturbations 
propagating across two brain regions. Our results show 
that there is a set of links over CP and P electrodes (CP5, 
P1, P2 edges-wise and CP1, Pz, P2 at nodal level), in 
which the difference between two conditions (MI and 
rest) was consistently significant across most of the 
subjects (p < 0.0001, BH corrected) (Fig. 3A/B). 
Following the features’ importance analysis described in 
the previous section, we performed a quantitative 
reliability analysis to consider only the edge-wise 
selected in at least half of the subjects (Fig. 2A). The final 
goal of this analysis was the comparison between reliably 
different edges selected in the encoding phase and the 
features selected in most subjects with the larger 
attributed weight. Indeed, we observed a higher level of 
match score with the ten subjects with a highest 
classification performance (37%, see Fig. 4A) as 
compared to the ten subjects with the lowest 
classification performance (6%, see Fig. 4B) but also to 
the entire dataset (9%, see Fig. 4C).  

A. B.  

C.  
Figure. 4: Edges matches between encoding and decoding: 
(A) Results obtained from the ten subjects with the highest 
classification performance; (B) Results obtained from the ten 
subjects with the lowest classification performance; (C) Results 
obtained from the entire dataset.  
 
DISCUSSION 
In the sensor space as well as in the source space, the 
classification of ATMs led to an improvement of the 
decoding performance with respect to the benchmark 
(namely the spatial filter-based approach) in most of the 
subjects robustly across the different number of tested 
random splits. Importantly, in both source and sensor 
domains, we observed a reduced intra and inter-subject 
variability with ATM+SVM as compared to CSP+SVM. 
These findings suggest that the use of our approach could 
be a tool to reduce the BCI inefficiency phenomenon.  
Beyond the classification performance, we also 
investigated the interpretability of our findings through 
the study of the selected features. ATMs present a 
straightforward interpretability as opposed to CSPs, 
which operate on large-scale components of the signal 
that are not as readily interpretable. Indeed, it is possible 

to study and to identify the selected features at the subject 
level but a quantitative analysis at the group level is not 
applicable because of the difficulty to identify a common 
precise pattern across different subjects and different 
selected features. At the individual level, the information 
captured by the two types of feature extraction (namely 
CSPs and ATMs) are complementary, as seen in Fig. 5. 
ATMs is based on edge-wise representations and focus 
on strong coherent interactions that intermittently occur 
on the large-scale whereas CSP features, that embedded 
pipelines based on techniques that assume stationarity, 
rely on local measurements (mostly frequency band 
power features and time-point features) disregarding the 
propagation of brain dynamics at consecutive time 
instants.  
To further study the meaning of the features selected with 
ATMs, we adopted an encoding framework identified 
here as a set of functional connections (i.e., edges) that 
consistently exhibited a higher likelihood of dynamic 
recruitment during a hand motor imagery task as 
compared to the resting state at the group level. This 
straightforward approach, validated on the entire dataset, 
allowed us to reliably extract functional information 
specific to the task execution at the individual level, an 
observation not achievable through traditional functional 
metrics (namely power spectra and phase-locking value) 
[7]. Therefore, from a theoretical standpoint, our study 
establishes the foundation for exploring neuronal 
avalanche metrics as a novel functional connectivity 
measure for investigating changes during motor tasks 
based not on the functional activation between two brain 
areas at the same time but on consecutive activations.  
In the sensor space, the electrodes that showed a higher 
feature importance, identified through the decoding 
framework, were located over the same brain areas 
defined as “reliably edges” in the encoding framework. 
Moreover, we noticed that an increased match between 
the selected features and the edges-clusters led to an 
improvement of the classification performance. This 
finding suggests a possible way to apply a dimensionality 
reduction in the features used in the decoding step, to 
improve the classification performance. An ongoing 
work consists in investigating the key-parameters of the 
neuronal avalanches to be tuned and the associated 
features selection approaches to assure that the most 
relevant information will be considered for the 
classification step. Considering such approaches will 
improve the performance, but they will also reduce the 
computational time as well; two key-aspects of the 
feasibility of our pipeline in real-world scenarios. 
 
In our work, to emphasise this possible future 
development, we dealt with epochs of 5s from which 
25ms and 27ms (respectively for ATM + SVM and 
CSP+SVM) were required to extract the features and to 
perform the classification. Such computational time 
estimations are in line with current real time settings that 
rely on similar time windows and propose an update of 
the provided feedback every 28 ms. Future work will 
consist in identifying strategies to extract neuronal 
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avalanches, and therefore ATMs, in shorter time 
windows to make our framework completely compatible 
with online settings.  
 
To further investigate the physiological meaning of our 
findings we compared the results respectively obtained in 
the sensor and in the source space. The most frequently 
selected features involved central electrodes (C-CP) in 
the sensor-space, and the paracentral area in the source-
reconstructed data, implying the motor-area. Moreover, 
our results showed that other networks were involved in 
a motor-imagery task, through the selection of electrodes 
above parietal and occipital areas. The parietal lobe is 
structurally divided into inferior parietal lobe, superior 
parietal lobe, and precuneus [14]; its principal functions 
are the perception of the body, the integration of 
somatosensory information (e.g. touch, pain, pressure 
and temperature), visuospatial processing and 
coordination of movement. As such, the parietal 
activation is in line with our observations [7], because the 
subjects were instructed to perform a kinesthetic motor 
imagery task, that involves imagining movements as well 
as sensing the touch caused by the grasped object, and 
because coordinating hand, arm, and eye motions is 
required to perform our task. A similar role of precuneus 
in coordination of motor behaviour is achieved by 
anterior cingulate cortex [13] and its involvement has 
come to light in source-reconstructed data [7]. The 
occipital lobe [15] is primarily responsible for visual 
processing. Its recurrent activation and connection with 
central electrodes usually happens during a kinesthetic 
task, and when a visual stimulation is proposed as it was 
during our experiments. 
Moreover, mainly in the source-space, we observed the 
involvement of the caudal portion of the middle frontal 
gyrus and of the medial-orbital frontal area. Within the 
caudal portion of the middle frontal gyrus, at the 
intersection with the precentral gyrus, is the frontal eye 
fields (Brodmann area 8). The frontal eye fields control 
saccadic eye movements, rapid, conjugate eye 
movements that allow the central vision to scan 
numerous details within a scene or image, same meaning 
of orbital regions involvement [16], instead medial-
orbital frontal region reflects the allocation of attentional 
resources, which are typically engaged in 
cognitive/motor tasks [7]. Such findings demonstrate the 
neurophysiological validity of the selected features.  

CONCLUSION 
Our results suggest that the integration of periodic and 
aperiodic features would be a straightforward way to 
capture functionally relevant processes, in turn, to apply 
them to the design of BCIs and to improve task 
classification. The good performance of the ATMs on the 
EEG data in the sensor space is relevant to translate our 
methodology to real-world scenarios. Until now, we 
tested this  new feature only during a hand motor imagery 
BCI task. Future work will consist in considering a wider 
range of BCI paradigms for communication and 
movements recovering applications. 
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ABSTRACT: Mapping neural activity along the spinal
cord is a task that is hardly researched compared to hu-
man brain mapping. By identifying neural sources in the
spinal cord and detecting unique activity patterns associ-
ated with various motor tasks or specific sensory input,
it becomes possible to establish a baseline for healthy in-
dividuals. This could be utilized to classify spinal cord
injuries or monitor changes in the spinal cord. This
study demonstrates the effective application of an inno-
vative approach to localizing the spinal sources of spinal
cord potentials (SCPs) using the finite element method
(FEM) to solve the forward problem and an abstraction
of the sLORETA algorithm to identify the neural sources,
which were induced by functional electrical stimulation
(FES) on the forearms of healthy individuals.

INTRODUCTION

The field of human brain mapping, once limited to static
classifications like Brodmann areas [1] based on struc-
tural composition, has now evolved into a dynamic pro-
cess that allows researchers to gain more knowledge
about the signal processing inside the brain. This dy-
namic process involves functional brain imaging, which
is a set of imaging methods, e.g., functional mag-
netic resonance imaging (fMRI), magnetoencephalogra-
phy (MEG) and electroencephalography (EEG) that can
be applied to analyze real-time neural activity [2].
In the early work by Pfurtscheller et al. [3] brain pat-
terns of hand movement imagination were used to allow
a tetraplegic person to control an electrically driven hand
orthosis. Additionally, this was one first work where mul-
tichannel EEG was projected onto the surface of a brain
model in a BCI context. Since then, the field of func-
tional brain imaging has evolved significantly. Differ-
ent software packages, e.g., Brainstorm [4], EEGLab [5]
and MNE [6] are currently available to visualize EEG
data on a head model but also have large signal pro-
cessing pipelines incorporated. Furthermore, those soft-
ware packages allow to identify the neural sources in the
brain by utilizing forward and inverse calculations. For-
ward computations involve modeling the propagation of
electromagnetic fields from the neural sources within the
brain to the scalp electrodes, taking into account the con-
ductivity properties of the head tissues [7]. As for the
inverse computations, there is a multitude of different al-

gorithms available, which try to identify the location and
magnitude of the neural sources for given EEG measure-
ments [8]. These advancements have facilitated ground-
breaking research in many fields, such as allowing re-
searchers to identify conversely modulated gamma fre-
quency bands in central sensorimotor areas during the hu-
man gait cycle [9] or proving that two different types of
neural networks are active during rhythmic finger move-
ments [10].

With this experience gained in human brain mapping, the
way is paved to explore the mapping of sensory stimu-
lations of the peripheral nervous system and motor tasks
involving the limbs to the spinal cord. So far, there are
hardly any publications that tackle the spinal cord map-
ping problem. In Stroman et al. [11], the neural activity
changes in the lumbar spinal cord due to locally applied
low temperatures on the skin were analyzed. The neural
activity was recorded with fMRI. In Nierula et al. [12],
a comprehensive recording of spinal cord somatosensory
evoked potentials (SEPs) was performed in order to asses
the functional architecture of somatosensory processing.
A first attempt of sources localization of neural sources
inside the spinal cord was done by Moffitt and Grill [13].
With their inverse model, they aimed to create an initial
framework that can be used to obtain a more detailed
map of the neuroanatomy of the spinal cord such that
intraspinal, microstimulating electrodes are placed more
effectively. However, they only simulated the signals us-
ing a basic cylinder structure, intended to mimic a sim-
plified model of the spinal cord. Additionally, given that
they were simulating invasive measurements of the spinal
cord, they selected a relatively high artificial signal-to-
noise ratio (SNR) compared to measurements typically
obtained from the neck’s skin. Currently, there is no work
that uses non-invasively measured SCPs to find correlat-
ing neural sources. Therefore, the approach to spinal cord
mapping herein is to identify neural sources in the spinal
cord that are responsible for discernible potential changes
following a predetermined stimulus.

Neural sources in the brain are believed to arise from
synchronized synaptic activity [14]. Similar effects lead
to measurable potential changes in the spinal cord, e.g.,
dorsal root potential (DRP), dorsal root reflex (DRR), pri-
mary afferent depolarization (PAD) [15]. These similari-
ties provide additional support for choosing sLORETA as
the preferred method for source localization in this initial
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attempt.
Our objective was to demonstrate the presence of
movement-related neural activity in the spinal cord
through non-invasive recordings of spinal cord poten-
tials. In particular, we aimed to identify neural re-
sponses elicited by afferent stimuli from functional elec-
trical stimulation (FES) induced wrist movements.

MATERIALS AND METHODS

Data: We based our study on the data from Wimmer et
al. [16]. Eight healthy participants underwent FES of the
forearm, leading to a wrist extension. Simultaneously, a
16-channel EEG as well as 16-channel SCP recordings
were performed (see Fig. 1). The FES-induced wrist
movement was performed with a Microstim 8 stimulator
(Krauth+Timmermann, Hamburg, Germany) and a stim-
ulation frequency of fS = 35Hz (pulse width of 300 µs).
Only the raw 16-channel SCP recordings were considered
for further analysis in this work. After processing the data
with a high-pass ( fH = 0.5Hz), low-pass ( fL = 60Hz) and
notch ( fN1 = 35Hz, fN2 = 50Hz) filter, the signals were
split into trials and averaged (for more detail see [16]).

Figure 1: Electrode setup used in Wimmer et al. [16] to measure
the Spinal Cord Potentials (SCPs). Image taken with permission
from [16].

Geometrical model: To create the geometry for this
model, the NGSolve/NETGEN-package in Python was
used. For simplicity, only the following structures were
added to the model: spinal cord, vertebraes, intervertebral
discs, trachea, oesophagus and neck.

Forward problem: A Volume-Conduction model was
used to describe the potential field distribution. To math-
ematically formulate this, Poisson’s Equation was incor-
porated into the model:

σ · (−∆V ) = Im (1)

For some given current source density Im and conductiv-
ity σ , the resulting potential V was calculated with the
finite element method (FEM) [17]. The forward problem

was implemented with the NGSolve/NETGEN-package in
Python.
For simplicity, the conductivity of all materials was as-
sumed to be homogeneous. Several publications [18–22]
were taken into consideration to determine the conduc-
tivity values. The conductivity values are listed in Tab.
1.

Table 1: List of all materials with their respective conductivity.

Material Conductivity σ

[S/m]
Spine 0.22

Vertebrae 0.0014
Disc 0.008

Trachea 0.015
Oesophagus 0.015

Muscle (Neck) 0.01

Inverse problem: sLORETA [23] is widely acknowl-
edged as a commonly utilized technique in EEG source
localization, thereby validating its adoption in our pro-
posed approach. Moreover, sLORETA was the preferred
inverse algorithm method in [13]. In this study, we uti-
lized a simplified version of the sLORETA algorithm.
Derived from the original algorithm [23], the simplified
version incorporates two key modifications: a cylinder-
like geometry and the exclusion of deep sources.
The number of electrodes is defined as NE = 16 and the
number of dipoles assumed to occur in the cervical part
of the spinal cord are defined as NV .

Starting with the following equality

ΦΦΦ = KJ+ c1 , (2)

in which ΦΦΦ ∈ RNE×1 represents the SCP measurements,
K ∈ RNE×(3NV ) and J ∈ R(3NV )×1 are the leadfield matrix
and the solution vector, respectively. The term 3NV is due
to the dimensionality of the model. While the positions of
the dipoles remain fixed, it’s important to consider the x-,
y-, and z-directions individually for each electric dipole,
as they can assume any orientation in space. The c vari-
able introduces noise to the model. As customary, the
forward problem is employed to compute the leadfield
matrix K. To obtain J, the functional F has to be mini-
mized with respect to J and c

F = ||ΦΦΦ−KJ− c1||2 +α||J||2 , (3)

in which α is a regularization parameter.
The solution to this optimization problem is

Ĵ = TΦΦΦ , (4)

in which Ĵ is the solution vector containing all the neu-
ral sources’ location, direction and magnitude. T is a
pseudo-inverse of the leadfield matrix K, calculated as

T = KTH[HKKTH+αH]+ , (5)

in which H is the centering matrix.
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Figure 2: Average SCP obtained from one channel (Sp1) placed
along the spine (Fig. 1). Three distinct peaks P1, N1, P2 are
marked, as they are typical for potentials in the spinal cord.

More information regarding the calculations can be found
in the original paper [23].

Optimization: From an optimization point of view,
there are two hyperparameters that can be tuned.
The first one is the regularization parameter α =
[0.005,0.01,0.05,0.1,0.2,0.35,0.5] in Eq. 3. The second
one is the number of dipoles NV = [21,42,63,84,105],
which defines the size of the leadfield matrix K. We com-
puted the error functional F in Equation 3 for each com-
bination of hyperparameters. Subsequently, we selected
the hyperparameter combination that resulted in the low-
est error for the final calculation.

RESULTS

After processing the data, the SCP signals exhibited a
typical triphasic spike [24]. One of the 16 channels is
shown representatively in Fig. 2. The characetristics of
the triphasic spikes, calculated from all channels placed
along the spine, are listed in Tab. 2.

Table 2: Amplitude and latency for the waveform points. Mean
and standard deviation (SD) are calculated from the n=16 chan-
nels.

Waveform-
point

Latency Amplitude
Mean SD Mean SD
[ms] [ms] [µV] [µV]

P1 (n=16) 0.264 0.003 1.108 0.103
N1 (n=16) 0.487 0.004 -0.944 0.077
P2 (n=16) 0.739 0.005 0.708 0.097

The simplified neck geometry is visualized in Fig. 3.
It captures only the most important features of a human
neck that are necessary for the forward problem to de-
liver meaningful results. To show the functionality of the
forward model, an axially oriented example dipole was
inserted into the spinal cord (Fig. 4). A visualization of
the solution vector Ĵ is shown in Fig. 5 as red arrows.
The vector length is normalized to the cylinder diameter

trachea

oesophagus

neck

atlas

axis

cervical
spinal cord

cervical
vertebra

thoracic
spinal cord

thoracic
vertebra

Figure 3: Neck part of the model dissected to reveal the spine,
the trachea and the oesophagus with the cervical part of the
spinal cord marked in red. The model incorporates a differ-
ent structure for atlas and axis as well as different sizes for the
vertebral bodies.

for each of the three solutions. The gray cylinder repre-
sents the neck.
The behaviour of the error functional F with respect to
the hyperparameters α and NV is shown in Fig. 6 for the
first peak P1.

DISCUSSION

In this study, we successfully employed well-established
methods for the forward and inverse computations to
accurately localize neural sources within the spinal cord.

Based on the results of the forward problem, the potential
field propagates primarily through the nervous tissue,
indicating that the forward model works properly.

The nerves in the forearm are part of the Plexus
Brachialis, which is a composition of spinal nerves C5-
C8 and Th1 [25]. Since the large dipoles of P1 are located
in the lower section of the cervical spinal cord, this result
coincides with the anatomical structure of the nervous
system. This is still partially true for the neural sources
seen in points N1 and P2. Therefore, the results demon-
strate the possibility of localizing the neural sources in
the spinal cord. The influence of the hyperparameters
(Fig. 6) on the error of the model indicates that α = 0.1
offers the lowest error and that α has a more significant
impact on the error than the number of dipoles NV . Sim-
ilar results were found for the N1 and P2 wave. Since
the model does not capture much of the complexity the
human body has to offer, these hyperparameter results
should only be considered as initial guesses for future,
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Figure 4: Visualization of the potential field distribution inside
the model for an axially oriented electric dipole located in the
spinal cord.

Figure 5: Solution of the source localization algorithm. The
calculated dipoles are shown as red arrows originating from the
spinal cord. The solution is shown for every wave P1, N1 and
P2. The gray cylinder represents the neck.

Figure 6: Behaviour of the error with respect to the two hyper-
parameters α and NV .

more complex, models.
In this paper, only three points in time were compared.
For actual mapping purposes, it would be appropriate
to analyze the complete time domain to possibly obtain
more differences in the neural activity induced by differ-
ent stimuli.
Assuming that this mapping was conducted across nu-
merous healthy individuals, it would establish a reference
dataset that could be applied in various contexts and ap-
plications. For example, classifying the spinal cord in-
jury level, monitoring disease progression through track-
ing changes in the spinal cord neural activity (e.g., in
amyotrophic lateral sclerosis (ALS)) or changes during
rehabilitation of spinal cord injured individuals.
Additionally, one could try to analyze the characteristics
of the triphasic spike (latency and magnitude, Tab. 2)
to distinguish between different motor tasks or stimuli.
If more SCP recordings were available with a different
stimulus, the characteristics might be slightly different
and therefore, could be used for mapping.
This framework does come with a few limitations. First,
the mathematical and geometrical model is very simple
and does not capture the complexity oh the human phys-
iology and anatomy, respectively. Especially, when it
comes to large vessels like the Arteria carotis, which can
distort the electric field. Further, the conductivity of bio-
logical tissue is anisotropic and is different for every hu-
man. Second, the measurements were taken from only
one side of the neck and therefore, introduce a bias to
the resulting sources. It is assumed that this bias is ex-
pressed in less precise directions of the dipoles. Third,
since the stimulation of the forearm was performed with
a 1s long 35Hz biphasic current pulse, the resulting SCPs
are a summations of several consecutive stimuli, not just
a single stimulus.
These considerations emphasize the importance of fur-
ther refining both models and measurements in future re-
search.

CONCLUSION

In this work, the feasibility of localizing electric dipoles
in the cervical spinal cord based on recorded spinal cord
potentials was demonstrated. By resolving the compli-
cated challenges associated with the source localization
problem, the findings reveal the potential for reasonably
precise spatial identification within this neural region.
These findings conclude that a spinal cord mapping of
certain motor tasks or sensory stimuli is possible.
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ABSTRACT: We used a proprietary constructed brain-
computer interface system with a head-mounted display
for motor neurorehabilitation training of a subject after
a stroke. This study analyzes quantitative EEG (qEEG)
changes during resting state periods before and after the
neurorehabilitation training. Eyes closed and eyes open
resting state EEG collected during 13 training sessions is
analyzed to determine qEEG changes indicating mental
state changes like increased mental fatigue, tiredness, or
sleepiness. We decomposed the EEG spectrum into oscil-
latory and fractal parts, allowing us to investigate changes
in the oscillatory component of qEEG separately. We
observed increased post-training oscillatory EEG ampli-
tudes in slow frequency bands (delta and theta) and de-
creased in faster alpha to beta bands. A shift to a slower
frequency of the dominant alpha frequency was also ob-
served in the post-training resting state EEG. Compared
with existing literature, these changes indicate increased
mental fatigue and sleepiness.

INTRODUCTION

A growing body of evidence suggests that integrated
technologies of brain-computer interfaces (BCI) and vir-
tual reality (VR) environments provide a flexible plat-
form for neurorehabilitation therapies, including signifi-
cant post-stroke motor recovery and cognitive-behavioral
therapy. If VR scenarios are realized through head-
mounted displays (HMDs), a compact BCI-HMD sys-
tem that is exceptionally flexible and rich for implement-
ing various scenarios and tasks can be constructed. As
some studies have shown, BCI-based neurorehabilitation
therapies are effective in improving the motor abilities of
stroke survivors [2, 3].
One of the challenges of BCI is its decreased performance
over time, making it unreliable for long-term use [4]. The
oscillations of psychological states can cause such incon-
sistencies. While performing BCI tasks, mental states
such as level of frustration, mental fatigue, and atten-
tion may shift, therefore influencing the outcomes of a
BCI session [5]. This is a concern because stroke sur-
vivors exhibit a higher prevalence of fatigue; it is often
severe and frequent even long after stroke [6]. There-
fore, it is important to consider mental states, especially

fatigue, for stroke patients while performing rehabilita-
tion procedures. Previous studies concentrated on subjec-
tive fatigue measurements, such as the Visual Analogue
Scale (VAS) or other qualitative reports; however, EEG
has been the more reliable predictor due to its temporal
precision [2, 7, 8].

Fatigue is a decreased ability to initiate or sustain volun-
tary actions, including difficulties with alertness, mental
performance, and reduced efficiency. It is gradual and cu-
mulative and applies to psychological and physical activ-
ity. Mental fatigue is concerned explicitly with reduced
or impaired cognitive functions that are believed to be
caused by prolonged cognitive activity. Mental fatigue
can also influence physical performance.

There have been different approaches to defining men-
tal fatigue with EEG, including detecting an increase in
the ratio of slow wave to fast wave as the fatigue pro-
gresses [9]. Additionally, particular areas of the brain
and frequencies that indicate the increase in fatigue have
been determined. Some of the findings seem to contradict
each other. For example, a study by Eoh and colleagues
(2005), and a study by Stern found a decrease in the al-
pha band as drowsiness increased [11, 12]. However, a
later study by Jap and colleagues found that alpha waves
increased in the occipital lobe as fatigue progressed [13].
On the other hand, Eoh and Jap outlined that the beta
band decreases with the progression of fatigue in tem-
poral and frontal areas, and the (theta+alpha)/beta ratio
increases [11, 13]. Both studies looked more into the
drivers’ fatigue and sleepiness, possibly influencing the
outcomes. Trejo and colleagues (2015) came to the same
conclusions as Jap and colleagues, stating that an increase
in parietal alpha and frontal theta was present, along with
a shift in alpha frequency to the lower alpha band [13,
14]. According to the meta-study, the increase of theta
waves in the frontal, central, and posterior regions is as-
sociated with fatigue, additionally, the rise of alpha in
central and posterior frequency serves as a biomarker of
fatigue [15].

Other researchers have previously investigated fatigue
in BCI rehabilitation. In 2010, a paper was published
by Prasad and colleagues who researched BCI used for
upper-limb recovery [2]. The Visual Analogue Scale
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(VAS) was used to examine fatigue. Some participants
exhibited increased mental fatigue, but the details were
unclear as it did not allow for temporally precise re-
sults. The study by Foong and colleagues (2020) also
concentrated on the neurorehabilitation of upper limbs
for stroke survivors through the use of BCI technolo-
gies [16]. To examine mental fatigue, the researchers ex-
tracted 3-second data before each trial to correlate it with
the subject’s performance, and they concentrated on the
shifts of amplitude of beta waves across different brain
areas separately (frontal, central, parietal-occipital). The
findings showed a significant positive correlation of beta
power with accuracy in frontal and central brain regions,
which suggested that mental fatigue in BCI tasks was as-
sociated with the performance outcomes [16]. However,
the shortcoming of this approach is that it only considers
beta bands without looking into theta, delta, and alpha,
which were associated with mental fatigue in the previous
literature. On the contrary, a study by Talukdar and col-
leagues found that there is a significant increase of spec-
tral power in the range of 0.1-12 Hz but no significant
findings in the beta band after performing the MI task on
BCI [17]. With that in mind and to our knowledge, no
studies have examined the effects of BCI-HMD systems
on mental fatigue after performing MI tasks.
In this study, we used a proprietary constructed real-time
BCI-HMD system for motor rehabilitation of the upper
limbs of subjects after stroke [18]. We performed a se-
ries of 13 training sessions (days) on a subject with post-
stroke motor impairment of the left upper limb. Part of
the training process is the collection of EEG data during
resting state periods preceding and following the training
itself. This paper focuses on quantitative EEG analysis
(qEEG) of changes the training can induce on the rest-
ing state eyes closed (EC) and eyes open (EO) EEG, or
passive BCI. We focused on the oscillatory part of the
EEG spectrum in the frequency range from 2.5 Hz to 18.0
Hz. Significant post-training changes were observed in
the EC condition, indicating EEG slowing. Changes in
the EO condition were sporadic and restricted to faster
alpha and beta EEG frequencies. A shift in the domi-
nant alpha frequency to the lower alpha band was also
observed. These changes align with changes associated
with increased mental fatigue, as reported by Trejo and
colleagues [14].

MATERIALS AND METHODS

In the study, the previously developed and described BCI-
HMD system was used [18]. Its architecture is depicted
in Fig. 1, representing the standard BCI design consisting
of

• signal acquisition,
• signal processing and classification and
• environment control.

Publicly available OpenVibe1 software for BCI and real-
time neuroscience interconnect three major blocks of the

1http://openvibe.inria.fr

Figure 1: The architecture of the brain-computer interface with
a head-mounted display (BCI-HMD) and the functional electri-
cal stimulation (FES) element.

BCI-HDM architecture. An autonomous Oculus Quest
2 (Meta Platforms, Inc.) headset with a fast processor,
a new-generation graphics card, and 256 GB of internal
storage is used as the HMD. The neurorehabilitation sys-
tem is also enriched with the functional electrical stimu-
lation (FES) component applied to selected muscles. This
is done through the programable two-channel externally
controlled Microstim FES device (Medel GmbH).
The main element of BCI training is the task of motor im-
agery (MI), during which the subject imagines the move-
ment without including movement of the limb. During
this effort, required changes in brain activity are recorded
using an EEG on the subject’s scalp. If these changes
are detected successfully, the requested visualization in
the VR environment will begin. Such a visualization
could exhibit an avatar’s hand grasping a cup on the ta-
ble (Fig. 2). In this study, we used three randomly vary-
ing tasks: grasping a cup, a cube, and turning a key in a
lock. Because our goal is not the description and analysis
of the BCI training itself but the analysis of brain activ-
ity changes during the resting state before and after the
training, we do not describe the design of the BCI-HMD
further and refer the reader to [18].

Figure 2: An example of a virtual environment (a cup) with an
object grip animation.

Experimental Protocol: Each training day (session)
started with two minutes of the resting state block with
eyes closed (EC) followed by two minutes of the rest-
ing state block with eyes open (EO). The same EC and
EO resting state EEG was recorded after each BCI-HMD
training session. During the EO condition, the subject
fixated his eyes on a small cross on the wall in front of
him.
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A self-made questionnaire was provided at the beginning
of each session and after completing resting state EC and
EO EEG recordings. The subject was asked to answer
the question "Do you feel tired?" on a seven-level scale
(1 - absent feeling, 7 - extreme feeling). In addition, after
each block of BCI-HMD training trials, six questions fo-
cused on the subjective evaluation of cybersickness and
tiredness were applied. However, in this paper, EEG data
recorded during the BCI-HMD training and their connec-
tion to subjective assessment of cybersickness and mental
fatigue development during the training itself are not an-
alyzed.
The BCI-MHD experiment consists of a series of trials in
which the subject is instructed to imagine a movement of
their avatar hand in VR mentally. In this study, each ses-
sion consisted of three blocks with ten MI trials in each
block.

Participant: The subject of this study is an 86-year-
old male who has experienced left-sided hemiparesis due
to a stroke in the basal ganglia region on the right side
with residual upper limb weakness (acral part). After
the stroke, he also suffers from fatigue syndrome with
Parkinson’s syndrome. In the time before the stroke, the
subject was a healthy, active athlete with no presenting
psychiatric diagnosis.
The subject participated in 13 days of BCI training from
May 11, 2023, to June 22, 2023. The sessions occurred
at intervals of 1 to 6 days.

EEG Signal Acquisition and Processing: Wire-
less g.Nautilus PRO FLEXIBLE FDA-cleared and CE-
certified recording system was used for EEG data ac-
quisition. The current experiment included 11 Ag/AgCl
wet electrodes attached to a fabric cap following a 10-
20 international system. The electrodes included on the
right hemisphere were FC4, C2, C4, C6, and CP4; the
electrodes on the left hemisphere included FC3, C1, C3,
C5, CP3, O1, as well as a linked-ears reference and one
ground electrode AFz.
For resting state conditions (EC/EO), we performed an
initial analysis with the sampling rate set to 250 Hz. EEG
data processing consisted of multiple steps applied in
Brain Vision Analyzer 2.3.02 (BVA) with templates and
expert supervision. First automatic artifact detection step
with criteria of maximal allowed voltage set at 50 μV/ms,
maximal absolute amplitude set at 70 μV, lowest allowed
activity in intervals of 100 ms set to 0.5 μV, and maxi-
mally allowed difference of voltages in intervals of 20 ms
was to 70 μV was applied. EEG traces with detected ar-
tifact segments were then visually inspected by a trained
expert, and artifact markers were edited.
Artifact markers were exported from the BVA software,
and further analysis was carried out in the MATLAB3

software.
EEG band amplitudes were analyzed for the oscillatory
part of the frequency spectrum. The decomposition of the
total frequency spectrum into fractal (representing back-

2https://www.brainproducts.com/solutions/analyzer
3https://www.mathworks.com

ground EEG) and oscillatory components was done using
the irregular-resampling auto-spectral analysis (IRASA)
[19]. IRASA decomposes the amplitude spectrum of
each segment into a fractal (scale-free) and an oscilla-
tory part. Different mechanisms may generate EEG os-
cillatory and fractal components, so it is essential to es-
timate them separately, mainly when the measurement
focuses on localized narrow-band oscillatory rhythms,
as is the case here. The oscillatory part of the am-
plitude spectrum was obtained by subtracting the frac-
tal part from the total spectrum estimate. Negative val-
ues of the oscillatory spectrum were set to zero. In the
study, we focused on the oscillatory part of the spec-
trum to measure band amplitudes from 2.5 Hz to 18.0
Hz. Both spectrum parts were computed with a resolu-
tion of 0.4883 Hz. The analyzed EEG endpoints were
standardized quantitative qEEG measures in the follow-
ing ranges: delta (2.5-4Hz), theta (4-8 Hz), alpha1 (8-10
Hz), alpha2 (10-12 Hz), beta1 (12-15 Hz), beta2 (15-18
Hz), alpha individual (6.4-9.8Hz). Additionally, ASI (al-
pha slow wave index defined as a ratio of (alpha1 + al-
pha2)/(delta + theta)), TBR (theta/(beta1 + beta2) ratio),
and BAR (beta1/(alpha1 + alpha2) ratio) derived mea-
sures were included.
Using a paired t-test, we analyzed differences between
the above-defined measures computed from EEG traces
recorded before and after the training. This testing was
done separately for each electrode in eyes closed and eyes
open condition.
In the subjective evaluation of fatigue, the days were sep-
arated by the answers to the tiredness question. The
first group included sessions in which increased tiredness
was reported after the BCI training compared to the pre-
training response (sessions 1, 2, 8, 11, and 12). The re-
maining eight sessions created the second group, includ-
ing the days of the same reported fatigue or decreased
fatigue after the training session. Then, the percent of
change (PC)

PC = (𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒)/(𝑝𝑜𝑠𝑡 + 𝑝𝑟𝑒)

between post- and pre-training endpoint values were
computed for each endpoint and electrode. The PC of
each of the two groups was computed by averaging all
sessions corresponding to that group.

RESULTS

Eyes Closed: Fig. 3 shows a summary of significant
before and after BCI-HMD training amplitude band dif-
ferences. A significant after-training delta increase can
be observed at the C2 and CP4 electrodes. Theta sig-
nificantly increased at both fronto-central FC3 and FC4
EEG channels. Alpha1 post-training decreased at the O1
and CP4 electrodes. Alpha2 post-training decreased at
the C1, C2, and FC4 EEG electrodes, but increased at the
O1 electrode. Significant changes in the beta range were
sporadic and limited to the beta1 post-training increase at
O1.
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The derived ASI, TBR, and BAR measures mimicked the
observed changes in amplitude bands and indicated over-
all EEG slowing. Increasing slower delta and theta fre-
quency bands and decreased alpha bands are reflected by
a significantly broader post-training ASI decrease in the
left hemisphere (FC3, C1, C3) and the right hemisphere
(FC4, C2, C4, C6). TBR increases at the FC4 electrode
and reflects an observed significant increase of theta at the
same electrode site. A significant post-training increase
in BAR was limited to the O1 electrode.

Figure 3: Bar chart showing significant post-training and pre-
training amplitude band differences for the eyes closed (EC)
condition. The statistical significance of the differences was
tested using a paired t-test. Results are shown by EEG chan-
nel and amplitude band. Positive values indicate a post-training
increase and negative values decrease. Values represent ampli-
tude per Hz differences (μV/Hz). For ASI, TBR, and BAR, the
values represent a ratio. *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 4 shows oscillatory spectrum differences between
post-training and pre-training spectrum averages calcu-
lated over 13 sessions. Pre-training and post-training os-
cillatory spectrum overlay is depicted in Fig. 5. As can be
seen, the theta band significantly increased in frontal and
central areas (more prevalent on the left side). There is
also a decrease of alpha1 in central, frontal, and parietal
electrodes, mainly on the right hemisphere.
When analyzing post- versus pre-training endpoint values
grouped according to the subjective evaluation of tired-
ness, there was a 22.24% (at electrode C2) and 19.74%
(at electrode CP4) PC increase in the delta band in the
increased fatigue group. In the group where no increase
in fatigue was subjectively indicated, the delta PC was
12.69% (electrode C2) and 7.43% (electrode CP4). Al-
though limited to a single endpoint, these findings are
consistent with some previous research [8, 20].

Eyes Open: Significant post-training changes in the
EO condition were sporadic and restricted to faster EEG
frequencies (alpha, beta) than the resting state EC con-
dition. A summary of significant before and after BCI-
HMD training amplitude band differences is shown in
Fig. 6. A post-training increase was observed in alpha1
at CP4, but a more systematic decrease of alpha2 was

Figure 4: Eyes closed (EC) oscillatory spectrum difference
computed as a difference between post-training and pre-training
oscillatory spectrum averages calculated over 13 sessions. Pos-
itive values indicate a post-training increase and negative val-
ues decrease. Dots indicate frequencies where significant dif-
ferences were observed using a paired t-test (p < 0.05).

Figure 5: Eyes closed (EC) spectrum overlay of pre-training
and post-training oscillatory spectrum averages calculated over
13 sessions. Dots indicate frequencies where significant differ-
ences were observed using a paired t-test (p < 0.05)

observed in the right hemisphere (C4, C6, CP4). TBR in-
creased at CP3. This significant change in TBR is driven
by post-training theta increase and beta decrease. The
change can be observed in Fig. 7 and Fig. 8.
Similarly to Fig. 4, Fig. 7 shows significant EO changes
depicted as oscillatory spectrum differences between
post- and pre-training spectrum averages calculated over
13 separate sessions. Pre-training and post-training oscil-
latory spectrum overlay is depicted in Fig. 8. Around 9 to
10 Hz, a rapid negative to positive post-training change
can be observed. This frequency span defines the sub-
ject’s alpha frequency range, and the rapid change repre-
sents a shift from the dominant alpha to the lower alpha
band.
No consistent results were found when subjectively re-
ported fatigue levels collected before and after the train-
ing sorted endpoint values.

DISCUSSION

The study assessed mental fatigue using EEG collected
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Figure 6: Bar chart showing significant post-training and pre-
training amplitude band differences for the eyes open condition
(EO). See Fig. 3 for description.

Figure 7: Eyes open (EO) oscillatory spectrum difference com-
puted as a difference between post-training and pre-training os-
cillatory spectrum averages calculated over 13 sessions. Dots
indicate frequencies where significant differences were ob-
served using a paired t-test (p < 0.05).

from resting state EC and EO periods recorded before
and after the BCI-HMD training. As previous research
has shown, mental fatigue is associated with the increase
of theta band power in the frontal area and alpha in the
parietal area, as well as with a shift in alpha frequency to
the lower alpha band [14]. These changes could be seen
as a result of completing a monotonous task consisting of
solving simple mathematical problems and lasting up to
three hours. These findings were also restricted to the EO
condition because subjects solved the task displayed on
a screen [14]. In the current study, we observed a signif-
icant post-training theta band increase at the frontocen-
tral spatial region, and this was true for the EC condition.
This theta increase is also consistent with the findings by
Jap, Barwick, and DeGennaro [7, 8, 13].
The alpha effect was less clear. Considering alpha1 and
alpha2 frequency sub-bands, we observed an increased
EO alpha1 in the right central-parietal region but a de-
crease of the same alpha1 in the EC condition. Alpha2
decreased in both EC and EO conditions, which was true
mainly for the central and central-parietal regions, except

Figure 8: Eyes open (EO) spectrum overlay of pre-training and
post-training oscillatory spectrum averages calculated over 13
sessions. Dots indicate frequencies where significant differ-
ences were observed using a paired t-test (p < 0.05).

for the O1 electrode in the EC condition, alpha2 post-
training increased.
The described study analyzed only one participant; there-
fore, no more robust conclusions can be made from the
findings, and broader research is necessary. Instead, the
presented study serves as an introduction to the problem
of induced mental fatigue in BCI-HMD MI training of
stroke patients. The study doesn’t address other essen-
tial elements that need to be controlled for, such as circa-
dian rhythms, caffeine intake, the quality of sleep, and
other phenomena affecting mental fatigue. Therefore,
it remains an open question whether the reported post-
training differences could be explained by mental fatigue
or other possible factors associated with using the BCI-
HMD system, such as visual fatigue, lack of motivation
or interest, frustration, sleepiness, or even dizziness. The
provided questionnaire considered some of those ques-
tions, and the obtained subjective scores will be analyzed
in future research. Including these elements in further
research may lead to a more precise separation of men-
tal fatigue from sleepiness, lack of engagement, or other
similar yet different mental phenomena.

CONCLUSION

The research findings could be utilized to compose cus-
tomized machine-learning algorithms for motor rehabil-
itation of post-stroke patients using the BCI-HMD envi-
ronment. Considering mental fatigue in training sessions
could increase rehabilitation outcomes; more specifically,
it could suggest improvements in task design and data
analysis.
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ABSTRACT: The feasibility of EEG systems in real-
world scenarios, particularly as assistive devices for peo-
ple with impairments, remains limited by practical is-
sues of conventional cap EEG. However, the emergence
of the cEEGrid, an unobtrusive around-the-ear EEG sys-
tem, might offer a solution. While the cEEGrid has
demonstrated success in measuring event-related poten-
tials, essential for brain-computer interfaces (BCIs) in a
variety of settings, its ability to measure steady-state so-
matosensory evoked potentials (SSSEPs) remains unex-
plored. Here, we recorded SSSEPs from seven stimula-
tion frequencies in six participants. To allow for a di-
rect comparison, the signal was recorded from a conven-
tional scalp EEG (Brain Products Acticap) and two cEE-
Grids under the same conditions. Results indicate signifi-
cant SSSEP elicitation with the Acticap, whereas this was
only found for one participant with the cEEGrid. Am-
plitudes measured with cEEGrids are generally smaller,
however, their relative discreet design make them an in-
teresting alternative. Further exploration is necessary to
characterise the capabilities of the cEEGrid in a potential
SSSEP-based BCI application.

INTRODUCTION

Conventional scalp EEG is often considered impractical
in ecological conditions, i.e., daily use in patients’ home-
care settings. The cEEGrid (Fig. 1), developed since
2015, concealed and unobtrusive around-the-ear EEG
system, and may thus be a promising alternative to cap
EEG systems [1]. The cEEGrids have successfully mea-
sured event-related potentials, such as the N100, P100
and P300 [1–3]. The P300 in particular is an important
input signal for many Brain-Computer Interfaces (BCIs),
and has already been recorded by the cEEGrid in the vi-
sual [4], auditory [2], and even tactile modality [5]. How-
ever, its capacity to measure steady-state somatosensory-
evoked potentials (SSSEP) has not yet been explored.
The amplitude and the individual frequency of an SSSEP
is highly variable between participants [6]. A recent liter-
ature review of SSSEP-based BCI observed that a screen-
ing procedure is often performed to identify the optimal
frequency of stimulation (FOS) for each participant [7].
Here, we report preliminary data from the first six partici-
pants of our study. The SSSEP was measured from seven
different FOS using two different EEG systems: a con-

Figure 1: Top: A single cEEGrid. Bottom: Electrode positions
of the left and right ear cEEGrids.

ventional cap EEG and two cEEGrids. We hypothesised
that the cEEgrid systems can measure SSSEP, but with a
lower signal-to-noise ratio (SNR) than the cap EEG.

METHODS AND MATERIALS

Methods: Six healthy participants (5 female, 1 male,
26.5±2.3 years) performed one SSSEP screening proce-
dure per EEG system, starting with either cap or cEEGrid
in a balanced design. Participants had a 15-minute break
in-between. Participants were seated in front a computer
screen and equipped with one tactile actuator taped to
each wrist (see Fig. 2). Finally, to prevent auditory-
evoked potentials from appearing in the EEG data due
to the sound of the vibration, the participant wore dispos-
able earplugs during the recordings.
In each trial of the screening procedure, the participant
received a train of seven simulations with a duration of
2 seconds, spaced by 0.5 seconds allowing the sensory
system to return to an idle state. This train of simulations
was preceded by a reference period of 4 seconds. Per
stimulation, one of the following FOS were applied: 14,
17, 20, 23, 26, 29, and 32 Hz, on one of the wrists. The
stimulation sequence, i.e. the combination of FOS and
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a) b)

Figure 2: (a) C-2 tactors were taped on the left and right wrists.
(b) Stimulation box: a micro-controller establishes the connec-
tion to the computer and powers the tactors.

wrist, followed a pseudo-random order, without allowing
the same combination of FOS x wrist in direct succession.
The protocol is summarised in Figure 3.
During a block in the screening, the participant received
20 trials spaced by a random-length break of 6 to 8 sec-
onds. After that, four blocks with one EEG system (32-
channel cap EEG or two cEEGrids, one per ear), plus four
additional blocks using the other EEG system were per-
formed. The completion of the full protocol resulted in a
total of 40 stimulation epochs of 2 seconds for each FOS,
wrist, EEG system, and participant. Data were recorded
using a sampling of 500 Hz. AFz was the ground elec-
trode in the cap EEG while R4b was the ground electrode
on a cEEGrid pair.
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Figure 3: Timeline of the screening session with one EEG sys-
tem. Each block comprised 20 trials and blocks were separated
by 3-minute breaks. This protocol was repeated with the second
EEG system 15 minutes after the end of the first screening.

Data Analysis:
Before further processing, we applied an artefact rejec-
tion algorithm to the raw EEG. If one or more instances of
an electrode peak-to-peak amplitude higher than 100 µV
for at least 5 ms was detected in an epoch, that epoch
was excluded from further analysis. We then applied two
causal filters: a notch filter at 50 Hz to remove power line
noise and a bandpass filter from 5 to 35 Hz.
To analyse the data from the cap EEG, the bipolar chan-
nels FC3-CP3 and FC4-CP4 were derived, which cover
the primary somatosensory cortex. These channels are
known to record SSSEPs originating from the right and
left wrist stimulation, respectively [8]. For cEEGrid data,
we used linear combinations of cEEGrid channels to ap-
proximate cap EEG positions over the same cortical ar-

eas [9], namely Ĉ3 and Ĉ4. This is also in line with previ-
ous studies, which showed that the cEEGrid measured the
highest event-related potential on vertical bipolar chan-
nels [1, 5]. Ĉ3 and Ĉ4 are obtained using the following
formula:{

Ĉ3 = (L2+L3)/2− (L6+L7)/2
Ĉ4 = (R2+R3)/2− (R6+R7)/2

,

using the electrode positions displayed in Figure 1.
We evaluated the SSSEP by two components of the fre-
quency spectrum: the amplitude at the frequency of inter-
est, i.e. the FOS, in relation to the mean amplitude of its
neighbouring frequencies in the spectrum. The ratio of
these components is a commonly used definition of the
SNR in steady-state visually-evoked potentials [10]. The
spectrum estimation is performed using the discrete-time
Fourier transform algorithm.
To assess the statistical difference between the two com-
ponents, i.e. to test whether SSSEP amplitude is larger
than at neighbouring frequencies, we used the non-
parametric1 one-tailed Wilcoxon signed-rank test. The
significance level was corrected using the Benjamini-
Hochberg procedure to control the false discovery rate
(FDR).

Materials:
C-2 Tactors (Engineering Acoustic Inc., Casselberry,
USA) were used to administer mechanical vibrations to
the participant’s wrists, as depicted in Figure 2. The
two tactors were powered by a single micro-controller,
connected to a host computer. The micro-controller box
design was inspired by the work of Pokorny et al. [8].
Further information on the initial implementation of our
stimulation system can be found in [11]. The stimulation
signal comprised a high-frequency sine-wave, around
275Hz, closely aligned with the resonance frequency of
the C-2 Tactor. This signal was amplitude-modulated by
a square signal at a lower frequency, our FOS. EEG data
was recorded using a Brain Products EEG cap (ActiCap)
with 32 active electrodes positioned according to the 10-
20 international system [9]. Positions AFz and CPz were
used as Ground and reference, respectively. The signal
was sampled at 500 Hz using a Brain Products BrainAmp.
Data acquisition and real-time processing were con-
ducted through OpenViBE [12]. Offline signal process-
ing and statistical analysis were carried out using the
MNE and SciPy libraries in Python.

RESULTS

Spectrum analysis revealed a significant SSSEP elicita-
tion for at least one FOS for all participants with the con-
ventional cap system. Participant #1 showed significant
SSSEPs at 20, 26, and 32 Hz on the right wrist, while 20
and 32 Hz yielded significant SSSEP amplitudes on the
left wrist. Participant #2 displayed a significant SSSEP

1Using Shapiro–Wilk tests for normality and an alpha risk level at
0.05, the normality hypothesis could not be maintained on 39.6% of our
conventional EEG samples and 55.3% for the cEEGrid samples.
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Figure 4: Cap EEG data from channels FC3-CP3 and FC4-CP4. Frequency spectra were concatenated for FOS 14 to 32 Hz (color
coded), with lighter shades representing 95% CI. Dashed black lines show the mean spectrum from reference period. Significant results
(*, **, ***) marked for p ≤ 0.05, 0.01, 0.001, FDR controlled by Benjamini-Hochberg procedure. Null hypotheses rejected at 0.05
alpha level, but not surviving FDR procedure are denoted "n.s.". Numbers next to the participant code show the mean percentage of
rejected trials after artefact detection using peak-to-peak analysis.
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Figure 5: cEEGrid data from channels Ĉ3 and Ĉ4. Frequency spectra were concatenated for FOS 14 to 32 Hz (color coded), with
lighter shades representing 95% CI. Dashed black lines show the mean spectrum from reference period. Significant results (*, **, ***)
marked for p ≤ 0.05, 0.01, 0.001, FDR controlled by Benjamini-Hochberg procedure. Null hypotheses rejected at 0.05 alpha level, but
not surviving FDR procedure are denoted "n.s.". Numbers next to the participant code show the mean percentage of rejected trials after
artefact detection using peak-to-peak analysis.
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only at 32 Hz on the right wrist. Participant #3 exhibited
only two significant SSSEPs at 17 and 20 Hz on the left
wrist. Participant #4 showed significant SSSEPs at every
FOS except 14 Hz on both wrists and 17 Hz on the right
wrist. Participant #5 displays significant SSSEPs at every
FOS, except 14 Hz on both arms. Finally, participant 6
showed significant SSSEPs at almost all FOS, except at
26 Hz on the right wrist, as well as at 14 and 17 Hz on the
left wrist. Every spectrum calculated from the cap EEG
data are displayed in Figure 4.
Frequency spectra from the cEEGrid recordings are dis-
played in Figure 5. We found significant SSSEPs for
participant #1 at 17, 23, 26, 29, and 32 Hz on the right
wrist, while at 20, 23, 29, and 32 Hz on the left wrist
exhibited significant SSSEPs. The remaining five partic-
ipants showed no significant SSSEPs at any FOS, how-
ever, some SSSEPs were significant before FDR correc-
tion, those SSSEPs are highlighted as "n.s.". For ex-
ample, a descriptive but finally insignificant SSSEP was
found at FOS at 17 Hz (right wrist) for participant #2.

DISCUSSION AND CONCLUSION

The present study investigated whether the cEEGrid sys-
tem can be used to record SSSEP. In this preliminary
study, we performed two sequential EEG recordings us-
ing two different EEG systems: a conventional ActiCap
cap system and two cEEGrids around the ear. Our re-
sults show that for each participant, a significant SSSEP
was recorded with the cap EEG, while only one partic-
ipant exhibited significant SSSEP amplitude using the
cEEGrid. Three other participants showed descriptive in-
creases in activity at the FOS, but this observation was not
significant after the false discovery rate correction proce-
dure. Collectively these results indicate that the cEEGrid
may help to bridge the translational gap in EEG-based
BCI studies, assuming that as a smaller and less obtru-
sive system, it could be accepted more readily by poten-
tial end-users.
Overall, the amplitudes of the SSSEPs found on the
cEEGrid were smaller as compared to the cap-recorded
SSSEPs, which is well in line with previous observa-
tions [2, 4]. This could be explained by the fact that,
unlike the cEEGrid, the cap EEG recorded directly over
the region of interest in somatosensory-evoked potentials,
i.e. primary somatosensory cortex. Remarkably how-
ever, the cEEGrid still recorded significant SSSEPs un-
der some conditions, using vertical linear combination of
electrodes to approximate positions C3 and C4. In ad-
dition, the amount of artefacts leading to rejection of a
trial using peak-to-peak amplitude analysis was similar
between EEG systems. This demonstrates that recording
this signal is generally possible with the cEEGrid, with-
out the practical disadvantages of a gel based EEG cap
(e.g., gel in the hair, visual appeal).
There were certain limitations to this preliminary study.
The EEG systems were applied in a pseudo-random se-
quential order, unlike in [5, 13]. Thus, without simulta-

neous recordings, we are limited in our ability to examine
the correlation between the two systems. This approach
was chosen to prevent interference between the active
cap electrodes and the unshielded cEEGrid. A limitation
arising from the cEEGrid is that the cEEGrids were dis-
infected and reused (using new sticker) while electrode
quality was remained good, as assessed with bucket tests.
Genereally, cEEGrid application to individuals with fa-
cial hair was difficult and required additional tape to en-
sure a satisfactory impedance. Future versions of the
cEEGrid could benefit from solving this problem.
The present study adds to the growing body of literature
comparing the cEEGrid with conventional EEG systems,
and provides first evidence that the cEEGrid may record
SSSEPs. Future studies should address this potentially
limiting aspect of the cEEGrid hardware. Finally, for the
full study, we will increase the number of included partic-
ipants to improve statistical power. As for now, our pre-
liminary results are moderately encouraging for SSSEP
recording endeavours.
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ABSTRACT: Understanding how the brain plans 
reaching movements is crucial in designing a brain-
computer interface (BCI) system for motor control. It is 
still unclear which referencing frame the brain uses to 
plan the movement. In this study, we investigated the 
global representation of a referencing frame during 
reaching planning via a low-frequency 
electroencephalogram (EEG). Participants were asked 
to perform directional reaching inward (from the outer 
target towards the center point) and outward (from the 
center point towards the outer target) while maintaining 
gaze on a target such that the reaching in inward and 
outward conditions should be represented similarly in 
eye-centered coordinates but differently in shoulder-
centered coordinates. We could classify the direction 
with a peak accuracy of 40.59% but not the inward and 
outward conditions. The preliminary results confirmed 
that low-frequency EEG may be globally represented in 
the eye-coordinates. The classification results suggested 
that the difference between inward-outward conditions 
was negligible in low-frequency EEG and could be 
combined in further analysis. 

 
INTRODUCTION 
     When reaching for objects (e.g., a glass of water), 
our brain must rely on sensory information from several 
sources to execute the reaching. First, the brain must 
locate the target and the hand via visual and kinematic 
information. The displacement and direction between 
the target and the hand can be calculated, and the 
reaching can eventually be executed.  
     The evidence from several studies supports the 
representation of the target in eye-centered coordinates 
(the point of origin is at the center of the gaze) in the 
posterior parietal cortex (PPC) in non-human primates 
[1], [2], [3], and in humans [4], [5]. In contrast, the 
brain transforms reaching planning into muscle 
activations in the shoulder-centered coordinates (the 
point of origin is at the shoulder) in the sensorimotor 
area (SMA) [6]. The question remains in which 
coordinates the brain computes the displacement vector 
necessary for reaching. Three theories arise: the brain 
could compute the displacement vector in the shoulder-
centered, eye-centered coordinates, or other 
intermediate coordinates [5], [7].  
     Several electroencephalographic (EEG) studies 
provide strong evidence supporting that the information 

regarding hand kinematics is represented primarily in a 
low-frequency EEG in discrete reaching [8], [9], [10] 
and continuous tracking [11], [12], [13], [14], [15], [16]. 
Recent studies have also investigated other important 
aspects of hand kinematics decoding, which could 
improve the usability of the system: learning effect and 
adaptation over sessions [17], [18], decoding 
performance [19], and continuous error processing [20]. 
As proven useful in the majority of the study, we would 
like to focus on low-frequency EEG. 
     Let us consider inward and outward reachings of the 
same direction where the eyes are always fixated on the 
target prior to the initiation of the movement. The 
internally estimated displacement from hand to the 
target should always point towards the origin of the eye-
centered coordinates and the reaching is done towards 
the target, regardless of the direction of reaching. On the 
other hand, the displacement should be represented 
differently in the shoulder-centered coordinates as the 
inward and outward displacement are represented with 
different sets of kinematics. We hypothesize that the the 
low-frequency EEG does not carry enough information 
to distinguish the inward and outward conditions, which 
also implies weakly that the reach planning is 
represented in eye-centered coordinates in low-
frequency EEG. If this is the case, then a classifier 
should distinguish the inward and outward conditions 
with accuracy no better than chance. To answer this, we 
performed a preliminary study where we collected EEG 
from five healthy participants performing directional 
with inward and outward reaching. 
 
MATERIALS AND METHODS 
     The experiment was designed based on discrete 
center-out reaching in 4 directions (up, down, left, and 
right). Participants performed outward reaching in one 
direction (e.g., left direction from center) and then 
inward reaching in the opposite direction (e.g., right 
direction to center) while fixating their eyes on the 
target (see Fig. 1c and d).  When contrasting the inward 
and outward reaching from the same direction (e.g., 
right inward and right outward), the target will always 
be at the center of the eye-centered coordinates, while 
the hand position will be in different locations in the 
shoulder-centered coordinates. 

     Participants: In this preliminary study, data from 
five healthy participants (1 female) were recorded. 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-022

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

121



Three were right-handed, and two were ambidextrous, 
who normally used their right hand to control a 
computer mouse. The age range was between 30 ± 3.16 
years old (mean ± std). 

     Biosignal recording: We measured 60 EEG channels 
and 4 electrooculogram (EOG) channels with a 
sampling frequency of 500 Hz using BrainAmp 
amplifiers (Brain Products GmbH, Gilching, Germany). 
The ground electrode was placed at Fpz, while the 
reference electrode was placed at the right mastoid. The 
EOG electrodes were positioned on the outer canthi of 
both eyes, above and under the left eye. 

     Hand movement recording: A custom-made motion 
capture system was employed to track hand position via 
a marker attached to the index finger, and a camera 
recorded at 30 Hz. The hand position was mapped to the 
cursor position so that the space between each grid 
marker (see Fig. 1) was roughly equal to 5cm on the 
physical plane. Additionally, the hand position was 
utilized in real time to estimate the direction of the 
movement. The detected direction of hand movement 
was used to provide feedback during the trial. 

 
Figure 1: Overview of the experiment (a) timing of a 
trial, (b) structure of the experiment, (c) and (d) 
example of left directional reaching from the inward (c) 
and outward conditions (d) the grey block indicates a 
motion capture box used in the experiment. 

     Experimental paradigm: The overview of the 
experiment is visualized in Fig. 1. The experiment was 
divided into 13 blocks: 2 Eye blocks, 1 Tutorial block, 
and 10 Trial blocks. For the eye blocks, participants 
were asked to blink, move their eyes, or rest according 
to the visual cue. The data was used to correct the eye 
artifacts in the trial blocks, according to [21]. Another 
eye block was repeated at the end of the experiment. 
     During the tutorial, participants practiced reaching in 
different conditions. The participants were instructed to 
fixate their eyes on the target before initiating the 
reaching. The hand position was visualized only during 
the tutorial so that the participants got used to moving in 
2 levels of distance. During the trial blocks, the task was 
to perform reaching conditions indicated by the target's 
movement. There were 4 directions (up, down, left, and 

right), 2 levels of speed (slow and quick), and 2 levels 
of distance (near and far), which summed up to 16 
different reaching conditions. At the beginning of the 
trial, a blank screen was visualized for 1 s, indicating a 
preparation phase. Then, a 5-by-5 grid and a white 
circle ("target") at the center position appeared. The 
distance between each dot on the grid was calibrated to 
match 5 cm in real space, but the hand position was not 
shown to the participants to force them to always look 
at the target. The grid provided a guide on possible 
positions the target could move to (see Fig. 1a). The 
conditions of the reaching (direction, speed, distance) 
were randomized for each trial. The direction 
determined which direction the target moved toward; 
the speed determined how fast the target moved for 1 
grid unit, either within 0.4 s for quick or 1.2 s for slow 
condition; the distance determined how far the target 
moved, either 1 or 2 grid units. The time required to 
move in the far condition was double that required in 
the near condition (e.g., 0.4 s in the quick near condition 
but 0.8 s in the quick far condition). As soon as the 
target stopped moving, the participants were instructed 
to wait for at least 1 s before initiating the same 
movement. The color of the target gave feedback: green 
for the correct direction of the hand movement within 
10 s, or red for incorrect (wrong direction, no movement 
detected within 10 s). The feedback was given for 1 s 
before the target turned to white, prompting the 
preparation phase for the participants. The target then 
moved at the same distance and speed but in the 
opposite direction, towards the center position. The 
participants then waited for at least 1 s before initiating 
movement toward the center position. The feedback was 
given again for 1 s, and then the screen turned blank, 
indicating the trial break period. There were 480 trials 
(48 trials per block) but 960 movements because each 
trial comprised 2 movements (outward and inward). For 
simplicity, we treated outward and inward movements 
as separate trials, so the total number of trials is 960 
trials. There were 480 trials for inward and outward 
conditions and 240 for direction conditions. On average, 
157.2 ± 88.35 (mean ± SD) trials were rejected due to 
artifacts, incorrectly performed direction, distance, and 
speed. 

     Processing pipeline: The measured EEG and EOG 
signals were processed via a custom script based on 
EEGLAB [22] on MATLAB version R2019b. The EEG 
signals were visually inspected, and the bad channels 
were identified and interpolated. The powerline noise at 
50 Hz was removed via 2nd order Butterworth notch 
filter. The signals were downsampled to 200 Hz and 
then bandpass filtered via the 2nd order Butterworth 
filter between 0.3 – 70 Hz. Eye artifacts were corrected 
via sparse generalized eye artifact subspace subtraction 
(SGEYESUB) [21], trained on the eye blocks data. 
Independent component analysis (ICA) was employed 
via the FastICA algorithm [23] to identify and remove 
the artifact component. The IClabel plugin was utilized 
to estimate the probability of each IC component being 
the artifact. Any IC components that had the probability 
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of being any non-brain activity higher than 90% were 
removed and the cleaned signals were recomputed 
again. The EOG signals were included in the 
computation of the ICA to aid the identification of the 
eye artifact. The signals were epoched between -2 to 5 s 
around when the target stopped, and bad trials were 
identified based on the amplitude (rejected if amplitude 
was higher than ± 150 µV) and the statistics of the 
signals (joint probability, kurtosis). After trial rejection, 
signals were then low pass filtered with 2nd order 
Butterworth filter at 3 Hz and then epoched around the 
detected movement onsets between -3 to 3 s. The 
signals were then re-referenced to a common average 
reference (CAR). 

     Movement onset detection: The position of the hand 
was smoothened with a 1st-order Savitzky-Golay filter. 
The speed was computed by taking the derivative of the 
vector norm of the smoothened position in 2D. The 
onsets were detected when the speed exceeded the 
threshold at 30 pixels per second. The signals were 
epoched around these movement onsets, and the 
maximum movement speed and total distance were 
computed per movement. The median of the maximum 
speed across all movements was used as a threshold to 
identify bad movements (too fast or too slow for the 
speed conditions). 
     Similarly, the median of the total distance was used 
to classify bad movements (too far or too near for the 
distance conditions). Short movement (lasting less than 
0.2 s), movement with "incorrect" feedback, and 
movement outside the movement period were excluded. 
Finally, the movements that were performed too soon 
(less than 0.5 s after the target stopped) were excluded 
as well. On average, 19.60 ± 14.04 trials were rejected 
due to incorrect behavior (e.g., no movement detected, 
wrong direction), while 61.80 ± 37.10 and 55.40 ± 
59.25 trials were rejected due to incorrect distance and 
speed, respectively. 

     Movement-related cortical potential (MRCP) 
analysis: The signals were averaged over the same 
conditions in directions and inward/outward time-
locked to the movement onset. The distance and speed 
were excluded from further analysis. The MRCPs were 
averaged over participants, but no statistical tests were 
performed due to the low number of participants. 
     Point-wise Classification: A shrinkage linear 
discriminant analysis (sLDA) [24] was employed for 
classification. Only the EEG signals were considered in 
this case. AF row channels were excluded due to the 
residual artifacts that could not be corrected from the 
eye artifact correction model. The signals were 
downsampled to 10 Hz to reduce the computational 
time. The input features for the training were the 
amplitude of EEG signals within a sliding window with 
a size between 1 sample (spontaneous) and 10 samples 
(1-s windows). Due to the maximum window size, the 
first second of the trial was omitted from the 
classification. We tested the classification on directions 
and inward/outward conditions. An sLDA model was 
trained per time point, so there were 51 sLDA models 
per condition. The training of each model was done 
with stratified 10-fold cross-validation. To estimate the 
effect of the classification, the chance level was 
simulated with a label shuffling approach [25] 
according to the number of classes and number of trials 
per class (TPC). In the direction case, the chance level 
was determined with 4 classes with 240 TPCs, and in 
the inward/outward, with 2 classes with 480 TPCs. No 
statistical tests were performed due to the low number 
of participants. 
 
RESULTS 

     MRCP analysis: The shape of MRCPs of different 
directions and inward/outward conditions is illustrated 
in Fig. 2. In both the direction and inward/outward 

Figure 2: Average MRCP from C1, Cz, C2, PPO1h, and PPO2h in inward/outward and direction conditions.  
The shaded bands indicate standard deviation (SD) across participants. 
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conditions, the amplitude of the MRCPs was strongest 
at Cz and C1 channels. The minimum peaks in PPO1h 
and PPO2h lagged behind the ones in C1, Cz, and C2 by 
200 ms. The shape of MRCPs differed in C1, Cz, and 
C2 but not in PPO1h and PPO2h. Only the amplitude of 
the minimum peaks in the PPO1h and PPO2h differed 
slightly. Similar effects could also be seen in the 
direction conditions. Additionally, the shape of MRCPs 
was similar in the horizontal (left and right) and vertical 
directions (up and down). 

     Point-wise classification: Fig. 3 visualizes the 
classification accuracy of the direction and the 
inward/outward condition. The estimated chance level 
was determined to be 27.39% and 52.70% for the 
direction and inward/outward conditions, respectively. 
In the inward/outward conditions, the average accuracy 
hovered around the chance level. The peak accuracy 
was around 0.3 s at 55.53% for the spontaneous 
classification and at 0 s at 58.16% for 1 s window 
classification. On the other hand, the accuracy curve of 
the direction stayed around the chance level before 
rising well beyond it and then peaks at 0.6 s at 34.24% 
for the spontaneous classification and at 0.9 s at 40.59% 
for the 1 s window classification after movement onset 
and then dips below the chance level again after 1s. The 
accuracy generally improved with increasing window 
size. 

 

Figure 3: Accuracy curve from spontaneous and 1-s 
window point-wise classification. Each line indicates 
the accuracy of each participant. The black line and the 
shaded area indicate the average accuracy over 5 
participants and ± standard deviation (SD) 

DISCUSSION 
     The results suggested that the low-frequency EEG 
does not carry enough information to distinguish 
between inward and outward conditions, whereas the 
amount of information seemed to suffice to distinguish 
the direction of reaching, as seen in Fig. 3. This seemed 
to support the hypothesis that the low-frequency EEG 
carries information that is likely to be represented in the 
eye-centered coordinates. 
 Interestingly, we observed in the inward and 

outward conditions the similar shape of the MRCP in 
PPO1h and PPO2h, whereas the shape differed slightly 
in the C1, Cz, and C2. As discussed earlier, the main 
difference between inward and outward conditions was 
in the different representations of the planned 
displacement vector in the shoulder-centered but not in 
the eye-centered coordinates. We speculated that this 
could be related to the underlying referencing frame in 
shoulder-centered coordinates in SMA [6] (represented 
as C1, Cz, and C2) and in eye-centered coordinates in 
PPC [1] (represented as PPO1h and PPO2h). However, 
we must be careful in drawing any strong conclusion on 
this topic due to the low number of participants and the 
lack of evidence linking the non-invasive and EEG 
measurements.  
     On the other hand, the directional information of the 
reaching seemed to be well represented in the EEG 
signal. The different shapes of MRCP in the horizontal 
(up and down) and vertical reaching (left and right) 
could be explained by the different muscle/joint 
activations when reaching in the left and right in 
comparison to the up and down direction. Alternatively, 
this could be due to a mismatch in the actual plane of 
the movement and the plane of the screen in up and 
down directions (as the left and right were 
correspondingly in the same plane) [16], [19]. 
Nevertheless, the directional information of the reaching 
could be distinguished with above-chance accuracy.  
      For further analysis in a subsequent study, the data 
from the inward and outward can safely be combined. 
The model showed promising peak accuracy for the 
direction at 40.59%, which was lower than the accuracy 
reported in similar directional decoding studies [8], [9], 
[10]. The classification in this study only represented 
how informative each time point was in discriminating 
between conditions but did not reflect the actual 
decoding accuracy of the detection of the directional 
reaching. Another major difference was that the 
participants were specifically asked to fixate their eyes 
on the target so that the eye movement was completely 
separated from the movement. This might reduce the 
amount of information that the decoder could utilize. 
Further analysis with more participants would be 
needed to draw a stronger conclusion.     

CONCLUSION 
 We provided a preliminary result that low-frequency 
EEG may be globally represented in the eye-
coordinates. We speculated that the shape of MRCP in 
PPC and SMA may represent the underlying referencing 
frames as reported in earlier studies. The classification 
results also confirmed that the directional information 
was encoded in the movement planning, which was 
sufficient to differentiate between directions but 
suggested that the inward and outward movement were 
not differentiable and could be combined for further 
analysis. 
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ABSTRACT: This study explores the potential of the
ventral intermediate nucleus (VIM) of the thalamus as
a subcortical signal source for brain-computer interfaces
(BCIs). We analyzed spectral changes in the VIM for
overt and imagined hand movements during deep brain
stimulation (DBS) lead implantation surgery. During task
periods, we found suppression of power in the stereotyp-
ical beta range (13-30 Hz). Only in one recording site did
we find a significant increase in broadband power (65-
115 Hz) with overt hand movement, but not for imagined
movement. We provide evidence that motor representa-
tion in the VIM could act as a subcortical control signal
for future BCI applications.

INTRODUCTION

In recent years, brain-computer interfaces (BCIs) have
seen remarkable advances, particularly in motor control
and rehabilitation tasks. A critical component of BCIs
is the ability to sense and accurately decode neural sig-
nals into actionable commands, restoring the dysfunc-
tion between intent and action seen in many disorders
of the motor system. Current BCI applications typi-
cally involve electroencephalography (EEG), magnetoen-
cephalography (MEG), electrocorticography (ECoG), or
intracortical microelectrode array recordings of the motor
or sensory cortices [1–4]. However, identification and de-
velopment of BCI’s using subcortical neural signals may
provide several advantages for future applications: (1)
subcortical targets may provide unique information re-
garding motor planning and coordination (2) can be in-
tegrated into existing neuromodulation technologies like
deep brain stimulation (DBS), and (3) may be necessary
in patients with focal damage to cortical regions [5].
The ventral intermediate nucleus (VIM) of the thalamus
plays a pivotal role in the modulation and relay of motor
signals between the cerebellum and the motor cortex and
is a major target of DBS therapy for movement disorders
[6]. However, its potential as a BCI signal is unclear.
In this case study, we measured spectral changes in the

VIM during overt and imagined hand movements dur-
ing DBS intraoperative microelectrode macro recordings.
During task periods we found significant suppression of
power in the stereotypical beta range (13-30 Hz) com-
pared to rest periods. In one recording site, we found a
significant increase in broadband power (65-115 Hz) with
overt hand movement, but did not observe this as a gen-
eral phenomenon or in imagined movement conditions.
Overall, our findings suggest that the VIM could act as a
control signal for future BCI applications.

MATERIALS AND METHODS

Patient and surgical implantation: A 49-year-old male
patient with multiple sclerosis (MS) presented for bilat-
eral DBS electrode implantation of the ventral intermedi-
ate nucleus of the thalamus (VIM). The patient was diag-
nosed with MS at age 21 after optic neuritis, followed by
multiple relapses. He previously received disease mod-
ifying therapy including interferon beta-1b and mitox-
antrone. MRI revealed multiple lesions throughout his
cervical spine, and supratentorial periventricular and jux-
tacortical white matter, no lesions were seen in the poste-
rior fossa. At age 27 he developed gradual onset of right
greater than left sided tremor, with kinetic greater than
postural component. At the time of his present evalua-
tion, his only disability was related to his tremor. The pa-
tient consented to participate in a research protocol dur-
ing the awake surgery for implantation of these leads.
Mayo Clinic’s internal review board approved the study
and the consent process (IRB no. 19-009878). Stereo-
tactic targeting and alignment to the left VIM was per-
formed with the Leksell G frame (Elekta, Stockholm,
Sweden) and Stealth system (Medtronic, Minneapolis,
MN). A cannula was stereotactically passed to the VIM
(Fig. 1-2). From the tip of the cannula, a microelectrode
(0.5–1 MΩ platinum–iridium; FHC, Bowdoin, ME) was
advanced 15 mm to a target in the VIM (Fig. 1).

Motor Task: Data were collected during a motor task
involving opening and closing of the hand. The patient
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Figure 1: Deep brain stimulation (DBS) microelectrode recordings (A) Microelectrode recording schematic, micro tip, and macro ring dimensions.
(B) Micro and macro neural signals are referenced to the cannula and can inform about specific signal modalities. Local field potentials (LFP) analyzed
from the macro ring can uncover neural oscillations and broadband changes. (C) Microelectrode recordings are used during thalamic DBS implants
to map thalamic neurophysiology. Serial microelectrode recordings may help inform about thalamic anatomical subregions and DBS lead placement.
Thalamic anatomy background included from [7].

Figure 2: DBS lead localization and anatomical segmentation (A) Post-op CT - T2 MRI fusion showing final lead position on brain anatomy.
Pseudocoronal image is resliced in-plane with DBS lead while maintaining midline symmetry. (B) Identification of thalamic microelectrode macro ring
recording sites through lead localization. (C) Inferred anatomical segmentation along physiologic recording track.
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Figure 3: Physiologic recordings and behavioral tasks (A) Microelectrode ring recordings are referenced to the cannula and are recorded over rest
and movement periods for a hand open task. Movement periods are segmented by EMG signal. (B) For the imagined movement task, the patient was
verbally cued to imagine hand opening.

was verbally cued to perform a simple self-paced move-
ment (or imagined movement) with interleaved rest peri-
ods. After twenty trials of movement were performed, the
task was repeated for kinesthetically imagined movement
(Fig. 3). These tasks were chosen based on prior work,
which has produced clear results in recordings from brain
surface and depth electrodes [8, 9].

Electrophysiological recordings: Microelectrode
recordings were referenced to the cannula. Voltage
time series were recorded with an Alpha Omega system
(Alpha Omega, Israel). Recordings were sampled at
44 KHz. EMG was measured from the forearm exten-
sors/flexors and synchronized with microelectrode ring
recordings.

Lead localization: As illustrated in Fig. 2, mi-
croelectrode recording position was determined by co-
registration of the postsurgical CT, which includes elec-

trode artifact, and the pre surgical MRI using a normal-
ized mutual information approach. This fused image was
then resliced in plane with the DBS lead position using
custom MATLAB code [10]. T1, T2, and FGATIR MRI
series were overlaid to reveal thalamic and surrounding
anatomical borders.

Signal processing and analysis: Within each move-
ment or movement imagery trial, averaged power spectral
densities (PSDs) were calculated from 1 Hz to 300 Hz
every 1 Hz using Welch’s averaged periodogram method
with 1 second Hann windows and 0.5 second overlap to
attenuate edge effects. These trials were defined based on
1) EMG during the movement task, and 2) timing of ver-
bal cuing during the kinesthetic imagery task. Average
power from 65-115Hz was used to localize broadband
activity as done previously in cortical studies [9]. This
range was chosen as it is well above the known range of
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Figure 4: Power spectral densities for behavior tasks (A) The open hand task at +5mm from target showed significant suppression in the stereotypical
beta range (13-30 Hz) and a significant increase in the broadband frequency (65-115 Hz) with hand movement. (B) At +2mm from target, hand movement
was associated with a beta range suppression, but no significant change in broadband. (C) Imagined hand movement at +5mm and +2mm (D) from target
were associated with significant beta range suppression, but no changes in broadband frequencies. * and bold text indicates p < 0.05 for paired-samples
t-test of rest and move conditions.

most oscillations and avoids ambient line noise at 60 Hz
and 120 Hz.

For each task and recording site, we calculated separate
signed r2 cross-correlation values (r2) of the mean spectra
from 13-30 Hz and 65-115 Hz. the sign indicates whether
power is increasing or decreasing with each task. To cal-
culate a p value for each site and task, we performed a
paired-sample t-test comparing 13-30 Hz and 65-115 Hz
power for task trials and the rest trials that immediately
follow.

RESULTS

Field potentials were measured at two VIM locations,
+2 and +5mm from the DBS lead implant depth (Fig.
2) during the overt and imagined hand movement tasks.
In all recording sites a clear oscillation peak emerged
in the stereotypical beta range between 13-30 Hz (Fig.
4). During overt hand movement, there was a significant
decrease in beta power at both +2 mm (r2= -0.45, p =
1.2x10−6) and + 5 mm (r2= -0.41, p = 1.4x10−6) record-
ing sites. At the +5mm recording site there was a signifi-
cant increase in broadband power (65-115 Hz; r2= 0.33, p

= 2.3x10−5), but no significant increase at the +2mm site
(r2= -0.01, p = 0.62). For the imagined hand movement
task, we also found significant decreases in beta power
at both +2 mm (r2= -0.11, p = 0.04) and + 5 mm (r2=
-0.27, p = 4.26x10−4) recording sites. We did not ob-
serve any significant increases in broadband power at ei-
ther +2mm (r2= -0.02, p = 0.42), nor +5mm (r2= 0.00, p
= 0.86) depths during imagined movements.

DISCUSSION

Beta power suppression, characterized by a decrease in
the beta frequency band (13-30 Hz) is a well-documented
feature in cortical and subcortical motor circuits related
to motor planning, execution, and suppression [11]. This
beta band has been utilized for a variety of BCI appli-
cations, however primarily from motor cortical regions
[12]. Our findings suggest that the beta suppression ob-
served with movement in the VIM may also be a suitable
control source for future applications.

In primary motor cortex, studies have also found a broad-
band spectral increase above 50 Hz that we measure be-
tween 65 Hz and 115 Hz, which is generally correlated
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to neural population firing. These broadband increases
are typically more focal than the beta suppression phe-
nomenon, and have similarly been utilized as BCI con-
trol signals. While we observed an increase in broadband
at the +5mm recording site for overt movement, this was
not a general phenomenon in both depths or across tasks
- contrary to other motor cortex BCI studies [13]. Similar
to other motor structures, the motor thalamus has soma-
totopic organization. Specifically, the VIM is organized
continuously rostrocaudally [14]. It is unclear whether
an increase in broadband does not occur in the VIM with
imagined movements, or whether our lack of findings
could be due to spatial sampling or amplifier noise floor
limitations in the intraoperative DBS setting. Future stud-
ies will examine the directional somatotopic organization
for different types of overt and imagined movements to
further investigate this feature.

CONCLUSION

Overall, we found beta band suppression in the VIM with
overt and imagined movements which could act as a sub-
cortical control signal for future BCI applications.
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ABSTRACT:
Introduction: Stereoelectroencephalography (sEEG)
is a mesoscale intracranial monitoring method which
records from the brain volumetrically with depth elec-
trodes. Implementation of sEEG in BCI has not been
well-described across a diverse patient cohort.
Methods: Across eighteen subjects, channels with high
frequency broadband (HFB, 65-115Hz) power increases
during hand, tongue, or foot movements during a motor
screening task were provided real-time feedback based on
these HFB power changes to control a cursor on a screen.
Results: Seventeen subjects established successful con-
trol of the overt motor BCI, but only nine were able to
control imagery BCI with ≥ 80% accuracy. In success-
ful imagery BCI, HFB power in the two target condi-
tions separated into distinct subpopulations, which ap-
pear to engage unique subnetworks of the motor cortex
compared to cued movement or imagery alone.
Conclusion: sEEG-based motor BCI utilizing overt
movement and kinesthetic imagery is robust across pa-
tient ages and cortical regions with substantial differences
in learning proficiency between real or imagined move-
ment.

INTRODUCTION

Brain–computer interfacing (BCI) requires a signal that
is strongly correlated to a behavioral state such as
movement or speech. Many types of electrical signals
can be used for real-time BCI, including scalp elec-
troencephalography (EEG)[1], magnetoencephalography
(MEG)[2], electrocorticography (ECoG)[3, 4], and single
neuron recordings[5, 6]. Stereoelectroencephalography
(sEEG) is a mesoscale measurement that records from
the brain volumetrically using depth electrodes[7]. Like
ECoG, it represents an intracranial population measure of
the summation of local field potentials generated from the
n-poles of 100,000s of neurons surrounding the recording
electrode. Compared to ECoG, sEEG is not limited to the
surface of the cortex. Thus, sEEG allows for sampling
from distance cortical and subcortical regions that were
not previously possible with ECoG.
Currently, sEEG is utilized in the treatment of drug-
resistant epilepsy. Once implantated with sEEG depth

electrodes, patients remain in the hospital for characteri-
zation of their seizures. This often takes days to weeks,
allowing patients to participate in experiments including
brain computer interfaces, if they wish to. Historically,
researchers have used spectral changes on the cortical
surface to provide feedback [3, 4], allowing individuals
to control a cursor on a computer screen in a matter of
minutes. Our work describes the extension of this work
to sEEG, including its design, implementation, and feasi-
bility.

MATERIALS AND METHODS

Ethics statement: The study was approved by the In-
stitutional Review Board of the Mayo Clinic (IRB 15-
006530) and conducted according to the guidelines of the
Declaration of Helsinki. Each patient or their parental
guardian provided informed consent as approved by the
IRB.

Subjects: Eighteen patients (8 females, 6-37 years of
age, Table 1) with drug resistant eilepsy participated in
this study, after implantation with 10-17 sEEG electrode
leads. Electrode planning was performed by the clini-
cal epilepsy team using brain imaging, typical semiology,
and scalp EEG. Electrode locations were not modified to
accommodate research; no extra electrodes were added.
All experiments were performed in the epilepsy monitor-
ing unit (EMU) or Pediatric Intensive Care Unit (PICU)
at the Mayo Clinic in Rochester, MN.

Lead Placement, Electrode Localization, Re-
referencing: Platinum depth electrode contacts (DIXI
Medical) were 0.8mm in diameter with 10-18 2mm
length circumferential contacts separated by 1.5mm (Fig
1). Surgical targeting and implantation were performed
in the standard clinical fashion. Anatomic locations
of electrodes were determined using the steps and
tools described previously[8, 9]. All data were bipolar
re-referenced such that channels reflect mixed activity
at two adjacent electrode contact sites (Figs 1-4). These
dipolar channels were plotted using SEEGVIEW, which
slices brain renderings, and projects channels to the
center of the closest slice [9] in order to present analyses
in a more clinically familiar manner.

Motor Screening Task: Our motor task involved 3 sec-
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Figure 1. sEEG recordings during movement - Subject 1. (A) Power spectrum from a SEEG electrode at the sulcal base of primary motor cortex
during hand movement (pink) and rest (black), from the recording site noted in panels B-D. (B) Broadband power (approximated by 65-115Hz band)
increases during movement compared to rest. (C) Sagittal slice showing electrodes within 5mm of this slice allows viewing broadband power increases
on the surface and at depth. (D) As in (C), but for axial slices and electrodes within 2.5mm. Activation maps for movement are shown in the central
colorbar (signed r2, scaled to 1 maximum, with red/blue reflecting power increase/ decrease with movement). Yellow and peach in B-D indicate
the central & sylvian fissures. Note the simultaneous measurement of M1, PMd, PMv, Insula (In), SMA, and S1 (primary sensory), which all show
movement-associated broadband power increases.

onds of 1) opening and closing of the hand, 2) side-to-
side movement of the tongue with mouth closed, and
3) alternating dorsi- and plantar flexion of the foot with
3 second rest periods interleaved as described previously
[8]. The BCI2000 software was used for stimulus presen-
tation and synchronization of (EMG) and sEEG signals
[10].

Offline Signal Processing and Analysis: All analyses
were performed in MATLAB. EMG signal was recorded
in parallel to determine the precise timing of movement
onset and offset in response to a visual cue. Within
each movement trial, averaged power spectral densities
(PSDs) were calculated from 1 to 300 Hz every 1 Hz us-
ing Welch’s averaged periodogram method with 1 second
Hann windows to attenuate edge effects and 0.5 second
overlap[11]. The averaged PSD for each movement or
rest trial was normalized to the global mean across all tri-
als. The PSDs were normalized in this way since brain
signals of this type generally follow a 1/f power law and
shape[12], so that lower frequency features dominate in
the absence of normalization. From each of these nor-
malized single trial PSDs, averaged power in a broadband
high frequency band (65-115 Hz) was calculated for sub-
sequent analysis, as previously described [8]. This band
was chosen as it captures broadband activity above most
oscillations and avoids ambient line noise at 60 Hz and
120 Hz.
For each bipolar re-referenced channel, signed r2 cross-
correlation values (r2) of the mean spectra from 65-115
Hz were calculated for each movement modality. The
r2 value of each channel was determined by comparing
mean power spectra between rest and movement trials

separately. The sign of each r2 indicates whether power
is increasing or decreasing with movement, as illustrated
by red and blue circles, respectively, in each figure.

BCI Task: We implemented our BCI using the
BCI2000[10] software, which applies a spectral estima-

Table 1. Subject Information, DNP = did not participate, "/"
indicates that modalities pushed cursor in opposing directions.

ID
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y
1 10/F R 198/14/L DNP DNP DNP
2 16/F L 217/14/B T/ RF 100 93
3 17/F R 168/13/R LH 95 97.5
4 18/M L 231/14/R LH 100 89.5
5a 15/F R 159/10/L RH 100 50
5b 15/F R 159/10/L RH/T 95 70.5
6 13/M R 196/13/R H/F 100 73
7a 15/M L 185/12/L RH 100 47.5
7b 15/M L 185/12/L RH 83.5 50
8a 36/F R 199/14/B T/F 100 45
8b 36/F R 199/14/B H/F 96 86
9 8/F R 230/17/B RH 90 DNP
10 19/M R 211/15/B RH 100 100
11 6/M R 193/13/R LH 100 DNP
12 37/M R 237/15/B T 100 45
13 15/M R 215/16/B LH 100 100
14 35/M R 252/15/B RH 100 100
15 17/F R 232/15/B RH 90.5 DNP
16 36/M B 195/15/R LH 100 84
17 12/F R 232/16/B LH 100 66
18 16/M R 254/16/R LH 96 100
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Figure 2. The homunculus in 3 dimensions - Subject 2. SEEG allows us to measure the volumetric structure of the homunculus electrophysiologically,
shown here for the first time. (A&B) Locations of coronal insets in D-F. (C) Reproduction of Penfield’s classic motor homunculus (Wikipedia.org). (D)
Comparison of blocks of foot movement vs rest from an SEEG array, plotting movement associated broadband (65-115Hz) change. (E&F) As in D, for
Hand and Tongue movement. Note that the classic 2-dimensional homunculus extends into the brain depths, reflecting the volumetric nature of motor
representation.

tor to incoming signals using an autoregressive model of
the input, operating like a Fast Fourier Transform with
a limited number of coefficients. A linear classifier was
applied to the feature space of 70-110 Hz power in the
channel(s) chosen for BCI to differentiate between move-
ment (or imagined movement) and rest periods allowing
for cursor control. During the initial experimental run,
BCI2000 adapted this classifier based on the mean and
variance of a data buffer (previous 30 sec of incoming
data). The threshold was then set to the mean of the data
buffer, and the velocity is set to the inverse square root
of the variance of the data buffer. These parameters were
then fixed for the remainder of the experiment to allow
for online learning by each subject.
In overt BCI, patients controlled the cursor by moving
in order to modulate cortical activity in the pre-selected
channels, and in imagery BCI, the cursor was controlled
using kinesthetic imagery alone (confirmed by EMG.
Both overt and imagery BCIs in this study provided feed-
back to channels that demonstrated the highest soma-
totopic tuning based on r2 values [8] during the motor
screening task (Fig. 2).

Prior to BCI, subjects were instructed to associate a tar-
get (up vs. down, left vs. right) on the screen with
rest or movement (e.g. hand open/close). The target ap-
peared at the top or bottom of the screen 1.5 seconds sec
prior to a red cursor, at which point subjects proceeded to

move/imagine moving or remained still once the cursor
appeared (Fig. 3). Subjects were allowed 5 seconds to
move the cursor to the target. If the trial was not com-
pleted (the cursor hits neither the target nor the opposite
edge of the screen), this trial was not considered in the
accuracy calculation and a new trial began. Each run was
2 min and allowed subjects to complete as many trials
as possible. The first run was for calibration such that
the computer could adapt to the power changes in the
control channel(s) as subjects alternated between move-
ments/imagined movements or rest.

RESULTS

Movement: After participating in our motor screening
task, changes in the power spectral density (PSD) within
each sEEG channel were compared between movement
and rest periods, and as in previous studies [3, 4, 8].
Movement resulted in suppression of oscillatory activity
and an increase in high frequency broadband power (Fig.
1). As broadband power is correlated to local neuronal
activity, it served to localize functional representation of
movement across the sEEG montage (Fig 1). Germane to
our goal of implementing a BCI, this enabled the iden-
tification of the somatotopically tuned cortical regions
which could generate the control signal in a closed-loop
feedback task (Fig. 2).
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Figure 3. Schematic of online BCI feedback (A) Power from 70-110 Hz in the channel chosen in A determines the direction and velocity of the cursor
on screen. (B) Targets are displayed prior to cursors to cue movement or rest and subjects attempt to direct cursosrs toward the rectangular target. (C)
Subjects perform the BCI within their bed viewing a monitor 80-100 cm from their head. (D) Subject 3 learned imagery BCI using a channel in the
precentral gyrus across five consecutive runs. The subpopulations of power during trials of opposing targets gradually separated across the learning
process until an accuracy of 97.5% was obtained (average accuracy across last two runs).

Imagery: Subjects repeated the movement task, but
were instructed to kinesthetically imagine performing the
cued movement [13, 14]. As demonstrated in ECoG [3,
4], kinesthetic imagery produced an increase in broad-
band power within motor regions just as during move-
ment (Fig 5).

BCI closed-loop feedback: Successful BCI control was
defined as runs in which the cursor was moved to the cor-
rect target in ≥ 80% of trials for a minimum of 20 trials.
The control channels were chosen based on the changes
in HFB power associated with movement during the mo-
tor screening tasks, and it was modulation of HFB power
which controlled the speed and 1-dimensional movement
of a cursor on a computer monitor a few feet from the pa-
tient’s head (Fig. 3). All seventeen subjects established
successful control of the overt BCI within minutes. Of
these seventeen subjects, fourteen attempted to perform
imagery BCI with three subjects attempting two separate
BCIs for a total of seventeen. Among these subjects, nine
were able to attain successful BCI control, and three con-
trolled the cursor with above chance accuracy (Tab. 1,
Fig. 4a). As represented by subject 3, learning imagery
BCI occurs across several runs and results in the gradual
separation of the average 70-110 Hz power within control
channels between trials with opposing targets (Fig. 3).
While some patients required many trials to learn the im-
agery BCI (Fig. 3), there was no relationship between the
number of training trials and accuracy (Fig. 4b). The lo-
cation of the control channel varied across patients (Tab.

1), but the majority of control channels were within the
precentral gryus (PCG). Although control channels out-
side of the PCG may be assumed to lead to lower accu-
racies, control channel location did not have a strict rela-
tionship to cortical location (Fig. 4c,d).

Differential cortical engagement across tasks: Al-
though successful BCI control necessitates broadband
power modulation within the pre-selected sEEG chan-
nels controlling the BCI, activity patterns within the rest
of the motor network are unconstrained. Across several
subjects, we see selective engagement and differential ac-
tivation based on the task being performed. For exam-
ple, in Subject 3, we see maximal activity in the dorsal
pre-motor area during the kinesthetic imagery screening
task, and parietal engagement only when feedback in pro-
vided (Fig 5). This not only demonstrates that due to the
volumetric configuration of sEEG, cortical activity across
movement tasks and BCIs can be assessed on the network
level, but that cortical subnetworks can be differentially
engaged across tasks.

DISCUSSION

Similar to ECoG studies utilizing high-frequency power
to control a motor BCI[3, 4, 15], we demonstrate that
both overt and imagery motor BCI can be implemented
using sEEG. Even more, sEEG BCI is robust, enabling
successful control of overt and imagery BCI in patients
as young as six and thirteen years old, respectively. In
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Figure 4. Overt and Imagery BCI accuracy across subjects. A Both overt (left) and imagery BCI accuracies are displayed for each subject. In some
cases, subjects performed multiple BCIs that differed in either the pre-selected sEEG channels, controlling modalities, or both. Each BCI within these
subjects were assigned a unique bar (e.g. subject 5a vs. 5b). † indicates subjects who attained 100% accuracy in less than 20 trials. B The relationship
between number of training trials and peak accuracy during imagery BCI was not significant (p = 0.6185). C Distribution of accuracies during overt
BCI (left) with locations of BCI controlling electrodes transformed to the left hemisphere of the MNI152 brain. D As in B, but during imagery BCI.
Note that electrodes used for BCI control in subject 7 are not shown as their anatomy did not allow for accurate transformation into MNI space.

the majority of cases in which imagery BCI accuracy was
not ≥ 80%, this was due to either a lack of interest from
the patient, insufficient time due the rapidly progressing
clinical schedule, or an inability to learn the BCI in the
allotted time.
Across the learning process, power distributions specific
to time periods when each target was shown separated
into two clear sub-distributions (Fig 3), with the active
targets being more easily hit than inactive targets early
on in learning. Presumably this may be due to the more
concrete nature of kinesthetic imagery compared to rest
which allows subjects to anchor to a tangible process.
This is supported by results in subject 5 where the combi-
nation of imagined tongue and hand movement increased
accuracy. All but two of the sEEG channels controlling
the BCI were located in the pre-central gyrus (PCG). This
said, selection of control channels within the PCG is not
necessary nor sufficient for successful BCI control as 5
out of 8 subjects who failed to establish successful im-
agery BCI control used control channels in the PCG. In
addition, successful imagery BCI control using channels
outside of the PCG was performed in several subjects.
For example, control channels for subject 4 were in the
parietal operculum (Tab. 1), and control channels for sub-
ject 6 were in both primary and cingulate areas. Addition-
ally, 14 of 17 BCI modalities involved hand movement,
and of the 3 BCIs that did not utilize hand movement, 2
were unsuccessful. The disproportionate representation
of the hand in our BCI is due to the sEEG trajectories
chosen by the clinicians, but future work should continue
to explore motor BCI modalities outside of the upper limb
to allow for more powerful studies into the unique char-
acteristics of each modalities.
Although training time was limited, there was no corre-
lation between the number of training trials and the peak

accuracy achieved by each subject (Fig 4b). This indi-
cates that there may be a qualitative difference in the abil-
ity to learn imagery BCI across subjects independent of
training volume. Certainly, the causal mechanism under-
lying this difference should be a explored further in future
work.
Movement, kinesthetic imagery, and imagery BCI appear
to differentially engage the motor network (Fig 4). While
detailed exploration of this concept is outside the scope
of this work, the examination of the unique roles of non-
primary subnetworks of the motor network in abstract
learning is a critical advantage of sEEG-based BCI.

CONCLUSION

One-dimensional motor, sEEG-based BCI utilizing overt
movement and kinesthetic imagery is robust across pa-
tient ages and cortical regions. Subjects differ in their
ability to learn imagery BCI, and further work should ex-
plore the mechanism behind this difference.
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h
Figure 5. Hand movement, movement imagery, and one-dimensional BCI cursor control using sEEG - Subject 4. (A) Axial insets in (B-D)
are as shown here. (B) r2 maps of hand movement vs rest, broadband 65-115Hz power, as in Fig 1D. (C) Hand movement kinesthetic imagery in the
same patient. (D) Map of left hand imagery-based cursor control, comparing left-to-right target presentation times (cursor velocity linked linearly to
65-115Hz power from M1 site indicated by yellow arrow). Note 1) the selective augmentation in recruitment of the PMd (blue arrow) during movement
imagery, and 2) the PRR (green arrow) activity selectively during BCI, but not during movement or imagery.
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ABSTRACT: Recent advances in the decoding of hand
kinematics from neural data and the usage for the control
of cursors also prompt the need to detect the begin and
end of continuous movements. This study investigates
the asynchronous detection of the termination of a con-
tinuous hand movement in a handwriting task using elec-
troencephalography data and the power of frequencies in
the µ and β band. Results obtained with a shrinkage lin-
ear discriminant analysis classifier yield a correct deter-
mination of the offset in 53.5% (chance level: ≈ 18%) of
the trials. We show the general feasibility of the proposed
method in the detection of the termination of a continu-
ous hand movement and visualize the benefit of the in-
formation of the moment of movement termination in a
simulated application.

INTRODUCTION

Communication capabilities for patients using brain-
computer-interfaces (BCIs) have recently been greatly
enhanced through the decoding of continuous motion
from neural data during imagined hand movements [1].
For people in the late stages of amyotrophic lateral sclero-
sis (ALS) or with any form of locked-in syndrome, such
methods can provide highly desirable ways for the inter-
action with the outside world [2]. Although most im-
provements have been driven by advances in implantable
devices and the resulting improvement of signal quality
[1], non-invasive BCIs employing electroencephalogra-
phy (EEG) have lately shown promising advances in the
field of continuous movement decoding [3] and could
potentially be adopted in a comparable way in the fu-
ture. An important aspect of the decoding of continuous
movement and the reconstruction of hand trajectories for
the usage in cursor control is the discontinuation of the
movement. For imperfect control, as is to be expected at
the current state of continuous movement decoding, tra-
jectories have to be constantly corrected by the user [4].
While this can be acceptable during the execution of con-
trolling the cursor where users are engaged with the task,
unintended movement should be avoided during periods
in which patients are not engaged with the cursor control
and where an incessantly moving cursor could be irritat-

ing. One way of overcoming this problem is the detection
of voluntary movement initiation and termination and the
utilization for starting and stopping of the cursor control.
The execution of movement is accompanied by differ-
ent neural phenomena of which mostly the movement-
related cortical potential (MRCP) and event-related de-
/synchronization (ERD/ERS) have received major atten-
tion. While MRCPs [5] are detectable directly in the
time-series EEG and are time- and phase-locked to the
start of the movement [6], oscillatory components (ERD)
in µ and β frequencies decrease during planning and ex-
ecution of a movement until the motion is terminated
[7, 8]. At the point of termination, the desynchroniza-
tion is followed by a period of increased β synchroniza-
tion before returning to the baseline, also known as post-
movement β synchronization (in short β rebound). ERD
and ERS are phenomena which are typically observed in
µ and β frequencies of the EEG and have been exten-
sively studied for different movement tasks. While a large
body of research has focused on the detection of move-
ment onsets [6, 9, 10], few studies have explored the de-
tection of movement termination. Only limited work ex-
amined the usage of ERD/ERS patterns for the termina-
tion of movement imagination of single, short foot dor-
siflexion [11, 12]. They showed that the classification of
the β -ERS patterns proved more reliable and resulted in
a higher detection accuracy for the imagined movement.
Hortal et al. reported similar classification accuracies for
the detection of start and stop of the gait cycle from µ

and β frequency power [13]. In a related approach, Bai
et al. employed β -ERS to classify repetitive imagined
and executed wrist movement [14]. They reported over-
all high discriminability between execution and termina-
tion and better performance in the execution case than for
imagination. Noticeably, the mentioned studies used ei-
ther short single or repetitive movements. More recently,
Orset et al. investigated the detection of termination of
sustained movement imagination of the hand, achieving
an accuracy of 76.2% [15]. While these studies form a
basis for the detection of discontinuation of movements
as needed for the stop of cursor control from EEG, they
do not integrate the self-initiation of the termination of
a continuous movement as is inherent to the control of a
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computer cursor.
We aimed to detect the movement termination (herein
termed offset in contrast to the onset of a movement) of a
continuous and autonomously executed hand motion. We
designed a paradigm in which participants were tasked
with the writing of letter trajectories, which constitute
a continuous hand and finger movement. Although the
movement onset was defined based on a cue, the stop of
the motion was dependent on the letter itself as well as on
the speed and size of the writing trajectory, which varied
among participants and over the duration of the paradigm.

MATERIALS AND METHODS

Experimental Paradigm: The study was conducted
among 22 healthy, right-handed participants with a mean
age of 27.5 ± 3.92 years (mean ± standard deviation).
Each subject participated in a paradigm with an approx-
imate duration of 2.5 h. Participants were fitted with an
EEG cap equipped with 60 electrodes which were placed
on the head according to a standard 10-10 EEG mon-
tage. Four electrodes were positioned on the outer canthi
of the eyes as well as above and below the left eye to
measure electrooculogram (EOG) signals induced by eye
movements. The experiment consisted of (1) an instruc-
tion phase during which participants were informed about
the measurement and the paradigm, (2) a measurement of
specified eye movements for the elimination of eye arti-
facts in EEG data and (3) the execution of a session of
the paradigm. Steps 2 and 3 were repeated twice and
separated by a break of approximately 10-20 min. The
specified eye movements were part of the SGEYESUB
algorithm and are described further in [16]. One session
of the paradigm contained seven (first session) and eight
(second session) runs separated by breaks of 60 s. During
each run 40 trials were performed in each of which one
out of 10 letters (a,d,e,f,j,n,o,s,t,v) was written with the
index finger of the right hand. Finger movements were
recorded with a custom motion capture algorithm track-
ing a visual marker applied to the right index finger of the
participant. During trials, participants observed a screen
and waited for a letter to fade onto the screen (duration:
2 s), stay on the screen at full opacity (0.5 s) and fade
out again (2 s). As soon as the letter was invisible, par-
ticipants started to write the displayed letter with their
finger and stopped at the last point of the letter without
any further movement. The maximum duration of writ-
ing a letter was limited to 4 s, after which the next letter
would be faded onto the screen. Every letter was written
60 times, resulting in a total of 600 executed movements.
Due to technical problems and early termination, two par-
ticipants had to be excluded from the study.

Data Acquisition and Preprocessing: EEG was ac-
quired from two biosignal amplifiers (BrainAmp, Brain
Products GmbH, Germany) at a sampling rate of 500 Hz.
The signals were bandpass-filtered between 0.3-70 Hz
and Notch-filtered at 50 Hz to eliminate powerline noise.
Eye artifacts were removed using the SGEYESUB algo-

rithm [16] and signals from the EOG channels. Residual
eye and muscle artifacts were removed by applying in-
dependent component analysis. The EEG was finally re-
referenced using a Laplacian reference and 24 channels
on the outer periphery of the montage including the EOG
channels were removed from the dataset. We further ex-
tracted the start and stop of the motion from the move-
ment data using the falling and rising edge of the trajec-
tory speed. The kinematic data was recorded at 30 Hz and
smoothed with a Savitzky-Golay filter (first order polyno-
mials and window length of 200 ms).

Neural Correlates of Movement Termination: An anal-
ysis of the neural correlates of the offset of continuous
movements was conducted using ERD/ERS patterns. 20
frequency bands between 0.3 and 40 Hz were extracted
using Morlet wavelets [17]. The data was split into trials
of length [−2.5;4.0]s relative to (a) the start of the move-
ment or (b) the stop of the movement. We then extracted
the relative change in power of the time-frequency data A
to the reference period R, in this case the whole trial [7].

ERD/ERS% =
A−R

R
∗100% (1)

Finally, the trials were averaged aligned according to (a)
and (b) for each channel. We additionally examined the
delay between movement onset and offset from the kine-
matics to compare with the spread of ERD/ERS patterns
when aligned to the onset of the movement.

Movement Offset Detection: Detection of the move-
ment offset was implemented by classifying windows of
neural data into movement and no movement and deter-
mining the falling edge. We extracted time-frequency
data around six center frequencies (8,12,16,20,24 and
28 Hz) using Morlet wavelets to cover the range of µ

and β frequency bands. We obtained the slow changes
in power, equivalent to the envelope of the signal, of
specific frequency bands by lowpass filtering the band-
filtered data to 12 Hz and subsequently downsampled the
features to 30 Hz to reduce the amount of data. The rela-
tive change in frequency power was calculated according
to Eq. 1 with the reference period set to [−2.5;0]s rela-
tive to the movement onset. The trials were then cut to
include the time period [0.2,4.0]s relative to the start of
the movement. Trials in which the offset of the move-
ment happened more than 4 s after the cue onset were
discarded. The data was then labeled as movement un-
til the movement offset and as no movement between the
movement offset and the end of the trial. Windows of
length wL between [t0 −wL; t0] were created to classify
the label at t0 − lag with a lag of wL

2 to incorporate non-
causal information for the classification. (see Fig. 1a). t0
was shifted with a stride of one sample to generate the la-
beled data. A 5-fold cross-validation procedure was em-
ployed and a shrinkage linear discriminant analysis was
used for the classification. For each participant, a sepa-
rate model was trained and evaluated. After training the
models, windows were classified sequentially per trial to
retain the order and allow for a reconstruction of the la-
beling per trial from the classified data. We then defined
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a detection strategy for the definition of movement off-
sets from the classified data by generating the majority
vote from five consecutive classifications and choosing
the first falling edge as movement offset after which the
subsequent ten samples (i.e. ≈ 330ms) were successively
classified as no movement. For each trial, a movement
offset was defined as correctly identified when the de-
tected offset was within a range of ±330 ms of the ac-
tual offset. Since the window length of each trial was
3.8 s, the chance level for a random classifier was ap-
proximately 18% with a level of statistical significance
of 21.1% calculated according to [18]. We tested win-
dow sizes of wL ∈ [200,400,500,600,800]ms and a lag
of wL

2 .
Simulated Application - Handwritten Letters: To vi-

sualize the benefit of the information of the moment of
termination of the continuous movement, we employed a
simulated application in which handwritten letters were
classified from reconstructed trajectories. We simulated
imperfect reconstruction of trajectories from neural data
by adding noise to the measured x and y positions ob-
tained during the handwriting task. The noise, derived
from lowpass-filtered white Gaussian noise, ranged from
zero to a maximum amplitude of 1.5 times the average
letter size. We then constructed windows of 4 s starting
from the movement onset and constructed images of the
handwritten trajectory. This procedure was executed for
different conditions:

• NN: No additional noise was added to the recorded
trajectories and the full four second window was
used for the image construction.

• AN: Additional noise as described above was ap-
plied to the trajectories and the full four second win-
dow of noisy trajectory data was used for the image
construction.

• AN-C: Additional noise as described above was ap-
plied to the trajectories, which were cut after the
movement offset, and only the shortened window
was used for the image construction.

• AN-P: Additional noise as described above was ap-
plied to the trajectories, which were cut after the
movement offset according to the predictions from
the classifier, and only the shortened window was
used for the image construction.

These conditions are visualized in Fig. 1b. A convolu-
tional neural network (CNN) for the detection of hand-
written letters from images was employed to classify the
constructed letters. CNNs are often utilized in the recog-
nition of handwritten characters since they have proven
to yield high accuracies [19]. We repeated a 5-fold cross
validation procedure twice to generate reliable classifica-
tion results.

RESULTS

Neural Correlates of Movement Termination: An anal-
ysis of the lag between movement onset and offset per

Figure 1: (a) Schematic of the movement kinematics used for
the detection of onset and offset and the labeling of the data
for the classification. Labels are chosen 200 ms after the move-
ment onset until 4 s after the movement onset and are classi-
fied from frequency data of length wL using a lag to incorporate
non-causal information. (b) The illustration shows letters re-
constructed from kinematics and transformed into an image for
classification using a CNN. Letters are shown for the conditions
no-noise (NN), additional-noise (AN) and additional-noise-cut
(AN-C/AN-P).

trial showed that the average movement was terminated
after 1.9 s with a standard deviation of 0.6 s. We also
investigated the difference between movement onset and
offset for individual letters with the distribution shown
in Fig. 2a. The largest difference in the average dura-
tion of movements between letters occurred for letters d
(2.44±0.62s) and v (1.33±0.43s). We also found an in-
fluence of the writing duration on the distribution since
the coefficient of variation increased with longer aver-
age duration of the letters (Pearson’s r: 0.73, p-value:
0.017). We then calculated the ERD/ERS maps for the
movement onset (Fig. 2b upper images) and movement
offset (Fig. 2b lower images) aligned trials. Desynchro-
nization (relative decrease of power in the frequencies)
is shown in red while synchronization (relative increase
of power in the frequencies) is shown in blue. Movement
onset centered ERD/ERS maps are also overlayed with an
aligned distribution map of the movement offset to indi-
cate the moment of termination of the writing motion. An
ERD in µ and β frequencies during the movement and a
post-movement β synchronization can be observed. Fur-
thermore, a µ-ERS can be observed, however, delayed to
the β -ERS. Those patterns are more pronounced at chan-
nel C1, contralateral to the movement of the right finger.

Movement Offset Detection: The maximum accuracy
for the detection of movement offsets was achieved for a
window length of wL = 500 ms with an average accuracy
of 53.3±11.9% (mean ± standard deviation) over all par-
ticipants. The subject with the best performance reached
an accuracy of 77.5%. Average classification accuracies
achieved with different window lengths yielded lower but
comparable results (49.9±13.0%, 53.2±12.4%, 52.7±
12.0%, 51.4±11.0% for window sizes 200,400,600 and
800 ms, respectively). For all participants, the classifi-
cation accuracy was above chance. The influence of the
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Figure 2: (a) Density plot of the distribution of the movement offset of the handwritten letters relative to the start of the movement. The
distributions for the ten individual letters are shown together with the overall distribution. (b) ERD/ERS maps of electrodes C1, Cz and
C2 for frequency bands aligned to the movement onset (upper plots) and movement offset (lower plots). Black straight lines indicate
the movement onset/offset while dashed lines indicate the frequency band borders. (c) Classification accuracies for the detection of
the movement onset (green) and classification between movement and no movement (red) for the different window lengths. Results
for the individual subjects are plotted as dots, average results are marked by a cross. Theoretical and statistical chance levels for both
classifications are indicated by lines in the corresponding color. (d) Results for the simulated application of classifying handwritten
letters under different conditions of noise and length of the kinematic trajectories. (e) The density plot for the detected movement
offsets displaying the difference between actual and detected movement offset per trial is shown in blue. The image also depicts the
average predicted class of movement or no movement in green and the actual average class in red.

window length wL was not significant (p> 0.05) between
window lengths 200-800 ms, 400-500 ms and 400-600 ms
as assessed with a paired t-test. The density distribu-
tion for the temporal difference between actual and de-
tected movement offset is shown in Fig. 2e in blue. The
grey area displays the time range around the actual off-
set in which detected offsets were considered to be cor-
rect. This area contains 53.5% of the detected offsets, the
area to the left contains 24.8% and the area to the right
10.9%. In 10.8% of the trials, no movement offset was
detected. When increasing the threshold for considering
a predicted offset to be correct to ±500 ms, the accuracy
could be increased to 64.3%. We also analyzed the binary
classification accuracy for the classification of movement
vs. no movement, which acted as a basis for the detec-
tion of the movement offset. The highest accuracy was
achieved for a window length of wL = 800 ms with an av-
erage accuracy of 82.8±4.8% over all participants. The
best performance of a single participant was achieved for

the same subject as in the offset detection at an accuracy
of 90.5%. The average classification accuracies for dif-
ferent window lengths were 80.9± 4.8%, 82.1± 4.9%,
82.5±4.9%, 82.7±4.9% for window sizes 200,400,500
and 600 ms, respectively. The average class label over
the trials is shown in Fig. 2e in green (actual class label)
and red (predicted class label). The probability for a pre-
diction of movement at the beginning of a trial was 0.92
(actual probability: 1.0) and 0.25 (actual probability: 0.0)
at the end of a trial. Results for all subjects are shown in
Fig. 2c in green for the offset detection and in red for the
classification between movement and no movement.

Simulated Application - Handwritten Letters: Hand-
written letters could be correctly classified from the
recorded kinematics with an average accuracy of 96.9%
over all subjects in the NN condition in which no addi-
tive noise was applied and the trajectories were not cut at
the movement offset. When additive noise was applied to
the trajectories (AN condition) the classification accuracy
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dropped to 61.5%. Cutting the noisy trajectories after the
actual movement offset (AN-C condition) increased the
accuracy to 83.9%. The usage of the detected motion off-
set for cutting the noisy trajectories (AN-P condition) en-
abled an increase of the classification accuracy by 6.9%
compared to the AN condition and achieved a total accu-
racy of 68.4%. The results of the 2-times repeated 5-fold
cross-validation are shown in Fig. 2d.

DISCUSSION

Continuous decoding of hand movement, especially in
EEG, stands to benefit from the detection of movement
offsets. So far, the limited research in this area showed
promising results [11–15]. We attempted the detection of
the movement offset from time-frequency data after con-
tinuous movement and obtained a moderate accuracy of
53.5% against a chance level of 21.1%. We also showed
the benefit of including this information into an exem-
plary application of classification of handwritten letters.

Neural Correlates of Movement Termination: The con-
structed ERD/ERS maps show the connection of the
desynchronization in µ and β frequencies with the con-
tinuous movement as well as the synchronization in these
frequencies as soon as the movement terminates. The
ERD/ERS maps exhibit broader distribution and reduced
intensity of synchronization when trials are aligned to
movement onset compared to alignment with movement
offset. This is caused by the time-locking of the syn-
chronization to the termination of the movement and the
dispersion of the movement offset as shown in Fig. 2a.
These findings are also in accordance with literature [7,
8, 20, 21]. The dependency of frequency power on the
movement on- and offset generally shows that a classifi-
cation of movement vs. no movement based on the time-
frequency data is possible. Since the effects are mostly
occurring in the µ and β frequencies, the usage of these
frequencies is appropriate.

Movement Offset Detection: The maximum average
accuracy of 53.5% is comparable to those achieved in
other movement offset detection BCIs [11, 13]. The clas-
sification accuracy of around 82% for the binary classi-
fication is also in the range of performances of similar
BCIs [22]. Interestingly, the accuracies for different sub-
jects were more dispersed in the detection of the move-
ment offset than for the underlying binary classification.
Also, the influence of the window length proved to be
different for the detection of the movement offset and the
binary classification with an optimal window length of
500 ms for the offset detection and an increasing accu-
racy of the classification with longer window lengths. It
is possible that these differences occurred due to the deci-
sion strategy with which movement offsets were defined
being suboptimal for some participants. A closer anal-
ysis of the distribution of movement vs. no movement
classifications might yield insight into this and allow for
the formulation of a better strategy. The distribution of
differences between detected and actual movement off-

sets as given in Fig. 2e shows a tendency of predicting
the movement offset earlier than the actual offset. This
could similarly be influenced by the detection strategy,
which used the first feasible predicted offset as the de-
tected offset and discarded every other following feasible
offset. Since the movement vs. no movement classifica-
tion is imperfect, this strategy naturally leads to a higher
rate of false positives in the beginning than at the end of a
trial. Due to the non-causal window length and the detec-
tion strategy requiring ten continuous predictions being
classified as no movement, the causal latency between a
detected and actual movement offset amounts to 580 ms.
Including the range of ± 330 ms in which the detected
offset was considered correct, the minimal and maximal
latency between stating a correctly detected and actual
offset is between 250 and 910 ms. This calculation also
shows that shorter window lengths should generally be
preferred to longer ones in order to minimize the latency.
Since the drop in detection performance proved to be lim-
ited for shorter window lengths in this study, other stud-
ies that employ a similar paradigm online should consider
choosing a short window length for the classification.

Simulated Application - Handwritten Letters: The in-
crease in classification accuracy of the AN-C and AN-P
conditions compared to the AN condition in the simu-
lated handwritten letter classification task shows the pos-
itive influence of the inclusion of motion termination in-
formation. While the actual movement offset informa-
tion generated an increase of 22.4%, the offsets detected
from neural data still allowed for an increase of 6.9%.
Although this increase is modest, it demonstrates that
classifiers also benefit from the inclusion of the moment
of movement termination for imperfect detection perfor-
mances. While the slight increase in accuracy compared
to the AN-C condition might be improved by increasing
the accuracy of the offset detection, other methods could
also be effective: since the movement offset tended to be
predicted earlier than the actual offset, we tested a mod-
ification in which all offsets predicted before 1.5 s after
the movement onset were set to 1.5 s. With this method,
we were able to increase the classification accuracy in
the AN-P condition to 72.6% (i.e., an increase of 11.1%
compared to AN). Other, more sophisticated approaches
could increase the accuracy even further. It needs to be
noticed that the simulated additive noise might not be rep-
resentative of the distortion of movements in real-world
decoding of hand trajectories from neural data. The ben-
efit of the movement offset inclusion under the influence
of different noise must be evaluated depending on the ac-
tual task at hand. However, in cases where the distortion
leads to a residual, erroneous motion after the actual off-
set, the additional detection of the movement termination
and incorporation of this information can be of great use.

CONCLUSION

This study showed the general feasibility and benefit of
the detection of self-initiated movement offsets during
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continuous hand motion. While the accuracy of the de-
tection was modest, it showed that detection is generally
possible with a low latency. We also proved that a move-
ment offset detection can be useful to increase the accu-
racy in specific movement-related tasks even for limited
performance of the detection model. Since the benefit
of including the movement termination detection grows
with its accuracy, we aim to enhance the performance
in the future. Recently, a new method for the detection
of movement vs. no movement classes has been pro-
posed using a pole tracking algorithm [23]. Although this
method has not yet been applied to EEG, it could pose a
way of increasing the classification and detection perfor-
mances. While the current study focused on the detection
of self-initiated motion termination, the start of the move-
ments was based on an external cue, which prevented the
application of a classifier to identify both movement on-
set and offset. Future work should focus on self-paced
continuous movement tasks to investigate the detection
of both start and end of continuous movements.

ACKNOWLEDGEMENTS

This project is funded by the European Union’s
HORIZON-EIC-2021-PATHFINDER CHALLENGES
program under grant agreement No 101070939 and by
the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 22.00198.

REFERENCES

[1] Willett FR, Avansino DT, Hochberg LR, Henderson JM,
Shenoy KV. High-performance brain-to-text communication
via handwriting. Nature. 2021;593(7858):249–254.
[2] Vansteensel MJ et al. Towards clinical application of im-
plantable brain–computer interfaces for people with late-stage
ALS: medical and ethical considerations. Journal of Neurology.
2023;270(3):1323–1336.
[3] Mondini V, Kobler RJ, Sburlea AI, Müller-Putz GR. Con-
tinuous low-frequency EEG decoding of arm movement for
closed-loop, natural control of a robotic arm. Journal of Neu-
ral Engineering. 2020;17(4):046031.
[4] Pulferer HS, Kostoglou K, Müller-Putz GR. Getting off
track: Cortical feedback processing network modulated by con-
tinuous error signal during target-feedback mismatch. Neu-
roImage. 2023;274:120144.
[5] Shibasaki H, Hallett M. What is the Bereitschaftspotential?
Clinical Neurophysiology. 2006;117(11):2341–2356.
[6] Pereira J, Kobler R, Ofner P, Schwarz A, Müller-Putz GR.
Online detection of movement during natural and self-initiated
reach-and-grasp actions from EEG signals. Journal of Neural
Engineering. 2021;18(4):046095.
[7] Pfurtscheller G, Silva FLd. Event-related EEG/MEG syn-
chronization and desynchronization: basic principles. Clinical
Neurophysiology. 1999;110(11):1842–1857.
[8] Pfurtscheller G, Brunner C, Schlögl A, Silva FLd. Mu
rhythm (de)synchronization and EEG single-trial classification
of different motor imagery tasks. NeuroImage. 2006;31(1):153–
159.

[9] Liu D et al. EEG-Based Lower-Limb Movement Onset
Decoding: Continuous Classification and Asynchronous Detec-
tion. IEEE Transactions on Neural Systems and Rehabilitation
Engineering. 2018;26(8):1626–1635.
[10] Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R.
EEG-based neuroprosthesis control: A step towards clinical
practice. Neuroscience Letters. 2005;382(1-2):169–174.
[11] Pfurtscheller G, Solis-Escalante T. Could the beta rebound
in the EEG be suitable to realize a “brain switch”? Clinical Neu-
rophysiology. 2009;120(1):24–29.
[12] Müller-Putz GR, Kaiser V, Solis-Escalante T,
Pfurtscheller G. Fast set-up asynchronous brain-switch
based on detection of foot motor imagery in 1-channel
EEG. Medical & Biological Engineering & Computing.
2010;48(3):229–233.
[13] Hortal E, Úbeda A, Iáñez E, Azorín JM, Fernán-
dez E. EEG-Based Detection of Starting and Stopping Dur-
ing Gait Cycle. International Journal of Neural Systems.
2016;26(07):1650029.
[14] Bai O, Lin P, Vorbach S, Floeter MK, Hattori N, Hal-
lett M. A high performance sensorimotor beta rhythm-based
brain–computer interface associated with human natural motor
behavior. Journal of Neural Engineering. 2008;5(1):24.
[15] Orset B, Lee K, Chavarriaga R, Millán JdR. User Adapta-
tion to Closed-Loop Decoding of Motor Imagery Termination.
IEEE Transactions on Biomedical Engineering. 2019;68(1):3–
10.
[16] Kobler RJ, Sburlea AI, Lopes-Dias C, Schwarz A, Hirata
M, Müller-Putz GR. Corneo-retinal-dipole and eyelid-related
eye artifacts can be corrected offline and online in electroen-
cephalographic and magnetoencephalographic signals. Neu-
roImage. 2020;218:117000.
[17] Morlet Wavelets and Wavelet Convolution. In: Analyzing
Neural Time Series Data: Theory and Practice. The MIT Press,
Jan. 2014.
[18] Müller-Putz G, Scherer R, Brunner C, Leeb R,
Pfurtscheller G. Better than random? a closer look on
bci results. International Journal of Bioelectromagnetism.
2008;10(1):52–55.
[19] Baldominos A, Saez Y, Isasi P. A Survey of Handwrit-
ten Character Recognition with MNIST and EMNIST. Applied
Sciences. 2019;9(15):3169.
[20] Müller G, Neuper C, Rupp R, Keinrath C, Gerner H,
Pfurtscheller G. Event-related beta EEG changes during wrist
movements induced by functional electrical stimulation of fore-
arm muscles in man. Neuroscience Letters. 2003;340(2):143–
147.
[21] Seeber M, Scherer R, Müller-Putz GR. EEG Oscillations
Are Modulated in Different Behavior-Related Networks dur-
ing Rhythmic Finger Movements. The Journal of Neuroscience.
2016;36(46):11671–11681.
[22] Rashid M et al. Current Status, Challenges, and Possible
Solutions of EEG-Based Brain-Computer Interface: A Compre-
hensive Review. Frontiers in Neurorobotics. 2020;14:25.
[23] Müller-Putz G, Crell M, Egger J, Suwandjieff P, Kos-
toglou K. Towards Implantable Brain-Computer Interface for
Communication in Locked-In Syndrome patients. Current Di-
rections in Biomedical Engineering. 2023;9(2):1–4.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-025

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

144



AN EMG-BASED BRAIN-COMPUTER INTERFACE FOR
COMMUNICATION-IMPAIRED PATIENTS: A CASE STUDY

P. Raggam1,2, M. Eder1, A.-T. Popa1, P. Fugger1, M. Grosse-Wentrup1,3,4

1Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna,
Austria

2Doctoral School Computer Science, Faculty of Computer Science, University of Vienna, Vienna,
Austria

3Research Network Data Science, University of Vienna, Vienna, Austria
4Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria

E-mail: philipp.raggam@univie.ac.at

ABSTRACT: Electromyography (EMG)–based brain-
computer interface (BCI) systems primarily rely on elec-
trical signals generated by muscle activity instead of
the typically used brain activity measured via electroen-
cephalography (EEG). Such EMG-BCIs are promising
systems that enhance communication and control. This
study introduces a simple EMG-BCI communication sys-
tem developed as a football game for a communication-
impaired participant. The football in the game can be
moved to a left-side or a right-side goal, representing an-
swers to two-state queries, i.e., yes-or-no-questions. By
using restricted game controls, correctly following ver-
bal instructions, and showing movement-related brain ac-
tivity preceding muscle contractions, our participant can
deliberately control the directions of the ball movements
and, thus, successfully use our game for communication.

INTRODUCTION

BCI technology has witnessed significant advancements
by integrating a diversity of neurophysiological signals
besides the traditionally used EEG signals [1, 2]. EMG-
based BCI systems have emerged as a promising ap-
proach among these neurophysiological signals. Making
use of the electrical activity generated by skeleton muscle
contraction, the integration of EMG enhances the scope
and precision of BCI applications, unlocking new pos-
sibilities for communication and control [3, 4]. Initially
used for prosthetic control and rehabilitation, EMG-BCI
systems have expanded their scope to include assistive
technology, gaming, and communication [5, 6]. Zhang et
al. introduced an EMG-based wearable multifunctional
eye-control glass to control home appliances and com-
municate by voluntary blinks [7], Chai et al. and Rashid
et al. combined steady-state visually evoked potentials
(SSVEPs) and EMG to control communication interfaces
[8, 9].
This study introduces an EMG-BCI communication sys-
tem designed as a simple football game developed for
a communication-impaired participant. The idea behind

developing this communication system was twofold: 1.
test whether our participant was intellectually and phys-
ically capable of communicating with others, and 2. if
so, provide a very simple yet engaging game as a com-
munication basis. The following sections introduce our
participant, the game design and controls, the recording
modalities, and the implemented signal processing proce-
dures. Furthermore, we demonstrate with our results that
our participant understood verbal instructions and inten-
tionally controlled arm muscle activity to move the ball
to the left or to the right.

MATERIALS AND METHODS

Participant: The study was designed for one partic-
ipant (seven years old, male) who suffered through an
accident from a severe hypoxic-ischemic encephalopathy
(especially in the basal ganglia), dysphagia, dysarthro-
phonia, and a severe bilateral spastic and dystonic cere-
bral movement disorder. Based on our interactions, we
learned that our participant communicates by looking and
smiling at someone to show joy or contentment or by
looking displeased if otherwise. During the whole study,
our participant’s parents were present, and the comfort
and safety of our participant were our highest priorities.
The study was approved by the University of Vienna’s
ethics committee.

Game design: We designed our communication sys-
tem to resemble a football game since it was one of our
participant’s biggest interests before the accident. With
that, we wanted to ensure that the game was engaging
enough to be played over a longer period of time. The
game was designed in Python1 using the PsychoPy2 li-
brary. Fig. 1 shows the interface of the football game.
The game’s aim is to move the football to the left-side
or the right-side goal and can be played in two modes:
practice or playing. During practice, the distances to the
goals are shortened to learn how the game is controlled

1https://www.python.org/
2https://www.psychopy.org/
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more easily. At the beginning of each round, the ball is
placed at the center of the field.

Figure 1: The interface of the football game.

Game controls: The football’s movement is controlled
by the EMG. To move the ball to the left or the right,
the left-arm or the right-arm muscles must be activated,
causing an increase in the EMG signal amplitude. The
ball can move in single steps or continuously, depending
on the duration of the muscle contraction. Two restric-
tions were introduced to avoid random, unintended move-
ments: a signal threshold window and one-sided contrac-
tion. The signal threshold window ensures a controlled
movement of the ball by only moving the ball if the sig-
nal amplitude is within a lower and an upper limit. Fur-
thermore, the ball only moves if the arm muscles are con-
tracted only on one side and stops if the muscles are con-
tracted at both arms simultaneously. As feedback for the
user, the ball turns red if a restriction is applied, i.e., if the
signal amplitude is above the upper limit of the threshold
window or if both arms are contracted simultaneously.

Recording sessions: Fig. 2 shows the recording setup.
Our participant was sitting in a wheelchair, looking at a
monitor to play the football game. The game was played
over four sessions. The first two sessions were used to
accustom our participant to the game and its controls. In
the beginning, a squeeze bulb was used to move the ball.
After establishing that the principles of the game were
understood, the game controls were switched to the EMG
since it did not require the coordinated muscle activation
necessary to squeeze a bulb and, hence, was easier to use.
The third session was split into practice runs and a play-
ing run. During the playing run, our participant was in-
structed verbally to move the ball to the left or the right
goal. In session four, we recorded both the EMG and
the EEG. The session was divided into a resting-state run
and two playing runs. Playing run one (run P1) was fur-
ther split into six trials, where our participant was asked
again to move the ball to the left or the right goal (three
trials for each side).

Recording modalites: EMG and EEG signals were
recorded with the Bittium NeurOneTM Tesla EEG sys-
tem3, with a sampling frequency of 1 kHz. The EMG was

3https://www.bittium.com/medical/bittium-neurone

Figure 2: Setup for our participant playing the football game.

recorded with bipolar electrode channels at the follow-
ing arm muscles (for each side): flexor digitorum profun-
dus (FDP), extensor digitorum (ED), and abductor polli-
cis longus (APL). For the EEG, passive, gel-based elec-
trodes were used at the following channels: F1, Fz, F2,
FC3, FC4, C3, C1, Cz, C2, C4, CP3, CP4, and Pz. In
addition to the physiological signals, event markers were
recorded to put time stamps on certain events or phases
of the game, e.g., when a new trial started or a goal was
scored.

Online signal processing: To access the recorded sig-
nals in (near-)real-time, the lab streaming layer (LSL)4

and its Python interface pylsl5 were used. With the pylsl
library, the EMG signals could be streamed into the Psy-
choPy game framework for further processing. The EMG
signals were processed in three steps: 1. applying a 4th-
order Butterworth bandpass filter between 20 and 40 Hz,
2. calculating the envelope via Hilbert transform, and 3.
smoothing the signal with a Savitzky-Golay filter [10].
Since our participant suffered from a spastic and dys-
tonic movement disorder, we decided to define a person-
alized EMG signal band. The EMG bandwidth was cho-
sen by maximizing the cross-correlation coefficients be-
tween the squeeze bulb signal and the EMG signals. After
processing the EMG signals and checking the movement
restrictions, the position or color of the ball on the screen
was updated, giving feedback to the user on whether the
movement attempt was successful.

Offline data analysis: The offline data analysis was
also implemented in Python. Similar to the EMG sig-
nal processing, we also personalized the EEG frequency
bands. After inspecting the power spectral density (PSD)
function of the resting-state EEG, the following fre-
quency bands were chosen for further investigation: 5–7
Hz for the mu band and 15–25 Hz for the beta band. The
EMG was again filtered between 20 and 40 Hz. The band
power was calculated for each frequency band (mu, beta,
and EMG) by squaring the amplitude values. All applied
filters were 4th-order Butterworth filters.
Due to our participant’s involuntary repeated head move-
ments during the recording session, the EEG cap was
pressed and shifted against the headrest, which led to a

4https://github.com/sccn/labstreaminglayer
5https://github.com/chkothe/pylsl
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low signal-to-noise ratio (SNR) and gel bridges between
channels. Artifact correction with independent compo-
nent analysis (ICA) proved to be ineffective. However, a
simple bipolar derivation, i.e., subtracting channels from
one another, led to clean EEG signals of a few channel
pairs.
After cleaning the EEG, we investigated the mu and beta
rhythms. First, the cross-correlation functions (CCFs)
of mu and beta band power vs. right-hand and left-hand
EMG were calculated. After inspecting the results, we
decided to continue with the mu band only since the
CCFs of the beta band were inconclusive. Next, the
continuous signals of run P1 were split into left-goal
and right-goal trials for calculating the cross-correlation
functions of mu band power vs. right-hand and left-hand
EMG. A permutation test with cyclical shifts and n =
1000 permutations was applied to generate p-values for
the CCFs, i.e., finding significance in our results. The
p-values were corrected using the false discovery rate
(FDR) correction with the Benjamini-Hochberg proce-
dure [11].

RESULTS

All results in this section were generated from EMG and
EEG signals recorded in session four’s resting-state run
and run P1 since this was the only session with EEG
recordings, and only run P1 included verbal instructions.

Resting-state EEG: The resting-state EEG signals were
used to find personalized frequency bands for our partic-
ipant’s mu and beta rhythms. Fig. 3 shows the power
spectral density (PSD) function of the resting-state EEG
at channel pair Cz-C4. We can clearly see the alpha/mu
peak between 5 and 7 Hz and the beta bump between 15
and 25 Hz. The alpha/mu rhythm is slower than an aver-
age adult’s (8–13 Hz [12]). However, this is not a patho-
logical indicator since the alpha rhythm increases with
age during childhood and adolescence [13].

Figure 3: PSD of resting-state EEG at channel pair Cz-C4.

Run-level analysis: We first looked at run P1 as a
whole. In Fig. 4, we see the power of the right-hand
(blue lines) and left-hand (orange lines) EMG. Individ-
ual EMG channels (FDP, ED, and APL) were averaged
on each side. The left-hand EMG power is much lower
than the right-hand EMG power, possibly due to a Botox
treatment on our participant’s left arm before the record-

ing session.

Figure 4: Right-hand (blue) and left-hand (orange) EMG power
of run P1. Individual EMG channels (FDP, ED, and APL) were
averaged on each side.

Fig. 5 shows the CCFs of EEG mu band power (subfigure
A) and beta band power (subfigure B) at channel pair Cz-
C4 vs. right-hand (blue lines) and left-hand (orange lines)
EMG power. In the mu band, we can observe a nega-
tive correlation between EEG power and both left-hand
and right-hand EMG at time lag = 0. A negative cor-
relation means that the mu rhythms desynchronize (de-
crease in EEG mu power) when the arm muscles are ac-
tivated (increase in EMG power), which displays typical,
non-pathological event-related desynchronization (ERD)
[14]. Also, having mu rhythm ERD on the right hemi-
sphere (Cz-C4) for both left-hand and right-hand EMG
indicates bilateral cortical activation for one-sided move-
ments. Even though bilateral mu rhythm ERD is uncom-
mon, it can occur during one-sided hand movements, es-
pecially in the context of motor planning and execution
[15].

Figure 5: CCFs of EEG mu band power (A) and beta band
power (B) at channel pair Cz-C4 vs. right-hand (blue) and left-
hand (orange) EMG power.

When we look at the time course of the CCFs, how-
ever, we can observe very unusual behavior: For the right
hand, the desynchronization process starts roughly 2.5
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seconds before the muscles are activated, whereas for the
left hand, it starts about five seconds before muscle ac-
tivation. The mu rhythm desynchronization is very slow
compared to healthy people [15]. This means that our
participant can react quickly to instructions, but it takes
very long to activate the motor system to cause a mus-
cle contraction. The initially stated damage in the basal
ganglia could be a possible reason for that. The Botox
treatment on the left arm again may have caused the dif-
ference between right-hand and left-hand ERD time.
The CCFs of EEG beta band power with EMG power
didn’t show any conclusive results, and hence, only the
mu band was used for further investigations.

Trial-level analysis (left-goal/right-goal split): Next,
EMG and EEG signals were split into trials. Our partic-
ipant successfully moved the football to the correct goal
in all six trials of run P1 (three left-goal trials and three
right-goal trials). Therefore, we used the left-goal and
right-goal trials for ball movements to the left and the
right, respectively.
In Fig. 6, we can see the CCFs of EEG mu band power at
channel pair Cz-C4 vs. right-hand (blue lines) and left-
hand (orange lines) EMG power at left-goal trials (sub-
figure A) and right-goal trials (subfigure B). The cross-
correlation coefficients are rather small, but the CCFs
are highly significant (p < 0.05) around time lag = 0, as
shown in Fig. 7 by the corresponding FDR-corrected p-
values.

Figure 6: CCFs of EEG mu power at channel pair Cz-C4 vs.
right-hand (blue) and left-hand (orange) EMG power at left-
goal trials (A) and right-goal trials (B).

Looking at the right-goal trials, we can observe a nega-
tive correlation between EEG mu band power and right-
hand EMG power but no correlation between mu power
and left-hand EMG. These results suggest that there is
only a clear mu rhythm ERD for right arm muscle activ-
ity, meaning only the right hand was intentionally used
for moving the ball to the right goal, which is expected
behavior.

Figure 7: FDR-corrected p-values of CCFs of EEG mu band
power (A) and beta band power (B) at channel pair Cz-C4 vs.
right-hand (blue) and left-hand (orange) EMG power. The p-
values were calculated by a permutation test with a cyclical shift
and n = 1000 permutations, including an FDR correction with
the Benjamini-Hochberg procedure.

For the left-goal trials, however, we see something very
interesting: There is a negative correlation between EEG
mu band power and both left-hand and right-hand EMG.
This indicates clear mu rhythm ERD for left and right
arm muscle activity, meaning both hands were intention-
ally used for moving the ball to the left goal. This could
mean that our participant used the right-hand activity to
trigger a left-hand activity, which we could actually ob-
serve during the recording sessions. A reason for that
could be again the Botox treatment on the left arm, which
is also manifested in the slow and long-lasting (∼ 5 s) mu
rhythm ERD, compared to the faster (∼2.5 s) desynchro-
nization for right-hand muscle activity.

DISCUSSION

In the first two recording sessions, we tested whether our
participant could use the game controls. Both the squeeze
bulb and the EMG were successfully used to move the
ball to the left or right. We decided to continue control-
ling the game with the EMG because it does not require
coordinated muscle activations necessary to squeeze a
bulb and, hence, was easier to use. In the third session,
our participant could follow our verbal instructions to go
to the left or the right goal. In run P1 of the fourth ses-
sion, our participant again successfully followed verbal
instructions, this time split into six trials, with three left-
goal and three right-goal trials in random order.
Overall, we found three indicators that demonstrated that
the ball movements did not occur randomly but were the
results of deliberate control of our participant:
1. Game control restrictions: Every ball movement re-
sulted from precise muscle activity since a lower and an
upper threshold defined an EMG amplitude/power win-
dow. Furthermore, only one-sided EMG activity led to a
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ball movement.
2. Successful task completion: In session four, run P1,
all six trials were completed successfully. That means
our participant could understand the verbal instructions
and generate the appropriate response to suit the game
controls.
3. Mu rhythm ERD preceding muscle contraction: By
simultaneously recording EMG and EEG signals in the
fourth session, we could further demonstrate that the
muscle activity to move the ball did not occur through
random or spastic contractions but followed movement-
related brain activity. Fig. 6 and Fig. 7 show a clear de-
crease in mu band power that precedes muscle contrac-
tion for ball movements on both sides. The slow mu
rhythm desynchronization could be due to the damaged
basal ganglia, which could cause a delay in activating
the motor system. The left arm was also treated with
Botox, which would explain the even slower and long-
lasting left-hand mu rhythm ERD. It is also noteworthy
that our participant developed a strategy to overcome the
increased difficulty of activating the left arm muscles by
involving the right arm, which eventually triggered the
left-hand muscle contraction.

CONCLUSION

This study demonstrated that our participant could delib-
erately control a football game and follow verbal instruc-
tions despite the severe impairments. Furthermore, the
combination of EEG and EMG revealed normal reaction
times to instructions but a slow motor system activation.
This provided important information about our partici-
pant’s mental abilities for the family.
Currently, the game can be used for simple two-state
queries, e.g., answering yes-or-no-questions by moving
the ball to the left or the right. Future game adaptations
could facilitate the controls or increase the number of
goals, i.e., the number of answers to select. Combining
EMG and EEG signal features could further improve our
communication system’s precision and robustness.
Finally, we also want to emphasize that even simple sys-
tems can be very effective. Straightforwardness and con-
venience are key features for people with mobility and/or
communication impairments.
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ABSTRACT: Decoding movements from the human
sensorimotor cortex has been of great interest for
brain-computer interfaces (BCIs). To establish the
possibility of increasing the degrees of freedom of a
sensorimotor-driven BCI, we investigated the decod-
ability of 20 hand gestures using 7-Tesla fMRI and
narrowed it down to a set of six best distinguishable
gestures. Six able-bodied volunteers performed ges-
tures from the American Sign Language alphabet and
single-digit movements. Results indicated significant
classification accuracies across all 20 gestures (mean =
46%, range = 39.5% − 51.5%, chancelevel = 5%),
with some differences in decodability across gestures.
Subsequently, optimal sets of six gestures were identified
by establishing classification performance for all possible
permutations, and applying the identified set in a leave-
one-subject-out cross-validation scheme. The results
showed a near-optimal classification in five out of six
subjects. Our findings contribute to the understanding
of the generalizability of gesture decoding performance
and offer insights for refining BCI control strategies
to enhance communication for individuals with motor
impairments.

INTRODUCTION

Fully implantable brain-computer interfaces (BCIs)
intend to establish a communication pathway between
signals directly measured from the surface of the brain
and a computer [1]. This can be of great use
for individuals with locked-in syndrome, a condition
that can result from Amyotrophic Lateral Sclerosis
(ALS) or brainstem stroke [2]. A common target
for BCI-readout is the sensorimotor cortex due to its
well-established topographic representations and the fact
that it shows activity during attempted movement even
years after paralysis, despite the absence of the actual
movement [3, 4]. For BCI control, different attempted
movements need to be classified and coupled to intended
commands. However, if the cortical activity related
to the selected movements is not distinct enough, the
BCI may misclassify the intended action – resulting in
outcomes that are not desired by the user. Thus, it is
crucial to ensure that the command-coupled movements

are well-decodable and not easily confused by the BCI.
While fully implanted electrocorticography (ECoG)-
BCIs used at home have shown considerable success
[5], their degrees of freedom have been limited so
far (i.e., opening and closing the hand to produce a
‘brain-click’). Expanding the range of BCI control
signals could significantly speed up communication,
thereby improving their usability. A substantial increase
in the degree of control in a home-use ECoG-BCI
could be provided by the ability to decode six different
movements, each corresponding to a specific command
(i.e., “up”, “down”, “left”, “right”, “select”, and
“escape”). These six commands would be produced
through six different attempted movements with the hand.
Particular sets of attempted movements may be more
or less suitable for this purpose based on the similarity
of the elicited cortical activity patterns. To optimize
the performance of such BCI, we require a set of hand
movements that is maximally distinct based on brain
activity patterns in the sensorimotor cortex. As there is
potentially a huge number of possible movements, the
options need to be narrowed down at the outset.
Functional magnetic resonance imaging (fMRI) allows
us to measure the representations of different hand
movements in the sensorimotor cortex non-invasively and
with high spatial resolution. This method provides the
opportunity to explore activity in the sensorimotor cortex
for various movements and across multiple individuals.
Using fMRI, it is feasible to distinguish individual finger
movements [6, 7], but also hand gestures consisting of
the flexion and extension of multiple fingers [8, 9], even
for attempted movements without an actual motor output
[10]. Furthermore, fMRI results can be extrapolated to
an implanted BCI as previous work has shown that fMRI
activity patterns map consistently to the gamma band of
ECoG recordings [11–13], for review, see [14].
Here, we investigate the decodability of 20 unimanual
hand gestures in six healthy individuals, using 7-Tesla
fMRI. From these 20 gestures, we identify the set
of six that results in the most accurate classification.
Furthermore, we explore the consistency of classification
performance across individuals and look at the potential
compromise of choosing hand movements based on
group averages as opposed to individual results. These in-
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sights can serve as a starting point to predict which hand
movements can be well-decoded from the sensorimotor
cortex.

MATERIALS AND METHODS

Participants: Six healthy, able-bodied volunteers
(age: mean = 23 years, SD = 1.8; 4 females;
all right-handed) performed a hand gesture task during
the acquisition of functional scans in a 7-Tesla MRI
scanner. All participants gave written informed consent
to participate, which was approved by the Medical
Research Ethics Committee according to the Declaration
of Helsinki (2013).

Data acquisition: MRI data were recorded using a
Philips Achieva 7-T MRI system with a 32-channel
head coil. Functional data were recorded using an EPI
sequence (TR/TE = 1400/29 ms, FA = 60°, multiband
factor 2, voxel size = 1.5 x 1.5 x 1.5 mm3, in-plane
resolution = 200 x 200 mm2, 40 slices). A high-resolution
anatomical T1-weighted MP2RAGE [15] was acquired
for anatomical reference.

Experimental task: Participants performed a gesture
task with their right hand. The movements were a
sub-selection of 15 gestures from the American Sign
Language alphabet based on ease of execution. In
addition, we included individual flexion of each finger,
resulting in a total of 20 gestures (Fig. 1). Participants
practiced the hand gestures at home during the week prior
to scanning to ensure familiarity with the movements.

Figure 1: The task contained 20 right-hand gestures, including
single-finger flexions (gestures “1”, “4”, “9”, “13”, “18”) and
gestures from the American Sign Language alphabet.

During the scan, the stimuli were projected onto a
screen that was visible to the participants through a

mirror and prism glasses. Each trial consisted of three
different images, illustrating either the preparation phase,
execution phase, or resting phase of the gestures to
be performed (Fig. 2). After the preparation phase
(2 s), the participant was instructed to execute the
presented gesture and hold it for 6 s (execution phase)
before returning the hand to the baseline position (hand
relaxed, fingers slightly bent, palm face up; resting
phase). The resting phase lasted for 8.8 s, to prevent
blood-oxygen-level-dependent (BOLD) responses to bias
the activity estimates of the subsequent trial. The stimuli
were presented in a pseudo-random order.
Each gesture was performed once per run. Participants
completed 10 runs in total, split across two scanning
sessions on separate days (5 runs/session). This yielded
a total of 10 repetitions per gesture for each participant.
MRI-compatible data gloves (5 DT Inc, Irvine, USA)
were worn during the task on both hands to record
kinematic data. The data glove measurements were
visually inspected for correct bending of the fingers and
the absence of additional movements.

Figure 2: Trial schematic. An image of a gesture inside a red
rectangle signaled the onset of a preparation phase, which was
included to minimize error in the execution of the movement.
The change of the rectangle’s color to green indicated to the
participant to make the displayed gesture and hold it for the
duration that the gesture was presented. After returning the
hand position to baseline, there was an 8.8 s pause until the
onset of the next stimulus.

Data preprocessing: Functional scans from the
Gesture Task were preprocessed using SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) and custom
MATLAB (https://www.mathworks.com) scripts.
Scans from both sessions were aligned with each other
and coregistered with the T1-weighted image. A General
Linear Model was created including factors for each
gesture. T-maps were computed for each gesture type
while using a leave-one-run-out procedure, resulting in a
total of 200 t-maps (20 gestures x 10 run-combinations).

Region of Interest: The left precentral and postcentral
gyrus were defined as regions of interest through
the Freesurfer surface reconstruction pipeline
(https://surfer.nmr.mgh.harvard.edu), based on the
Desikan-Killiany atlas.

Gesture classification: To assess the discriminability
of hand gestures in the contralateral sensorimotor cortex,
we used a support vector machine (SVM). The 500 voxels
with the highest absolute t-values across gestures were
selected as features. The BOLD signal in these voxels
was detrended and transformed into z-scores for each run
separately. For each trial, the peak signal in the 5th,
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6th, and 7th volume after trial onset was extracted, which
corresponds to the amplitude of the peak of the BOLD
signal.
The SVM was run with a linear kernel and constraint
parameter C = 1. A leave-one-run-out cross-validation
scheme was used, meaning that with each iteration,
one run was left out for training the model, and the
left-out run was subsequently used to test the model.
For each training/test set, the classification accuracy
was calculated as the proportion of correctly classified
gestures. These classification scores were then averaged
across iterations, resulting in a single classification score
per participant.
Classification performance was further evaluated using
confusion matrices, which contain the details on correct
and incorrect classifications. Confusion matrices were
computed per subject and subsequently averaged (Fig. 3).

Choosing an optimal set of six gestures: For
maximizing the performance of a BCI, we aim to select
the six best distinguishable gestures and estimate if the
performance of this set is generalizable across subjects.
For this, we created SVMs for all possible combinations
of a set of six out of the 20 gestures (in total 38760).
This resulted in 38760 classification accuracies for each
participant, containing the classification accuracy per
possible gesture set. The optimal sets were selected
based on the mean accuracy across participants. These
sets were then evaluated using a leave-one-subject-out
cross-validation, by testing their performance relative to
that of all other combinations.

RESULTS

Classification performance of 20 gestures: The
classification accuracy for all gestures across all
participants (mean = 46%; range = 39.5% − 51.5%)
was significantly above the 5% chance level
(t(5) = 19.8, p < 0.001) (Fig. 3). Visual inspection
of the confusion matrix revealed that the decoder often
confused gesture “18” with “15” (mean = 31.7%), and
gesture “9” with “2” (mean = 28.3%).

Gesture set selection: With the aim of finding the set
of six gestures that are maximally decodable, we ran the
SVM for each of the possible 38760 combinations of six
out of 20 gestures. The gesture sets with the, on average,
highest classification performance are shown in Fig. 4, in
addition to the set with the highest mean ranking.
Next, to estimate the extent to which group-mean
performances of optimal gesture sets are generalizable
to different participants, we chose a gesture set based
on a group-average result (leave-one-subject-out cross-
validation) and checked the performance of this set in
an individual. A summary of the results can be seen
in Tab. 1. The difference in classification accuracy
between the chosen gesture set and the set with maximum
classification in the left-out subject ranged from 8.33%
to 20.00%. The percentile scores of the chosen set in the
distribution of all sets ranged between 95.01% to 98.86%

Figure 3: Average group classification in % for all 20
gestures (chancelevel = 5%). The numbers inside the squares
correspond to the accuracy values assigned to the classified
gesture (for values > 5%).

Highest Classification Accuracy (N=6)

Highest Mean Ranking (N=6)

Figure 4: The overall best decodable set of six gestures,
based on average classification accuracy (top row; mean =
87.22%, SD = 4.91%) and on average ranking scores (bottom
row; mean = 76.38%, SD = 6.94%) of all participants
(chance level = 16.67%).

for five subjects, one subject’s (sub006) percentile score
was 82.15% (Fig. 5). Some gestures were consistently
present in the best-performing sets from the group
average, with gesture "7", "16", and "20" being selected
100% of the time (Tab. 2). The highest performing
subject-specific gesture sets were more varied, however,
gesture "7" and "16" were still present in 66.67% of the
sets (the highest observed percentage for subject-specific
sets), and "20" in 50% of the cases. Gestures "10",
"11", and "15" were never present among the highest
performing gestures.

DISCUSSION

In this study, we examined which sets of gestures
are consistently well-decodable across individuals with
7-Tesla fMRI. For this, we first demonstrated the
classification performance of 20 gestures and then
created subsets of six gestures with the highest classi-
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Table 1: Results for leave-one-subject-out gesture set selection. From left to right: Accuracy of the best-performing gesture set for
five subjects ("GS Acc. leave-one-out"); accuracy of the selected gesture set for the left-out subject ("GS Acc. sub"); highest accuracy
of subject’s best-performing gesture set ("Max Acc. sub"); the difference between selected gesture set and subject’s best-performing
gesture set ("Diff"); subject’s average classification performance of all possible gesture sets ("Overall Mean sub").

GS Acc.
leave-one-out (n=5) GS Acc. sub Max Acc. sub Diff ( Max Acc.

sub – GS Acc. sub) Overall Mean sub

sub001 86.67% 88.33% 100.00% 11.67% 76.40%
sub002 86.67% 88.33% 98.33% 10.00% 76.13%
sub003 88.33% 81.67% 90.00% 8.33% 68.37%
sub004 86.67% 88.33% 96.67% 8.33% 73.08%
sub005 87.67% 85.00% 96.67% 11.67% 68.68%
sub006 89.00% 71.67% 91.67% 20.00% 63.35%

Table 2: Comparison of the selected gestures based on group average performance (left column) and the best-performing gestures based
on the left-out subject’s classification accuracy (right column).

Highest gesture set leave-one-out (n=5) Highest gesture set sub

sub001

sub002

sub003

sub004

sub005

sub006

fication performance across participants. Our findings
demonstrate the feasibility of decoding a large set
of gestures across able-bodied individuals. Twenty
gestures could be decoded from sensorimotor activity
with, on average, 46% accuracy. Furthermore, we
evaluated the generalizability of optimal gesture sets
across individuals. By selecting optimal gesture sets
based on a group average and testing their performance
in individual participants, we demonstrated that those sets
still have a well above-average classification accuracy in
the respective individual compared to those of all other
sets (percentile ranks higher than 95% for five out of
six subjects). This suggests that movements identified
through group-level analysis are likely to generalize
to individuals. One participant showed a relatively
low classification accuracy for the group-selected set
(percentile rank at 82%). However, it was still higher
than the subject’s average classification score across all
possible sets. Furthermore, we noticed that the general

classification performance in this subject was lower than
in the other participants and that some trials contained
ambiguous movements. Further investigation is needed
to assess if the performance improves upon the exclusion
of wrong trials.
Visual inspection of the successful gestures indicated
that distinct digit combinations and wrist movements can
be best distinguished from each other. In contrast to
that, gestures that were especially prone to confusion
were “18” (fingers spread, thumb flexed) with “15”
(fingers together, thumb flexed); and “9” (pinky flexed)
with “2” (pinky and ring finger flexed). Interestingly,
this was not the case for gestures “6” (wrist rotation,
thumb, and other fingers touch) and “7” (wrist rotation,
thumb, and other fingers bend, not touching), which were
consistently among the best decodable gestures with a
low confusion score with each other. This may be due to
the difference in sensory feedback, which can be checked
by decoding from the primary motor and somatosensory
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Figure 5: Distribution of the classification accuracies across
all possible gesture sets of 6 (38760 combinations) for each
participant. The red line (“Mean”) indicates the average
classification accuracy across all possible sets. The blue line
(“Value”) shows the accuracy of the selected gesture set based
on the highest performance in the other five subjects. The
black line (“Max”) shows the highest classification score of the
respective subject.

cortex separately. In general, gestures that have only
subtle movement differences are also more difficult to
discriminate.
Partly, this result might not seem very surprising con-
sidering the topography of the sensorimotor homunculus
containing representations of individual fingers [16, 17].
Thus, a gesture consisting of thumb flexion should
be well distinguishable from a pinky flexion gesture.
However, previous research has also observed that the
activation of complex coordinated finger movements
is not a mere linear combination of the activation of
individual finger movements [18–21]. The exact nature
of movement representation in the sensorimotor cortex
and what makes some movements better decodable than
others is thus still to be fully elucidated.

Limitations: One main limitation of our study is the
small sample size. We assume that the predictions
can be improved with higher sample sizes, making
the compromise between the group and an individual’s
optimal result even lower. Additionally, the limitation

of only ten repetitions per gesture may have led
to sub-optimal accuracy results, thus, increasing the
repetition count could yield higher scores. Furthermore,
at the study’s current state, a direct translation to
ECoG-BCIs is not possible, as our features were selected
from the entire sensorimotor cortex which is not fully
accessible by surface recordings. A more restrictive
feature selection that overlaps with the recording of
an ECoG grid can benefit the translation. We also
acknowledge that the acquired data is from able-bodied
participants who produced overt motor output. Even
though the sensorimotor cortex of paralyzed patients
still shows activity [22], potential BCI users might vary
more widely in how well they can induce similar activity
patterns when attempting certain hand movements. Thus,
current results may not apply to every BCI user.

Future directions: Some gestures showed high
decodability, while others were prone to confusion.
However, the exact neuronal mechanisms underlying
these variations are still unknown. Future work directed
towards understanding which parameters are driving
distinct representations in the sensorimotor cortex would
not only provide valuable information for optimizing
decoding algorithms for BCIs but would also enhance
our basic understanding of the nature of movement
representations in the sensorimotor cortex.

CONCLUSION

In this paper, we investigated the decodability and
consistency of sets of six gestures extracted from 20
different gestures. Our findings show potential gestures
that exhibit robust decodability across individuals. The
consistent variations in classification performance across
gestures indicate substantial underlying similarity in
sensorimotor representation patterns across individuals
that makes some gestures more easily decodable than
others. The findings highlight the potential for improving
BCI control through optimized gesture selection.
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ABSTRACT: Public Motor Control-based brain-
computer interface (BCI) datasets are being used to
develop increasingly good classifiers. However, they
usually follow discrete paradigms where participants
perform Motor Imagery, Attempts or Execution at reg-
ularly timed intervals. It is often unclear what changes
may happen in the EEG patterns when users attempt to
perform a control task with such a BCI. This may lead to
generalisation errors. We demonstrate a new paradigm
containing a standard calibration session and a novel BCI
control session based on EMG. This allows us to observe
similarities in sensorimotor rhythms, and observe the
additional preparation effects introduced by the control
paradigm. In the Movement Related Cortical Potentials
we found large differences between the calibration
and control sessions. We demonstrate a CSP-based
Machine Learning model trained on the calibration
data that can make surprisingly good predictions on the
BCI-controlled driving data.

INTRODUCTION

The public availability of various BCI datasets has al-
lowed for more transparent and more reliable progress in
the development of Machine Learning models for EEG
processing. The most convenient datasets to collect and
make Machine Learning models for assume cue-based
BCIs. These have cleanly separated instances of the vari-
ous classes, which increases consistency and makes for a
clear classification task.
However, such Machine Learning benchmarks often do
not align with the EEG processing that a BCI with high
usability needs. BCI competition IV dataset 1 [1] at-
tempts to address this by aiming for Motor Imagery clas-
sifiers where the cue is not known in the EEG processing.
This dataset has a training section with visual cues for
three Motor Imagery class, and a test session with audi-
tory cues for the same classes and a rest condition. The
candidate models then need to predict for all moments
in the test session which of the four states (including the
rest) the participant is in.
This dataset bridges a gap from the classical trial-based
EEG classification to BCI systems that need to make pre-
dictions without trial information. However, it also has
some limitations that we aim to address with the intro-
duction of a newly collected dataset.

[1] highlights that the participants will have a transient
phase between hearing the auditory cue and performing
the corresponding task. The timing of this is not precisely
known, so the models are not evaluated on these transient
phases. As a result, these models will not be optimised
to detect the onset of a new state. This can be a problem
when BCIs require low latency, which is important for
learning to use a BCI [2].
Like most available paradigms, it also does not give a
good reflection of the mental state of a user using the BCI
to achieve a task. The transition from a BCI model that
works well in a controlled paradigm to using the BCI to
perform a control task introduces many unknowns. The
EEG patterns may change due to planning, eye move-
ments or visual attention and it is generally unclear ex-
actly what does and does not change when shifting from
a calibration paradigm to a control task.

Contributions: To address these issues we demonstrate
a new paradigm with a preliminary data analysis. The
paradigm has a visual cued calibration session similar to
BCI competition IV dataset 1 [1]. However, the testing
session has the participant drive a simulated car. The
steering of the car is done through the detection of the
flexion of the left and right hand based on electromyog-
raphy (EMG) signals. By using the EMG to control the
car we can observe the EEG of a participant as if they
are using a BCI for a control task. The task is then to pre-
dict the motor execution state (as measured by the EMG),
based on the EEG patterns from the motor cortex.
Motor Execution is chosen over Motor Imagery as an
analog for Motor Attempts in paralysed patients because
Motor Imagery results in lower BCI accuracy in stroke
patients compared to Motor Attempt [3]. Motor Execu-
tion might give optimistic results due to affect effects.
The track is designed to have left turns, right turns, and
straight sections that can be used as artificially segmented
trials. The EMG can then be used to determine the motor
execution onset, and allow us to investigate differences
in EEG patterns between the calibration session and the
driving session.
We show a preliminary analysis of a dataset recorded
under this paradigm looking at Sensorimotor Rhythms
(SMR) and Movement Related Cortical Potentials
(MRCP) for calibration and compare these to the artifi-
cially segmented trials during driving. We also demon-
strate classification with multiclass CSP [4] in the cali-
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Figure 1: Design of the data acquisition. First participants do
a calibration session following the Graz-BCI Motor Imagery
paradigm. The EMG for this is used to develop a mock BCI,
which the users then use to control a simulated car. The EMG,
EEG and markers are recorded in both sessions resulting in a
driving dataset and a calibration dataset.

bration session, the driving session, as well as a classifier
trained on the calibration and applied to the driving ses-
sion.
We believe that introducing this paradigm will allow for
experimentation with motor decoding models that are ex-
ceptionally well suited for transferring from the bench-
mark to the user.

METHODS

The implementation of the paradigm focuses on building
a mock BCI that the participants can use to perform a
control task. The goal is to collect all the EEG data as
if the participants are using a BCI, without the risk of
complete loss of control introduced by using a real EEG-
based BCI.
The design for the current study consists first of a cali-
bration session following the Graz-BCI Motor Imagery
paradigm [5]. The EMG from the calibration session is
used to make an EMG-based classifier, which will func-
tion as our mock BCI. The EEG is recorded for offline
analysis. After this, the EMG-based mock BCI is used to
make online predictions during a simulated driving task.
This gives us the EEG patterns of our participants using
the mock BCI, with EMG as the ground truth of their
control intentions.1 The whole setup of the recording is
visualised in Figure 1.
In an offline analysis, we can then look at the EEG during
calibration using the cues as the ground truth and the EEG
during driving using the EMG as the ground truth. Within
the calibration and driving sessions we can look at the
MRCP and SMR, and we can develop classifiers on the
calibration EEG and apply them to make predictions with
the driving EEG.
This study was conducted with 20 healthy participants
aged 19-45 years old (µ = 26,σ2 = 40), although the
data from one participant was removed from the anal-
ysis because a section of the driving was not recorded.
None of the participants had prior BCI experience. The
EMG, EOG and EEG were recorded using the Biosemi

1The driving paradigm is available at https://github.com/
lukeluna/continuous_control, the EMG classifier at https://
github.com/ivopascal/emg_classifier and the analysis code at
https://github.com/ivopascal/continuous_control_bci.

Time (s)
-3 0 1.25 5 6.5-10.5

Figure 2: Timing of the calibration paradigm from OpenVibe.

ActiveTwo. 32 EEG channels were collected following
the 10-20 system. Two monopolar EMG channels were
measured on each forearm to correspond with wrist flex-
ion and wrist extension, resulting in four total EMG chan-
nels. Four EOG channels were measured to capture hori-
zontal and vertical eye movements. All 40 channels were
recorded at 2048Hz. Participants sat in a chair facing a
computer with their arms resting on a desk at a comfort-
able height. A towel was placed under the forearms to
elevate the wrists slightly which allowed for easy wrist
flexion.
Whenever participants needed to perform a "left" com-
mand they flexed their left hand inward. The "right" com-
mand corresponded with flexing the right hand inward.
At the end of each trial or turn they returned their hand to
a forward resting position.

Calibration Paradigm: The Motor Imagery paradigm
from OpenVibe[6] version 3.5.0 was used without any
modification to the timing. This entails a 30 second
preparation time, followed by 2x20 shuffled trials of left
and right hand motor execution. Each trial starts with a
cross displayed for 3 seconds as a preparation cue. Then
an arrow pointing left or right is displayed for 1.25 sec-
onds. When this disappears the participant performs the
movement and keeps the wrist flexed while looking at the
cross. After 3.75 seconds this cross disappears and the
participant moves their hand back to a resting position. A
random rest period of 1.5 to 3.5 seconds separates each
of these trials. The timing of the paradigm is visualised
in Figure 2. We set t = 0s to the moment that the par-
ticipant knows the direction, so the movement onset is at
t = 1.25s
We chose to have the movement performed after the ar-
row disappears, instead of when it appears. This way, the
participant is able to prepare the action belonging to the
visual cue and initiate the movement when the arrow ap-
pears. This should provide a more consistent movement
onset, and allows effects of movement planning and inhi-
bition to be included in the calibration data.
In between the left and right hand trials 40 rest samples
were extracted, from 0.5s after the end of the previous
trial, until 4.5s after. This means it is partly recorded
while the participant is looking at a blank screen, and
partly when the fixation cross of the next trial is shown.
This makes the rest slightly more noisy, but also more
similar to rest periods during the driving session. These
trials will be used for the online EMG classifier, as well
as for the offline analysis of the calibration dataset.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-028

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

157

https://github.com/lukeluna/continuous_control
https://github.com/lukeluna/continuous_control
https://github.com/ivopascal/emg_classifier
https://github.com/ivopascal/emg_classifier
https://github.com/ivopascal/continuous_control_bci


Figure 3: Participant view during the driving session.

EMG Classifier: We train a subject-specific online
EMG classifier on the EMG collected during the calibra-
tion session. This EMG classifier will be used during the
driving session to control the simulated car.
The EMG is measured with 4 monopolar electrodes to
measure two muscles on each arm. Specifically the flexor
carpi radialis and the extensor carpi radialis longus.
First, the EMG of these 4 channels is re-referenced using
Common Average Reference (CAR) over the EMG chan-
nels. Then the EMG is band-pass filtered between 30-
500Hz and notch filtered at 50Hz using causal 4th order
Butterworth filters. Since the online classification should
have low latency, the trials are cropped to the middle
200ms of each movement from t = 6.125s to t = 6.145s.
We found this to have a minimal impact on classification
performance. The mean power of the four EMG channels
are used as four features for an LDA classifier. Using 10-
fold cross-validation we find that this per-subject EMG
classifier has a mean accuracy of 94% with a standard
deviation of 5%.
The online implementation of the EMG classification
uses Lab Streaming Layer (LSL). LSL allows for real-
time streaming of the EMG recordings from BioSemi to
the EMG classifier (implemented with MNE-Python [7]),
and streaming the classifications to the driving environ-
ment. It also saves the multiple streams and provides pre-
cise alignment of timestamps from the various streams.

Driving Paradigm: As a control task, we chose to
control a simulated car in Unity. At the start the car ac-
celerates until it reaches a predefined constant speed. The
speed is kept consistent during the driving so the partici-
pant needs to initiate and terminate turns at the right time.
We believe this is an important factor in developing a BCI
for control tasks, as early preparation of a movement may
cause patterns in the premotor cortex which may be con-
fused with the actual movement. The ability to distin-
guish between movement preparation and movement ex-
ecution is necessary to be able to have a good estimate of
the movement onset.
The 3D driving environment is shown in Figure 3. The
choice of a 3D design allows for better engagement, but
may also affect the EEG with eye movements, visual
perception effects, or planning effects. This makes the
recorded EEG more ecologically valid for real BCI con-
trol.
Each participant drives around the track for 5 laps. After

these 5 laps, they have a break and start again when they
feel ready. They perform this task 3 times for a total of 15
laps, resulting in an average of 37.5 minutes (±6 minutes)
of driving per participant.
From the driving session, we extract trials of left turns,
right turns, and straight sections by identifying periods of
at least 3.75 seconds where the EMG classifier made the
same prediction. This allows us to investigate the SMR
and MRCP for left and right turns, and gives rest trials
sufficiently similar to the calibration session. Any tri-
als with peak-to-peak differences exceeding 100µV af-
ter epoching are rejected. This resulted in an average of
54±13 left turns, 27±8 right turns and 41±22 straight
sections.

RESULTS

Sensorimotor Rhythms: We look for the Event Re-
lated Desynchronisation (ERD) that is commonly found
in Motor Imagery, Motor Attempts [3] and Motor Exe-
cution [8]. Specifically, we look for contralateral ERD
in the α band around 8− 12Hz, which may start before
movement onset due to movement planning. We may also
find an ERD in the β band around 12.5−30Hz.
We apply CAR followed by a non-causal FIR band-pass
filter in the range [1,35]Hz with a lower transition band-
width of 1Hz, an upper transition bandwidth of 8.75Hz
and a filter length of 3.3s. Then we apply artefact re-
moval with FastICA [9], and take the Surface Laplacian
[10] around channels C3 and C4. This gives us the rel-
evant frequencies around the parts of the motor cortex
responsible for left hand and right hand movement while
minimising artefacts. We take epochs from both calibra-
tion and driving sessions such that the movement starts at
t = 1.25. Relative to the movement onset we look at the
time-frequency effects from t = −3 to t = 5. This gives
us an indication of the activation before movement onset,
and for the remainder of the trial.
We then use DPSS multitapers to determine the time-
frequency response from [5,35]Hz, at increments of 1Hz.
For this analysis, the epochs are temporarily padded with
0.5s of leading and trailing EEG data to avoid edge ef-
fects. Unlike common ERD visualisations we do not sub-
tract the baseline activation. The baseline sections be-
tween calibration and driving are very different, which
would make it difficult to distinguish changes in the base-
line from ERD/ERS effects. Instead, we look at the abso-
lute time-frequency plots.
This pipeline is applied to both left hand and right hand
movements, both during calibration and driving. This
allows us to see the differences that may affect decod-
ing during calibration and driving. Figure 4 shows the
time-frequency response during calibration and driving
for both left and right trials averaged over the partici-
pants.
In both cases, the movement onset is at t = 1.25s. We
see a contralateral decrease in the α band for both cases,
starting slightly before movement onset. In the calibra-
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Figure 4: SMR during the left and right trials for calibration and
driving. No baseline is used.

tion session, the decrease starts to appear around t = 1s,
roughly 0.25 seconds before movement onset. In the driv-
ing session, the α band decrease starts as early as t = 0s.
Around t = 4s we see a slight rebound in the α band for
calibration. This rebound also appears in the driving ses-
sion starting at t = 3. This early rebound may be because
the hand is in a consistent flexed position, so there is no
more hand movement.
In all figures we see a short dip in the β band in both
channels, aligned with the onset of the movement. The
timing of the dip in the β band may allow it to be used
to determine the onset of the movement, while the con-
tralateral power decrease in the α band may be used to
determine which hand was moved.

Movement Related Cortical Potentials (MRCP): We
investigated MRCPs as they are commonly used to study
motor preparation effects [11]. Since MRCPs are low-
frequency phenomena we apply a causal 8th order butter-
worth band-pass filter in the range [0.1,3.0]Hz. After this
artefacts are removed with FastICA and the trials are then
epoched so that the movement onset is at t = 1.25s.
Figure 5 shows the MRCPs at C3 and C4 for calibration
and driving. During the calibration, we observe a nega-
tive peak slightly before the movement onset at t = 1s,
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Figure 5: Average MRCP across participants during calibration
and driving. The movement starts at t = 1.25, indicated by the
rightmost dashed line. In the calibration plots the dashed line
at t = 0 shows when participants are given the directional cue.
The blue line indicates the average ERP for left trials, the orange
for right trials. The shaded areas indicate the 95% confidence
interval of the mean.

which is the contingent negative variation [12]. This ef-
fect disappears in the driving session. There are clear pat-
terns that distinguish the classes during calibration, but
they do not transfer well to the driving session.

CSP classifier: To demonstrate the ability to classify
individual samples based on SMR patterns we imple-
mented a simple CSP-based classifier.
First, the EEG data is re-referenced with CAR and the
data is filtered with a non-causal FIR band-pass filter in
the range [1,35]Hz with a lower transition bandwidth of
1Hz, an upper transition bandwidth of 8.75Hz and a filter
length of 3.3s. Then, FastICA is used to remove arte-
facts. The ICs were fitted and rejected or kept based on
the calibration data, but used on both the calibration and
the driving data. This makes the process suitable for on-
line implementations. Epochs are taken from movement
onset t = 1.25s to the end of the trial t = 5s. Rest sam-
ples are also used from between the trials in calibration,
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Figure 6: CSP filters for driving and calibration over all partici-
pants. The filters are ordered according to Mutual Information.
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Figure 7: F1 scores of the CSP classifiers in different sessions.
We show trained and tested on calibration, trained and tested on
driving, and lastly, the transfer scenario is trained on calibration
and tested on driving. Each line represents one participant.

or from straight sections in driving.
Six multiclass CSP filters [4] regularised with shrinkage
are used to extract the features. The logarithm of the
band power for each filter is used by a Logistic Regres-
sion classifier to predict the classes. This pipeline is fitted
5 times with 5-fold cross-validation to make the predic-
tions. The model is then trained once more on all the data
to show the CSP filters.
This procedure is applied once to the calibration data, and
once to the driving data. Lastly, we also train the model
on all the calibration data and use it to make predictions
on the driving data. Transferring the model in this way
means it is never trained on EMG data but is still able to
predict the EMG data.
We use the first 10% of driving trials to calibrate a rest
threshold, addressing a shift in class imbalance between
calibration and driving. The transfer performance is then
evaluated on the remaining 90% of driving trials. The
threshold that would need to be used in an online scenario
should be set manually.
Figure 6 shows the learned CSP filters for the calibration
and driving sessions over all participants combined, or-
dered by Mutual Information. In the calibration CSP0
and CSP1 clearly identify the relevant areas of the motor
cortex for left and right hand motor control. CSP3 and
CSP4 show bipolar effects around the motor cortex. The
CSP filters learned on the driving data are not as clean.
However, CSP2 and CSP4 still correspond to the relevant
parts of the motor cortex. There are no discernible effects
in the prefrontal areas, indicating that the learned patterns
are not due to eye movement artefacts.
Figure 7 shows the F1 scores for each participant
in each session. The performance is best in the
calibration session (µ = 0.69,σ2 = 0.011), followed by
the driving session (µ = 0.65,σ2 = 0.013), followed by
the transfer scenario (µ = 0.53,σ2 = 0.025). The partic-
ipants with poor performance on the calibration data are
also more likely to have poor performance in transfer, but
this is not consistent.
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Figure 8: Averaged confusion matrix for model transfer.

Lastly, Figure 8 shows the confusion matrix averaged
over all participants in the transfer scenario. A model
was trained for each participant based on their calibra-
tion data, and then tested on their driving data. The
(mis)classifications were then aggregated into this con-
fusion matrix. There are few cases where a left hand is
mistaken for a right hand, or the other way around, but
many movement samples are still mistaken for rest sam-
ples.

DISCUSSION

The SMR analysis showed that there are patterns to ob-
serve in the calibration phase, that remain mostly con-
sistent when people are using a BCI for a control task.
We notice that there is a longer movement preparation
effect and that the average α power is lower during the
driving task. The dip in the β band corresponds with the
movement onset both in the calibration and in the driving
session, and is minimally affected by preparation effects.
We found that the MRCPs are different between calibra-
tion and driving. ERPs identified in the calibration data
are not identifiable in the driving data. This may be be-
cause the two paradigms are too different, or because the
200ms EMG classification interval gives too imprecise
movement onsets.
From the MRCPs and the SMR we find that a classifier
that needs to be transferable from calibration to driving
is best suited using band power features. The subsequent
CSP-based classifier was able to distinguish between left
and right hand trials surprisingly well, but it had quite a
few false positives for the rest trials. As expected, ac-
curacy becomes worse in driving due to the added stim-
ulation of the environment, and the accuracy becomes
even worse when transferring from calibration to driving.
However, both of these factors have a relatively minor
impact compared to the individual differences between
participants.
The CSP filters showed that the models are picking up
phenomena from the motor cortex, indicating that the pat-
terns are originating from movement (intention) and not
from eye artefacts or visual attention. The fact that the
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ICA was fitted to the calibration, and used in the driving
makes this design suitable for use in an online BCI.

CONCLUSION

The findings from the SMR analysis, MRCP analysis
and the CSP classifier show that an SMR-based classi-
fier trained on calibration and applied for a control task is
feasible. The SMR patterns are largely similar between
the calibration and the driving session, allowing for a sur-
prisingly small decrease in classification accuracy.
However, the current analysis still leaves some hurdles
for the implementation of an online EEG-based BCI to
control the driving task that can be addressed by future
analyses on this dataset.
The primary limitation is that this paper is still mak-
ing classifications and doing analysis on isolated sections
with 3.75s of a consistent movement. To allow continu-
ous control of a BCI we need to have predictions at every
timestamp as proposed by [1]. Solutions proposed to this
continuous decoding as presented in [13] may be a suit-
able direction.
The second limitation is that the classification perfor-
mance of the models that we employed is very low for
some participants. For the participants on which the high-
est performance was achieved an acceptable driving con-
trol would be possible. For the participants with low per-
formance (F1 < 0.6) it is unlikely that the EEG-based
BCI will allow for successful control.
The problem of low-performing participants may be ad-
dressed in future experiments by having participants use
the EMG and EEG for control in a shared-control BCI
[14, 15]. By interleaving EMG predictions with EEG
predictions and providing the participants with feedback
they can improve the separation of their EEG patterns,
without reaching complete loss of control. Such a shared-
control BCI should maximise the amount of EEG-based
predictions to allow for learning, while still maintaining
sufficient control with EMG.
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ABSTRACT: Here we present correlations between 

criticality-related measures calculated from resting-state 

electroencephalography (EEG) recordings and 

subsequent performance with a visual P300-based brain-

computer interface (BCI) in healthy participants. Results 

suggest a positive relationship between resting-state 

brain criticality and subsequent BCI performance using 

P300-based BCIs. 

 

INTRODUCTION 

 

The P300-based brain-computer interface (BCI) speller 

is the most widely used BCI application, and P300-based 

BCIs are generally described as being convenient, 

reliable, and easy to use [1] – see also a direct comparison 

between sensorimotor rhythm-based and event-related 

potential (ERP)-based BCI applications such as the 

P300-based BCI speller in Kübler et al. [2]. However, 

attempts to predict the future performance of a P300-

based BCI based on neural brain activity have been rare1. 

Halder et al. [3] and Won et al. [1] showed that in healthy 

participants2, elicited ERPs in a preceding oddball or 

rapid serial visual presentation (RSVP) task were related 

to subsequent performance with a P300-based BCI. In the 

Won et al. [1] sample, the P300 amplitude elicited during 

the RSVP was positively correlated with subsequent 

P300 speller performance. The sample of Halder et al. [3] 

showed that the amplitude of the N2 ERP elicited in the 

preceding oddball paradigm was related to subsequent 

performance with a visual P300-based BCI. The latter 

result was subsequently replicated in patients with 

amyotrophic lateral sclerosis (ALS) [6]. Nonetheless, 

these attempts were based on task-related activity and 

would not allow for performance prediction based on 

spontaneous brain activity. To establish relationships 

between spontaneous brain activity and performance 

 
1 We have limited our review here to neurophysiological 

predictors of P300-based BCI performance because of 

our interest in the relationship between spontaneous brain 

activity and BCI performance. Research on the influence 

of psychological factors, e.g., Kleih et al. [4], is not 

included. 
2 We specifically focus on healthy participants here 

because many studies investigating the predictability of 

upcoming performance for the use of a P300-based BCI 

have examined patients with amyotrophic lateral 

with a P300-based BCI that may be useful for predicting 

performance in the future, it seems fruitful to investigate 

correlations between performance with P300-based BCIs 

and preceding resting-state electroencephalography 

(EEG) recordings. 

While attempts have been made to detect relationships 

between resting-state brain activity and the subsequent 

performance achieved with motor imagery BCIs [8, 9, 

10, 11], to our knowledge there is only one available 

study that has attempted to predict BCI performance for 

the use of a P300-based BCI from resting-state brain 

activity in healthy participants. Shin et al. [12] found a 

negative correlation between delta-frequency band 

power in the resting-state EEG and the subsequently 

achieved performance with a P300-based BCI. They also 

reported negative correlations between delta- and alpha-

frequency band connectivity at rest and subsequent BCI 

performance, and a positive correlation between gamma-

frequency band connectivity at rest and subsequent BCI 

performance. Recently, we also investigated the 

relationship between resting-state brain activity and the 

subsequently achieved performance with a P300-based 

BCI [13]. Aiming to establish a relationship between BCI 

performance and the level of consciousness, we 

examined the correlations between two theoretically 

supported measures of consciousness, i.e., the power-law 

exponent (PLE) and the Lempel-Ziv complexity (LZC), 

at rest and the subsequently achieved performance with a 

P300-based BCI. We showed strong and significant 

correlations between both PLE and LZC at rest and the 

performance of a locked-in ALS-patient during the 

subsequent use of a tactile P300-based BCI. 

The PLE3 provides information about the non-periodic, 

arrhythmic, and scale-free activity of the brain [14, 15, 

16] by means of the 1/f aperiodic scaling [17], i.e. the 

slope of the EEG power spectrum, also called spectral 

sclerosis (ALS) (e.g., [5, 6]). However, we have recently 

suggested that the brain activity of ALS-patients shows 

alterations in brain criticality, making the relationship 

between their spontaneous brain activity and the use of a 

P300-based BCI a special case [7]. 
3 We will use PLE as a catch-all abbreviation throughout 

this paper, although the cited literature may have referred 

to this phenomenon as 1/f, aperiodic, or scale-free 

activity, 1/f slope, 1/f or aperiodic scaling, spectral slope, 

or power-law distribution. 
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slope [18, 19]. This means that with increasing power in 

lower frequencies and decreasing power in higher 

frequencies, the slope of the power spectrum becomes 

steeper and the PLE value increases. Conversely, with 

decreasing power in lower frequencies and increasing 

power in higher frequencies, the slope becomes flatter 

and the PLE decreases. The LZC applied to neural brain 

activity provides information about the complexity of a 

neural signal according to its compressibility [20]. The 

more easily the brain activity can be compressed, the less 

complex the corresponding brain activity is. This 

complexity has been interpreted as reflecting the amount 

of information content in conscious experience [21], 

most clearly formulated in the Entropic Brain Hypothesis 

[22]. The PLE plays a prominent role in the Temporo-

Spatial Theory of Consciousness, where it shows how 

neural activity of different temporal and spatial scales are 

nested within a single conscious experience [23]. Both 

PLE and LZC have recently received empirical support 

for their ability to discriminate between different states 

of consciousness [14, 18, 24] or brain states [25, 19]. In 

addition, recent results have provided evidence for their 

reactivity to sensory processing [24, 26] as a function of 

the participants’ states of consciousness [24] and the 

ongoing task demands [26]. Finally, both PLE and LZC 

are considered to be closely related to the so-called brain 

criticality, making them criticality-related measures that 

indicate increasing brain criticality with increasing LZC 

and decreasing PLE, and decreasing brain criticality with 

decreasing LZC and increasing PLE [18].4 

Since brain activity at the point of criticality is considered 

to express remarkable information processing 

capabilities, with maximal sensitivity to perturbations, an 

enriched repertoire of system states, and a high capacity 

to store and transfer information [17], brain criticality 

may be an interesting concept to be explored in the 

context of BCI use. Therefore, we have recently 

discussed the relevance of brain criticality for the use of 

P300-based BCIs [7]. Based on the available literature, 

we have argued that an increase in resting-state brain 

criticality appears to be beneficial for reorganizing brain 

activity to meet upcoming task demands, such as the use 

of a P300-based BCI. Central to our argument, Irrmischer 

et al. [27] showed that while a measure of brain criticality 

during a sustained attention task was negatively related 

to the performance in that task, the same measure showed 

a positive relationship with task performance when 

derived from the preceding resting-state EEG recording. 

Thus, Irrmischer et al. [27] hypothesized that two distinct 

 
4 Note that the spectral slope, as calculated by Maschke 

et al. [18], is positively correlated with brain criticality. 

However, in contrast to our calculation (see Materials & 

Methods), they do not use the absolute value of the 

spectral slope. Accordingly, the PLE, as calculated here, 

can be expected to be negatively correlated with brain 

criticality. This difference in calculation also explains the 

observed strong correlation between the spectral slope 

and LZC in Maschke et al. [18], which contrasts with our 

observed anticorrelation between PLE and LZC (see 

processes are at work when it comes to criticality and task 

performance in attention-demanding tasks. While 

increased brain criticality at rest is indicative of the 

brain’s ability to adapt to upcoming task demands, the 

execution of an attention-demanding task appears to 

favor less critical brain activity. This favorable reduction 

in brain criticality was also demonstrated by the only 

study, other than our own [17], that examined a 

relationship between brain criticality and the use of a 

P300-based BCI [28]. The authors showed that when 

using a P300-based BCI, decreasing brain criticality5 was 

associated with increased P300 amplitudes. In contrast, 

Herzog et al. [30] showed that, consistent with Irrmischer 

et al. [27], resting-state brain criticality was positively 

associated with the P300 amplitude in a subsequent 

Go/Nogo task. Investigations of the relationship between 

functional connectivity and the P300 further support the 

proposed relationship between resting-state brain 

criticality and performance on an attentionally 

demanding task. Functional connectivity and brain 

criticality have been shown to be positively related (see, 

e.g., [31,32]). Given this, Li et al.’s [33] finding of a 

positive relationship between increased functional 

connectivity at rest and the P300 amplitude in a 

subsequent task, as well as Li et al.’s [34] finding of a 

positive relationship between decreased functional 

connectivity during the task and the P300 amplitude, 

suggest that while the P300 amplitude appears to be 

positively related with resting-state brain criticality, it 

appears to be negatively associated with on-task brain 

criticality. 

These results suggest that resting-state brain criticality is 

likely to be related to subsequent performance with a 

P300-based BCI, and that increased criticality at rest is 

related to better performance during the subsequent use 

of a P300-based BCI. The latter hypothesis was tested in 

this paper using two selected criticality-related measures, 

LZC and PLE, and the open-access dataset of Won et al. 

[35]. In our first study [13], in which we looked for 

correlations between these variables and BCI 

performance in a locked-in ALS-patient, we already tried 

to find similar correlations for healthy participants from 

the Won et al. [35] dataset. Problematically, the online 

BCI performance of the participants in this dataset 

showed a pronounced ceiling effect, which prevented 

meaningful correlation analyses. To circumvent this 

ceiling effect in this re-analysis of these data, we here use 

BCI offline performance as a measure of BCI 

performance, calculated on the basis of the letter 

Results).  
5 Bojorges-Valdez and Yanez-Suarez [28] did not use the 

word criticality, only a measure of brain criticality. This 

is a more common phenomenon. A recent review 

highlighted the inconsistent use of criticality in the brain 

criticality literature [29]. Although authors may use 

concepts or measures that are part of the brain criticality 

concept, they do not necessarily refer to the concept or 

use the word. 
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detection accuracy after only two repetitions of the 

stimulus sequence (see Materials and Methods for 

details). We show correlations between our criticality-

related measures calculated from resting-state EEG and 

the subsequent BCI offline performance using a visual 

P300-based BCI. The positive correlation between LZC 

at rest and subsequent BCI offline performance, and the 

negative correlation between PLE at rest and subsequent 

BCI offline performance, suggest that increased resting-

state brain criticality is associated with better subsequent 

BCI performance when using a P300-based BCI. 

 

MATERIALS AND METHODS 

 

     Dataset: The dataset we used is part of the publicly 

available BCI dataset by Won et al. [35]. The data 

analyzed here include the BCI performance of 55 

participants using a visual P300-based BCI speller, as 

well as their open-eyes resting-state EEG recordings that 

were taken prior to the BCI use and that were the closest 

to the BCI use (see Procedure). 

     Participants: 55 participants took part in the study of 

Won et al. [35]. 14 of the participants were female and 

their mean age was 22.91 years (± 2.87). None of the 

participants were excluded for this analysis. 

     Procedure: The data analyzed here, i.e., BCI 

performance achieved with a visual P300-based speller 

and a preceding open-eyes resting-state EEG recording, 

were obtained as part of a larger experimental procedure 

consisting of 3 blocks of resting-state EEG recordings, 

each with an open-eyes and closed-eyes condition, a 

RSVP task, and the use of a visual P300-based BCI 

speller (for details, see [35]). The entire experiment was 

presented and recorded using BCI2000 [36]. The EEG 

data was recorded at a sampling rate of 512 Hz using a 

Biosemi Active Two system with 32 AG/AgCl active 

electrodes placed according to the international 10-20 

system (Fp1, AF3, F7, F3, Fc1, Fc5, T7, C3, Cp1, Cp5, 

P7, P3, Pz, Po3, O1, Oz, O2, Po4, P4, P8, Cp6, Cp2, C4, 

T8, Fc6, Fc2, F4, F8,, AF4, Fp2, Fz, Cz). To investigate 

possible correlations between preceding resting-state 

EEG recordings and the performances reached with the 

visual P300-based BCI, which may have predictive 

value, we used the resting-state EEG recording that was 

taken before and closest to the BCI use. The resting-state 

EEG recordings analyzed here were recorded with 

opened eyes. The resting-state EEG was recorded for 

approximately 139 seconds, and the participants were 

instructed to fixate a cross on the screen in front of them, 

to remain relaxed, and to minimize movement. The 

subsequent BCI use consisted of two calibration runs and 

four test runs. In each of the two calibration runs, the 

participants were instructed to copy spell a word without 

visual feedback. In each of the test runs, the participants 

were instructed to copy spell a word with visual 

feedback. The visual P300-based BCI speller was based 

on a 6x6 matrix speller with six columns and six rows 

and included the letters of the alphabet, digits, and a 

space. Each of the 12 stimuli – six columns and six rows 

– of a stimulus sequence was flashed for 125 ms followed 

by a 62.5 ms inter-stimulus interval before the next 

stimulus of the sequence was flashed. For the selection 

of a single letter, the stimulus sequence was presented 15 

times, resulting in a total of 180 stimuli with 30 stimulus 

flashes comprising the target and 150 non-target stimulus 

flashes. 

BCI Offline Performance: BCI offline performance was 

calculated from the letter detection accuracy provided 

with the dataset [35]. Letter detection accuracy was 

calculated as the number of correctly selected letters of 

the word to be copied in a single test run as a function of 

the number of repetitions of the stimulus sequence. 

Provided for each of the 55 participants, consisting of 4 

test runs with one word to be copied per run, and 15 

repetitions of the stimulus sequence per letter selection, 

the letter detection accuracy was provided as a matrix 

with dimensions of 55x4x15. We first calculated a mean 

letter detection accuracy for each participant as the 

average of the letter detection accuracies of the four 

words which had to be copied. As shown in Settgast et al. 

[13], the letter detection accuracies after 15 repetitions of 

the stimulus sequence showed a pronounced ceiling 

effect, with 25 out of 55 participants having reached 100 

percent accuracy and 51 out of 55 participants having 

reached the 70 percent benchmark for successful BCI 

performance [37]. To avoid problems related to this 

ceiling effect, we decided to use the letter detection 

accuracy whose distribution was closely centered around 

50 percent and did not show a violation to normal 

distribution. We tested the normal distribution for each 

of the letter detection accuracies across participants as a 

function of the number of repetitions of the stimulus 

sequence. We chose the letter detection accuracy after 

two repetitions of the stimulus sequence as BCI offline 

performance. This cross-participant letter detection 

accuracy after two stimulus sequences showed a mean of 

0.52 (0.2), showed no significant skewness and kurtosis, 

and showed no violation of normality according to the 

Shapiro-Wilk test. 

     EEG Pre-Processing (Resting-State): Resting-state 

EEG data was pre-processed with EEGLAB [38]. First, 

the data was band-pass filtered from 1-40 Hz. The 1-Hz 

low cutoff was applied according to the 

recommendations of Winkler et al. [39] to ensure good 

results in the later performed independent component 

analysis (ICA). The EEGLAB built-in clean_artifacts 

function was used to remove flatline, highly correlated, 

and noisy channels as well as short time bursts and 

otherwise bad data periods. Deleted channels were then 

spherically interpolated. The EEG data was re-referenced 

to the common average because the used EEG recording 

device does not provide a hardware-based reference [35]. 

An ICA was performed, and artifact components were 

automatically flagged and removed using MARA [40]. 

     Data Analyses: Both PLE and LZC values were 

obtained using custom MATLAB scripts. Each of the 

variables was computed using a sliding-window method 

with 1-second windows and 50% overlap between 

windows (for computation details, see [14]) for each of 

the 32 EEG channels. To account for differences in EEG 
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recording length due to bad data period rejection in the 

previous pre-processing step, we took 130 s of EEG data 

for each participant, starting 5 s after the start of the 

recording, for further analysis. To calculate the PLE, the 

power spectral density (for computation details, see [14]) 

was logarithmically transformed in both frequency and 

power spectrum domain. The slope of the PSD was then 

calculated by linear least squares regression. The PLE 

was then obtained as the absolute value of this slope. For 

further analysis, we took the average of these values 

across channels and time windows for each participant. 

LZC values were computed largely according to the 

algorithm of Zhang and Roy [41], using the median as 

the threshold for binarization due to its robustness to 

outliers [42]. To reflect the number of accruing pattern in 

the sequence, the LZC was normalized [43]. As for the 

PLE, the LZC values were averaged across time windows 

and channels for further analysis. LZC and PLE were 

tested for normality. None of the variables showed 

significant kurtosis, skewness, and/or a violation of 

normality according to the Shapiro-Wilk test. Therefore, 

the following correlation analysis was performed using 

parametric Pearson’s product-moment correlation (two-

tailed). To adjust for multiple comparisons, we report 

Bonferroni-corrected p-values. 

 

RESULTS 

 

The results of the correlation analysis are shown in Tab. 

1. 

 

Table 1: Correlation Matrix 
Variables LZC PLE BCI offline 

performance 

LZC -   
    

PLE -.99** -  
 [-.99, -.98]   

BCI offline 
performance 

.38* -.34* - 

 [.13, .59] [-.55, -.08]  

Table 1: Pearson’s product-moment correlation (two-

tailed) between the selected criticality-related measures, 

PLE and LZC, and BCI offline performance. * indicates 

p<.05, and ** indicates p<.001 after Bonferroni 

correction for multiple comparison. Confidence interval 

for the according correlations provided in square 

brackets. 

 

There was a very high and significant anticorrelation 

between PLE and LZC (r=-.99, p<.001). We also 

observed significant moderate correlations between both 

PLE and LZC and the BCI offline performance (see Fig. 

1). PLE and BCI offline performance showed a negative 

correlation (r=-.34, p<.05), whereas LZC and BCI offline 

performance showed a positive correlation (r=.38, 

p<.05). This supports our hypothesis that brain criticality 

calculated from resting-state brain activity is related to 

the subsequent BCI performance – as indicated by BCI 

offline performance – when using a P300-based BCI.  

 

Figure 1: Correlations between the selected criticality-

related measures, LZC and PLE, and BCI offline 

performance (Pearson’s product-moment correlation 

(two-tailed)).   

 

DISCUSSION 

 

We present here, to our knowledge, the first results 

indicating a relationship between brain criticality 

calculated from a preceding resting-state EEG recording 

and the subsequently achieved performance with a P300-

based BCI in healthy participants. The presented 

correlations between two criticality-related measures, 

PLE and LZC, at rest and subsequent BCI offline 

performance suggest that increased resting-state brain 

criticality appears to be positively related to BCI 

performance when using a P300-based BCI. This finding 

is consistent with our hypothesis based on the proposed 

relationship between resting-state brain criticality and 

BCI performance with P300-based BCI, which we 

recently outlined [7]. Increases in EEG-derived measures 

of brain criticality at rest seem to improve the 

performance during the subsequent use of a P300-based 

BCI. This is sound with the idea that brain activity at the 

point of criticality expresses remarkable information 

processing capacities [17] and, as shown by Herzog et al. 

[30], the resting-state brain criticality may even interact 

with the P300 amplitude itself.  

The only other available study that examined the 

relationship between resting-state brain activity and 

subsequent performance with a P300-based BCI [12] 

may support our findings. Shin et al. [12] showed a 

negative correlation between resting-state delta-

frequency band power and subsequent BCI performance 

with a P300-based BCI. Given that significant increases 

in low-frequency oscillatory activity in the EEG power 

spectrum may reflect, or at least be confounded by, a 

steepened spectral slope [26], i.e., an increased PLE, the 

results of Shin et al. [12] would suggest that BCI 

performance with a P300-based BCI decreases with an 

increasing PLE value, i.e., decreasing criticality. 

Therefore, their result suggests a positive relationship 

between resting-state brain criticality and BCI 

performance with a P300-based BCI, as we have shown 

here. 

The investigation of BCI performance based on brain 

criticality from preceding brain activity has also been 

performed with motor imagery (MI) BCI [44]. Samek 

and colleagues showed that brain criticality during a 

training session with a MI BCI was positively associated 
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with the subsequent performance in the test session. 

Although they did not use resting-state brain activity, this 

finding further suggests the importance of state-

dependent brain criticality for the upcoming task, such as 

BCI use. 

We speculate that one of the classical target groups for 

P300-based BCIs, i.e., complete locked-in (CLIS) ALS-

patients, could benefit from the demonstrated 

relationship between resting-state brain criticality and 

subsequent BCI performance with a P300-based BCI. 

Limiting BCI communication attempts to periods of 

increased brain criticality might eventually improve their 

often inadequate performances with non-invasive BCIs 

(see e.g., Bettencourt et al. [45] for a recent overview). 

This would be a first attempt to detect the so-called 

Windows of Consciousness postulated by Kübler [46]. 

The potential increase in resting-state brain criticality 

may be even more relevant, as CLIS patients appear to 

show a general decrease in brain criticality, as indicated 

by changes in our selected criticality-related measures 

[14]. 

 

CONCLUSION 

 

We present here results indicating a relationship between 

resting-state brain criticality and subsequent performance 

with a visual P300-based BCI. Increasing brain criticality 

in resting-state brain activity, as indicated by criticality-

related measures, appears to be beneficial for the 

subsequent use of a P300-based BCI in healthy 

participants. 
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ABSTRACT: Neurofeedback (NF) is increasingly used
for experimental and therapeutic purposes. However, the
lack of proper control about the specificity of NF ef-
fects is criticized and hinders the development of reli-
able and efficient NF procedures. Bidirectional NF is
based on the self-regulation of the targeted brain activ-
ity in opposite directions and might be better suited than
other typical control conditions (e.g., sham) for assess-
ing the link between modulations of brain activity and
behavior. The present study aimed to determine if bidi-
rectional regulation of a specific pattern of brain activ-
ity, namely motor beta power, can be achieved within
a single session. Thirty participants performed several
NF trials aiming to either down- or up-regulate their mo-
tor beta power. Results showed that participants signifi-
cantly modulated their motor beta power in opposite di-
rections with bidirectional NF. This modulation was con-
strained in space (central electrodes) and frequency (al-
pha/beta band). Overall, bidirectional NF appears as a
valid method to probe brain-behavior relationships within
a single session.

INTRODUCTION

Neurofeedback (NF) consists of a brain-computer inter-
face in which brain activity is measured and presented on-
line to the participant through a sensory stimulus, for the
purpose of enabling self-regulation of specific patterns of
brain activity [1]. NF can be used as an experimental tool
for studying brain-behavior relationships and as a poten-
tial therapeutic strategy for a variety of neurological dis-
eases [2]. Yet, the lack of appropriate control condition
in NF studies has been criticized and precludes its im-
plementation as a valid experimental and clinical proce-
dure [2–4]. One of the most commonly employed control
condition in NF studies is a sham NF, which consists of
presenting a NF whose features are independent from the
participant’s targeted brain activity (e.g., replay of prere-
cordings). Sham NF is well suited for assessing the speci-
ficity of NF on the effects found on the targeted brain ac-
tivity and behavior because participants are supposedly

not aware of this sham condition, so that they should
apply similar mental strategies when presented with the
sham NF as with the real NF. However, using sham NF
is not adequate for determining whether the changes in
brain activity induced by NF are causally involved in the
reported behavioral effects. Indeed, sham NF can lead
to modulations of the targeted brain activity that do not
differ significantly from the ones observed with real NF
(e.g., [5]). Establishing the causality of brain-behavior
relationships requires at least two NF conditions induc-
ing significantly different changes in the targeted brain
activity, such that it can be used as an independent vari-
able. This can be achieved using bidirectional NF, that is
implementing two NF conditions aiming to train partic-
ipants to regulate the targeted brain activity in opposite
directions (i.e., down- and up-regulate the targeted brain
activity). Thus, opposite patterns of behavioral effects
are expected in the two NF conditions. An additional
sham-passive condition can be implemented to determine
if each active NF condition led to significant change in
brain activity in comparison to a "baseline" level without
real NF nor mental strategy applied. Assessing whether
behavioral effects remain significant when comparing ac-
tive NF conditions to the sham-passive condition can
then allow us to determine whether NF led to significant
behavioral change compared to a "baseline" condition,
without active modulation of brain activity. Overall, bidi-
rectional NF comprehensively addresses numerous con-
founding factors associated with NF paradigms, includ-
ing the ones that are purposely controlled with a sham NF
such as placebo effects and global, spatially non-specific
effects [6], while avoiding the ethical and time issues as-
sociated with sham NF. Indeed, a sham NF condition re-
quires either a fairly high number of participants to en-
sure sufficient statistical power in the analyses when us-
ing a between-group experimental design (i.e., two sep-
arate groups of participants, real vs sham NF, that are
compared to each other), or a long-lasting experiment if
one chooses a within-group experimental design, because
each participant will have to perform several sessions of
each condition (real and sham NF). In each case, the ex-
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perimental protocol will most likely be time-consuming.
In addition to this, the use of a sham NF can bring some
ethical issues in studies conducted on patients (e.g., only
the group receiving the real NF will see their symptoms
improving). Yet, there remains some gray areas regard-
ing the feasibility of bidirectional NF, especially about
the required time for learning to modulate a specific pat-
tern of brain activity in opposite directions. Indeed, al-
ternating up- and down-regulation can induce carry-over
effects that might impair learning [7].
The present study aimed to determine whether efficient
bidirectional regulation of a specific pattern of brain
activity, namely the power of brain oscillations in the
beta-band (β ; 13-30 Hz) over the motor cortex, can be
achieved within a single experimental session using NF.
Motor cortical β power was chosen as the target for the
bidirectional NF protocol in the present study because
it has been associated with changes in movement initi-
ation and execution speed in non-invasive neurostimula-
tion studies [8], as well as in a recent NF study using
a sham control [5]. Motor cortical β power has also
been widely used as a neural marker for decoding move-
ment intention in the field of brain-computer interfaces.
Therefore, the present study could provide replication of
the results from the studies cited above, while assessing
the feasibility of bidirectional NF within a single session.
The frequential (frequency band) and spatial (electrodes)
specificity of the effects on brain activity induced by the
NF were also assessed.

MATERIALS AND METHODS

Participants: Thirty participants (15 females, 15
males; age (mean ± standard deviation (SD)): 22 ± 3
years old) were recruited for the experiment. All partic-
ipants were right-handed (mean Edimburgh score (mean
± SD): 94 ± 5%), had normal or corrected-to-normal vi-
sion and were free of any known neurological or psychi-
atric condition. All subjects gave their written informed
consent before participation in the study, which had been
approved by the French committee for the protection of
individuals (CPP) number 18-INSB-01. This study con-
formed to the standards set by the latest version of the
Declaration of Helsinki. One participant was removed
from the analyses because of excessive noise in the EEG
data.

Experimental design: The experiment consisted of a
bidirectional NF training coupled with a force task. Each
participant performed a total of 125 trials, including 5
familiarization trials that were not considered in the anal-
yses. Each trial started with the appearance of a fixation
cross on a screen for 3 s. The cross was then replaced by
a gauge, representing the NF based on the recorded on-
line changes in motor β activity (see NF section below)
for 2 to 10 s. This NF phase was followed by a hand grip
task, subjective effort rating on an analog scale and writ-
ten feedback about the performance at the hand grip task
(Fig. 1C). Force data from the hand grip task and effort

ratings from the analog scale were not analyzed in the
present article, as it focuses on modulations of β activity
across NF conditions.

Data acquisition and calibration: At the beginning of
the experiment, participants were comfortably seated in
front of a screen (60 x 34 cm) with their right hand hold-
ing a dynamometer (K-Force Grip, Kinvent). They were
asked to not exert any pressure on the dynamometer with
their hand unless receiving an explicit instruction to do
so. A 32-channel EEG cap (EEGo sports, ANTneuro)
was placed on the participants’ head and the EEG signal
was recorded continuously for the duration of the experi-
ment with a 500 Hz acquisition rate. Stimuli presented
on the screen were synchronized with EEG and force
recordings through an open-source software toolkit (lab
streaming layer; LSL). The ground and reference elec-
trodes were AFz and CPz respectively. The first EEG
recording of the experiment was performed in a resting
state to calibrate NF parameters in an individualized fash-
ion. A white fixation cross was presented at the center of
the screen and participants were asked to maintain their
gaze on the cross and remain still as long as the cross was
on. The cross was displayed for 1 min but only the last 30
s were recorded to ensure that participants were already in
a resting state when starting EEG recordings. The distri-
bution of beta power values during those recordings was
used to set individualized NF thresholds (see NF section).
The participants’ maximal force for hand grip was also
determined individually at the beginning and the middle
of the experiment.

NF: The NF was implemented using OpenViBE (3.3)
and Unity C# (2020.3.17f1). It was represented on the
screen as a gauge (vertical rectangle cut by a horizon-
tal midline) whose level varied as a function of motor
β power. More precisely, the level of the gauge was
refreshed every 250 ms based on the mean β power
(squared amplitude of the EEG signal between 15 and
25 Hz, computed using a 4th order Butterworth filter)
recorded at C3 electrode during the last 500 ms (i.e., slid-
ing window of 500 ms per 250 ms step). This averaging
procedure has been used by previous studies to avoid dif-
ficulties in reading the gauge because of excessive flick-
ering. Spatial noise was attenuated using a Laplacian fil-
ter including 6 neighboring electrodes of C3 (FC5, FC1,
F3, CP5, CP1, P3). Participants were trained to down-
regulate and upregulate their motor β power in two sep-
arate experimental conditions: β -down and β -up respec-
tively. Participants were encouraged to fill up the gauge
in both conditions. In β -down, the lower the recorded β

power, the higher the level of the gauge, whereas in β -
up, the higher the recorded β power, the higher the level
of the gauge. The gauge was calibrated according to β

power detected at C3 electrode per 250 ms windows of
the 30 s preliminary resting-state recording (120 values in
total). The inferior boundary of the gauge corresponded
to the median of resting-state β power in the two con-
ditions. The gauge started to fill up if the recorded β

power was below that median in β -down and above that
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Figure 1: Methods. A. Overview of the experimental design. Blue, orange and green boxes indicate β -down, β -up, and sham-passive
blocks respectively. N refers to the number of trials included in each block. The dynamometer’s picture indicates the moments when
the maximal force was (re)calculated. B. Neurofeedback conditions. The individualized values that were used for calibrating the level
of the gauge are indicated on the left of the gauge. The images inside of the thought bubbles illustrate mental strategies that participants
were advised to use in each condition. C. Trial timeline. Depiction of the name, duration and visual stimuli associated with each phase
of a trial, in a chronological order.

median in β -up. As explained in Fig. 1, the gauge was
half-filled/completely filled when β power reached the
25th percentile/2*25th percentile-median of the resting-
state distribution in β -down, or the 75th percentile/2*75th

percentile-median in β -up. The filling color of the gauge
was red if its level was below midline and turned green
if its level reached above midline. If the gauge remained
green for 2 consecutive seconds (i.e., β power was infe-
rior to the 25th percentile in β -down/superior to the 75th

percentile in β -up for 2 s), the NF stopped and the gauge
was replaced by a go cue. In cases where this criterion
was not met, the NF was automatically replaced by a go
cue after 10 s.
To improve self-regulation of motor β power, partici-
pants were given mental strategies before starting the tri-
als. In β -down, participants were advised to perform
motor imagery, that is mentally representing themselves
performing movements without executing actual move-
ments. Indeed, motor imagery has been shown to re-
duce β power to an extent that can equal or even exceed
the β event-related desynchronization observed for actual
movements when combined with NF [9]. Conversely, re-
laxation strategies (e.g., relaxing body parts, conscious
breathing, task-unrelated thinking) have been shown to
increase β power [10], and were thus suggested to the
participants in β -up. Those mental strategies were not
mandatory, participants were told that they were free to
use any mental strategy they found efficient for filling up
the gauge. A reminder of the recommended mental strat-
egy (motor imagery or relaxation) was presented on the
screen for 5 s before the beginning of each block.
A sham passive condition was also implemented as a con-
trol condition with similar sensory inputs as in β -down
and β -up (i.e., gauge) but without any mental strategy nor
congruent NF. In this condition, participants were asked

to keep their gaze on the gauge but not to try controlling
it. The level of the gauge varied according to fluctuations
in β power in prerecordings from other subjects, such
that the gauge was not informative of the actual online
changes in β power of the tested participants. Blocks of
10 sham passive trials were interspersed with blocks of 20
β -down or β -up trials (Fig. 1A). The presentation order
of β -down and β -up blocks was counterbalanced across
participants.

Data processing: Data processing was conducted on
Matlab (R2018B, MathWorks). β power values com-
puted in OpenViBE (squared amplitude of EEG signal
comprised between 15 and 25 Hz at C3 electrode after
applying a Laplacian filter, see NF section above for de-
tails) for updating the NF were averaged during the last
2 s of the NF phase for the analyses. Resting-state me-
dian β power was subtracted from average β power at the
end of the NF phase individually to account for interindi-
vidual variability in baseline β power. Outliers were cal-
culated separately for each participant and condition and
were defined as values inferior to median-3*absolute de-
viations around the median (MADs; [11]) or superior to
median+3*MADs, and were removed from the analyses.

Statistical analyses: A within-subject experimental de-
sign was conducted. A repeated-measures ANOVA was
computed for comparing β power (value used for the
NF in OpenViBE) across NF conditions (3 levels: β -
down, β -up and sham-passive). An additional ANOVA
including NF conditions and block number (2 levels: 1,
2) was performed to test if the effects differed across
blocks. Greenhouse-Geisser’s correction was applied
to p-values when sphericity assumption was violated
(Mauchly’s test p-value < 0.05). Pairwise comparisons
were conducted with paired Student’s t-tests when obser-
vations were normally distributed (p-value from Shapiro-
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Wilk test ≥ 0.05), and Wilcoxon’s rank tests when nor-
mality assumption was violated (p-value from Shapiro-
Wilk test < 0.05). Bonferroni’s correction was applied
on p-values for multiple comparisons. Effect sizes were
reported as partial eta squared for ANOVAs (eta2

p), Co-
hen’s d (d) for Student’s t-tests and rank biserial correla-
tion (r) for Wilcoxon’s rank tests. Cluster-based permuta-
tion tests were performed using Fieldtrip to identify clus-
ter of electrodes that were behaving differently between
β -down and β -up [12]. Clusters were defined as adja-
cent electrode/time pairs whose test statistic exceeded the
threshold for statistical significance (alpha = 0.05, two-
tailed paired t-tests). In the present analysis, a cluster was
composed of at least two electrodes showing statistically
significant t values within a radius of 4 cm. These tests
were conducted from -2 to 0 s before the presentation of
the go cue, in the theta (4-7 Hz), alpha (8-12 Hz), beta
(15-25 Hz), and low-gamma (30-49 Hz) frequency bands
separately.

RESULTS

β power during NF was significantly decreased as com-
pared to resting-state β power in β -down (W(28) = 82,
p = 0.003, r = -0.62, mean difference = -19.5%). Con-
versely, a trend toward an increase in β power during NF
in comparison to resting-state β power was observed in
β -up (W(28) = 301, p = 0.072, r = 0.38, mean differ-
ence = +9.3%). β power in the sham passive NF condi-
tion was not significantly different from resting-state β

power (W(28) = 156, p = 0.190, r = -0.28, mean differ-
ence = -3.5%). Direct comparison of average β power
across NF conditions showed a significant difference
(F(1.4, 39.5) = 16.2, p = 10−4, η2

p = 0.37). Post-hoc anal-
ysis revealed that β power was significantly decreased in
β -down in comparison to β -up (W(28) = 33, p = 10−5,
r = -0.85) and sham-passive (W(28) = 51, p = 10−4,
r = -0.77), whereas it was significantly increased in β -up
as compared to sham-passive (W(28) = 372, p = 0.001,
r = 0.71; Fig. 2, top left panel). Single-subject analysis
showed that 79% (23/29) of participants significantly de-
creased their β power in β -down as compared to β -up,
14% (4/29) did not significantly modulate their β power
and 7% (2/29) inversely modulated their β power (i.e.,
increased their β power in β -down in comparison to β -
up). When comparing β -down to sham-passive, results
showed that 72% (21/29) of participants significantly de-
creased their β power in β -down as compared to sham-
passive, 14% (4/29) did not significantly modulate their β

power and 14% (4/29) inversely modulated their β power
(i.e., increased their β power in β -down in comparison to
sham-passive). Finally, 69% (20/29) of participants sig-
nificantly increased their β power in β -up as compared
to sham-passive, 14% (4/29) did not significantly modu-
late their β power and 17% (5/29) inversely modulated
their β power (i.e., decreased their β power in β -up in
comparison to sham-passive).

A two-way ANOVA for repeated measures showed a sig-

Figure 2: Effects of bidirectional NF on motor cortical β power.
Top, left: β power change from baseline according to NF con-
dition. Colored dots indicate individual data. Light gray lines
connect dots pertaining to the same participant. Black error
bars illustrate 95% confidence intervals around the mean. Top,
right: β power change from baseline according to NF condition.
Data is averaged across participants. Trials are represented in
their chronological order of presentation during the experiment.
Blue, orange, and green lines illustrate the β -down, β -up and
sham-passive conditions. Shaded areas represent 95% confi-
dence intervals around the mean. The zero-line (indicating no
change from baseline β power) is highlighted with a dotted gray
line. Bottom, left to right: average duration of the NF phase and
time within criterion (i.e., when NF threshold is reached/the
gauge is green) in β -down (blue) and β -up (orange). Median
and mean are represented as horizontal line and cross respec-
tively. *** p < 0.001, ** p < 0.01, * p < 0.05, ∼ p = 0.05-0.1

nificant effect of NF condition (β -down, β -up and sham-
passive; F(1.4,39.7) = 16.0, p < 0.001p = 10−4, η2

p = 0.36)
but no significant effect of block (1 and 2; F(1,28) = 0.49,
p = 0.489, η2

p = 0.02) nor interaction between NF condi-
tion and block (F(1.5,43.3) = 0.15, p = 0.804, η2

p = 0.01)
on β power. This suggests that NF performance did not
improve throughout the experiment as β power did not
significantly change with time across NF conditions (Fig.
2, top right panel). NF performance was also measured
by the percentage of time spent within criterion (i.e.,
< 25th percentile of resting-state β power for β -down and
> 75th percentile of resting-state β power for β -up) dur-
ing the NF phase, and the duration of the NF phase. There
was a trend toward longer time spent within criterion in
β -down as compared to β -up (t(28) = 1.83, p = 0.078,
d = 0.34; Fig. 2, bottom right panel). Additionally, the
duration of the NF phase was significantly shorter in β -
down than β -up (t(28) = -2.79, p = 0.009, d = -0.52; Fig.
2, bottom left panel). This suggests that NF performance
was significantly better in β -down than β -up as partici-
pants reached the criterion for 2 s more often, leading to
shorter trials.
The last step of the analysis consisted of assessing the
spatial and frequential specificity of the changes in brain
activity induced by NF. To do so, the power of the EEG
signal was computed in different frequency bands and
across all electrodes by means of time-frequency anal-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-030

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

171



ysis (see Methods for details). Signal power was first
averaged in different frequency bands at C3 electrode to
determine the frequential specificity of NF. Theta (4-7
Hz; F(2,54) = 1.21, p = 0.306, eta2

p = 0.04), alpha (8-
12 Hz; F(1.57,42.34) = 2.32, p = 0.122, eta2

p = 0.08), and
low-gamma (31-49 Hz; F(1.08, 29.11) = 1.05, p = 0.319,
eta2

p = 0.04) power did not appear significantly affected
by NF, suggesting that, over the contralateral motor cor-
tex, β power was the only frequency band that was sig-
nificantly modulated by NF. Spatial specificity was then
quantified using cluster-based permutation tests. These
tests highlighted a significant cluster of contralateral
and midline fronto-central electrodes when comparing β

power in β -down and β -up (Fig. 3, top panel). This clus-
ter was centered on C3 and showed significant reduction
of β power in β -down as compared to β -up. A signifi-
cant negative cluster was also found when comparing al-
pha power in β -down and β -up, though in contrast with
β power, alpha power appeared mostly attenuated over
ipsilateral fronto-central electrodes (Fig. 3, top panel).
No significant cluster was detected when comparing theta
nor gamma power in β -down and β -up. Time-frequency
maps of the activity recorded at C3 showed that baseline-
corrected β power appears decreased in β -down and β -
up, but the magnitude of this decrease appeared greater
in β -down than in β -up.

Figure 3: Spatial and frequential specificity of NF. Top: topo-
graphical maps representing changes in alpha (top) and beta
(bottom) power between β -down and β -up, at different times
before go cue onset (t). White dots highlight significant nega-
tive cluster of electrodes. Bottom: time-frequency maps of the
signal recorded at C3 in β -down (left) and β -up (right).

DISCUSSION

Results show that the bidirectional NF paradigm used in
the present single-session experimental design effectively
led to opposite modulations of motor cortical β power.
Most participants (79%) significantly decreased their β

power in β -down as compared to β -up. Additionally,
participants significantly decreased and increased their β

power in β -down and β -up respectively, as compared to

in sham-passive. The changes in brain oscillations in-
duced by NF were not specific to the β frequency as a
significant decrease in alpha power was also observed in
β -down in comparison to β -up. However, this modula-
tion of alpha power was mostly localized over the ipsi-
lateral motor cortex, whereas changes in β power were
more on the contralateral side. Taken as a whole, these
results suggest that single-session bidirectional NF, in-
cluding blocks belonging to each direction of regulation
presented in an alternated order, constitutes an appropri-
ate method to probe the nature of the relationship between
motor cortical β power and behavior.

To our knowledge, the present results represent the first
evidence of the possibility to use bidirectional NF for
volitionally modulating motor cortical β power within a
single session, and studying its effects on motor behav-
ior over several trials using a within-subject experimental
design. Two studies [13, 14] already demonstrated that
bidirectional NF based on individualized task-specific
features of sensorimotor rhythms can significantly affect
motor performance. However, targeted features for NF
varied across participants (e.g., an alpha and a β power
components were included in 4 out of 8 participants,
whereas only a β power component was included in the
rest of the participants), thereby complicating the iden-
tification of the specific EEG patterns that were respon-
sible for the behavioral changes observed. The experi-
mental design presented herein allows the assessment of
the specific influence of self-regulating motor cortical β

power on motor behavior, and takes into account inter-
individual variability in baseline EEG activity by cali-
brating β power values used for the NF individually. Yet,
these β power values are calculated identically for all par-
ticipants (median, 25th and 75th percentiles of the distri-
bution of resting-state β power). This standardized pro-
cedure supposedly enables reliable conclusions about the
relationship between a specific EEG pattern and behav-
ior, though it may be inadequate for some participants
(e.g., highly variable baseline activity, weak amplitude of
movement-related β power changes). This does not ap-
pear to be the case in the present experiment as 79% of
participants successfully decreased their motor cortical β

power in β -down in comparison to β -up. The proportion
of non-responders (21%) is in accordance with the num-
bers reported by previous studies (15 to 30%; [15]).

In addition to successful opposite regulation of motor cor-
tical β power within a single session, the present results
also showed that participants significantly decreased and
increased their β power as compared to sham-passive in
β -down and in β -up respectively. This demonstrates that
the present experimental design is particularly well suited
to assess brain-behavior relationships, considering that
the influence of modulating motor cortical β power on
motor behavior can be determined in each direction of
regulation (down and up) and compared to a "baseline"
level of β power and behavior. This design would en-
able to extend the results from previous studies that have
shown significant effect of regulation of β power with NF
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on motor behavior without control comparison or com-
pared to a sham-passive NF only ([5, 16, 17]).
Some limitations associated with the proposed experi-
mental design should be underlined. First, self-regulation
of β power with NF did not significantly improve across
trials, suggesting that the single-session design, consist-
ing of blocks of β -down and β -up trials presented in an
alternated order, might have interfered with the learning
process of self-regulation. An alternative option could be
to perform each NF condition (i.e., β -down and β -up) in
separate sessions. However, in addition to significantly
increase the duration of the experiment, splitting the ex-
periment into distinct sessions brings other issues, such
as potential differences in the positioning of the EEG cap,
as well as differences in baseline β power values used for
setting the NF threshold. Second, NF performance ap-
peared slightly better in β -down than β -up, which could
influence the following motor performance (i.e., filling up
the gauge faster and more easily could boost motivation
and thus lead to better motor performance). Possibilities
for remediating to such an effect include modifying men-
tal strategies for increasing β power in β -up, consider-
ing that the one used in the present experiment was fairly
close to participants’ resting state (i.e., relaxation strat-
egy), or setting NF thresholds based on pre-movement β

power instead of resting-state, as it should be closer to the
baseline activity observed during the NF phase before the
motor task.

CONCLUSION

The present study provides evidence that bidirectional
NF can be used to determine the effects of modulating
brain oscillatory activity with NF, such as up- and down-
regulation of motor β power, on behavior. Opposite mod-
ulations of brain oscillatory activity was achieved within
a single session for most individuals. Therefore, bidi-
rectional NF represents a relevant method for controlled,
simple and rapid experimental designs aiming to study
the association between a specific pattern of brain activ-
ity and behavior.
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ABSTRACT: Using the interactions between brain re-
gions has great potential as new features to discriminate
between mental tasks for brain computer interface (BCI).
Network approaches applied to electroencephalographic
(EEG)-derived functional connectivity has been recently
used to identify discriminating brain organizational fea-
tures in offline classification scenarios. However how
those network properties temporally vary during the task,
is still poorly understood. A contrario, the dynamics of
event related desynchronization/synchronization result-
ing from local power spectra is widely known and used
for online motor imagery-based BCIs. Here, we explored
the offline time-frequency properties of dynamic brain
networks in two subjects performing three sessions of
MI-BCI for the control of a robotic arm. Results were
compared to standard time-frequency power spectra and
discussed in light of future implementation for online sce-
narios.

INTRODUCTION

When dealing with motor imagery (MI) BCI, one of
the central challenges is finding features both discrim-
inant and interpretable from a neurophysiological per-
spective[1, 2]. More over, they often depend on the cor-
rect execution of the mental task. Performing motor im-
agery is tricky, mental strategies may vary from one sub-
ject to the next and features need to be robust to such
variabilities[3]. When performing motor imagery, the
main information that can be transferred into a command
is the event related desynchronization (ERD) responsi-
ble for power spectral density variations in the frequency
bands associated to motor task, α (8-12 Hz) and β (13-30
Hz)[4]. However, this information is local, and the brain
is a dynamic system whose regions constantly interact to-
gether. To capture those interactions, network approaches
applied to functional connectivity [5] shows to be rele-
vant as it studies the spectral correlation between elec-
trodes (in the sensor space); the use of connectivity al-
lows to apply metrics coming from network science such
as node strength (NS)[6], which captures the amount of
connections a node (in our case an electrode) has with the
others. The interactive information coming from connec-
tivity has been explored to differentiate MI from rest[7]
however its use using network metrics as feature for clas-
sification is still not employed depite having the potential

to complete the local information of the PSD. Here, we
want to investigate how the node strength evolves over
time during a motor imagery task with respect to rest-
ing state and how the parameters used to estimate the
functional connectivity will have an impact on the per-
formances of a classifier, Figure 1 gives a representation
of the offline approach. To this end, we used EEG data
recorded from two subjects during a MI-BCI control of
a robotic arm in three different sessions[8]. Our prelim-
inary results points towards different conclusions. First,
as it is the case for ERD/ERS, there is a need to aver-
age over time points to obtain subsequent performances
to temper effects of variability coming from the spec-
tral/coherence estimation. Second, adding the informa-
tion of node strength as a complementary feature for the
classification tend to improve the performances. Third,
the temporal dynamics of node strength shows to fluctu-
ate more than ERD/ERS on short windows which makes
them more difficult to interpret.

MATERIALS AND METHODS

Experimentation:
The two subjects (2 F), aged 24.5± 1.5 years, right-
handed, provided informed consent and participated vol-
untarily in the protocol. The protocol was approved by
Inria’s national ethical committee as part of the BCIPRO
protocol (authorization number 2021-35 - ref SICOERLE
n°179). Experiments took place in the controlled environ-
ment of the EEG/MEG center within the neuroimaging
core facility of the Paris Brain Institute.
A robotic arm facing the subjects reaches for objects on
an augmented table used to show visual stimuli and neu-
rofeedback (this table consists of a screen lying under a
plexiglas, that displays visual cues directly underneath
the objects to grasp). Subjects gaze towards a target to
make the robot reach it and perform motor imagery for
the robot to grasp the target. Each subject performs the
control over the robot during three sessions where the
robot moves before, during or after the subjects perform
MI or rest. More details on the protocol can be found in
the Braccio protocol [8].
In this study, we focus on motor imagery of the right
hand closing and resting state trials lasting for three sec-
onds. The acquisition uses BrainAmp 64 EEG cap, 500
Hz sampling frequency with TP9 and TP10 as reference
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Figure 1: Representative view of the brain network dynamics
through functional connectivity captured by node strength over
time s(t). Wi j(t) corresponds to to the imaginary coherence
(IC) between two electrodes calculated for each instant t by
ICi j[ f ](t) =

|ℑ(Pi j [ f ])|
(Pi[ f ]·Pj [ f ])1/2 . with P the power and f the frequency,

i and j are the couples of electrodes.

and ground. During the experimentation, we train an Lin-
ear discriminant Analysis (LDA) classification algorithm
on PSD features selected from the R2 between MI and
Rest trials for each subjects. These features are spectral
amplitudes averages over trial for specific electrodes and
frequency bins. To determine which features to select, we
evaluated the highest R2 values in the sensorimotor cor-
tex (electrodes of lines C and CP) in the α and β . We
selected 3 features for those two subjects :C3,CP3,C1 for
subject 1 and C3,CP3,CP1 for subject 2. Each session is
composed of two phases: first, 3 runs of control over the
robot (Phase 1), then based on a training over the features
of the 3 runs, a second phase of 2 runs (Phase 2), each
run consists of 10 MI/10 Rest trials. Motor imagery and
resting state trials lasted for 4 seconds, however only the
last 3 seconds were kept to take into account the reaction
time of subjects.

Network metrics estimation: To estimate the functional
connectivity, we use imaginary coherence as it is more
robust to volume conduction compared to spectral coher-
ence[9]. Spectral properties were computed using Burg
autoregressive (AR) method with a model order of 19, a
frequency resolution of 0.5 Hz and make the parameters
of windowing set to 0.33 s and overlap 53% to have a
number of time points arbitrarily set to 18 points for 3
seconds of trial. The motivation of the choice of the fil-
ter order is based on two preliminary studies i) where we
could identify a certain stability of the subject’s patterns
when we made the AR filter vary from 19 to 30 ii) using a
particle swarm algorithm to optimize difference between

MI and rest for each subject, we identify 19 as the average
filter. This operations were done using HappyFeat soft-
ware (Inria) [10]. Based on the connectivity matrix, we
use a local network metric called node strength (NS)[6],
i.e. the average of all connection over each electrode in
each condition. We then compute the average of the tem-
poral node strength over the trials in Fig 2.

Power spectrum estimation: To estimate power spec-
tral density, we also use Burg autoregressive method, set
to a model of 19, a frequency resolution of 0.5 Hz and the
window 0.25 s and 38% of overlap. For power spectrum
only, a common average reference (CAR) was applied.

Classification: The classification algorithm used is a 2
class LDA, Phase 1 is used for the training and Phase 2 as
a validation test. Brain features are electrodes at certain
frequency bins used for the different sessions, they are
selected after computing the R2 statistical test between
trials of MI and resting state and with neurophysiological
relevance - in the motor cortex in the α or β band). We
compare performance obtained with two different train-
ing approaches. A first method consists in using each
estimated spectral window for each trial (both in PSD
and NS) as a feature. It means that for 30 trials lasting
for 3 seconds with 18 points, we trains the algorithm on
30× 18×N ×M features per class (N being the num-
ber of electrodes and M of frequency bins). The sec-
ond approach consists in averaging over time windows
the features, meaning that the algorithm will be trained
on 30×N×M features per class. In a first step, we use
the same features for PSD and NS, then we select specific
features for NS corresponding to its specific R2 map, and
finally we combine the information coming from the two
sources of information (NS and PSD).

RESULTS

Average Temporal dynamics over trials: In a first step,
we want to compare the trial-averaged evolution of NS
compared to the PSD. As expected the separation in α

and β bands for PSD is clear and the amplitude corre-
sponding to each condition is stable in time. Results are
however more peculiar for NS, indeed, even though the
evolution is averaged across trials, we still notice some
strong oscillatory patterns that makes the separation be-
tween tasks more complex. From this, two different hy-
potheses can be made: first, the AR method used for
the coherence estimation is more sensitive to noise in the
context of short windows which forbids from using it to
study the resulting node strength dynamics. The other
hypothesis is that NS possesses properties different from
the PSD on its temporal dynamic, ERD/ERS producing a
stable pattern during MI/Rest task whereas node strength
is intrinsically more oscillating.
We observe that Imaginary Coherence Node strength (NS
-ImCoh)seems to follow same patterns as ERD/ERS as
shown in Fig 2. Indeed we observe a decrease of Node
strength from resting state to motor imagery mainly cen-
tered on 10-12Hz which is the expected behaviour. The
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Figure 2: Time-frequency maps of power and network-related
dynamics: Top: Relative difference of average spectral esti-
mation across trials between motor imagery and resting state
( MI−Rest

Rest ) for subject 2, session 3, electrode C3 selected. Bot-
tom: Relative difference of average imaginary coherence esti-
mation across trials between motor imagery and resting state
( MI−Rest

Rest )for subject 2, session 3, electrode C3 selected.

most interesting detail is that the most intense moment
of desynchronization (in PSD) corresponds to the peak of
the NS difference. Also, the dynamic seems to separate
more the tasks in the α band than in the β band. Finally,
it is necessary to mention that the difference is far supe-
rior with PSD than with NS-ImCoh, however, the subtle
changes of dynamics might be more easily captured even
though the noise in the computation limits our interpre-
tation. It is to note that the PSD and the NS do not use
the same parameters of windowing and overlap hence in-
trinsic differences, when the coherence is computed us-
ing the same parameters as PSD, patterns are even less
visible. This is due to the fact that coherence is more sen-
sitive to noise and requires more information hence wider
windowing for it to reveal relevant information.

Investigating inter trials and temporal variability
through classification: If we evaluate each time point as
a single feature (of the pre-selected electrodes at a spe-
cific frequency bin) and train the algorithm on all the time
points and compare it to the average feature over all the
time points and train the algorithm on the average fea-
tures, it appears clear that the performances favour the
average features. In both cases (PSD and NS-imCOH),
averaging tends to increase class differentiation. Quite
surprisingly the difference of intensity between NS and
PSD does not seem to have an effect on performances: in-
deed, PSD, while slightly superior in average, is not nec-
essarily better than node strength when training on each

separate time point. Even though, the R2 statistical test
between MI and resting state trials shows higher scores
for PSD than for NS. Altogether, linear machine learning
algorithm (such as LDA) are sensitive to the noisy time
points in PSD and NS, which stresses the importance for
averaging along the trial to obtain good levels of discrim-
ination.

Combining information: Two separate elements are to
mention regarding the features and their resulting accu-
racies as shown in Fig 3. First, the node strength and
PSD do not carry the same information: indeed if the
same choices of features are made for both modalities
(NS and PSD) and we base ourself on PSD, NS accu-
racies are lower. However, if other features are selected
based on the specific NS R2, NS based algorithm is show-
ing accuracy improvement. Second, The interesting re-
sult we reveal is that if features of network and power are
combined, performance always increase (in both train-
ing over each time windows and on average over trial).
This tends to indicate the complementary nature of the
two approaches, indeed while the local PSD information
provides the majority of the information, the distributed
information given by the network via the node strength
has a role to play.

Figure 3: Accuracy Comparison LDA trained on motor imagery
vs resting state trials of phase 1 and tested on phase 2 based on
relevant neurophysiological features selected using the R2 in NS
and PSD either with all the time points as separate features as if
it was instantaneous (blue) or the average features over the time
points (red). Top: Subject 1 on session 3. Bottom: Subject 2 on
session 2. NS:Node Strength, PSD:Power Spectral Density

DISCUSSION
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What does network dynamics reveal?: Studying net-
works behaviour to discriminate between mental tasks
is relatively new and yet to be used in online BCI
paradigm[7, 11]. Even though connectivity using imagi-
nary coherence is known to decrease during a motor im-
agery task with respect to a resting state in certain fre-
quency bands [5], the temporal dynamics associated are
still poorly studied. Here we propose to explore with pre-
liminary results what are those dynamics in order to know
how they could be integrated to the BCI context. We find
that node strength follows a similar trend as ERD/ERS
even though the data is more sensitive to noise which
limits the amount of interpretations regarding the neuro-
physiological process.

Auto regressive method needs fine tuning to overcome
its limitations: Spectral estimation is always subjected
to the rule of its estimator and the use of any estima-
tor over short time windows is a challenge. AR method
(Burg) has been studied so far in the domain of power
spectral density [12, 13] but its use for computing coher-
ence has remained marginal compared to welch or mul-
titaper which are not suited for short time window es-
timation[14]. Our first results show that auto regressive
method with short windows and overlap are far more sen-
sitive to noise with coherence compared to PSD which
limits the ways we can use such method. This is espe-
cially revealed by the important decrease of performance
when taking each time point as a feature. To contrast this
effect, two approaches could be used, if it is for offline
analysis, averaging over trials could filter those noises
even though the estimation could still be erroneous. Us-
ing larger time windows could be the definitive solution
to limit this noisy computational phenomenon.

Can we use continuous MI BCI within this frame-
work?: One of the many problematic regarding BCI is the
use of discrete or continuous feedback, which produce
different effects on subjects[15, 16]. Continuous feed-
back can be used if the features they rely on are estimated
on short time windows, the intrinsic noise of EEG makes.
The logical follow up of our endeavour on the tempo-
ral dynamics of node strength is to interrogate the use of
this feature in a feedback context. Here, our few results
tend to demonstrate that continuous BCI which could use
node strength as features will be highly impacted by the
spectral estimation noise. Even though connectivity mea-
sures seems to improve performance when added to PSD,
it is necessary to stress the use of an averaging over time
series which means doing pseudo-continuous or discrete
feedback.

CONCLUSION

In this contribution, we investigate new forms of features
that could be used for Motor imagery BCI relying on a
network approach to EEG. We use data coming from sub-
jects who perform during three sessions MI BCI to con-
trol the seizing of object with a robotic arm. We evaluate
using imaginary coherence their network dynamics dur-

ing the MI task. We find out patterns similar to ERD/ERS
but with some more subtle phenomenon which might be
hidden due to the spectral estimator used. These results
have to be tempered by the low amount of subjects and
will require more of them to strengthen the conclusions.
Nevertheless, based on those preliminary result, we ad-
vocate for the use of features averaged over time to maxi-
mize the differences that could be spotted and to use PSD
and NS combined as they seem to be complimentary in
the information they provide.
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ABSTRACT: Although motor imagery-based BCIs have
been demonstrated to be relevant for improving motor re-
covery after stroke, they remain barely used in rehabili-
tation services. We hypohesise that acceptability (which
is assessed in terms of perceived usefulness, ease of use
and intention to use) could serve as a lever for fostering
the adoption of BCIs through the improvement of their
efficacy. More precisely, we suggest that improving the
acceptability of BCIs could alleviate post-stroke patients’
anxiety, stimulate their motivation and engagement in the
BCI process, and thereby, favour skill acquisition (here
self-regulation abilities), which will ultimately have posi-
tive effects on motor recovery. We created a model of ac-
ceptability of BCIs specifically for functional rehabilitation
after stroke, and designed an associated questionnaire that
was used to empirically assess the weight each factor of
the model had on acceptability. Hereinafter, we introduce
the methods and results obtained based on the responses
received from 140 patients, and compare them with data
collected in the general public (N=753). In a nutshell, for
both the general public and patients perceived usefulness,
scientific relevance and ease of learning emerge as the most
influential factors.

INTRODUCTION

BCI-based functional rehabilitation procedures have
demonstrated their efficacy to improve post-stroke patients’
motor and cognitive abilities [1, 2]. In the coming years,
they are expected to substantially improve the quality of
life of those patients [2].
In classical functional rehabilitation procedures, when sub-
jects have no residual movement, i.e., when they cannot
voluntarily move their affected limb, physical practice is
impossible and both subjects and therapists must mainly
rely on mental practice alone. Mental practice includes
motor imagery (MI) as well as attempted movements. In
this context, BCIs are very relevant as they enable the
detection of MI / attempted movements of the impaired
limb, which are underlain by modulations of the so-called
sensori-motor rhythms (SMRs)—as defined in the BCI
field by a large band covering mu (µ) and beta (β ) rhythms
(8–30 Hz) [3]—, and provide the patient with a synchro-
nised neurofeedback (NF), for instance using functional

electrical stimulation that triggers an arm muscle contrac-
tion, or visual feedback (movement of a virtual hand on
a screen [4]). Such a NF training enables the participants
to train to voluntarily self-regulate their SMRs in a closed
loop process, which should favour synaptic plasticity and
motor recovery [5].
While this is encouraging, BCI efficiency is still far from
the level required to achieve the clinical breakthrough ex-
pected by both clinicians and patients. Thus, BCIs remain
barely used in clinical practice, outside laboratories [6].
BCI efficiency is known to be modulated by several factors.
Many researchers are working on improving this efficiency
either from a “technical” point of view (e.g., signal pro-
cessing [7]), or from the human learning standpoint [8, 9].
Nonetheless, it might not be sufficient for those technolo-
gies to be actually used in a clinical setting: fully optimised
BCIs (in terms of sensors, signal processing, and training
procedures) are pointless if patients and clinicians are not
able or do not want to use them, i.e., if BCIs are not ac-
cepted [10].
The concepts of acceptability and acceptance were intro-
duced in order to understand what led users to adopt or not
a new system [11]. The adoption of a technology refers to a
use that is maintained over time, i.e., without abandonment.
Acceptability and acceptance differ by the moment they are
measured at: acceptability concerns the user’s standpoint
before any interaction with the system, while acceptance
comes after at least one first use.
Misconceptions that patients and their entourage have re-
garding BCIs may have a detrimental effect on the accep-
tance of these technologies. For instance, BCI procedures
are not often adapted to the general clinical guidelines and
practices (e.g., organisational constraints, lack of training
time), so caregivers are not engaged to use them [12]. BCI
acceptance could also be altered by the fact that most stroke
patients experience depression, and therefore high anxiety
levels [13] that have detrimental effects on BCI acceptance
and learning [14]. Thus, BCI acceptance is likely to have a
major impact on patients’ learning processes and therefore
on the efficiency of BCI-based stroke rehabilitation proce-
dures.
Among this clinical context, this article focuses on patients.
We hypothesise that identifying acceptability and accep-
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tance factors will help us overcome these misconceptions
and personalise the rehabilitation procedures, which will
in turn result in reduced anxiety, and increased motiva-
tion and engagement levels for the patients. This should
favour their learning and, ultimately, motor recovery. In
other words, we expect that improving the acceptance lev-
els of BCIs, through the design of personalised rehabili-
tation procedures, will result in an increased efficiency of
these technologies and therefore be one step closer to their
democratisation.
Yet, using acceptance to optimise BCI efficiency remains
an aspect that has been little studied to date. To the best
of our knowledge, only [15] for BCI-based stroke rehabil-
itation procedures, [16] with BCI training for elderly and
[10, 17, 18] with BCIs for Amyotrophic Lateral Sclerosis
patients assessed BCI in terms of acceptance. In addition,
in the BCI field, acceptability is mostly assessed as an at-
tribute of the user’s satisfaction, itself being a dimension
of user experience [6, 18]. It is possible that the reduced
number of studies stems from the lack of proven methods
to measure acceptability and acceptance (e.g., dedicated
questionnaire or model). This is what we hope to remedy
through our research.
To do this, we designed a general theoretical model of BCI
acceptability [19] (under review) and a second one focused
on BCI for functional rehabilitation after stroke. They are
based on the Technology acceptance model 3 (TAM3) [20],
the Unified theory of acceptance and use of technology 2
(UTAUT2) [21], and the Components of user experience
(CUE) model [22]. In these existing models, acceptability
measure is an evaluation of the user’s behavioral intention
(BI) i.e., their intention to use the studied technology. The
main determinants of BI are perceived usefulness (PU) and
perceived ease of use (PEOU). PU is the personal feeling
about utility of the system, and PEOU the degree of belief
to which using the system will require little or no effort.
On the basis of our model, a questionnaire to assess the
acceptability of BCI-based functional rehabilitation proce-
dures among the general public was created and validated
(N=753).
The aim of our paper is to study the acceptability of BCI-
based functional rehabilitation procedures among post-
stroke patients, in order to determine their most important
acceptability factors and to compare the results to those of
the general public. This paper details our methodology,
then the results are presented, in addition to the data col-
lected from the general public. Finally, the discussion in-
cludes a comparison of these two populations.

MATERIALS AND METHODS

In order to study the acceptability factors among patients,
we used a questionnaire methodology — as we previously
did for the general public.

Experimental paradigm:
Questionnaire: The questionnaire is inspired from a pre-
vious questionnaire developed to identify and weigh the

factors influencing BCI acceptability for functional reha-
bilitation after stroke among the general public [23]. De-
tailed explanations regarding the design of this model are
provided in [23]. In a nutshell, the BCI acceptability model
for functional rehabilitation after stroke comprises four cat-
egories of factors: (i) System characteristics is a category
related to the mental representation developed by the user
to judge what the use of a technology can bring them in
relation to their objective(s) (relevance of the system, per-
ceived quality, etc.) [24]. (ii) Social influence is the influ-
ence of an individual’s relatives and social group on their
choice of whether or not to adopt a system. (iii) Individual
differences is a category which groups the user personal
characteristics (socio-demographic information, cognitive
traits, etc.). Finally, (iv) Facilitating conditions brings
together the factors related to the material, organisational
and/or human conditions that facilitate the use of a tech-
nology [25] (Fig. 1).
We used the same questionnaire as the ones for the gen-
eral public except that we added three factors into the in-
dividual differences category: memory, attention and en-
gagement in rehabilitation. Memory [26] and attention [27]
are both commonly affected after a stroke, and essential to
learn to self-regulate brain patterns using a BCI (e.g., for
memorising instructions and being able to stay focused on
mental tasks [28]). The third factor was introduced in or-
der to assess if the attitude towards BCI rehabilitation cor-
relates with motivation in rehabilitation in general. All the
questions are on the same scale in the patient and general
public questionnaires.
The questionnaire was created on the Qualtrics tool, it was
fully anonymous, and therefore not subject to the general
data protection regulation (GDPR). It took between 20 min
and 30 min to be completed, depending on the patients,
and consisted of four parts: (i) Informed consent form;
(ii) Questions regarding the participants’ previous experi-
ence with BCIs; (iii) Questions related to each factor of
the model (3-5 questions per factor). For example, for sub-
jective norm, one of the question was ’People who are im-
portant to me would support the use of Brain-Computer
Interfaces in post-stroke rehabilitation’. The scale used
was a visual analogue scale from 0 to 10 (“strongly dis-
agree” to “strongly agree”) for quantitative factors and a
checkbox question for categorical factors. Two explana-
tory videos were also included in the questionnaire: one
explaining BCIs in general (video 1) and the second more
specific to BCI-based stroke rehabilitation procedures, pre-
senting EEG-based BCIs with motor imagery tasks (video
2). (iv) Socio-demographic data (for each item of this cat-
egory, the participants could choose the option " I do not
wish to answer").
With regard to the factors, some were assessed before and
others after the second video. PU and BI were measured
twice (before video 2: PU1/BI1; after video 2: PU2/BI2),
the questions being the same for both times. The aim was
to observe whether respondents’ scores were influenced by
the information given in the video. The factors following
video 2 required a more detailed view of these new reha-
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FIGURE 1: Representation of the model of acceptability of BCIs for functional rehabilitation after stroke. On the right are the
target factors namely, PU, PEOU and BI. On the left are the four categories of factors that may influence the target factors. Finally, on
top, two moderators are represented in blue. Those factors moderate the effect of the different categories on the target factors.

bilitation procedures (result demonstrability, benefits/risks
ratio and scientific relevance).
For the added factors, we created the questions for memory
and attention. Regarding engagement in rehabilitation,
they come from the Treatment Self-Regulation Question-
naire (TSRQ) [29].

Distribution: The distribution of the questionnaire was
done with two main methods: (i) In hospital (University
hospitals of Bordeaux and Toulouse, France), with patients
(N=40): experimenters visited stroke rehabilitation depart-
ments and helped patients to fill in the questionnaires. The
experimenter read out the question and the patient was
asked to answer orally or on a slate. The experimenters
were medical students and a research engineer. (ii) In au-
tonomy, at home: When the experimenters met patients
in hospital, they always asked them whether they wished
to complete the questionnaire on their own or accompanied
by someone else. If the patient wished to take part indepen-
dently, they gave their email address to the experimenter,
and the anonymous link to the questionnaire was sent to
them (N=52).The questionnaire link was also shared on so-
cial networks with the help of a patient who had a large
online community concerned by stroke (N=48).
The exclusion criteria were people without experience of
stroke and minors. The experimental protocol was carried
out in accordance with the Declaration of Helsinki and was
approved by the Research Ethics Committee of Bordeaux
University (CER-BDX-AP-2022-14).

Data analysis:
We analysed the results in two stages. In both, the patient
data was compared with the results for the general public.

Descriptive analysis: We measured the means and stan-
dard deviations (SD) of each quantitative factor, and the
percentage distribution for the categorical factors. For the
comparison, we used Welch t-tests (quantitative factors)
and Chi² tests (categorical factors).

Quantitative analysis: We wanted to do observations that

do not depend on the architecture of our proposed model.
Three linear regressions were implemented to find the most
important determinants of BI, PU and PEOU. To predict BI
and PU, we used all the acceptability factors in our ques-
tionnaire (regression for BI included PU and PEOU, re-
gression for PU included PEOU, as the arrows in Fig. 1).
For PEOU, result demonstrability, benefits/risks ratio and
relevance (i.e., factors after video 2) were not included, nor
were BI and PU.
It is a different type of regression than the one used for the
general public (random forest regressions) as the number
of respondents was lower. The categorical data from the
questionnaire were formatted in order to enable their in-
clusion in the regression analyses. These regressions were
implemented on R.

RESULTS

Participants:
A set of N = 140 respondents was obtained to the ques-
tionnaire, all of them were post-stroke patients in France.
Of these, 60% were men and 40% women. The age group
most represented was 55-65. The questionnaire was com-
pleted in hospital, with an experimenter, for 40 patients,
while the other 100 completed it independently on their
computer, at home. The socio-demographic details are pro-
vided in Table 1.

Descriptive analysis:
In Table 2, are presented the mean scores of each quan-
titative factor, and the percentages for categorical factors.
None of the factors was associated with a score below 5/10,
which reflects globally positive feelings and well-perceived
BCIs among the respondents. Indeed, regarding the target
factors, for the patients, BI2 had a mean of 8.48/10 (SD =
2.03), for PU2 it was 8.34/10 (SD = 2.13) and for PEOU
the mean was 6.43/10 (SD = 2.41).
These analyses show that certain factors differ significantly
between the patients and the general public. Among target
factors, only PEOU is significantly lower in the patient
population. For system characteristics, patients have a
significantly higher benefit/risk ratio score and a lower
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Number %

AGE

18-24 2 1.43
25-34 11 7.86
35-44 31 22.14
45-54 30 21.43
55-65 32 22.86
65-74 21 15.00
74+ 7 5.00
Not know 6 4.29

GENDER Male 84 60.00
Female 56 40.00

POST-
STROKE
PERIOD

Acute (< 15 days) 2 1.43
Subacute (15 days - 6 months) 21 14.00
Chronic (> 6 months) 87 62.14
No answer 30 21.43

SOCIO-PRO.
CATEGORY

Students 2 1.43
Craftsmen/shopkeepers 8 5.71
Executives/Higher intellectual prof. 24 17.14
Intermediate occupations 26 18.57
Employees 32 22.86
Manual workers 2 1.43
Not in employment 7 5.00
I do not wish to answer 3 2.14
No answer 36 25.71

Questionnaire
administration

With experimenter, at the hospital 40 28.57
At home, recruited in hospital 52 37.14
At home, recruited from social media 48 34.29

TABLE 1: Respondents’ socio-demographic information.
Number: number of respondents, %: percentage of respondents.

image score. Regarding social influence, the subjective
norm score is significantly higher among patients. In in-
dividual differences, we found five significantly different
factors. Perceived autonomy is higher among patients, and
computer anxiety is lower (scores are inverted to be all
negative to positive; a higher score means lower anxiety).
Among the categorical factors, self-efficacy, social support
and the knowledge of BCIs were significantly influenced
by the group. For example, preferring to use a BCI with a
human guidance is highly represented among patients.

Regressions:
Three linear regressions were performed in order to explain
the main determinants of the three target factors: BI, PU
and PEOU. Table 3 presents the variables with the most im-
pact on these latter. The variables with significant p-values
(p<= 0.05) were:
For BI2: PU2, computer anxiety, socio-professional cate-
gory ("Students" and "No answer" categories), autonomy,
self-efficacy ("I prefer to use the BCI alone, in autonomy"
category) and subjective norm. Their coefficients were pos-
itive, except for socio-professional category. The quality
of the prediction was good (adjusted R²: 0.749, p-value <
2.2e-16). For PU2: Relevance and computer anxiety. The
quality of the prediction was medium (adjusted R²: 0.648,
p-value < 2.2e-16). For PEOU: Ease of learning and Play-
fulness, but the prediction had a lower quality (adjusted R²:
0.513, p-value = 3.178e-11).

DISCUSSION

We created a model of acceptability of BCIs specifically
for functional rehabilitation after stroke, and designed an
associated questionnaire. We collected responses from 140
post-stroke patients and compare them with data previously
obtained from the general public (N=753).

FACTORS MEAN MEAN GEN.
PATIENTS PUBLIC

Scale from 0 to 10
SYSTEM CHARACTERISTICS

Result demonstrability 6.60 ± 1.93 6.84 ± 1.68
Benefits/Risks *** 7.80 ± 1.62 7.27 ± 1.51
Scientific relevance 8.09 ± 1.83 8.04 ± 1.48
Image * 5.54 ± 3.24 6.10 ± 2.18
Visual aesthetic 6.30 ± 2.47 6.62 ± 1.89

SOCIAL INFLUENCE
Subjective norm ** 7.80± 1.87 7.39 ± 1.71

INDIVIDUAL DIFFERENCES
Engagement in rehabilitation 9.11 ± 1.52 /
Autonomy *** 7.99 ± 1.79 7.40 ± 1.46
General anxiety 5.23 ± 2.18 5.49 ± 1.87
Computer anxiety *** 7.40 ± 2.73 6.35 ± 2.51
Attention 6.16 ± 2.55 /
Memory 6.84 ± 2.52 /
BCI knowledge *** Categorical variables Chi² residual

No 70.7% 0.231 68.7% -0.100

Yes (never used) 18.6%
-1.697

27.1% 0.732

Yes (already used) 10.7% 2.991 4.0% -1.290

Self-efficacy ***
Alone, in autonomy. 18.6% -0.931 23.1% 0.401

Alone with a support function. 16.4% -3.487 36.7% 1.504

Only with human guidance. 47.9% 3.457 28.3% -1.491

Alone, if used similar technology before. 17.1% 1.449 12.0% -0.625

Social support ***
Independently at home. 22.1% -1.906 32.8% -1.906

With a healthcare professional. 67.1% 2.727 47.7% -1.176

Alone, but in a healthcare establishment. 10.7% -2.063 19.5% 0.890

FACILITATING CONDITIONS
Playfulness 7.02 ± 2.41 6.90 ± 1.80
Ease of learning 6.06 ± 2.16 5.96 ± 1.62
Agency 6.25 ± 2.50 6.29 ± 1.65

TARGET FACTORS
PEOU *** 6.43 ± 2.41 7.17 ± 1.57
PU 7.83 ± 2.00 7.87 ± 1.63
BI 8.11 ± 2.05 7.88 ± 1.73
PU2 8.34 ± 2.13 8.28 ± 1.57
BI2 8.48 ± 2.03 8.23 ± 1.69

TABLE 2: Results from post-stroke patients’ questionnaire in
comparison to the general public’s questionnaire.
When a question was negative, the score was inverted (i.e., a high
general anxiety score is in fact a low anxiety level).
For each factor, Welch t-tests (quantitative) and Chi² tests (cate-
gorical) were made. Factors in violet highlight significant differ-
ences between the two groups.‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Patients showed high acceptability levels, similarly to the
general population (behavioural intention: 8.48/10 and
8.23/10, respectively and perceived usefulness: 8.34/10 and
8.28/10, respectively). Only the perceived ease of use was
significantly lower in patients (6.43/10) than in the general
public (7.17/10).
In addition to these target acceptability factors, descriptive
analyses showed other significant differences between the
two groups. Patients have a significantly higher benefit/risk
ratio score (7.8/10), the advantages of BCI in functional re-
habilitation seem greater to them than the disadvantages.
Regarding subjective norm (7.8/10), compared with the
general public, patients seem to consider that their close
relatives and people who are important to them will have a
more positive view of rehabilitation with BCI and will be
more favourable to this type of rehabilitation. Neverthe-
less, they have a significantly lower image score (5.54/10):
they think that the public image and the social status of
people using BCI in rehabilitation will be less positive than
respondents in the general population tend to expect. Self-
efficacy and social support showed that the majority of pa-
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PATIENTS - N=140 GENERAL PUBLIC - N=753
Linear regressions Random forest regressions

Estimate Std. Error t value Pr(>|t|) Importance values
BEHAVIOURAL INTENTION

Residual Std. error: 1.016 - R²: 0.821 - Adjusted R²: 0.749 % Variance explained: 86.09
(Intercept) -0.739 1.134 -0.652 0.516
Perceived usefulness 0.451 0.080 5.617 1.79 x 10-7 *** Perceived usefulness 100
Computer anxiety 0.125 0.046 2.739 0.007 ** Scientific relevance 37.44
Socio-pro 1 ("Students") -2.543 0.952 -2.671 0.009 ** Benefits/Risks ratio 30.25
Socio-pro 3 ("No answer") -1.992 0.748 -2.665 0.009 ** Subjective norm 29.56
Autonomy 0.139 0.056 2.505 0.014 * Result demonstrability 28.03
Self-efficacy 1 ("Prefer to use BCI alone, at home") 0.758 0.339 2.234 0.028 * Playfulness 27.67
Subjective norm 0.117 0.059 1.987 0.050 * Perceived ease of use 24.94

PERCEIVED USEFULNESS
Residual Std. error: 1.265 - R²: 0.746 - Adjusted R²: 0.648 % Variance explained: 79.64

(Intercept) -0.306 1.413 -0.217 0.829
Scientific relevance 0.773 0.102 7.571 1.88 x 10-11 *** Scientific relevance 100
Computer anxiety 0.125 0.055 2.250 0.027 * Perceived ease of use 33.54

PERCEIVED EASE OF USE
Residual Std. error: 1.682 - R²: 0.636 - Adjusted R²: 0.513 % Variance explained: 57.76

(Intercept) 1.947 1.799 1.082 0.282
Ease of learning 0.522 0.091 5.716 1.05 x 10-7 *** Ease of learning 100
Playfulness 0.285 0.101 2.809 0.006 *** Playfulness 83.21

Subjective norm 80.86

TABLE 3: Regression results for the target factors (BI2, PU2, PEOU). For the patients, only the factors with significant p-value are
displayed.
Pr(>|t|): probability of observing any value equal or larger than t (corresponds to p-value). Estimate: corresponds to the slope of the equation (“b”
value). ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05. For the general public, random forest regressions (500 trees and 5-fold cross-validation), were used. Importance
values are the mean decrease accuracy (%IncMSE), scaled from 0 to 100.

tients want human guidance and expect to be accompa-
nied by a caregiver when using a BCI, unlike the general
public, who prefer a help system integrated into the com-
puter. It is also interesting to note that patients have sig-
nificantly higher perceived autonomy and lower computer
anxiety than the general public. This shows that therapists
or patients’ relatives should not consider these factors as
obstacles to offering patients a new type of rehabilitation
technology such as BCI (i.e. not thinking that it is a bad
idea for patients because they would have a fear of tech-
nologies, for example).

Regression analyses revealed that the intention to use BCIs
was mainly motivated by the perceived usefulness of the
system, itself mainly influenced by scientific relevance of
BCIs in functional rehabilitation. Subjective norm likewise
had a small but significant influence on acceptability. These
factors were also important for the general public.
In line with those of the descriptive analyses, these results
highlight the importance of scientific evidence and scien-
tific communication not only to patients, but also to clin-
icians and the general public, as social norms (i.e., sub-
jective norm and image) play an important role among pa-
tients.

In addition, within patients, individual differences showed
a significant impact on the intention to use BCIs (it was not
the case in the general public): the weight of psychological
variables is greater in people who have suffered a stroke, as
shown by the importance of computer anxiety and auton-
omy. It appears also that patients who prefer to use the BCI
alone, at home (i.e. higher level of self-efficacy), are more
likely to want to use a BCI in their rehabilitation, which
is coherent with existing recommendations [14]. Reducing
patients’ anxiety and taking into account their perceived
autonomy and self-efficacy is also something that could
be achieved by personalising BCI protocols. For example,

by proposing training sessions where the degree of support
provided by a therapist can be modulated.
As for the general public, among the patients, ease of learn-
ing and playfulness were the main determinants of per-
ceived ease of use. Thus, with regard to the lower pa-
tients’ perceived ease of use score, the aim is to improve
this target factor by making it easier for patients to learn
how to use the BCI. One way can be to personalise BCI
protocols depending on patients’ profiles, with the aim of
making learning easier and more enjoyable for them. For
instance, instructions must be clear and the feedback moti-
vating. These findings are consistent with the guidelines for
successful MI-BCI training [9] and with studies on gami-
fied rehabilitation processes [30, 31].

CONCLUSION

This study provides insights on how to foster BCI accept-
ability, notably by better informing the patients and the
general public on the scientific evidence related to BCIs
and by personalising rehabilitation procedures to facilitate
learning. One next step will consist in adopting the same
approach with clinicians in order to understand the condi-
tions for a high acceptability of BCIs, be they related to
scientific, technical or organisational aspects.
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ABSTRACT: One important question in neurofeedback 

(NF) research is the mastery of self-regulation and the 

generalizability of the NF training results. Here, we 

investigated whether NF users can voluntarily increase 

the Sensorimotor Rhythm (SMR, 12-15 Hz) activity 

during repeated NF training sessions while receiving 

visual feedback and if they can also increase SMR during 

subsequent transfer sessions without any feedback. We 

also assessed the used mental strategies during the 

sessions. Nine healthy adults received real feedback, nine 

received sham feedback. Only the real feedback group 

was able to linearly increase SMR within the six NF 

training sessions. However, they could not increase SMR 

during the transfer sessions. Participants reported 

multiple different mental strategies during NF training as 

well as during transfer sessions with different success 

rates. These results indicate that participants were not 

able to transfer successful mental strategies to other 

situations after six sessions of SMR-based NF training.  

 

INTRODUCTION 

 

In neurofeedback (NF) applications, users can learn to 

voluntarily modulate brain signals, in most cases the 

electrical brain activation recorded with the 

electroencephalogram (EEG), in a desired direction 

through real-time feedback. The aim is to intentionally 

reinforce EEG patterns that are associated with optimal 

cognitive or motor processes. Successful NF training can 

consequently lead to cognitive, motor, or affective 

improvements [1]. However, long-term effects of NF 

training or transfer effects are hardly investigated [2]. 

Users have varying degrees of success in regulating their 

own brain activation during NF training. Up to 30% of 

NF users are so-called non-responders and the exact 

reasons for this inability are still open [3]. The mental 

strategies used appear to be an important predictor of the 

success of NF training. In SMR-(12-15 Hz) based NF 

training studies, it turned out that participants report 

many different mental strategies during NF training with 

different success rates [4-6]. The use of no specific 

mental strategy seems to be advantageous to upregulate 

the SMR over central brain areas [6]. But there are also 

other successful mental strategies reported to increase 

SMR activity during NF training [4-6].  

In this context, the question arises as to whether NF users 

can transfer mental strategies that they use during NF 

training to increase SMR to other situations where they 

do not receive real-time feedback via NF training. In 

theory, learning how to up-regulate SMR at a given time, 

which should lead for instance to improved cognitive 

performance [1, 7], should be transferable to other 

contexts (e.g., school, work) without real-time feedback 

of one’s own brain activity [8]. In the present study, we 

investigated the ability of NF users to increase SMR 

during NF training receiving visual feedback of SMR 

changes as well as subsequent transfer sessions without 

any feedback of one’s own brain activity. Additionally, 

we assessed the used mental strategies during NF training 

and the transfer sessions to see whether the same 

strategies lead to an increase in SMR in both NF and 

transfer sessions, or not. 

Gruzelier [2, pp. 18] mentioned in his review article that 

the ultimate goal of NF training is the mastery of self-

regulation and that this can be evaluated using transfer 

trials where the participants do not receive any feedback 

or reward. Such transfer trials are generally included in 

slow cortical potentials (SCP) NF training (e.g., [9]). 

However, a differential process analysis is lacking. For 

instance, Gevensleben et al. [10] included transfer trials 

without contingent feedback in their NF protocol and 

also gave home-work. NF users were required to practice 

their focused mental state, which they should achieve 

during NF training, at home. However, NF training 

results or changes in EEG activity during transfer trials 

were not reported [10]. In a SCP-based NF study by 

Barth et al. [11], EEG activity during transfer trials were 

reported. However, as in the other SCP NF studies using 

transfer trials, no feedback was presented during the 

transfer trials but participants received reinforcement 

following the transfer trials in case they had regulated in 

the desired direction often in form of a smiley. The 

authors used the transfer trials to categorize the NF users 

in learners and non-learners. Changes in SCP during NF 

and transfer trials were not directly comparable [11]. 

Kleih-Dahms et al. [12] reported SCP results of single 

subjects for NF and transfer trials. It turned out that in 

some NF users, SCP changes were not present in transfer 

trials while in other users, SCP changes were even 

stronger during transfer trials than during NF trials. In 

this study, mental strategies during SCP regulation were 

assessed as well. However, they did not differentiate 

between mental strategies used during NF and transfer 

trials [12]. 

In the present study, we investigated changes in SMR 

activity during repeated NF training sessions as well as 
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in subsequent transfer sessions. We also assessed the 

used mental strategies during NF training and transfer 

trials. To rule out possible placebo or unspecific effects 

[13,14], we also included sham control groups receiving 

fake feedback. We expect that the real feedback group 

should be able to increase SMR activity during NF 

training, while the sham group should not show linear 

increases in SMR activity. In line with previous NF 

studies, NF users should report many different mental 

strategies with different success rates during NF training 

[4-6]. According to previous SCP-NF studies [11,12], 

there might be differences in changes in EEG activity 

during the NF and transfer trials.  

 
MATERIALS AND METHODS 

 
     Participants: Eighteen participants were randomly 

assigned to two groups. One group received real 

feedback of their own SMR activity (N = 9, 5 females, 

average age = 25.7 years, SD = 3.02), one group received 

sham feedback by receiving feedback of another 

participants’ EEG recording (N = 9, 5 females, average 

age = 22.8 years, SD = 2.96). All participants signed a 

consent form. The study was approved by the ethics 

committee of the University of Graz, Austria (GZ. 

39/9/63 ex 2019/20).  

     Design and procedure: All participants performed in 

sum 9 sessions on different days within 3 weeks. The first 

session was an instructional session where participants 

should be relaxed but mentally focused but did not get 

any visual feedback of their brain activity. In session 2 to 

7, NF training was performed. Participants of the real 

feedback group received feedback of their own SMR 

activity (12-15 Hz) over Cz via visual feedback. The 

sham group saw the same visual feedback screen but the 

movement of the visual feedback was not related to their 

own brain activity. It showed changes in SMR activity 

recorded in another participant. The last two sessions 

were transfer sessions. In these sessions, participants 

should try to reach the mental state they had during the 

NF training sessions without getting any visual feedback. 

Session 8 was performed directly after the last NF 

training session, session 9 one week later. 

     Neurofeedback training: During NF training, 

participants received visual feedback. Changes in target 

EEG activity were depicted by vertically moving bars. 

Three bars were depicted on a conventional computer 

screen. The bar in the middle of the screen depicted 

changes in SMR (12-15 Hz) power. The bar on the left 

side of the screen showed changes in theta (4-7 Hz) 

power (to control for eye movement artifacts) and the bar 

on the right side of the screen depicted high beta (21-35 

Hz) power (to prevent the participants from producing 

too many muscle artifacts). Per NF training session, 7 

three-minute runs were performed. The first three-minute 

run was a baseline run. Here, participants were instructed 

to relax and watch the moving bars without trying to 

control them. This baseline run was used to define 

individual threshold values per participant (median SMR 

value for middle bar, median + 1 SD for theta and beta 

bars). The subsequent six runs were feedback runs where 

participants were instructed to increase the size of the 

middle bar while keeping the bars on the left and right as 

small as possible. An increase in EEG power led to an 

increase in size of the bar and vice versa. When the SMR 

bar exceeded its threshold and theta and beta bars were 

below their thresholds, the bars turned green, and a 

reward counter increased. Otherwise, the bars turned red. 

Participants were instructed to be physically relaxed and 

mentally focused and concentrated to increase SMR 

activity. This NF protocol has been successfully used in 

previous NF studies to increase SMR while controlling 

artifact activity (e.g., blinking, muscle activity) [5-7]. 

EEG recording and analysis: 12 EEG electrodes were 

recorded (F3, Fz, F4, C3, C1, Cz, C2, C4, CPz, P3, Pz, 

P4) using a g.USBamp 16 channels standard amplifier 

(g.tec, Austria). A linked mastoid reference was used, the 

ground was placed at FPz. Vertical and horizontal EOGs 

were placed on the outer canthi of the eyes and superior 

to the nasion. Impedances were kept below 5 kOhms for 

the EEG electrodes and below 10 kOhms for the EOGs. 

EEG signals were digitized at 256 Hz and filtered with a 

0.5 Hz high-pass and a 60 Hz low-pass filter. To analyze 

the EEG data, the Brain Vision Analyzer software 

(version 2.2, Brain Products GmbH, Germany) was used. 

Ocular artifacts such as eye blinks were corrected using 

an automatic ocular correction method (Gratton & 

Coles), followed by a semi-automatic artifact rejection 

(criteria for rejection: >50.00 μV voltage step per 

sampling point, absolute voltage value >±150.00 μV, 

lowest allowed activity in 100 ms intervals: 0.5 µV, 

maximal allowed difference of values in 200 ms 

intervals: 200 µV). All data points with artifacts were 

excluded from further EEG analysis. Absolute SMR 

power values recorded over electrode position Cz were 

extracted by means of complex demodulation (Brain 

Products GmbH, 2009). Power values were averaged per 

run. 

     Mental strategies: To assess the mental strategies the 

participants used to modulate SMR in the desired 

direction during NF training as well as during the transfer 

session, participants had to write down the mental 

strategies used after the first and the last NF training 

session as well as after the last two transfer sessions. The 

verbal descriptions were classified by two independent 

raters in different categories in accordance with prior 

studies [4-6]. The categories were: Visual (focusing on 

visual things, e.g., visual properties of the feedback 

screen), Cheering the feedback bars on, Breath 

(concentration on one’s own breathing), Auditory 

(thinking of auditory stimuli), Concentration, Body 

(focusing on one’s own body or bodily sensations), 

Relax, Cognitive (e.g., mental calculations), No Strategy 

(reporting to have no specific strategy, to do nothing in 

particular), Other Strategies. Inter-rater reliability was 

sufficiently high (across all categories: Kappa = 0.6). 

Participants reported generally multiple strategies during 

the sessions.  
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     Statistical analysis: To define successful NF training 

performance, we analyzed changes in SMR power within 

NF training sessions across feedback runs. This is in line 

with prior studies showing changes in SMR power within 

NF training sessions but not between training sessions 

(e.g., [7]). A linear increase in SMR power across NF 

runs within a training session is an indicator for 

successful voluntary up-regulation of SMR activity at a 

given time and voluntary phasic EEG changes, which 

does not necessarily be related to changes in tonic or 

background EEG measures indicated by SMR changes 

across sessions [1,7,15,16].  

Hence, to quantify NF training performance, we 

performed linear regression analysis with SMR power as 

dependent variable and NF run number (averaged across 

all NF training sessions) as predictor variable for each 

participant. The resulting regression slope was used as 

indicator for NF training performance. A positive slope 

is a sign of a linear increase in SMR power across NF 

training runs, while a negative slope is a sign of 

unsuccessful training. These regression slopes were then 

compared to zero using t-tests against zero per group. 

Alpha (0.05) levels were adjusted using Bonferroni 

correction, normal distribution was given. 

Furthermore, t-tests were used comparing average SMR 

power across all NF sessions with average SMR power 

of the transfer sessions (session 8 and 9).  

To analyze the mental strategies descriptively, we 

calculated the percentage of participants reporting a 

specific strategy per session, averaged over the 

classification results of both raters. Then, we calculated 

the average regression slope (changes in SMR power 

over the runs within a session) per reported mental 

strategy to determine which mental strategy was 

associated with a successful or unsuccessful SMR 

increase and if successful mental strategies during NF 

training were also successful during the transfer sessions. 

Note that we only report on the mental strategies used by 

the real feedback group.  

 

RESULTS 

 

In a first step, we analyzed changes in SMR power within 

NF training sessions. The real feedback group could 

successfully increase their SMR power over the NF runs 

within the NF training sessions. Comparing the slopes of 

SMR power across the feedback runs against zero 

showed a significant difference for the real feedback 

group (t(8) = 3.20, p = 0.01) but not for the sham 

feedback group (t(8) = 0.32, p = 0.76) (Fig. 1).  

During the transfer sessions (Fig. 2), neither the real 

feedback group (t(8) = -0.90, p = 0.40) nor the sham 

feedback group (t(8) = 0.45, p = 0.67) showed a 

significant linear increase in SMR power across runs. 

Absolute SMR power across the NF sessions was 

numerically higher in the real feedback group than in the 

sham feedback group and higher during the NF training 

sessions than during the transfer sessions (Fig. 3), but 

there were no statistically significant differences. 

 

Figure 1: Mean changes in SMR power [µV2] per group 

across feedback runs within NF training sessions. Error 

bars show SE. 

 

 

Figure 2: Mean changes in SMR power [µV2] per group 

across runs within transfer sessions. Error bars show SE. 

 

 

Figure 3: Mean changes in SMR power [µV2] per group 

across sessions. Error bars show SE. 

 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-033

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

187



The analysis of the mental strategies revealed that 

participants used many different strategies during the NF 

training sessions as well as during the transfer sessions 

(Fig. 4). Across all sessions, Concentration was mention 

most often, followed by Cognitive and Visual strategies. 

The frequency of the usage of a specific strategy changed 

over sessions, but in many cases, the strategies were more 

frequently used during the NF sessions than during the 

transfer sessions (e.g., Visual, Cheering, Auditory, 

Concentration, Relax). The breathing strategy was more 

frequently used during the transfer sessions compared to 

the NF sessions. This mental strategy turned out to be the 

most successful one during NF training indicated by 

positive regression slopes. However, this strategy was 

not successful during the transfer session as shown by 

negative slopes (Fig. 5). The Visual strategy seemed to 

be as successful during the first transfer session as during 

the NF training sessions. No Strategy was the most 

successful one during the transfer sessions.  

 

Figure 4: Percentage of participants reporting a specific 

mental strategy during the first (NF1) and the last NF 

session (NF2) and during the last two transfer sessions 

(Transf 1 & 2).  

 

Figure 5: Slopes of linear changes in SMR power across 

runs within training sessions for the different mental 

strategies during the first (NF1) and the last NF session 

(NF2) and during the last two transfer sessions (Transf 1 

& 2).  

DISCUSSION 

 

Here we focused on the question of mastery of self-

regulation of SMR activity during NF training and the 

generalizability of the NF training results. We were 

interested in the ability of NF users to increase SMR 

during transfer trials without any feedback and the used 

mental strategies during NF training as well as transfer 

trials. 

In line with previous SMR-based NF training studies, 

participants in the real feedback group were able to 

linearly increase SMR activity within NF training 

sessions, while the sham group showed no linear SMR 

increases [1,7,15,16]. This indicates that the real 

feedback group was able to increase the target EEG 

feedback frequency at a given time and that NF learning 

happened when receiving real-time visual feedback in the 

real feedback group. 

Although the real feedback group showed some form of 

learning during the NF training sessions, participants 

were not able to transfer these mental states to a situation 

without real-time feedback of one’s own brain activity, 

at least after six sessions of NF training. Hence, they did 

not show a linear increase in SMR activity during the 

transfer sessions as in the NF sessions. So far, transfer 

trials were mainly used in SCP-based NF training 

protocols [8-12]. Most of these prior SCP studies did not 

report on SCP changes during the transfer trials. Studies 

reporting changes in SCPs during transfer trials reported 

heterogenous results [11,12]. Some participants managed 

to transfer successful self-regulatory processes to 

situations without feedback, others did not [12]. Kleih-

Dahms et al. [12] defined the start of the transfer trials 

individually depending on the SCP control during NF 

training. When participants successfully controlled their 

SCP, transfer trials were included in the NF training. This 

took between 15 and 17 sessions [12]. In this study, we 

analyzed group data rather than individual data. Transfer 

sessions started after the sixth NF training sessions. It 

may be beneficial to customize the start of transfer 

sessions based on NF training performance also in SMR-

based NF training protocols. 

Participants tried multiple different mental strategies 

during NF training as well as during the transfer sessions. 

This is in line with prior SMR-based NF training studies 

that also analyzed the used mental strategies [4-6]. These 

prior studies also consistently revealed that the strategy 

“Concentration” is one of the most frequently reported 

mental strategy during SMR-based NF training [4-6], 

which might be caused by the instruction of being 

physically relaxed but mentally focused and concentrated 

during NF training. “Visual” and “Cognitive” strategies 

are also often mentioned by participants to increase SMR 

during NF training [4-6]. But the most frequently 

mentioned mental strategies are not necessarily the most 

successful. As in previous studies, breathing strategies 

are rarely used, but are among the most successful 

strategies during NF training [4-6]. Surprisingly, these 

breathing strategies were no longer successful in the 

transfer trials, although even more participants reported 
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using them. The “Visual” strategy seemed to be as 

successful during the first transfer session as during the 

NF training sessions. In the transfer sessions, participants 

mentioned here to visualize the moving bars which they 

have seen in the previous NF sessions. This strategy 

successfully led to an increase in SMR power over the 

runs of the first transfer session, which was performed 

directly after the last NF training session, but not of the 

second transfer session, which was performed one week 

after the first transfer session. Having no specific mental 

strategy (“None”) turned out to be the most successful 

one during transfer trials. Previous SMR-based NF 

training studies also showed that NF users that learned to 

increase SMR successfully also stopped to use any 

specific mental strategy [6]. An uncontrolled attempt to 

use too many mental strategies at once or alternately 

could overload cognitive resources and could be 

detrimental to the mental state needed to produce SMR. 

 

 

CONCLUSION 

 

We could not show that NF users are able to transfer 

mastery of self-regulation of SMR activity achieved 

during NF training to other situations without visual 

feedback. Also, successful mental strategies used during 

NF training could not be transferred. An individual 

adjustment of the start of the transfer sessions depending 

on the NF training success could be useful and should be 

investigated in future studies. 
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ABSTRACT: Emerging brain-computer interface (BCI) 
systems may aim to develop invasive implantable systems 
to restore functionality in people with paralytic disabili-
ties and to deliver adaptive brain stimulation (ABS) to 
treat severe neurological disorders. A key characteristic 
of next-generation implantable systems will be their ca-
pability to record extended periods of local field poten-
tial (LFP) data. Timely transfer of the recorded LFPs 
to the clinical team is crucial for monitoring the im-
planted system’s reliability, safety and to dynamically 
enhance BCI and ABS applications in response to chang-
ing brain states. Our team is developing a comprehen-
sive therapeutic BCI ecosystem that combines the Cortec 
BrainInterchange hardware with the BCI2000 software 
environment. We have designed an architecture that 
seamlessly integrates recorded neural signals with de-
vice performance metrics, delivering these insights to 
the care team through a cloud-based interface. In or-
der for future centers-of-excellence to be able to deliver 
care with clinical BCIs, closed-loop algorithms will need 
be able to be dynamically updated without physically 
interacting with the patient for each adjustment. Our 
BCI ecosystem is currently being tested with canine sub-
jects, and this manuscript describes how device function 
(impedance measures) and brain data (LFP signals) were 
measured daily for an 8 week period following implanta-
tion through the cloud interface. Cloud based data syn-
chronization for implantable brain technologies is essen-
tial for dynamic re-calibration of reliable and safe BCI 
and ABS therapies in the clinical setting.

INTRODUCTION

Recent advancements in the field o f i mplantable neu-
rotechnology have enabled continuous streaming of lo-
cal field p otential d ata ( LFP) s panning y ears, mainly 
thanks to rechargeable batteries. Some applications of 
such devices focus on seizure monitoring and optimizing

epilepsy treatment [1–5], while others focus on brain-
computer interface (BCI) applications for people with
paralytic disabilities [6].
The CorTec Brain Inter-Change (BIC) device aims to de-
velop an advanced ecosystem with BCI2000 to facilitate
chronic data recording to restore functionality in people
with paralytic disabilities [6] as well as to deliver adaptive
brain stimulation (ABS) as a treatment for severe neuro-
logical disorders [7]. Initial developments have demon-
strated the utility of such a system and its capability to
record clinically relevant data [7, 8].
Worrell and his team have demonstrated the utility of
an implantable system for continuous LFP streaming to
track primary markers of epilepsy and its comorbidities,
including interictal epileptiform discharges, seizures,
sleep, cognition, and mood [3, 5, 9–11].
The transfer of LFP data recorded from implantable neu-
rostimulators to the clinical team is a critical task en-
abling remote supervision of autonomous implantable
systems and facilitating the improvement of algorithms
for BCI and ABS applications [9].
This work describes progress in the development of an
ecosystem for BCI and adaptive neuromodulation in hu-
mans by documenting efforts to integrate the CorTec
BrainInterchange (BIC) device with BCI2000 [12] and
a cloud interface to transfer LFP data from a computer
interacting with the implanted device into a research stor-
age compliant with BIDS data structure [13].

MATERIALS AND METHODS

Recording System: The Brain Interchange (BIC) unit
(CorTec GmbH) is an implantable battery-less research
system with customizable leads, offering up to 32 chan-
nels and inductive powering. BIC is capable of simulta-
neous recording from all 32 channels with a 1 kHz sam-
pling rate and generating stimulation pulses with a maxi-
mum frequency of 200 Hz, an amplitude of 6.12 mA, and

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-034

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

190



a pulse width of up to 2.5 ms. The BIC unit consists of
three pieces (Fig. 1): the implanted device, the headpiece
for inductive powering of the implanted device, and the
communication unit [8].

Figure 1: Experimental CorTec Brain Interchange im-
plantable system. A) The Brain Interchange device in 3 grid
electrode configurations with an additional ground electrode.
B) The headpiece connects to the device magnetically and in-
ductively powers the brain implant. The communication unit is
plugged into a Windows computer and facilitates wireless com-
munication and real-time data streaming from the implanted
device. C) The configuration of the implanted electrodes. D)
Electrode dimensions for the electrode with 12 contacts.

Cloud Synchronization and Data Storage: Electro-
physiology data recorded using the implanted BIC de-
vice and BCI2000 ecosystem [12] are manually stored
on the Recording Windows Computer in the “Drop direc-
tory”. This data is already organized in the subject- and
session-oriented file scheme compliantly with the BIDS
data structure [13]. Data is automatically transferred over
to a cloud storage platform and further synchronized to
its final destination, which in our implementation is a re-
search Linux server. The data is automatically converted
into MEF3 format and stored in BIDS format with cor-
responding annotation files (Figure 2). The original raw
data are preserved as well in the sourcedata folder.

Ethical Statement: This research was conducted under
Mayo Clinic IACUC protocol A00001713. According
to the State of Minnesota statute 135A.191, the canines
can be made available for adoption if for any reason
the research were to be discontinued. The intent of this
animal research is to test and develop a platform for
novel human therapeutics.

Subject: Canines present a promising translational
model for human implantable systems [1, 10]. Dogs

Figure 2: Data transfer flowchart. The developed data syn-
chronization system automatically transfers and converts files
generated by BCI2000 on the Recording Windows Personal
Computer (PC). Brain signals are recorded using the BCI2000
platform connected to the implanted CorTec BIC system. The
recorded data is stored in a “Drop Folder” in a subject- and
session-oriented storage scheme designed for seamless conver-
sion into the BIDS data format [13]. The data is automatically
transferred to a Google Cloud storage as a data transfer platform
and subsequently converted into MEF3 format and stored com-
pliantly with the BIDS data organization scheme. The example
in this figure represents a scheme for one subject “c002” with
two sessions called “baseline1” and “CCEP1”.

share an evolutionary history with humans and are a
promising model for studying behavior, sleep, and neu-
rological disorders [14, 15]. Moreover, canines are large
enough to accommodate human-sized electrodes and de-
vices, and canine neurological disorders share features
with humans [9, 10].

One adult female intact beagle was housed on a 12/12
light cycle and fed approximately two cups of Lab Diet
5L18, with water provided ad libitum. The animal was
housed in temperature-controlled rooms with elevated
floors that met all size, material, and sanitation require-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-034

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

191



ments according to the Guide for the Care and Use of
Laboratory Animals and the Animal Welfare Act. The
animal was provided with mats and daily enrichment
through assorted treats, chew toys, and human interac-
tion. Animals were socially housed and were assessed
daily by a team of veterinarians.

Implant Surgery: Pre-surgical magnetic resonance
imaging (MRI) - T1-MPRAGE and computed tomog-
raphy (CT) were utilized to segment brain and skull
anatomy. MRI imaging was coregistered to an existing
stereotactic atlas of a canine brain [16]. A full-scale
replica was 3D-printed using the MRI and CT scans (Fig-
ure 3). The 3D brain model aided in pre-surgical plan-
ning. The canine was implanted with a research 3-lead
CorTec BIC device. The surgery was performed using a
stereotactic targeting software, BrainLab, with a custom-
made stereotactic frame [10, 17]. Grid electrodes were
placed targeting primarily the Sensorimotor, Occipital,
and Temporal cortex (Figure 4).
LFP signals were recorded during the surgery under anes-
thesia and while the canine was waking up to assess the
signal quality. Post-surgical CT was utilized to detect in-
dividual electrodes.

Figure 3: Preoperative imaging and 3D print. A) Pre-
operative Magnetic Resonance Imaging (MRI) T1-MPRAGE
Sequence used for developing a 3D brain model and stereotactic
targeting. B) Pre-operative Computed Tomography (CT) used
for developing a 3D brain model and stereotactic targeting. C)
A full-scale 3D-printed model aiding in surgery planning. D)
Post-operative CT with distinct metal artifacts caused by the
implanted electrodes.

Long-term Recording Protocol: A recording protocol
was designed to validate the recording stability of the
implanted BIC system. The impedance of all electrodes
was measured daily along with a set of three 3-minute
recordings, each with a different reference electrode.

Reproducible Research - Data & Code Sharing:
The authors are committed to sharing data and code
to facilitate reproducible research. All codes uti-
lized and developed within this project beyond the
BCI2000 ecosystem are publicly available on GitHub

as Python software packages: Behavioral State Analy-
sis Toolbox (BEST) (https://github.com/bnelair/
best_toolbox) and Mef Tools (https://github. 
com/bnelair/mef_tools). The data were published as 
a dataset called Intracranial recordings using BCI2000 
and the CorTec BrainInterchange on OpenNeuro [18].

RESULTS

We integrated the CorTec BIC system with BCI2000 
with a cloud data synchronization system [1, 12]. The 
developed data synchronization system automatically 
transfers LFP recordings from the acquisition computer 
running BCI2000 to a cloud environment and further 
to the hospital. We demonstrated that such a system 
can serve for long-term monitoring of the technical 
parameters of the implanted system, as well as the LFP 
recordings.

The implanted BIC system has demonstrated sensitiv-
ity to LFP changes related to different behavioral states 
(anesthesia during surgery vs. wakefulness). LFP 
changes were dominant in lower frequencies below 25 
Hz (anesthesia vs. wakefulness: > 30 dB vs. 20 dB) (Fig. 
4). Subsequently, we monitored the dog for 40 days after 
the implant surgery using 3-minute LFP recordings ev-
ery day along with collecting impedance measurements. 
The electrical impedance and LFP power stabilized after 
20 recording days, which corresponded to an increase in 
the signal power (Fig. 5). We also identified 4  channels 
with either permanently high impedance (>5 kΩ) or sud-
den impedance changes. These channels were excluded 
from subsequent analysis.

DISCUSSION

Multiple chronic implantable BCI systems are currently 
being developed with the aim of restoring functionality 
in paralyzed people and providing ABS for neurological 
conditions such as epilepsy, movement disorders, stroke, 
and others [1, 7].

LFPs recorded by an implantable system are a key data 
source in assessing the system performance and 
reliability while patients live their lives in a home envi-
ronment. The performance of any implantable system in 
BCI or adaptive DBS applications might be significantly 
impacted by medication-induced LFP changes or high 
electrode impedance caused by compromised channel 
integrity. These factors can jeopardize the performance 
of detection algorithms crucial in BCI and responsive 
DBS applications.

Timely delivery of LFP signals and technical health 
information from the implanted systems from a patient 
home environment to a clinical team with minimal 
patient and physician effort is, therefore, an important 
task to ensure continuous safety and efficacy o f the
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Figure 4: Post-surgical rendering and LFP recording. A) A
surface rendering of the leads secured to the skull. B) A vi-
sualization of all 32 channels distributed among 3 leads placed
over Sensorimotor Cortex, Occipital Cortex and Temporal Cor-
tex [16]. Red color symbolizes electrodes with impedance > 5
kΩ at any time of chronic recording. C) A power spectrum den-
sity (PSD) of the iEEG signals recorded during deep anesthe-
sia. D) iEEG PSD for the canine waking up from the anesthesia
manifests different power in low frequencies compared to deep
anesthesia.

implantable system. Data of interest can include LFP
recordings, electrode impedance, battery level, amount
of delivered stimulation, and any other data that might be
beneficial to monitor [1, 2].

Here, we integrated an experimental BCI system (CorTec

Figure 5: Impedance and recording demonstrated over the
first 40 recording days. A) Impedance average calculated over
all channels for each implanted lead (sensorimotor cortex, oc-
cipital cortex, and temporal cortex) decreases and stabilizes
over the first 10-20 days after the implant. B) Power spec-
trum density mildly increases over time corresponding to the
impedance decrease. C) Gradual power increase demonstrated
using power in the band (PIB) visualization for bands 0-40 Hz,
40-70 Hz, and 70-170 Hz.

BIC) with an open-source software platform for non-
commercial use, BCI2000, which integrates multiple
recording and stimulating systems to record, process
data, and stimulate using a single platform. Recorded
data is automatically synchronized over a cloud interface
into a BIDS structured data storage. We demonstrated the
feasibility of such a system in one canine implanted with
CorTec BIC that was monitored daily for 40 days after
the implant surgery. The utility of the proposed system
and the need for the collection of technical and LFP data
from implanted devices were demonstrated by revealing
and identifying faulty channels and monitoring changes
in the signal power related to impedance stabilization
after the implant.

The cloud-based interface allowed us, in simulation of a
remote interaction, to identify sources of packet loss, in-
cluding A) sensitivity of the Communication Unit orien-
tation towards the implant with a data dropout rate rang-
ing from 1-20%, depending on orientation; B) Interfer-
ence with surrounding wireless devices. Both of these
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shortcomings can be overcome by careful experiment de-
sign and/or by implementing a multi-directional antenna
in the Communication Unit. Initial experiments show au-
tomatic reconnecting of the BCI2000 to the implanted
BIC can significantly improve data transmission. The
BIC is powered inductively, and the headpiece magnet
can be a point of connection loss during extended periods
of time, exacerbated by animal movement. Notably, the
canine represents a particularly challenging subject due
to the range and frequency of movements. The system
can easily be improved but will likely be adequate for ap-
plications in people with restricted movement, e.g., the
locked-in syndrome [6].

CONCLUSION

BCI systems have the potential to improve the quality of
life for many patients with neurological disease, but ther-
apeutic interventions will require scalability beyond the
attention of technical experts directly interacting with the
patient. Cloud-based interfaces like the novel one that we
demonstrate here, will enable trained technicians to inter-
act with patient devices from a distance. We demonstrate
regular interaction with our nascent ecosystem for eight
consecutive weeks post implant, without disruption.
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ABSTRACT: We analyzed the electrocorticographic 
signals of 3 patients implanted with subdural electrode 
arrays for identification of seizure foci. Patients 
performed screen cue-based flexion movement of the 
thumb or index finger, or a pinch movement of both. 
Broadband power changes with each movement were 
estimated. Topological maps for each type of movement 
were created using co-registered brain renderings, and 
the overlap in spatial extent was quantified using a 
resampling metric. Activation during pinching was 
compared with thumb flex, index flex and three 
composite metrics: the maximum, the geometric mean 
and a modified geometric mean. Significant increase in 
broadband power was observed in all three patients 
when pinch (max signed r2 0.64-0.80-0.89), thumb 
flexion (0.63-0.72-0.89) or index flexion (0.66-0.67-
0.83) was performed compared to rest. Spatial overlap 
was highest between pinching and index flexion (69-
87%, all p< .001), followed by the modified geometric 
mean (61-96%, all p< .001), while thumb flexion had 
the lowest overlap of all analyzed metrics (27-77%, 
significant in 2/3).  
 
INTRODUCTION 
 
The hallmark of human motor behavior is the ability to 
perform fine individual finger movements. Dexterous 
hand gestures are essential to carrying out activities of 
daily living and can be considered as a combination of 
individual finger movements with varying degrees of 
freedom, particularly flexion and extension. 
Interestingly, certain moves, including reaching, 
grasping (palmar or pincer), transporting, and placing 
have been previously proposed as motor primitives that 
represent building blocks to execute an overall goal-
directed action, such as a monkey reaching for a seed, 
grasping it, bringing it towards the mouth and finally 
eating it [1].  
Whether the neural representation of composite moves 
is equal to the linear summation of their constituents 

(e.g. palmar grasp vs concurrent all-finger flexion) or 
non-linear and therefore, not easily predictable, remains 
unknown and it is an area of ongoing electrophysiology 
and imaging research [2,3]. Recordings of the human 
brain cortical surface the last 30-40 years have revealed 
movement-related signals over the motor and sensory 
regions with high accuracy [4–7]. Specifically, 
electrocorticography (ECoG) experiments have 
demonstrated that hand and tongue movement are 
associated with spatially focal but spectrally broadband 
changes in the frontoparietal cortex [6,8]. Distinct 
individual finger movements have been identified with 
electrode spacing resolution as low as 1cm using 
subdural recordings [9].   
The spectral and spatial relationship between individual 
finger movement and synergistic action has not yet been 
fully elucidated, and the extent to which grasping 
movements represent sums of the individual finger 
moves or activate different brain areas, e.g. premotor 
cortex, (posterior) parietal cortex etc. Herein, we report 
our findings in 3 young patients with medically 
refractory epilepsy that underwent invasive ECoG 
recordings as part of their seizure workup. We 
demonstrate the spatially focal spectral changes that 
occur with thumb flexion, index flexion and pinching 
and compare these three movement types in their spatial 
overlap. 
 
MATERIALS AND METHODS 
 
     Ethics statement: All patients participated in a purely 
voluntary manner and provided informed consent, based 
on protocols approved by the Institutional Review 
Board of the University of Washington, Seattle.  
     Patient population: We recruited 3 patients (2 
females, aged 18, 21 and 19 years) that underwent 
invasive clinical EEG monitoring for localization of 
seizure foci as part of their workup for medically 
refractory epilepsy using subdural ECoG grids.  
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     Electrical recordings: The platinum ECoG arrays 
were configured as a combination of grid (8x8 or 4x8) 
arrays and strip arrays, numbering a total of 32 to 81 
contacts (i.e. channels). The diameter of the electrode 
contacts was 4mm and the inter-electrode distance was 
10mm. These arrays were surgically placed by one of 
the senior authors (J.G.O). The ECoG signals were split 
into two identical sets, one towards the clinical EEG 
system (XLTEK, Oakville, Ontario, Canada) and the 
research set was recorded using the Synamps2 
(Neuroscan, El Paso, TX) biosignal amplifiers at 1 kHz 
with a bandpass-filter at 0.3-200 Hz. Finger position was 
recorded using a sensor dataglove (5DT, Irvine, CA). 
The general purpose BCI2000 software was used for 
stimulus presentation and ECoG signal data collection 
[10]. 
     Cortical rendering and electrode localization: The 
cortical surface from a preoperative MRI was rendered 
using either Freesurfer or Spm5 software in order to 
determine the relationship between the gyral anatomy 
and electrode position. The electrode positions were 
calculated after co-registering the post-operative 
computed tomography (CT) to the pre-operative MRI 
using the CTMR package by Hermes et al., 2010, which 
has been shown to accurately localize the electrode 
positions within a ~4mm error [11].  
     Movement tasks: Subjects were presented with a 
word cue displayed on a bedside monitor to perform the 
following self-paced movement tasks, each on a 
separate run: 1) pinching move between the thumb and 
the index finger or 2) individual thumb or index finger 
flexion. A 2-second rest trial (blank screen) followed 
each movement trial. There were up to 30 cues for each 
movement type. Segmentation of movement vs rest 
period was performed based on visual inspection of the 
data glove trace and marking the initiation and 
termination of movement. A total of 10-15 
movement/rest trials were completed for each task.  
     Signal pre-processing: The potential measured at 
each electrode was re-referenced with respect to the 
common average of all electrodes. Electrodes 
significant for artifact or epileptiform activity were 
visually inspected, removed from re-referencing and 
omitted prior to further analysis.  
     Power spectral snapshots: Power spectral snapshots 
using Welch’s method and a Hann window of 1s were 
generated for the entire experiment in each electrode as 
well as separately for movement and rest blocks. In 
addition, we mean-normalized the log power spectra by 
dividing the power spectrum for each trial with the mean 
electrode power spectrum. The frequency range of 
interest included 1-200 Hz.  
     Dynamic power spectrum: We generated time-
frequency approximations after convolving the voltage 
time-series data with a Morlet wavelet (10 cycles) in 
order to estimate the amplitude and phase of the signal 
across the frequency range for every point in time.  
     Power spectrum decoupling: We performed 
decoupling of the power spectra using a previously 
established method by Miller et al, 2009 [12]. In 

summary, we performed Principal Component Analysis 
(i.e. eigendecomposition) of the power spectral density-
covariance matrices (freq [f], chan [k], trials [q]). The 
resultant eigenvectors (principal spectral components-
PSCs) reveal which frequencies vary in power together 
and are ordered according to the value of the 
corresponding eigenvalue.  It has been shown that the 1st 
PSC corresponds to broadband spectra (i.e. spanning all 
frequency ranges), whereas the 2nd-4th PSCs typically 
capture rhythmic power spectral phenomena (i.e. mu 
rhythm, alpha rhythm etc). In addition, the projection of 
the dynamic spectrum onto the 1st PSC will yield the 
logarithm of the time course of the power spectrum 
power law coefficient P(f, t) = A(t)*f–χ [13]. This 
logarithm was subsequently smoothed with a Gaussian 
window (250 ms), z-scored and re-exponentiated in 
order to obtain the broadband trace plotted in Fig. 1. 
This broadband power time course has been shown to be 
a robust estimate of behaviorally relevant local cortical 
activity as well as predictive of the finger movement 
time course, as measured by the data glove [5]. Finally, 
we calculated the signed r2 cross-correlation values from 
broadband activity, between each movement modality 
(pinching, thumb flexion, or finger flexion) and rest. 
Movement trials were compared with the rest trials that 
followed the same movement type [14]. Thus, r2 
represents the percentage in variance in the joint 
distribution of movement-rest blocks, that can be 
explained by a difference in the movement and rest trial 
means, respectively.   

 
      
 
 
Quantifying spatial overlap: The spatial extent of 
overlap and degree of change in broadband power 
activity was quantified and compared using a 
resampling metric. In summary, for measures of type Xn  

and Yn (n denoting the electrode), the true overlap 
(OTXY) was calculated from the pairwise dot product of 
the broadband r2 value. The spatial overlap metric was 
calculated by dividing the true overlap with the 
maximum possible overlap (OMXY), by computing the 
dot product of distributions Xn and Yn assorted in 
ascending order. The electrodes were subsequently 
scrambled 106 times (n→m) and a surrogate overlap was 
obtained from each permutation (OSXY). Finally, p-value 
for statistical significance was estimated as the 
percentage of surrogate distributions OSXY that were 
greater than OTXY (or the percentage that were less in 
case OTXY<0). The methodology is graphically 
displayed in Fig. 2. The r2 electrode activation maps of 
the following conditions were compared with pinching 
[summarized in Table 1]: finger flexion, thumb flexion, 
their maximum value per channel, their geometric mean 
and modified geometric mean.  
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Table 1. Summary of metrics used for the analysis of 
spatial overlap with pinching.  

 
RESULTS  
 
     Spectral changes related to movement: Across all 3 
subjects, we observed significant increase in broadband 
power in the higher frequencies with movement and 
decrease in power in narrowband, lower-frequency 
oscillations (Fig. 1). Specifically, the maximum channel 
r2 values associated with movement were 0.63/0.72/0.89 
for thumb flexion, 0.66/0.67/0.83 for index finger 
flexion and 0.64/0.80/0.89 for pinching. Broadband 
power increases following each movement type were 
more spatially focused, whereas motor beta rhythm (12-
20 Hz) power decrease was more widely distributed 
over the cortical surface. Following decoupling of the 
power spectrum as described above, we projected the 
dynamic spectrum to the first eigenvector and recreated 
the log(broadband) timeseries. Following smoothing 
with a Gaussian window, z-scoring and re-
exponentiation, we found that the time course of 
broadband activation matched finger movement with 
high accuracy. 
     Somatotopy of movement-related spectral changes: 
The r2 activation values corresponding to each channel 
in the subdural grid were plotted on the 3D brain 
renderings for each individual finger movement type as 
well as their composite metrics (Fig. 3). In all three 
patients, spatial overlap between pinch and index 
flexion (69-87%, all p<.001) was considerably higher 
compared to pinch and thumb flexion (27-77%; 
significant in 2/3 patients). Furthermore, the modified 

geometric mean metric performed similarly or better 
compared to the index flex (61-96%), while the max 
(39-89%) and geometric mean (68-81%) metrics ranked 
in between.  

 
DISCUSSION 
 
In the present study, we analyzed the cortical activity in 
three patients implanted with subdural electrode arrays 
during three types of finger movement, i.e. thumb 
flexion, index flexion and pinching, and compared their 
spatial overlap in broadband activation. Overall, we 
observed the spatial overlap between pinching and index 
flexion to be significantly higher compared to thumb 
flexion, reflecting a considerably smaller digit 
movement of the latter during the combined motor 
behavior. This aligns with the results by Cramer et al., 
who demonstrated that the degree of muscle activation, 
such as force of squeezing, correlates with the volume 
of activated cortical tissue as measured by fMRI bold 
signal [15]. 
 

Condition Rationale 
Thumb flexion   

Constituents of pinching 
movement. Index flexion   

 
Maximum value of 
thumb flex, index 
flex 

Activation reflects the 
maximal activity evoked by 

each individual finger 
movement (i.e. the union of 

two activation sets). 
Geometric mean of 
thumb flex and 
index flex 

Activation reflects the average 
activity evoked by each 

individual finger movement 
(i.e. the intersection of two 

activation sets). 
Modified geometric 
mean of 
thumb flex and 
index flex 

Activation reflects the average 
activity evoked by each 

individual finger movement 
(i.e. the complement of the 

intersection of the non-
activation sets). 

Figure 1. Electrocorticographic (ECoG) activity in the 
right frontoparietal cortex during pinch movement and 
rest (subject 3). (A) Topological maps demonstrating 
focal broadband power increase and more widespread 
spatial distribution in motor rhythm (12-20 Hz) power 
decrease. (B) Spectral changes demonstrate excellent 
correlation with finger movement. (C) Power spectral 
density plot from the entire behavioral task showing 
decrease in low-frequency oscillations and broadband 
increase across the rest of the frequency range, during 
movement (red) compared to rest (black). (D) Time-
varying power spectral density plot during the same 
period of recording. The black trace inset represents the 
1st derivative of thumb movement. 
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To date, the majority of work investigating neuronal 
representation of multi-task computations is derived 
from simulated models, non-human primate recordings 
or human fMRI experiments [16,17]. Evarts’ pioneering 
work demonstrated linear relation of single-unit 
neuronal activity with forces and torques about the wrist 
[18]. Later studies refuted this notion, supporting altered 
gain of this relation depending on the size of inertial load 
and the anticipated range of force.[19,20] For example, 
Shah et al. recently reported their findings from 
recorded motor activity from high-density cortical 
arrays in two patients with tetraplegia that performed 
single, pairwise and higher order finger movements [2]. 
Given the subjects’ medical history, kinematics was 
captured and analyzed using an animated hand (Unity 
Software, Unity Technologies, San Francisco). They 
observed that neural activity associated with multiple 
finger movements aligned with a ‘pseudo-linear’ 
summation of individual finger activities, i.e. had lower 

magnitude, which authors attributed to vector unit-
normalization.    
Chestek et al. classified different hand posture ECoG 
signals with subdural micro- and macro-electrodes 
implanted over the primary sensorimotor areas [21]. The 
authors examined 4 finger movements and 4 distinct 
isometric hand postures (pinch, fist, splay and point). 
Similar to our findings, they observed significant co-
modulation of the thumb electrode (up to 93% 
likelihood) for index, and observed index finger flexion 
and pinching to be similar movements that could be 
decoded at 79% correct based on ‘gamma-band’ power 
(66-114Hz) [21]. Our study build further upon that work 
by delving into the topological representation of 
composite vs individual finger movements.   
Recent work in monkeys has revealed similar findings. 
Naufel et al. investigated the relation between primary 
motor cortex (M1) and muscle activity (as captured by 
electromyography, EMG) during three wrist movement 
tasks of varying dynamical load and forces [3]. The 
authors observed that a greater proportion of EMG 
changes were explained by a linear model of M1 activity 
supplemented by a condition-dependent gain. In our 
analysis, the non-linear metric of modified geometric 
mean explained a greater proportion of spatial overlap 
compared to maximum value and geometric mean. 
Nonetheless, the association between biological 
underpinnings of more complex limb movements and 
nonlinear dynamics remains to be determined; potential 
explanatory phenomena may include modulation of 
cortical activity (M1, premotor etc) by subcortical 
structures and differential inhibitory interneuron 
activity. 
     Implications for future research: These findings 
have implications for brain-computer interface 
applications. One common limitation of motor-
controlled brain-computer interface (BCI) in non-
human primates is the suboptimal coupling between 
neural activity and movement output [22]. Subsequent 
iterations of cortically-based BCI designs should take 
into consideration the strength and the spatiotemporal 
patterns of neural signals and how these relate to 
muscular activity. Future research can further expand on 
our work to investigate how individual finger actions 
relate to and overlap with other complex gestures, such 
as palmar grasping, squeezing and pointing. 
     Limitations: First, our sample consisted only of 3 
subjects. Second, we employed standard-scale clinical 
ECoG, rather than high-density research grids; the latter 
have been shown to have superior spatial performance 
in 6 elementary movements in the alpha, beta and 
gamma frequency bands [21]. Third, we were unable to 
incorporate kinetics and/or kinematics in our analysis to 
correlate with the ECoG signal. The data glove captures 
mean deformation of an electrically conductive 
elastomer with piezoresistive properties but does not 
allow for detailed analysis of force of contraction or 
degree of displacement/range of motion in the 
interphalangeal joints.  

Figure 2. Demonstration of the method for quantifying 
the overlap in spatial distribution. (A) The r2 value, as a 
metric of activation during movement vs rest, is 
computed and plotted for each electrode, during 
pinching versus thumb flexion, index flexion or one of 
the other metrics we used (collectively labeled here 
as ‘comparison’). (B) The overlap can be quantified as 
the dot product across electrodes, thereby denoting that 
activities are paired together at each electrode. (C) We 
can probe all of the possible configurations of activation 
values by reshuffling the electrode positions (left panels) 
for one of the conditions (pinch) and recalculating the 
dot products (right panels). This is done 106 times, 
generating the distribution of surrogate dot products. (D) 
The generated surrogate distribution can be used to 
estimate a p-value for the significance of the overlap.    
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CONCLUSION 
  
For pinch, the ECoG signal seems to comprise a 
combination of the signals from the individual thumb 
and index movements, with considerably larger overlap 
with the latter. This analysis may provide insight into 
the tuning of the motor cortex toward specific types of 
motor behaviors and help refine currently available BCI 
control algorithms and their therapeutic efficacy. 
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1RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
2Department of Cognitive Science, Nicolaus Copernicus University, Toruń, Poland
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ABSTRACT: The sense of smell, also known as olfac-
tion, can improve the usability of brain-computer inter-
faces (BCIs) and support passive modalities for moni-
toring cognitive states. In reactive BCI, users can as-
sign specific scents to commands for natural interaction,
while a passive application can monitor cognition. How-
ever, some challenges still need to be addressed, such
as the need for accurate odor delivery systems and ro-
bust algorithms for detecting and interpreting brain ac-
tivity patterns. We propose combining electroencephalo-
gram (EEG) and electrobulbogram (EBG) in an olfactory
modality oddball paradigm to predict a user’s awareness
level. Our pilot study indicates promising results for a
new passive olfactory BCI modality combining CSP fil-
tration and awareness level classification.

INTRODUCTION

Recent reports suggest a link between COVID-19 and
loss of smell, also known as olfactory dysfunction [1].
Mounting evidence suggests that this condition may be
an early symptom of Alzheimer’s or Parkinson’s syn-
dromes [2, 3]. A new method of objectively measur-
ing olfactory bulb (OB) activity named electrobulbogram
(EBG) has been proposed [4], utilizing standard EEG am-
plifiers by placing electrodes above eyebrows to evaluate
olfaction-related brain activity.
According to a recent study, olfactory sleep stimula-
tion may improve cognitive and memory performance in
the elderly, providing a potential intervention to protect
against Alzheimer’s syndrome [5]. As olfactory neuro-
science and applied neurotechnology gain interest, their
potential for use in BCI becomes more appealing [6]. The
state-of-the-art visual [7], auditory [8], and tactile [9]
modalities have been successfully implemented in BCI,
and the olfactory modality could represent the next fron-
tier.
Sensory awareness focuses on a specific sensory detail
rather than simply responding to stimuli. In the context of
olfactory awareness, it refers to the ability to distinguish
a target odor in an oddball stimulus presentation. When
evaluating the awareness level, we predict the subject’s

Figure 1: An experimental setting with a subject wearing an
EEG cap in front of an olfactometer delivering scent stimuli.

ability to differentiate between odors in a binary setting,
i.e., whether they are above or below the chance level of
half (three out of six) target stimulants.
The authors recently conducted a pilot study to test a
new form of olfactory stimulation. The study recruited
ten healthy and BCI-naive participants and used wearable
neurotechnology to capture their brainwave (EEG) and
OB sensory activity (EBG). During the EEG and EBG
preprocessing stages, we used the typical spatial pattern
(CSP) filtering technique [10, 11] to extract features from
the signals. Specifically, we focused on the gamma fre-
quency band (which ranges from 35 to 100 Hz). This
frequency band is known to carry the most meaningful
olfactory responses, as reported in previous studies [4].
We then compared the classification accuracy of EEG-
only, EBG-only, and combined EEG+EBG CSP features
using various classifiers.
The paper is organized as follows: First, we will in-
troduce the experimental conditions, signal preprocess-
ing with CSP feature extractions, and classification tech-
niques in the materials and methods section. Then, we
will present preliminary results from pilot experiments
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Figure 2: The study involved scent identification trials that included six targets each. The median results we represented as bar plots in
the above figure, along with 95% confidence intervals. Out of all the subjects, only three of them were able to achieve the maximum
score at once. The scores were then divided into two categories: lower awareness (scores ranging from 0 to 3) and high awareness
(scores ranging from 4 to 6).

involving ten young, healthy olfactory BCI users. Finally,
we will discuss these results and draw our conclusions.

MATERIALS AND METHODS

The olfactory BCI has the potential to revolutionize
human-computer interaction. It can also passively mon-
itor olfactory cognition and age-related changes, making
it helpful in supporting the elderly. Our recent feasibil-
ity study involved ten technology novices to identify any
potential usability and related unresolved issues. Dur-
ing the study, the users were asked to perform classical
oddball-style olfactory BCI tasks while their brain activ-
ity was monitored using EEG and EBG electrodes. The
users were also asked to report on the number of tar-
get scents they could identify in each trial. We utilized
data from scents delivered through an oddball paradigm
to train a machine-learning model. The model predicts
levels of sensory awareness based on olfactory stimula-
tion in a passive brain-computer interface (BCI) applica-
tion. This application estimates the user’s mental state
instead of generating commands.

Olfactory oddball BCI paradigm:
In 2024, during winter, we conducted a pilot study on
adult volunteers at Nicolaus Copernicus University in
Toruń, Poland. The study aimed to record EEG and EBG
using an olfactory passive BCI paradigm. The Institute
of Psychology UNC Ethical Committee for Experiments
with Human Subjects approved the investigation under
the ethical principles of The Declaration of Helsinki. The
study involved nine females and one male, with an av-
erage age of 20.4± 1.71 years. The report presents the
study’s findings.
This pilot project presents the findings of a study that em-
ploys the ETT Olfactometer2S to deliver odors in an odd-
ball BCI paradigm. Users are asked to identify and report
the number of instructed target scenes in each session,

comprising six odors. In each trial, one odor becomes a
target accompanied by five randomly presented distrac-
tors. Our study uses classical reactive BCI settings to de-
termine how well users can identify a specific target odor
amidst other distracting odors. However, the actual appli-
cation passively monitors the user’s cognitive states. We
used an olfactometer to ensure the odors were delivered
uniformly in all trials. This system includes an airflow
delivery unit, an odorant carrier, tubes, a nose applicator,
and ETT Direct Control software. We have developed
a Python script that communicates with the olfactome-
ter’s original software. This software connects to a lap-
top through a USB cable. The experiment setup can be
seen in Figure 1. During the experiment, a participant
wore a wireless Unicorn EEG wearable cap, manufac-
tured by g.tec medical engineering, Austria, which was
connected to a laptop running our in-house developed
EEG with EBG recording and stimulus presentation soft-
ware. This software controlled the delivery of olfactory
stimuli from a pipe near the participant’s nose. We used
an ETT Olfactometer 2S manufactured by Emerging Tech
Trans, LLC., USA, to deliver the odor stimulus. The ol-
factometer can be identified as a blue box on the left side
of the photograph in Figure 1, with a blue-orange pipe on
the participant’s right side. In our passive olfactory BCI
paradigm experiments, we used an olfactometer with six
scents to control odorant stimulation. Each scent stimu-
lus lasts four seconds, followed by a four-second break
without odor delivery. To ensure accurate results, we
conducted a pilot study that included natural odors such
as rose, cinnamon, lavender, orange, lemon, and vanilla.
The subject is visually instructed on a computer screen
to breathe at the beginning of each new odor presentation
during the experiment. After each session of six oddball
trials, the subject reported the number of correctly iden-
tified scents, with six being a perfect score and three a
chance level. The behavioral results are summarized as
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Figure 3: The averaged over all subjects and sessions head
plot images show the CSP filter coefficients overlaid on a topo-
graphic map of the gamma (γ) frequency band. The EEG data
was collected from six electrodes, namely Fz,C3,Cz,C4,Pz,
and Oz. The CSP0 filter represents the low awareness, while
CSP1 represents the high awareness signals in the passive ol-
factory BCI paradigm.

medians with 95% error bars in Figure 2. The results of
this study provide valuable insights into odor-based BCI
paradigms and their potential applications in medicine,
psychology, and neuroscience.

EEG and EBG recording:
The reported pilot research study collected EEG and EBG
data using the Unicorn EEG headset from g.tec medi-
cal engineering, based in Austria. Our previous studies
have demonstrated the reliability of this device compared
to other available wearables [12, 13]. We used six EEG
channels in the pilot investigation: Fz,C3,Cz,C4,Pz, and
Oz. We also placed two EBG sensors on a 10/5 interna-
tional standard EEG cap, approximately above each eye-
brow at AF p9h and AF p10h.
In the first preprocessing stage, we converted six EEG
and two EBG streams into a digital format with a sam-
pling frequency of 250 Hz. After that, we removed any
baseline shifts and high-frequency noise outside the fre-
quency range of 7 Hz and 100 Hz by applying a bandpass
filter. To eliminate any power line interference at 50 Hz,
we used a notch filter. We segmented the EEG and EBG

Figure 4: The averaged over all subjects and sessions head
plot images show the CSP filter coefficients overlaid on a to-
pographic map of the gamma (γ) frequency band. The EBG
electrodes, AF p9h and AF p10h, were employed. The gamma-
band filter CSP0 represent low awareness, while CSP1 the high
awareness in the passive olfactory BCI paradigm..

signals into eight-second sections with four seconds of
odor stimulation and four-second flush breaks, using ex-
perimental triggers recorded together in oddball, target,
and non-target recognition tasks.

To ensure the accuracy of our data, we utilized the em-
pirical mode decomposition (EMD) technique to remove
distortions caused by eye blinks or muscle movements
in the EEGs and EBGs. We applied this method sepa-
rately to each channel, which allowed us to identify and
eliminate artifacts effectively, thus improving the overall
quality of the data, as previously proposed in [9, 13].

Using a CSP method, we transformed EEG and EBG sig-
nals to increase the variance in one class and decrease it
in the other, as described in [10, 11]. We used the CSP
method to create distinguishable patterns across space for
the olfactory stimulus-induced potential in the gamma
sub-bands. These patterns were generated for two dif-
ferent levels of awareness. The first level had behavioral
median scores of three and below (three subjects in our
study). The second level had median behavioral scores
of four and above (seven subjects in our study). We have
illustrated all possible user behavioral responses in Fig-
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Figure 5: The averaged over all subjects and sessions head
plot images display the CSP filter coefficients superimposed
on a topographic map of the gamma (γ) frequency band.
The EEG data was obtained from six electrodes, namely
Fz,C3,Cz,C4,Pz, and Oz, and two EBG electrodes, AF p9h and
AF p10h, were employed. The gamma-band filters CSP0 repre-
sent low awareness, while CSP1 represents high awareness in
the passive olfactory BCI paradigm.

ure 2. The patterns that could be distinguished were visu-
alized in Figures 3, 4, and 5 for EEG-only, EBG-only, and
combined EEG+EBG channels, respectively. We used
the same scaling in arbitrary units (AU) [14]. The differ-
ences in CSP filter patterns that we observed were due to
varying levels of EEG and EBG signals.
To assess the potential separability of a CSP feature, we
used a supervised clustering technique called uniform
manifold approximation and projection (UMAP) [15].
We merged CSP features derived from band-pass filtered
EEG and EBG signals in the gamma band. This enabled
us to obtain distinct clusters in a two-dimensional feature
space. The CSP filters we used were four-dimensional.
As part of our research, we conducted a preliminary trial
to test the accuracy of an offline passive olfactory BCI
application. The trial involved three recording sessions,
each comprising six single oddball trials. There were
36 EEG and EBG responses, each lasting eight seconds,
with six targets and thirty non-target responses. We trans-
formed these responses into two-dimensional CSP fea-

Figure 6: A scatter plot using two-dimensional UMAP results
for EEG+EBG combined gamma bands.

tures in gamma EEG and EBG frequency bands, based
on previous research that indicated higher frequency as
the best carriers of olfactory information in the brain-
waves [2, 3].
We used five different machine learning models for
our experiment: linear SVM, random forest classifier
(RCT), decision tree classifier (DTC), linear discrimi-
nant analysis (LDA), and deep fully connected neural net-
work (DFNN). The DFNN had five hidden layers with
128,64,32,4, and 2 RELU units each. We performed
ten-fold cross-validation using these models, available in
scikit-learn v1.4.0 [16]. We did not observe overfitting
of the machine learning models despite the unequal dis-
tribution of low and high awareness cases, as shown in
Figure 2.

RESULTS

A pilot study was conducted using ten healthy subjects to
fit spatial filters and analyze patterns in the EEG and EBG
within the gamma frequency band. The study showed
promising outcomes, summarized in Figures 3, 4, and 5,
for EEG-only, EBG-only, and EEG+EBG combined, re-
spectively. The outputs of CSP filtering also formed sepa-
rable clusters of low versus high awareness mental states,
as shown in Figure 6 using UMAP applied to EEG+EBG
combined features. The results of the initial classification
trials, which used ten-fold-cross-validation, are presented
in Figure 7. The figure shows median balanced accura-
cies and percentile ranges. The evaluation used differ-
ent classifiers, including linear SVM, LDA, RFC, DTC,
and DFNN. All the results were significantly above the
balanced accuracy chance level of 50%, are reported in
Figure 7. The results also indicate that using combined
EEG+EBG electrodes led to statistically significant bal-
anced accuracy results (at p < 0.05) for RFC, DTC,
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Figure 7: Distribution plots comparing EEG+EBG (blue), EEG-only (orange), and EBG-only (green) classification results for the
evaluated classifiers in the reported study.

and DFNN classifiers, compared to EEG-only and EBG-
only modality trials. The significance was tested using
Wilcoxon tests. The RFC, DTC, and DFNN classifiers
achieved median balanced accuracy scores above 95% for
combined EEG+EBG electrode cases. Therefore, com-
bining both electrode modalities creates a promising pos-
sibility in the olfactory modality for subject awareness
estimation.

DISCUSSION

We conducted a trial study on a passive olfactory BCI,
a non-invasive method that uses smell to track brain ac-
tivity in order to estimate user awareness at a later stage.
Our study has shown that olfactory stimuli can be pro-
cessed quickly without causing attention overload. This
makes it a promising area for BCI research and quanti-
fying the mental state of users. The study discovered
that using a combination of EEG and EBG electrodes
with classifiers such as RFC, DTC, and DFNN resulted
in almost perfect classification outcomes. This supports
the hypothesis that recording brainwaves through multi-
ple modes can lead to improved results. However, sim-
pler linear classifiers such as SVM and LDA showed a
different level of improvement and had lower median ac-
curacies than the classifiers mentioned earlier.

CONCLUSIONS

The use of the olfactory modality in neurotechnology

has recently become popular due to the positive results
of the proposed passive olfactory Brain-Computer Inter-
face (BCI). These results are based on a preliminary pi-
lot study with young and healthy subjects. However, our
team faces specific challenges that need to be addressed
to improve our approach. These challenges include de-
veloping more reliable odor delivery systems and imple-
menting more robust algorithms to detect brain activity
patterns. To refine and validate our approach, we plan to
conduct a more extensive study with elderly subjects who
may have reduced awareness due to mind wandering or
daydreaming.
The study aimed to explore the potential of a passive
olfactory BCI that could be used to track dementia or
COVID-19-related olfactory impairment, as well as inter-
ventions. A passive modality could be used in the future
for this purpose. The study findings confirm the feasi-
bility of using a passive olfactory BCI, which could be a
tool in non-invasive monitoring of brain activity and as-
sociated disorders based on user awareness tracking in
various cognitive tasks.
These findings have implications for developing non-
invasive techniques for monitoring brain activity and as-
sociated disorders. The discovery of a practical passive
olfactory BCI could help track olfactory impairment re-
lated to dementia or COVID-19, which would help de-
velop early interventions. This could be particularly use-
ful in the COVID-19 pandemic, where olfactory impair-
ment has been identified as a common symptom.
The study concludes that a passive olfactory BCI option
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can be an effective way to track awareness, which may
help in early interventions. The development of this tech-
nology can have significant implications for non-invasive
monitoring of brain activity and related disorders.
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ABSTRACT: Communication by means of evoked brain 

signals is one of the main applications of brain-computer 

interfaces (BCIs). Commonly, in BCI applications the 

user’s intention is directly fed back and openly 

perceivable. Here we used hyperscanning to investigate 

a communication approach, in which two users can 

covertly communicate by brain signal modulation. To 

achieve this, we artificially generated synchronous and 

asynchronous oscillatory brain activity by presenting a 

choice of two flickering stimuli inducing steady-state 

visual evoked potentials (SSVEPs) and provided 

feedback that indicated the synchronicity of the brain 

signals of participant pairs. We used different approaches 

to determine synchronicity. When we used broadband 

activity, the accuracy varied considerably between 

participant pairs, which could be attributed to individual 

differences in the timing and the amplitudes of SSVEPs. 

However, when we involved features reflecting the 

stimulus frequencies, the predictions were highly 

reliable. Beyond demonstrating the feasibility of our 

approach, our findings have the potential to identify 

challenges in studying social interaction using 

hyperscanning. 

 

INTRODUCTION 

 
Hyperscanning refers to recording brain data from more 

than one person simultaneously. It is increasingly being 

used to investigate neuronal correlations during social 

interaction [1,2] and learning [3]. A common approach in 

hyperscanning is to determine the degree of brain-to-

brain synchrony, i.e., the synchronicity, of two users. 

Portable electroencephalography (EEG) headsets allow 

involvement of multiple individuals in real-world 

environments, e.g., a classroom [4]. Simultaneous EEG 

recordings from multiple users have also been utilized in 

brain-computer interface (BCI) research to incorporate 

collaborative/competitive BCI control in video games [5] 

and to increase the decoding accuracy in single trial 

classification of visual evoked potentials (VEPs) [6]. 

Collaborative BCIs have the potential to increase the 

signal-to-noise ratio by combining activity from multiple 

brains. For communication purposes, collaborative 

control would not have a practical benefit, since users 

would be required to know their mutual intention. In 

contrast, a brain-to-brain communication, in which one 

user sends a message and the other user infers the 

message from comparing BCI-generated feedback and 

their own intention, could enable a covert 

communication only perceivable by the users involved. 

Brain-to-brain interface control using brain stimulation 

techniques applied to the receiver has been demonstrated 

in rats [7] and humans [8,9]. Here we introduce a 

noninvasive approach for implementing indirect brain-

to-brain communication by simultaneously recording 

EEG signals from both the sender and the receiver of a 

communication. The content of the communicated 

message is inferred from feedback indicating the degree 

of brain synchrony. We artificially induce brain 

synchronicity and asynchronicity by presenting flicker 

stimuli. While the approach of decoding the steady-state 

visually evoked potentials (SSVEPs) induced by these 

types of stimuli is a common approach for controlling 

BCIs [10,11], decoding the synchronicity of brain signals 

from two brains induced by flicker stimuli has not yet 

been performed. 

 
MATERIALS AND METHODS 

 
     Subjects and Task: Fourteen participants (mean age 

26.4±4.2 years, 8 male) were recruited to participate in 

the hyperscanning BCI experiment, resulting in seven 

participant pairs, or dyads (6 male/female, 1 male /male).  

They provided informed consent and received 25 € for 

participation. The study was approved by the Ethics 

Committee of the Otto von Guericke University, 

Magdeburg, Germany.  

Two participants were seated next to each other, each in 

front of a custom stimulation device, which consisted of  
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two small light-emitting diode (LED) panels 

(35×35 mm²), 18cm apart. A partition panel on the desk 

prevented the participants from being distracted by the 

stimuli presented to the partner (see Fig. 1 for the 

technical setup). The task of the participants was to 

silently communicate yes/no responses by focusing on 

particular flickering stimuli. One participant was asked 

to send a yes/no response (Sender role) and the other was 

asked to infer the response from the feedback generated 

by the BCI (Receiver role). The roles were changed 

between participants halfway through the experiment. 

The experimenter provided verbal instructions to guide 

the participants throughout the experiment. A trial started 

by verbally cueing the participants to focus on their next 

intended response. Subsequently, the presentation of the 

stimuli started. The left LED panel flickered with a 

frequency of 9.09 Hz (110 ms stimulus onset 

asynchrony) and was associated with the response “yes”. 

The right LED panel flickered with a frequency of 

11.11 Hz (90 ms stimulus onset asynchrony) and was 

associated with the response “no”. We identified these 

flicker frequencies as reliable following pilot testing with 

individual test subjects using 9.09 Hz, 11.11 Hz, 12.5 Hz 

and 15.0 Hz stimuli. 

The occipital brain oscillatory activity of the participant 

classically synchronizes with the flicker frequency of the 

panel on which the participant focuses their gaze, 

forming the basis of a classical SSVEP-based BCI. The 

stimuli for the two participants were synchronized, i.e., 

the LEDs in front of them were on and off at the same 

time. After five seconds, the stimulus stopped and the 

synchronicity feedback was presented by a computer 

voice saying “equal” if the BCI detected synchrony 

between the EEG signals of the participant pair, and 

“different”, if the BCI detected asynchronous EEG 

signals. Afterwards, the Receiver combined their own 

internal response with the synchronicity feedback, 

inferring what the Sender had intended to answer and 

pressed the corresponding button on a keypad. The 

inferred Sender response was presented as inference 

feedback (“yes” or “no”). Finally, the Sender assessed 

whether the inferred response was correct or not by 

pressing the corresponding button on a keypad, yielding 

a third feedback item, which could be “correct” or 

“wrong”. This final feedback provided the Receiver with 

the ground truth. Note that for silent communication 

only, the synchronicity feedback is required but no button 

press. The button presses and the additional feedback 

were only necessary for evaluation purposes. 

A session started with 20 training trials in which all 

combinations of responses were cued an equal number of 

times (yes/yes, no/no, yes/no, no/yes) and no feedback 

was presented. These trials were for initial classifier 

training. Afterwards, the feedback mode started, and the 

experimenter asked subjective questions, e.g. “Do you 

play an instrument?”. After each trial, the participant’s 

intentions were determined from their responses and the 

classifier was retrained. We also performed trials in 

which the participants were asked to communicate one of 

32 items. A table was presented, showing 32 numbers 

and letters, or 32 cards of a card deck. Each item shown 

in the tables was assigned a binary color code, where five 

bits were coded with green and red bars located under 

each item. The participants associated green bits with 

“yes” and red bits with “no”. This approach required five 

trials, with the concomitant five binary decisions, to 

communicate one item. Trials in which participants made 

mistakes according to their own statement (e.g., wrong 

button press) were immediately excluded by the 

experimenter from the further analysis. Therefore, the 

number of questions asked varied, resulting in a total 

number of 118.7±6.5 trials on average, including training 

trials. 

     Recordings: EEG data were recorded with a sampling 

frequency of 512 Hz from ten electrode sites (OI1h, 

OI2h, PO7, O1, Oz, O2, PO8, POO1, POO2, Fz) and 

referenced against the right ear lobe using two g.tec 

gUSBamp devices. Synchronization of EEG recordings 

was achieved by sending a trigger signal simultaneously 

to both amplifiers and correcting for time shifts in the 

received data buffers during online processing. The 5 s 

data segments were notch filtered to remove 50 Hz line 

noise and bandpass filtered between 5 and 30 Hz. Finally, 

we resampled the data to 256 Hz sampling rate to reduce 

computational demands in further processing. 

          Decoding approach: Different decoding 

approaches were applied in the online and offline 

analyses described in this section. All approaches used 

canonical correlation analysis (CCA), a statistical 

method that maximizes correlation between two variable 

sets 𝑋 and 𝑌: 

 (𝑈, 𝑉) = argmax
𝐴,𝐵

corr(𝑋𝐴, 𝑌𝐵) (1) 

where the canonical coefficients in 𝐴 and 𝐵 linearly 

combine 𝑋 and 𝑌, such that the correlation is maximal in 

the first variables of matrices 𝑈 = 𝑋𝐴 and 𝑉 = 𝑌𝐵, and 

decreases with increasing component ranking. The 

approach suggested by Lin et al. [12] has become 

established in BCIs as a reliable way of detecting 

SSVEPs and uses 𝑋 as the time varying brain signals 

(EEG) and 𝑌 as a set of sine and cosine functions with 

frequencies equal to the stimulus frequencies and their 

harmonics. We used this approach to determine classifier 

features, using the two stimulation frequencies, 9.09 and 

11.11 Hz, and their first harmonics, resulting in four 

features per stimulation frequency. We used only the first 

two canonical correlation coefficients per stimulation 

frequency and participant as features, resulting in four 

 

Figure 1: Technical setup for the hyperscanning BCI. 
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features per participant and eight features per dyad. We 

refer to this feature set as 𝑅𝑆𝑆𝑉𝐸𝑃. This feature set 

specifically captures the brain activity associated with the 

flicker stimuli. To investigate whether the brain 

synchronicity, which we artificially induced through the 

stimulus, can also be predicted when we do not include 

information about the stimulus, we calculated another 

feature set by setting 𝑋 as the EEG signal of one 

participant and 𝑌 as the EEG signal of the other 

participant. With this approach, we investigated whether 

we can determine synchronous brain signals from 

broadband (here limited to 5-30 Hz) brain activity. Here 

we used only the first two canonical correlation 

coefficients and refer to this feature space as 𝑅𝐵 and to 

the canonical components as 𝑈𝐵 and 𝑉𝐵, respectively. 

During online decoding, we used the 𝑅𝑆𝑆𝑉𝐸𝑃 feature set 

and trained a k-nearest-neighbor classifier (kNN) using 

trials with equal stimulation frequencies as one class and 

trials with different stimulation frequencies as the other 

class to decode the synchronicity and present feedback 

accordingly. We also predicted the synchronicity directly 

from this feature set in a leave-one-out cross-validation 

(LOOCV) using a nonlinear support vector machine 

(SVM) classifier and radial basis function (RBF) as 

kernel. Finally, the 𝑅𝑆𝑆𝑉𝐸𝑃 feature set was used to classify 

the SSVEP response in single participants as in 

conventional SSVEP-based BCIs, using LOOCV and the 

RBF SVM classifier. To test whether the direct 

classification of synchronicity is advantageous compared 

to classifying the SSVEP of the participants separately 

and subsequently determining the synchronicity 

indirectly by comparing the predictions of both 

participants, we calculated the indirect decoding 

accuracy from the predictions obtained by conventional 

SSVEP decoding.  

In a final approach, we used LOOCV and RBF SVM to 

decode the synchronicity of brain activity based on 

broadband EEG signals, using the 𝑅𝐵 feature set as 

described above. To compensate for potential shifts in 

individual latencies of VEPs, we shifted the signals in 

steps of single sample points against each other before 

applying CCA and compared the maximum accuracy of 

the time-shifted analysis with the accuracy achieved with 

the non-shifted signals. 

We performed permutation testing for all reported 

classification approaches by permuting the labels that 

indicate the focused stimulus frequency and repeating the 

LOOCV 1000 times. This procedure resulted in a 

distribution of chance accuracies from which we 

determined the mean chance level and the 95% 

confidence intervals. 

 

RESULTS 

 

The intention of participants with Sender role was 

correctly determined on the basis of the feedback 

regarding the synchronicity of their brain activity with 

that of the Receiver in µ=93.6% (σ=10.7%) on average 

during the BCI hyperscanning. The LOOCV using the 

same approach (direct classification of synchronicity) 

yielded an average accuracy of µ=94.3% (σ=9.4%), 

which was not statistically significantly different to that 

attained using online decoding. Using the approach of 

indirectly classifying synchronicity resulted in an 

average accuracy of µ=94.7% (σ=9.2%) and was neither 

different from online decoding nor from direct 

classification of synchronicity. Conventional decoding of 

the stimulus frequency from SSVEPs using 𝑅𝑆𝑆𝑉𝐸𝑃 

features resulted in an average decoding accuracy of 

µ=97.4% (σ=6.8%) across all 14 participants. These 

decoding accuracies are shown in Fig. 2 for each 

participant pairs. It can be seen that the classification of 

synchronicity is bounded by the accuracy in detection of 

the focused stimulus frequency of the less well-

performing participant. 

 

 

Figure 2: Decoding accuracies achieved with different 

decoding approaches using the 𝑅𝑆𝑆𝑉𝐸𝑃 feature space. All bars 

show accuracies obtained with LOOCV except the blue bar, 

which shows online accuracy. Solid and dashed black lines 

indicate the mean and upper 95% confidence interval of the 

chance level obtained by permutation testing. 

 

In a next step, we did not include information about the 

stimulus frequencies but rather calculated canonical 

correlation coefficients using the broadband signals from 

all channels of both participants as variable sets to use 

them as features for classification of the brains’ 

synchronicity. This analysis showed strong variability 

between dyads, ranging from 50.5% to 97.2% decoding 

accuracy (µ=72.5% σ=18.1%). The decoding accuracy 

could be improved by shifting the time series of either 

participant to compensate for potential individual 

differences in visual processing latencies. Selecting the 

maximum accuracy from the latency shifts, decoding 

accuracy ranged from 62.2% to 97.2% (µ=78.2% 

σ=14.5%). Latency shifts resulting in these improved 

accuracies ranged from 0ms to 23.4 ms (µ=10.0 ms, 

σ=9.0 ms). 

To investigate the reason for the large inter-dyad 

differences when using the 𝑅𝐵 features, we calculated the 

spectra of the first component in 𝑈𝐵, obtained by CCA, 

of each trial and participant and averaged across trials 

where the visual stimuli were identical in both 

participants. For each stimulus frequency and their first 

harmonics, we calculated the Pearson correlation 

coefficient ρ between amplitudes (obtained by the spectra 

of the first component in 𝑈𝐵) and decoding accuracies 
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(achieved with the broadband synchronicity 

classification approach) across dyads (see Fig. 3). We 

found a significant correlation (p<0.05) for frequencies 

9.09 Hz (ρ=0.93), 11.11 Hz (ρ=0.86) and 18.18 Hz 

(ρ=0.73) but not for 22.22 Hz (σ=0.34). Therefore, the 

accuracy of broadband synchronicity classification is 

influenced by the magnitude of SSVEP amplitudes.  
 

 

 

Figure 3: Decoding accuracies of broadband synchronicity 

classification according to signal amplitudes at different 

stimulus frequencies and their 1st harmonics. Regression lines 

visualize the correlation, asterisks indicate significant 

correlation (p<0.05). Upward and downward triangles indicate 

first and second participant of a dyad. Solid and dashed black 

lines indicate mean and upper 95% confidence interval of the 

chance level obtained by permutation testing. 

 

 

DISCUSSION 

 

The study demonstrates that covert communication can 

be performed using a noninvasive hyperscanning BCI. 

We induced synchrony of brain signals by presenting 

synchronous and asynchronous visual stimuli and used 

the degree of synchrony as a feedback signal. Brain-to-

brain synchrony was decoded with an accuracy close to 

100% in five dyads. This was only constrained by the 

lowest single subject SSVEP detection accuracy within a 

dyad in two instances using features that incorporate 

prior knowledge about the flicker frequency of the 

stimuli. Although direct classification could potentially 

exploit multivariate relationships between individual 

𝑅𝑆𝑆𝑉𝐸𝑃 features, decoding accuracy was not significantly 

different from the indirect approach that compared 

independently predicted SSVEPs of each participant. 

Thus, both approaches are well suited to implementing 

the proposed BCI for covert communication. 

A secondary aim of the study was to investigate the 

feasibility of classifying brain-to-brain synchrony in 

general, without taking knowledge about stimulus 

frequencies into account. When we used broadband 

activity to calculate CCA features, decoding accuracy 

strongly depended on the SSVEP amplitudes, i.e., on 

how much the stimulus was reflected in the brain signals. 

Two of the dyads were highly reliably decoded (>90%), 

two were moderately reliably decoded (>80%) and three 

achieved accuracies slightly above chance level 

(>61.5%).  

Flicker frequencies in the alpha band have been shown to 

have an impact on attentional processing, which is 

presumed to result from interactions between the flicker 

rhythm and the endogenous alpha rhythm [13]. Note that 

although the stimulus frequencies we used both lie within 

the alpha band, common CCA-based decoding resulted 

in high accuracy. The interaction between flicker stimuli 

and the endogenous alpha rhythm is, however, highly 

variable, with dependency on the individual alpha 

frequency and also the particular source of the 

endogenous alpha rhythm [14]. Future work should 

include exploration of potential relationships between 

synchronicity decoding accuracies and both individual 

alpha activity and flicker frequencies within and outside 

the alpha band. 

Our approach provides an alternative strategy for 

hyperscanning experiments, given the general discussion 

on interpretability of coherence measures applied for 

investigating social interaction with this technique 

[15,16]. Mainly, however, our findings uncover 

important challenges in hyperscanning, namely that 

individual differences in EEG signals can lead to quite 

different degrees of brain-to-brain synchrony detection. 

This variability is illustrated by our findings when we 

classified synchronicity using 𝑅𝑆𝑆𝑉𝐸𝑃  and 𝑅𝐵 features. 

The SSVEP amplitude was sufficiently high to enable 

decoding of the focused frequency at close to 100% in 12 

of 14 subjects, and the synchrony decoding based on 

these features was related to these accuracies. However, 

the SSVEPs were not sufficiently represented in the 

EEGs of some dyads to enable comparably reliable 

synchrony decoding from broadband activity. 

Furthermore, latency shifts of evoked potentials might be 

a limiting factor for determining brain-to-brain 

synchrony, as not only suggested by our analyses but also 

known from the literature. 

In future work, features based on coherence and 

information theory could be investigated for suitability of 

synchronicity detection for comparison with our 

broadband CCA approach. A limitation of our approach 

to performing covert communication is that it can only be 

performed in binary mode, by inferring binary responses 

from feedback indicating the degree of synchrony. 

However, using color-coded items, the participants also 

could communicate letters in five steps of binary 

decisions and thus, the proposed BCI could potentially be 

used to communicate whole sentences. Another 

limitation is that SSVEPs depend on eye movements, and 

only sensory processing is decoded rather than higher 

cognitive functions. However, gaze-independent 

paradigms communicating binary decisions using 

attention processes exist [17], which would be suitable 

for decoding brain-to-brain synchrony as well, and might 

be the next step towards a gaze-independent, covert 

communication BCI. 
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CONCLUSION 

 

SSVEPs can be used to stimulate brain-to-brain 

synchrony, which was decoded with high accuracy using 

stimulus-based features and enabled dyads of 

participants to reliably communicate binary messages, 

not perceivable by external observers. Synchrony 

features obtained from broadband signals reflected the 

synchronous stimulating signals, resulting in reliable 

decoding only in some dyads. These findings may have 

implications for other neuroscientific hyperscanning 

studies investigating social interaction. 
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ABSTRACT

Passive brain-computer interfaces (pBCIs) developed
within the neuroergonomic field usually aim to improve
safety by augmenting human-machine interaction. To ac-
complish said goal, many pBCIs classify mental states
such as mental workload or mental fatigue. An alterna-
tive is to forego mental states and aim to predict perfor-
mance. Despite its drawbacks, we argue that performance
estimation is a more goal-oriented approach than mental
state estimation. In a realistic experiment, 25 participants
had to control an uncrewed aerial system for two hours,
continuously switching between target search and navi-
gation. EEG classification accuracies based on mental
states and performance were compared. With a Tangent
Space Logistic Regression, we could predict an increased
likelihood of lapses in the form of missing instructions
with an above-chance level accuracy of 62.09 %.

INTRODUCTION

Passive Brain-Computer Interfaces (pBCI), i.e., BCIs that
observe brain activity that is not influenced by the pres-
ence of a BCI, are a valuable component of neuroer-
gonomics [1]. They promise to provide complex systems,
such as cockpits, with valuable information on their user
and the Human-Machine Interaction. A machine can then
use that information employing adaptation or feedback to
improve said interaction [2].
To do so, pBCIs are often trained to detect specific men-
tal states such as mental workload [3] or mental fatigue
[4]. The underlying argument for detecting said mental
states is their correlation with erroneous or sub-optimal
behaviour by the operator. Thus, by detecting, e.g. a high
mental workload, the system may adapt itself to reduce
workload and increase safety [5]. This approach has cer-
tain drawbacks. Mental states as constructs are not ob-
servable and vary across definitions [6, 7]. Furthermore,
mental states depend on the current context and tasks.
Differing task instructions can result in differing brain
activity [8]. A high mental workload during an N-Back
task may not be comparable to a high workload during a
Stroop task [9, 10]. Finally, mental states are not always
strong predictors of performance. In the case of men-
tal fatigue, evidence suggests that participants, using e.g.
compensatory strategies, can uphold performance despite

fatigue [11–13]. So, all these aspects must be accounted
for when constructing a mental state-based pBCI to be
used in an open-loop adaptation (feedback) or a closed-
loop adaptation (interface change) with a complex system
[2].
Alternatively, a pBCI could forego the mental state as-
pect and try to predict a participant’s behaviour directly.
Performance estimation has been proven to work in sev-
eral contexts [14–17] and does not suffer from any of
the aforementioned issues. It works by assigning labels
to the physiological data, using the recorded behavioural
data of participants, such as reaction time, accuracies and
misses. Performance prediction allows direct observation
of the variable we want to optimize with a pBCI, but also
faces challenges. To predict performance, we first need
to define good and bad performance. Many tasks, such as
the Stroop or N-back tasks, involve some measure of cor-
rectness and reaction time [9, 10]. Reaction time or accu-
racy may be considered a valid performance measure in
these cases, but only the combination into a global score
will provide a complete picture of performance. Com-
bining scores, on the other hand, raises questions about
how to weigh each metric. Here, it needs to be consid-
ered that these measures are not orthogonal [8]. As men-
tioned above, the issue gets more complex as we move
away from very controlled tasks and move towards more
ecologically valid measures that may include several dif-
ferent reaction times and accuracies.
A related challenge is then how these cases should be la-
belled. Imagine, for example, an experiment where par-
ticipants continuously perform a task for one hour. A
global score of performance is assigned to each minute
of the task. The value is continuous from 0 (bad) to 1
(good). How can the data now be divided into a 2-class
problem? The 10 worst minutes of performance versus
the remaining 50 minutes, the 10 best minutes versus the
10 worst minutes, the good half versus the bad half, or
values exceeding a threshold (e.g. >0.8) or subceeding
another (e.g.<0.2) are all present plausible approaches.
The metric calculation and label assignment issue is fur-
ther complicated when algorithms are tested to classify
the data. Does a chance level classification accuracy
mean the algorithm doesn’t work or that the label assign-
ment is sub-optimal?
In many cases, predicting any change in performance
may be helpful, whether it is the likelihood of committing
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an error, missing a trial or the speed at which a partic-
ipant responds. Still, trying out unlimited combinations
of labels may also create a global performance score not
because of its usefulness but because of its ability to be
classified.
To the best of our knowledge, no study has yet evalu-
ated performance prediction using a pBCI applied to a
prolonged realistic drone task. Hence, this experiment
tested whether an EEG-based pBCI can predict meaning-
ful performance metrics from participants performing a
complex Uncrewed Aerial System (UAS, drone) pilot-
ing task. Moreover, extended mission duration makes
UAS pilots vulnerable to mental fatigue and the associ-
ated risks [18]. Participants were asked to switch between
a search and a navigation task during the experiment for
two hours. This work expands on a previous protocol that
focused only on a visual search task –and which did not
yield above chance level performance estimations– [19]
by adding a second navigation task and making the over-
all performance more difficult and longer. The long du-
ration allows for comparing performance-based labelling
and more traditional labelling based on subjective fatigue
scores and Time-On-Task (TOT). Our goal is to illustrate
how label assignment impacts classification accuracies,
particularly in the absence of an absolute performance
definition, for such a realistic task.

METHODS

Participants:
25 Participants (7 female, mean age 23.54 years (std 2.7),
11 English speaking & 14 French speaking) were re-
cruited and completed the experiment. From the subse-
quent analysis, one participant had to be dropped due to
inconsistencies and missing data in the recordings.

Procedure: Participants who agreed to participate
signed the informed consent forms and were equipped
with the EEG sensor.Next, participants completed a bat-
tery of questionnaires. They then completed a train-
ing phase of 16 minutes before a five-minute resting
state was recorded (30-second intervals of eyes open and
closed). They then started the 120-minute main phase of
the experiment. After completing the main phase, partic-
ipants filled in another battery of RSME, KSS, SPS, and
VAS questionnaires. The ethical committee of Toulouse
(Comité éthique de l’Université de Toulouse) approved
the experimental protocol (Dossier 2022-501).

Materials:
Task: The UASOS task (Fig. 1) combines some of
the fundamental aspects of UAS operations with a Task-
Switching protocol to allow the investigation of cognitive
flexibility [20]. The task requires participants to alter-
nate between tasks on a trail-based system. On average,
every 7 seconds (with a +-1000ms jitter, ~1020 trials dur-
ing the main condition), written instructions appear on a
widget in the middle of the participant’s visual field to in-
dicate the current task. To ensure adequate performance,
small pretests were conducted to calibrate these param-

Figure 1: Experimental setup. Left Screen: Search Task. Right
Screen: Navigation Task. Center Top: Flight director with task
information. (Note: The text in the centre of the screens is feed-
back only displayed during the training phase.)

eters. Participants work on two main tasks, with two
modes each. The Navigation task (NAV) requires the par-
ticipant to navigate the UAV either using headings (head-
ing mode, HDG) or waypoints (Waypoint mode, WPY).
The design was balanced with an equivalent number of
trials in all tasks and modes.
In the heading mode of the NAV task, participants re-
ceive a heading instruction (e.g. 350) in each trial. Using
a joystick, they then turn the UAS in said direction. For
the WPY mode, they receive a waypoint consisting of a
letter and a number (e.g. F13). They must choose the
corresponding waypoint using a trackball on a grid over-
laying the navigational display. The other task is the SRC
task. This task was adapted from previous work [19], and
integrated into the overall protocol. Participants see a 3x3
grid of black-and-white images that visual filters may fur-
ther distort. They are instructed to search either People or
Vehicles. If they detect a target on one picture, they se-
lect the corresponding picture using a numpad. For all
tasks, reaction times and the correctness of responses are
recorded. The instructions on the flight director widget
tell the participant which mode to perform at the onset of
each trial.
The task was coded in Python and presented on two iden-
tical computer screens. A detailed description of the ex-
perimental environment can be found in [21].
Questionnaires: Participants answered 5 questionnaires
at varying moments. At the beginning of the experiment,
participants completed the demographics questionnaire,
and their handedness was also assessed using the short-
ened Edinburgh handedness questionnaire [22]. Next, the
Karolinska Sleepiness Scale (KSS), a 9-point Likert and
the Samn-Perelli Fatigue (SPF) 7-point Likert scale were
used to assess fatigue [23, 24]. Participants also filled
in the RSME scale [25] that evaluates participants’ men-
tal effort invested in the task. The versions in which all
items are labelled were used [26]. The translated ver-
sions of the KSS and SPS questionnaires originate from
the ICAO [27]. Participants also responded to two Visual
Analogue Scales (VAS) scales: cognitive fatigue (VAS-
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F) and drowsiness (VAS-D). The entire battery was pre-
sented a second time following the completion of the ex-
periment. The VAS scales were also filled in at 19-minute
intervals during the main experimental phase.
EEG: Using an active AG-AgCl electrode system with an
ActiCHamp amplifier (Brain Products, Gmbh), EEG data
was recorded from 64 electrodes. The international 10-20
system was used for electrode placement [28]. Data were
recorded at 500 Hz, and impedances were kept below 50
kΩ. Data was streamed and synchronized using the Lab-
StreamingLayer (LSL) [29].
As part of the data validation, we performed a frequency
analysis of the EEG data independently from the men-
tal state prediction. For this, a zero-padded channel was
added to the EEG data before an average referencing,
with a subsequent removal of the zero-padded channel.
Extreme values were clamped following the method pro-
posed by [30]. The data was then cut into 5-second non-
overlapping epochs. The power of each frequency band
was calculated by band-pass filtering the signal and cal-
culating the root mean square for each electrode. Us-
ing the parameters suggested in [31], the power of the
theta (4-8Hz) alpha (8-12Hz) bands were extracted. For
the statistical analysis the data was then averaged into
10-minute epochs over three clusters of electrodes (i)
Frontal: F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4;
(ii) Central: C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4; and (iii) Parieto-Occipital: P3, P1, Pz, P2, P4, PO3,
POz, PO4, O1, Oz, O2.

Performance and Mental State classification:
EEG preprocessing: The EEG data for each partici-
pant was cut into 5-second non-overlapping epochs, to
allow for robust covariance matrix estimation, and to be
independent of the task trials. The epoched data was
then referenced and filtered between 2-36 Hz using the
mne.filter() function. Data points of each channel that ex-
ceeded 20 std of the robustly scaled data were clamped to
the value equal to +/- 20 std; for a detailed explanation of
this method, see [30]. Finally, the data was resampled to
125Hz.
Label creation: The performance metrics used misses
(Miss), reaction times (RT) and accuracies (Acc) of all
subtasks. Across subtasks, all values were first normal-
ized to give equal importance to each subtask. Next, av-
erages of misses, RT and accuracies were calculated. For
each value, the best and worst 33% were used to assign
labels—the global performance (OVR) score combined
misses, RT, and accuracy. Three different mental state-
based labels were created. The time-on-task used the first
and last 33% of each recording, respectively. The VAS
scores were used for the other two approaches. Using the
drowsiness and cognitive fatigue scales, the blocks corre-
sponding to the most extreme values of each scale were
used to label the data. Adjusted chance levels were cal-
culated for each label-type based on [32].
Classification: The data from each participant was di-
vided into an 80/20 split for training/testing datasets.
Next, the covariances were computed using OAS or LWF,

and the data was projected to the target space. We
compared performances of logistic regression (Log Reg),
Support Vector Machine (SVM) and Random Forest (RF)
Classifiers. Hyper-parameters for each classifier were
optimized using 5-fold cross-validation using Bayesian
search.

Statistical Analysis:
The general inference criterion is a p-value of p < .05.
In multiple comparisons, we adjusted that criterion ac-
cording to the adjusted Bonferroni method. Assumptions
for each statistical test were checked and accounted for if
not satisfied. Outlier detection was performed based on
the interquartile range criterion. This was done for trials
grouped by condition.
Subjective: To analyse the subjective results, we com-
pared the SPS and KSS scores from the beginning to
the end. For this, we used a paired samples T-Test. We
also performed a one-way repeated measures ANOVA for
both VAS scales. For one participant, the questionnaires
at the end of the experiment were not recorded.
Behavioral: The behavioural analysis was divided into
three sections for the (i) Search Task, (ii) Navigation Task
- Heading Mode, and (iii) Navigation Task - Waypoint
mode, respectively. An overall analysis was not possible
due to the differences between tasks. Due to the random-
ized order of the tasks, missing data occurred in some
blocks as single participants did not engage in a task in
a given block. In this case, the missing values were re-
placed with the list-wise mean. This occurred in 0.55 %
of the behavioural data.
For the search task, reaction times, F1 score and misses
were used as dependent variables in repeated measures
within-subjects ANOVA with Task (searching humans or
searching vehicles) as an independent variable and time
on task (19-minute blocks) for repeated measures.
To analyse the heading task reaction times, turning direc-
tion misses and deviation were the dependent variables
of repeated measures within-subjects ANOVA with TOT
(19-minute blocks) for repeated measures.
The Waypoint mode was evaluated using reaction time,
correct choices, and misses as dependent variables, again
TOT was the independent variable for repeated measures.
EEG Frequency: The extracted powerbands were com-
pared across blocks in a repeated measures ANOVA for
each cluster.
Classification: To analyze the classification results, a 2-
way ANOVA with factors Classifier and Label-type was
performed on the dependent variable of accuracy.

RESULTS

Subjective Data: Scores for the KSS, RSME and
SPS measures all showed significant increases in val-
ues comparing the beginning and the end of the experi-
ment KSS: t(23) =−6.912, p < .001,d =−1.411; SPS:
Z = −4.000, p < .001,r = −0.933; RSME: t(23) =
−6.380, p < .001,d = −1.302). The assumption of
normality was violated for the SPS test (Shapiro-Wilk
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W = 0.875, p = 0.007); therefore, the Wilcoxon result
is reported. VAS scores on both cognitive fatigue and
drowsiness showed linear increases over time (Cogni-
tive: F(2.374,49.849) = 25.979, p < .001, Greenhouse-
Geisser corrected, η2 = 0.553 and η2

p = 0.553; Drowsi-
ness: F(4.294,90.184) = 12.159, p < .001, Greenhouse-
Geisser corrected, η2 = 0.367 and η2

p = 0.367, see Figure
2 a-d).

Figure 2: Subjective results: a) KSS Scores comparing the be-
ginning and end of the experiment. b) SPS Scores comparing
the beginning and end of the experiment. c) RSME Scores com-
paring the beginning and end of the experiment. d) VAS scores
throughout the experiment for both the Cognitive Fatigue and
the Drowsiness scale. Timepoint 0 is before the start and before
the training, and then each subsequent point occurred every 19
minutes into the experiment. The last point occurred after the
completion of the experimental phase.

Behavioral Data:
SRC Task: Searching humans resulted in significantly
larger reaction times and more misses (RT: F(1,24) =
214,872, p < .001, Greenhouse-Geisser corrected, η2 =
0.900 Misses: F(1,24) = 34.308, p < .001, Greenhouse-
Geisser corrected, η2 = .588). Surprisingly, the F1
score was slightly higher for searching humans (F1:
F(1,24) = 108.011, p < .001, Greenhouse-Geisser cor-
rected, η2 = .818) . Time did not significantly affect
performance on any metric (RT: F(4.117,120) = .381,
p = .827, Greenhouse-Geisser corrected, η2 = .0160
F1:F(4.056,120) = 2.268, p < 0.066, Greenhouse-
Geisser corrected, η2 = 0.086 Miss:F(2.024,) = .751,
p= .479, Greenhouse-Geisser corrected, η2 = .030.), see
Figure 3 a-d.
NAV task HDG mode: RT, correct turn and misses were
all influenced by time (RT: F(4.1,60) = 41.711, p <
.005, Greenhouse-Geisser corrected, η2 = 0.635, cor-
rect turn: F(4.207,60) = 3356, p = .011, Greenhouse-
Geisser corrected, η2 = .123, miss: F(3.327,60) =
4.185, p = .007, Greenhouse-Geisser corrected, η2 =
.148). Contrast analysis revealed significant cubic effects
for RT, correct turn and misses (RT: F(5,60) = 99.569,
p < .005, Greenhouse-Geisser corrected, η2 = 0.806,

Figure 3: Behavioral Results of the SRC task: a) Reaction time
by Mode. b) F1 scores by Mode. c) Misses by mode. d) Reac-
tion Times over time

Figure 4: Behavioral Results of the NAV task: a) HDG: Re-
action times over time b) HDG: Misses over time. c) WPY:
Reaction times over time. d) WPY: Misses over time.

correct turn: F(5,60) = 7.627, p = .011, Greenhouse-
Geisser corrected, η2 = .231, miss: F(5,60) = 5.253,
p= .031, Greenhouse-Geisser corrected, η2 = .180). See
Figure 4 a & b.
SRC task WPY mode: Reaction times were also in-
fluenced by time (RT: F(3.078,60) = 2.707, p = .05,
Greenhouse-Geisser corrected, η2 = 0.101). Contrast
tests revealed a significant cubic effect (RT: F(1,60) =
10.395, p = .004, Greenhouse-Geisser corrected, η2 =
0.302). See Figure 4 c & d.

EEG: The alpha frequency band showed signifi-
cant effects throughout the experiment. In all three
clusters, an increase in alpha power was observed
(Frontal : (F(1,4.6) = 3.184, p = .012, Greenhouse-
Geisser corrected, η2 = 0.117; Central: (F(1,6.051) =
3.995, p < .001, Greenhouse-Geisser corrected, η2 =
0.143; Parieto-Occipital: (F(1,4.899) = 2.508, p =
.035, Greenhouse-Geisser corrected, η2 = 0.095). Theta
power did not show any significant change over time (see
Figure 5 a-d.

Classification: The 2-way ANOVA showed a signifi-
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Figure 5: Frequency power in the theta and alpha power bands
over time for the a) Frontal Cluster; b) Central Cluster; c)
Parieto-Occipital Cluster. d) Topology of the 3 clusters.

cant effect of Label type (F(6,24) = 342.12, p < .001,
η2 = 0.81). There was no significant effect of classi-
fier (F(7,24) = 2.398, p > .09, η2 = 0.01). The high-
est classification accuracy was obtained using the TOT
labels, with an average accuracy of 94.86% across all
classifiers. However, both VAS scales, the performance
labelling based on misses and accuracy, also performed
above their respective chance levels. This resulted in a
62.09 % accuracy for detecting misses using the tangent
space logistic regression (see Figure 6).

DISCUSSION

To use pBCIs in complex environments, the output of a
pBCI needs to have some predictive value. The results
presented here compare mental-state estimation and per-
formance estimation using EEG data. The subjective and
EEG analyses both point toward increased mental fatigue
over time. Yet, while some behavioural metrics, such as
reaction times in the navigation task, seem to show a sim-
ilar trend, variability in overall performance is not best
explained by TOT.
While mental state estimation using Time-On-Task or
subjective metrics as ground truth performs considerably
above chance level, our algorithms could also predict
misses with an above chance level likelihood. The algo-
rithm’s success with TOT metrics may be attributable to
the observed alpha power increase often associated with
mental fatigue. [31, 33]. It may also be due to slow drifts
and the non-stationarity of the EEG signal [34]. Subjec-
tive fatigue scores increased over time, creating similar-
ities between the TOT and VAS labels. The absence of
stronger effects in the spectral analysis may have been
attenuated due to the complexity of the task [35]. The re-
action time-based performance estimation had the lowest
accuracy. One possible explanation is that longer reaction
times may reflect several processes that are then mixed
up. Slow reaction times may be due to fatigue [36] or
a speed-accuracy tradeoff [37]. The moderate success of
the performance estimation based on misses suggests that

Figure 6: Classification results: Accuracy by Label Type with
adjusted chance levels.

spectral EEG features, especially theta power, are sensi-
tive to lapses [38]. Future work could evaluate incorpo-
rating Bayesian updating, which may further improve the
performance estimation

CONCLUSION

This study highlights the challenges and possibilities
of EEG-based performance estimation. The differ-
ences between definitions of performance highlight
the importance of label assignment. In our opinion,
performance scores should (i) be defined as a priori, (ii)
be explainable, and (iii) provide real-world value.
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ABSTRACT: To apply synchronous laboratory passive 

brain-computer interface (pBCI) systems to dynamic 

real-world scenarios, it is essential to develop 

asynchronous, event-independent pBCIs that can 

continuously interpret brain activity. Minimizing false 

alarms (FAs) caused by artifacts in continuous online 

sessions without compromising the hit rate is one of the 

primary challenges in EEG-based brain activity 

classification tasks. To address this challenge, this study 

introduces the Max-Min Amplitude Noise Filtering 

(MANF) technique, which is designed to reduce FAs in 

the online EEG-based machine error detection task. To 

achieve this, we pre-trained a classifier on labeled data 

and then tested the performance of the technique on a 

simulated continuous online classification. The MANF 

technique, using a predetermined noise threshold, 

simplifies the noise filtering process by comparing the 

difference between the maximal and minimal amplitude 

of incoming EEG data against this threshold, 

substantially reducing FAs while maintaining high hit 

rate. This technique outperforms the unfiltered 

condition and those using the Artifact Subspace 

Reconstruction technique, achieving an optimal balance 

between sensitivity and specificity with medium and 

conservative thresholds. Highlighting the "less is more" 

principle, the MANF technique proves highly suitable 

for continuous online pBCI applications. This 

development contributes to the ongoing efforts in 

creating more user-friendly and reliable pBCIs for 

dynamic real-world use. 

 

INTRODUCTION 

 
Passive brain-computer interfaces (pBCIs) derive the 

output from ongoing brain activity, enriching the 

human–machine interaction by integrating implicit 

information on the actual user's intentions and 

emotional states into technical systems [1]. In recent 

years, electroencephalogram (EEG)-based pBCIs have 

been used in various scenarios [2–5], particularly 

notable in the use of error-related potentials (ErrPs) as 

implicit feedback. This approach has been validated as 

feasible in various use cases, e.g. BCI speller [6–8], 

cursor control [2,9], and improvement of robot control 

[10–12]. However, most paradigms involved are lab-

based and time-locked to specific events. To bridge the 

gap between synchronous laboratory pBCI systems and 

dynamic real-world usage, it is essential to develop 

asynchronous, event-independent pBCIs that can 

continuously interpret brain activity, ensuring more 

natural and seamless human-machine interactions. A 

few studies have investigated continuous, asynchronous 

error detection [13–15], with the aim of reducing false 

alarms (FAs) caused by artifacts in continuous online 

sessions while maintaining precise error detection. 

When exploring the real-time classification of EEG 

signals in dynamic environments or during intense 

physical activities, artifact interference is a primary 

obstacle [16,17]. Research in Mobile Brain/Body 

Imaging [18,19] has highlighted the efficacy of offline 

artifact correction techniques, such as Independent 

Component Analysis (ICA), for cleaner signal analysis 

[20]. Nonetheless, the adaptability of ICA for online 

application is limited. Novel approaches, including 

Artifact Subspace Reconstruction (ASR) [21] and 

Online Recursive ICA [22], show potential in certain 

online scenarios. However, their performance in 

continuous, asynchronous online classification, 

especially considering computational demands, remains 

unexplored. Therefore, further research is necessary to 

evaluate the performance of these algorithms or explore 

new techniques to reduce the effects of artifacts in 

continuous online application.  

This study aims to fill this gap by designing and 

evaluating a continuous online classification approach 

that incorporates a novel noise filtering technique. In the 

context of tactile-based machine error detection, we 

have implemented a comprehensive methodology that 

includes feature extraction, class re-balancing, Support 

Vector Machine (SVM) classifier training, and a simple 

noise filtering technique. The results indicate that our 

methodology achieves good performance in the 

simulation of online continuous classification. 

Furthermore, through comparative analyses of different 

noise filtering conditions, we have demonstrated that 

our simplistic noise filtering technique outperforms both 

unfiltered conditions and those using the ASR 
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technique. This study highlights the “less is more” 

principle in controlled continuous online classification 

scenarios. Therefore, our contributions are twofold: we 

not only validate the feasibility of a minimalist 

approach for online machine error detection but also 

offer insights for future research and applications in 

EEG-based continuous online classification sessions. 

 
MATERIALS AND METHODS 

 
     Materials overview: This study is based on an open-

source dataset (https://zenodo.org/records/8345429) 

[23], which was used for the IJCAI 2023 competition 

(https://ijcai-23.dfki-bremen.de/competitions/inter-hri/), 

supported by German Research Center for Artificial 

Intelligence, Robotics Innovation Center. The dataset 

contains recordings of the EEG data from eight subjects 

who were assisted in moving their right arm by an 

active orthosis. For each participant, 8 labeled single-

trial training sets and 2 unlabeled test sets are included. 

The training sets contain EEG data and all the event 

markers across the whole experimental sessions, while 

the test sets contain only continuous EEG data streams 

and markers indicating the onset of introduced errors. 

     Participants: The experiment involved 8 healthy 

right-handed volunteers (4 males and 4 females) with an 

average age of 21.8 years. Before the experiment, they 

attended a short session in the lab for an introduction 

and preliminary tests, which included fitting the orthosis 

and determining the EEG cap size according to head 

circumference. All participants were informed of their 

rights including voluntary withdrawal. The experiment 

lasted an average of 4.9 hours (SD = 0.6 hours), and 

participants were remunerated at a rate of 10 euros per 

hour. 

     Experimental setup and procedure: Participants were 

equipped with a 64-channel EEG system and wore an 

active orthosis on their right arm while holding an air-

filled ball in their left hand. The orthosis facilitated the 

participant's arm movements through a sequence of 

trials that included both flexion and extension. Certain 

errors were induced for a short duration of time during 

these movements. An error was defined as a short-term 

(250 ms) alteration in the direction of the orthosis's 

movement. For example, if the orthosis was amid 

executing a flexion movement, an error would cause a 

temporary switch to extension before resuming the 

original flexion path. Similarly, during an extension, it 

would momentarily change to flexion. The participants' 

primary task was to identify these errors in the orthosis's 

operation. The experiment's initial run aimed to 

establish a baseline with 30 movements without any 

errors. This was followed by a training session to 

familiarize the participants with the sensation of the 

error and the corresponding response — squeezing the 

ball in the left hand. During the experiment, 6 errors 

were randomly introduced among 30 movement trials 

across 10 runs, with the sequence of errors varied in 

each run. To reduce the artifacts in the data, participants 

were asked to maintain specific postures and gaze 

directions. The experiment was designed to elicit a total 

of 480 error detection responses, calculated from 6 

errors in each of the 10 runs, across all 8 participants. 

The timing of the stimulus onset for the trials without 

errors was determined by averaging the onset times 

from the trials that contained errors. 

     Data acquisition: EEG data collection was 

performed using the 64-channel LiveAmp system paired 

with the ActiCap slim electrode setup, adhering to an 

extended 10-20 layout, both supplied by Brain Products 

GmbH. The reference and ground electrodes were 

placed at FCz and AFz, respectively. The impedance for 

all 64 electrodes was consistently kept below 5 kΩ. 

Data sampling was at 500 Hz using Brain Products 

GmbH's Recorder software (version 1.25.0001), which 

applied hardware filters to limit the data's frequency 

range to 0.0 Hz to 131.0 Hz. The acquired EEG data 

was organized in the BrainVision Core Data Format 1.0, 

comprising three essential files: a binary data file (.eeg), 

a header file (.vhdr), and a marker file (.vmrk). Within 

each participant's EEG data folder, the marker files 

(.vmrk) recorded all critical events during the 

experiments. Markers for the start of flexion and 

extension movements were coded as S64 and S32, 

respectively. Error-free trials are indicated by S48 

markers, placed around the calculated mean onset of 

errors from the trials that contain errors. The 

introduction of an error in a trial was marked by S96, 

while the participant's action of squeezing the ball was 

recorded as an S80 event in the marker file. 

     Task description and evaluation metrics: For 10 runs 

from each participant, 8 serve as labeled single-trial 

training sets for training machine learning models 

capable of detecting the onset of the deliberately 

introduced errors in the data, while 2 serve as unlabeled 

test sets without event markers for model evaluation. 

During the evaluation phase, a buffer-like sliding 

window moves through the EEG data along the 

temporal dimension to simulate continuous online data 

acquisition. A binary classification of event types (error 

or non-error) is performed at each position of the sliding 

window. The predicted error onsets are then compared 

with true error onsets for evaluation. A predicted error 

onset that occurs within a 1000 ms window following 

the true error onset is defined as a hit or true positive. 

Conversely, any predicted error onset outside this 1000 

ms window is defined as a FA or false positive. It is 

important to note that within the 1000 ms window 

following a true error onset, multiple error predictions 

are collectively counted as a single hit, while each FA is 

included in the cumulative count of FAs. The evaluation 

metrics consist of the total number of hits in the 2 test 

sets for all 8 participants (with a maximum of 96), the 

average number of FAs across the participants, and the 

average FA rate across the participants. The average FA 

rate is calculated as the total number of FAs divided by 

the total number of non-error epochs across the 2 test 

sessions, averaged across participants. 

     Preprocessing: For the training sets, EEG data was 

preprocessed by re-referencing to an average reference 
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and applying a zero-phase, non-causal Hamming 

windowed-sinc FIR highpass (0.1 Hz passband edge, 

0.1 Hz transition bandwidth, 0.05 Hz cutoff frequency (-

6db)) and lowpass filter (15 Hz passband edge, 3.75 Hz 

transition bandwidth, 16.875 Hz cutoff frequency (-

6db)) in succession, using the EEGLAB pop_eegfiltnew 

function. The data was then segmented into epochs of 

interest, ranging from 100 ms before to 800 ms after the 

stimulus onset. Baseline correction was applied to each 

epoch, using the interval from 100 ms before the 

stimulus to its onset. The error epochs were organized 

into a [64, 400, 48] matrix indicating the number of 

channels, time points per epoch, and total error epochs, 

respectively, derived from 8 training sets per 

participant, with each set containing 6 error epochs. 

Similarly, the error-free epochs were organized into a 

[64, 400, 192] matrix, derived from 8 training sets per 

participant, with each set containing 24 error-free 

epochs. 

     Feature extraction and classifier training: Features 

were extracted using 50 ms non-overlapping moving 

windows within the [0-800] ms post-stimulus period 

across all 64 channels. In each window, the mean value 

was calculated, resulting in 1024 features per epoch for 

classification. To address the class imbalance issue, the 

Synthetic Minority Over-sampling Technique (SMOTE) 

was applied to enhance the representation of the 

minority class (error) by generating synthetic samples 

through interpolation with neighboring instances, 

thereby equalizing the number of epochs in both classes 

within the feature matrix [24]. The resulting balanced 

feature set contained 384 epochs (192 error and 192 

non-error epochs), each characterized by a 1024-

element feature vector. This feature set served as the 

input for training the SVM classifier [25]. The SVM 

model was configured with a linear kernel and a 

regularization parameter set to 1.0. To validate the 

model’s performance, a 10-fold cross-validation was 

carried out individually for each participant. 

     Continuous online classification simulation: During 

the online classification simulation phase, a buffer-like 

sliding window moved through the test EEG data along 

the temporal dimension, simulating the process of 

continuous real-time data acquisition. Spanning 900 ms, 

this window covered the same time range used during 

the offline training phase for feature extraction 

(including 100 ms baseline range). With a step size of 

20 ms, the window continuously “fetched” EEG data, 

ensuring a seamless and overlapping coverage of the 

incoming EEG data. The preprocessing approach and 

feature set chosen for classification in this phase were 

consistent with those applied in the offline training 

phase. To reduce the FAs in the continuous 

classification, we implemented a lightweight noise-

filtering technique, termed the “Max-Min Amplitude 

Noise Filtering (MANF) Technique”. The noise level in 

each window was evaluated and compared to a 

predetermined threshold. Epochs with a noise level 

above this threshold were considered “noisy” and 

directly classified as non-error (0). Finally, the trained  

 

Figure 1: Max-Min Amplitude Noise Filtering (MANF) 

technique process. This process diagram illustrates the 

process of determining the noise threshold using target 

epochs within training sets. First, the max-min 

amplitude difference within each target epoch is 

calculated for each channel. Then, the average of the 

highest 10% of these differences is calculated for each 

epoch. The final noise threshold is derived by averaging 

these means over all target epochs and adding a variable 

number of standard deviations to this average. 

 

SVM classifier continuously provided predictions for 

each position of the sliding window, where a prediction 

of 1 indicated the detection of an error, and 0 indicated 

its absence. Furthermore, we replicated the online 

simulation using the ASR technique [21] with the 

‘clean_asr’ function in EEGLAB. The evaluation of 

both the MANF and ASR techniques included three 

conditions: aggressive, medium, and conservative, each 

reflecting a different level of noise tolerance. The 

aggressive strategy used a lower threshold, resulting in 

more stringent noise filtering, while the conservative 

strategy adopted a higher threshold, allowing for less 

stringent filtering. The medium strategy maintained a 

balance between these two extremes. To implement 

these strategies, specific hyperparameters were tuned 

within each technique. For the MANF technique, noise 

thresholds were set at one, two, and three standard 

deviations above the mean noise level. For ASR, 

deviation cutoffs of 5, 20, and 30, relative to calibration 

data, defined the respective aggressive, medium, and 

conservative conditions. In addition, a baseline 

condition without any noise filtering was also evaluated 

to provide a comparative benchmark. 

     MANF technique: As shown in Figure 1, a threshold 

is calculated by examining max-min amplitude 

differences using the target epochs in the training sets. 

To this end, first, the max-min amplitude difference 
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Table 1: Online classification simulation results across 

different noise filtering conditions. 

Condition Total 

Hits 

Average FAs 

(Mean ± SD) 

Average FA Rate 

(Mean ± SD) 

Unfiltered 

(baseline) 

88 957.3 ± 308.6 0.037 ± 0.011 

MANF 

aggressive 

80 416.6 ± 158.9 0.016 ± 0.006 

MANF 

medium 

86 539.5 ± 186.2 0.021 ± 0.007 

MANF 

conservative 

87 620.8 ± 207.5 0.024 ± 0.008 

ASR 

aggressive 

26 27.8 ± 22.1 0.001 ± 0.001 

ASR 

medium 

81 521.1 ± 192.0 0.020 ± 0.007 

ASR 

conservative 

86 653.6 ± 169.5 0.025 ± 0.006 

 

within each target epoch is calculated for each channel. 

Then, the mean of the top 10% max-min amplitude 

differences (6 channels/values) is calculated for each 

target epoch, and last, the mean of those means across 

all target epochs, plus a variable number of standard 

deviations, is set as the final noise threshold. In the 

online simulation phase, epochs that contain mean max-

min amplitude differences in their top 10% channels 

above this threshold are considered “noisy” and 

excluded from being classified as error epochs. 

 

RESULTS 

 

The pre-trained classifier's performance was evaluated 

in a 10-fold cross-validation. The average balanced 

accuracy across all participants was 91.3% ± 4.5% 

(mean ± SD), which is significantly above the chance 

level of 0.5 (significance with 𝛂 = 0.001 would have 

been reached with 73.68% correct classification, see 

[26]). The average true positive rate was 84.9% ± 7.8% 

(mean ± SD), and the average true negative rate was 

97.7% ± 1.4% (mean ± SD). 

In the continuous online classification simulation phase, 

16 test sets, with 2 for each of the 8 participants, were 

used for online simulation. The average count of non-

error epochs across all participants was 26027.0 ± 

1733.5 (mean ± SD). The unfiltered condition served as 

a baseline, yielding the highest total hits and average 

FAs, as shown in Table 1. When implementing noise 

filtering using the MANF and ASR techniques with 

varying hyperparameters, there was a notable decrease 

in the average FAs. However, this improvement was 

accompanied by a corresponding reduction in total hits. 

Figure 2 illustrates the percentage changes in hit rate 

and average FA rate when applying both noise filtering 

techniques across three noise tolerance levels. Both 

techniques substantially reduced the FA rate, with only 

a relatively minor decrease in the hit rate. The noise 

filtering strategy that was most aggressive in its 

approach was the most effective in reducing FAs.  

 
Figure 2: Impact of noise filtering techniques on hit rate 

and FA rate. This figure compares the percentage 

changes in hit rate and average FA rate resulting from 

the application of two noise filtering techniques (MANF 

and ASR) across three levels of noise tolerance: 

aggressive, medium, and conservative. 

 

However, it also resulted in the largest decline in hit 

rate. This was particularly noticeable when using the 

ASR technique in its aggressive application, where 

there was a 97.0% reduction in FAs but an unacceptable 

70.5% drop in hit rate. The medium and conservative 

conditions produced a more balanced outcome, with 

both techniques achieving similar reductions in FAs 

(43.2% and 34.7% for MANF, and 45.1% and 31.7% 

for ASR, under medium and conservative conditions, 

respectively). Notably, the MANF technique 

outperformed the ASR in preserving the hit rate, 

showing only a 2.3% reduction compared to 8.0% under 

the medium condition, and a 1.1% reduction compared 

to 2.3% under the conservative condition. To 

demonstrate the process of continuous error prediction 

in the online simulation, we display the error predictions 

and true error onsets over time using a test set from one 

participant as an illustrative example (see Figure 3). 

This visualization is presented for both the baseline 

condition and the MANF condition, across three 

different noise threshold levels. 

 

DISCUSSION 

 

This study investigates the issue of artifact interference 

in continuous online classification of EEG signals, with 

a focus on machine error detection. We introduced and 

evaluated a simple noise filtering technique and found it 

to be superior to the unfiltered condition and those using 

the ASR technique in terms of reducing FAs while 

maintaining the hit rate. Specifically, our noise filtering 

technique achieved a 43.2% reduction in FA rate with 

only a 2.3% decrease in hit rate using a medium noise 

threshold, and a 34.7% reduction in FA rate with a 

minimal 1.1% decrease in hit rate using a conservative 

noise threshold. The comparative analysis of different 

noise filtering conditions highlights an essential 

consideration in the design of noise filtering strategies: 

the trade-off between sensitivity and specificity. While 

aggressive noise filtering effectively minimizes FAs, it 

may also inadvertently filter out genuine signals, 

leading to missed detections. Especially when using an 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-039

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

221



aggressive cutoff with the ASR technique, this approach 

tends to remove a significant portion of valuable signal 

features. As a result, the signals become flattened and 

lose their distinctive characteristics. Conversely, less 

stringent filtering preserves more hits but at the risk of 

higher FA rates. Therefore, for practical applications, it 

is recommended to use the medium or conservative 

strategies of the MANF technique. These strategies 

effectively minimize FAs while preserving a 

satisfactory hit rate, making them a preferable choice 

over the ASR technique or no filtering. Besides, the 

simplicity of the MANF technique offers an additional 

advantage. This technique simplifies the noise detection 

process by calculating the difference between the 

maximum and minimum EEG amplitudes for new 

incoming data streams in online sessions, and then 

comparing this calculated difference with a 

predetermined noise threshold value. This 

computational efficiency makes the MANF technique 

particularly suitable for continuous online applications, 

providing a computationally lightweight and effective 

solution for enhancing pBCI systems. In essence, this 

approach perfectly illustrates the “less is more” 

principle. 

The implications of our findings extend beyond the 

context of tactile-based machine error detection and 

shed light on the broader domain of asynchronous, 

continuous online EEG-based classification tasks. The 

results suggest that the MANF technique shows 

potential in developing more intuitive and user-friendly 

pBCI systems, such as assistive devices. By effectively 

reducing FAs, it promises smoother and more reliable 

human-machine interactions. However, it is important 

to note that the MANF technique primarily focuses on 

excluding noisy epochs rather than correcting artifacts, 

which might limit its effectiveness in dynamic 

environments with substantial movement. Advancing 

artifact correction techniques in such environments is 

still crucial. Furthermore, the testing phase of our study 

was conducted through an online simulation. Therefore, 

future research should evaluate the performance of the 

MANF technique in real online sessions and across 

diverse EEG-based applications, especially in complex 

or unpredictable environments. Additionally, further 

investigation into the optimization of noise filtering 

parameters, possibly through machine learning 

algorithms or adaptive filtering techniques, could yield 

even more effective and flexible solutions. 

 

CONCLUSION 

 

This study demonstrates that the MANF noise filtering 

technique can substantially reduce FAs while 

maintaining a high hit rate, outperforming both 

unfiltered conditions and those using the ASR technique 

in continuous online EEG signal classification. This 

approach, emphasizing the “less can be more” principle, 

offers a computationally efficient solution for enhancing 

pBCI systems, particularly in applications requiring 

continuous, real-time interaction. Our work contributes 

to the field by validating a minimalist yet effective 

strategy for online machine error detection and 

providing a foundation for future research in EEG-based 

continuous online classification. Looking forward, it is 

essential to explore the generalizability of the MANF 

technique in dynamic environments and further refine 

noise filtering parameters to broaden its applicability 

and effectiveness. 

 

 

Figure 3: Visualization of continuous error prediction in online simulation. This figure displays the temporal 

distribution of error predictions (indicated by blue vertical lines) and true error onsets (highlighted with light red 

shadows) for both the baseline and MANF-filtered conditions across three different noise threshold levels. The data 

presented here is specific to participant “AQ59D”, using test set 6 as an illustrative example. 
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ABSTRACT: Error-related potentials hold the potential
to enhance self-correcting behaviors in Brain-Computer
Interfaces (BCIs), pivotal for human-machine interac-
tions. However, integrating error detection mechanisms
poses challenges, notably in lengthy calibration sessions
required for different BCI modules. To address this, we
propose a novel approach using Self-Supervised Learn-
ing (SSL) with an autoencoder architecture, called Ana-
E, to develop pre-trained error detection pipelines. We
recorded EEG data from participants navigating a game
scenario imposed with errors. Offline analyses within
and between participants were conducted for both pre-
processed EEG trials and Ana-E features with two clas-
sifiers. Within-participants analysis showed compara-
ble performance between Ana-E features and EEG trials.
While in between-participants analysis, Ana-E exhibited
an 8% performance improvement (72%) over the second-
best pipeline (64%). Our study offers valuable insights
into the future of pre-trained models for error detection
in BCIs, providing a baseline for more complex archi-
tectures with the goal of significantly enhancing BCI us-
ability and reducing dependency on calibration sessions,
thereby improving user experience and applicability.

INTRODUCTION

In the field of Brain-Computer Interfaces (BCIs), Error-
related Potentials (ErrPs) have been utilized as error de-
tection instruments to expand the usability of architec-
tures and develop a smoother experience between the user
and external device [1]. Such implementations have been
applied both in offline [2] and online paradigms [3]. Al-
though the integration of errors as corrective instruments
could improve the usability of BCIs as assistive tools, an
immediate challenge emerges. Different BCI modules
would require multiple calibration sessions [4], making
the existence of pretrained models a requirement for self-
correcting BCI implementation to prove applicable. In
this paper, we attempt to develop pretrained models by
adapting an autoencoder architecture to conduct a Self-
Supervised Learning (SSL) task.
SSL reflects a subset of unsupervised learning methods
in which neural networks are trained with automatically
generated labels (pretext task) and then tested on a super-
vised task (downstream task), where human annotations

are utilized to evaluate the performance of the model [5].
SSL relies on the premise that input information has dis-
tinguishable characteristics, and learned feature represen-
tations from the pretext task can be transferred to the
downstream task [5]. SSL has been used successfully
in visual feature learning tasks like image colorization
[6], temporal order verification [7], and visual-audio cor-
respondence verification [8]. SSL methods have further
been deployed for time series data [9], where a common
method is that of masked autoencoders, which randomly
mask patches of the original time series data and learn
temporal dynamics by recovering the masked patches
[10]. Recently, SSL methods were implemented in EEG
data for sleep stage recognition and pathology detection,
outperforming purely supervised deep neural networks in
low-labeled cases [11].
Autoencoders represent an unsupervised learning tech-
nique where the core idea is to conduct a representation
learning task [12]. To do so, a deterministic encoder-
decoder network pair is trained to learn a feature vector,
often referred to as a ’bottleneck,’ capable of encoding
the underlying structural characteristics of the input sam-
ples. The learned feature vector could then be used by the
decoder to fully reconstruct the input data samples [13].
In this paper, we used a 1D convolutional autoencoder ar-
chitecture for EEG reconstruction that we coined as Ana-
E. After training our model on EEG reconstructions, we
extracted the encoder part and used it as a feature extrac-
tor of EEG trials, which we then fed to a classification
head (CH). Our goal was to develop an architecture capa-
ble of deconstructing and reconstructing the input EEG
as our pretext task. We then expect that the learned fea-
tures from our encoder would be robust enough to clas-
sify errors in human participants in a downstream task.
By doing so, we hope to address the issue of pre-trained
BCI models. To investigate the novelty of our approach,
we tested our architecture both within-participants and
between-participants.

MATERIALS AND METHODS

Participants: We recorded 10 participants (6 females)
with a mean age of 22 years (SD = 2.3), each undergoing
a single recording session. One participant was removed
due to incomplete markers. Participants were recruited
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via advertisement fliers and compensated at a rate of 8 eu-
ros per hour. They provided informed consent and were
informed of their right to withdraw at any time during
the experiment. Ethical approval was obtained from the
Ethical Committee of the Faculty of Arts, University of
Groningen, The Netherlands (ID 92123476).

Procedure: Upon arrival, participants were introduced
to the laboratory, briefed on the study, and signed in-
formed consent forms. EEG cap placement took approx-
imately 30 minutes. Following this, participants under-
went a brief training session ( 5-10 minutes) to familiar-
ize themselves with the experimental paradigm, includ-
ing game rules and controls.After training, participants
explained the game rules to researchers and began play-
ing, with the game duration lasting 60-90 minutes. Rest
periods were provided between trials as needed. The total
experiment duration ranged from 120 to 150 minutes.

EEG Recordings: Participants EEG was recorded with
antiCAP slim/snap 32 gel based active electrodes accord-
ing to the 10-20 international system with a sampling
rate of 500Hz using the LiveAmp BrainProducts ampli-
fier. The measured EEG channels were: FP1, FPz, FP2,
AF3, AFz, AF4, F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2,
FC4, C3, C1, Cz, C2, C4, CP5, CP1, CPz, CP2, CP6, P3,
Pz, P4, O1, Oz, O2. Ground and reference electrodes
were placed on the left and right mastoid, respectively.
EEG was recorded with the Brainvision recorder. Finally,
impedance of electrodes was kept below 20 Ω for all par-
ticipants.

Experimental Procedure: The experiment was devel-
oped in the Unity game engine [14] and had the code
name Honey Heist. The experiment consisted of two
phases: the training phase (approximately 5 minutes) and
the testing phase (approximately 60–90 minutes). In this
game, participants had to control a 3D avatar (bear) us-
ing keyboard buttons (W, S, D, A, or arrow keys) to reach
a target (acquiring the honey) and then escape from the
predefined boundaries to reach the finish line (forest). Af-
ter participants passed the starting line (fence), they were
chased by an artificial agent (chicken) throughout the rest
of the trial.
Each trial had two possible outcomes: either participants
acquired the target (honey) and reached the finish line,
resulting in "winning" the trial, or the agent caught them
before reaching the finish line, resulting in "losing" the
trial. Participants were instructed to complete the task
as quickly as possible. This experiment consisted of 400
trials, divided into three experimental conditions: 1) Nor-
mal Trials: 280 trials, 2) Control Error: 60 trials, and 3)
Environment Error: 60 trials. Each trial ranged from 9 to
13.5 seconds depending on the participants’ performance.
In the normal trials, the procedure was identical to what
is described above. In the control error condition, after
crossing a specified threshold, the player lost the ability
to jump over fences (Fig. 1), resulting in the agent catch-
ing up with the player and subsequently "losing" the trial.
The threshold was an invisible box that was randomly se-
lected between 3 – 3.6 units on the Z axis, in the game

Figure 1: A) Normal trial where the participant is able to jump
over the fence. B) Control error trial where the participant loses
the ability to jump.

Figure 2: Environment Error Condition: The artificial agent is
teleported onto the participant while enlarged, resulting in a jit-
tering effect.

environment.
In the environment error conditions, after participants
crossed the threshold, the agent was teleported inside the
player’s avatar while doubling its size, resulting in jitter
effects and instant loss of the trial (Fig. 2).
Participants were not informed about the different error
conditions, which comprised 30% (15% per error condi-
tion) of the total trials. The total number of trials was di-
vided into 10 blocks with a uniform distribution to ensure
that only six errors per condition occurred per block. Fur-
thermore, the onset of error trials occurred after partici-
pants crossed the specified threshold, randomly selected
in each trial.

EEG Pre-processing: EEG recordings were first band-
pass filtered (FIR) between 1-30 Hz (filter length of 1651
samples) to remove slow drifts and power line noise.
Then, to remove eye artifacts, an Extended Infomax Inde-
pendent Component Analysis (ICA) [15] was computed
with as many components as EEG electrodes (32). The
ICA components were then visually inspected and scored
by adaptive z-scoring based on the three frontal elec-
trodes (FP1, FPz, FP2). After correcting for eye artifacts,
the data were filtered again between 1-15 Hz (FIR) with
a filter length of 1651 samples (3.302 sec) and epoched
for each condition from 0 to 1 s, where 0 s was the on-
set of our markers. To ensure that no significant artifacts
were maintained in our epochs, we dropped epochs based
on maximum peak-to-peak signal amplitude (PTP) with
a rejection threshold of 100 x 10-6 V. Epochs were then
saved per participant to be later used for the training of
our models.

Data preparation: The dataset consisted of epochs x
channels x time-points. Additionally, we selected only
the 11 central electrodes AFz, F1, Fz, F2, FC1, FCz, FC2,
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C1, Cz, C2, CPz, based on the brain regions frequently
associated with the encoding of error processing [16].
Furthermore, to prepare the dataset for our model, min-
max normalization was computed per electrode, trans-
forming the amplitude of the electrodes between 0 and
1. Finally, to account for the unbalanced dataset (as nor-
mal trials accounted for 60% of the trials), the number of
epochs was equalized between the error conditions and
the normal trials, with the aim of the remaining epochs
occurring as close as possible in time. Thus, we re-
moved those normal trials that fell further in time from
the epochs of control and environment error conditions
and maintained normal trials that fell closer. Finally, we
combined the two error conditions (control, environment)
into a single class, resulting in a binary classification task
between normal and error trials

Autoencoder Architecture Ana-E: The architecture we
developed, termed Ana-E, is a 1D convolutional autoen-
coder comprised of an encoder, decoder, and an interme-
diate dense layer for reshaping the encoded representa-
tion. The encoder consists of three layers, with each layer
applying a 1D convolution with kernel sizes of 32, 64,
and 128, respectively. The first layer’s input size mirrors
the 11 selected electrode, where a 1D convolution with a
kernel size of 32 is applied over the 500 time points per
electrode.This results in EEG epochs as input, with the
first layer’s output producing 22 filters. Subsequent lay-
ers double the number of filters, culminating in 88 in the
final encoder layer. No padding is applied in any layer.
For the first two layers, batch normalization and ReLU
activation functions are applied after each convolutional
layer, while the final encoder layer consists of a 1D con-
volution with a kernel size of 128, followed by flatten-
ing the output. This results in a high-dimensional tensor,
which is then passed through a linear layer to reduce the
dimensionality to 750.
Between the encoder and decoder, we integrated an in-
termediate dense layer with a linear transformation from
750 to 88*280 dimensions, reshaping the flattened en-
coder output for decoding. The decoder network mir-
rors the encoder, excluding the final flatten and linear lay-
ers. Additionally, the decoder’s output is passed through
a sigmoid function to reconstruct the original EEG signal.
For the EEG feature representations, we utilized the out-
put of our encoder. For the classification task, our clas-
sification head (CH) consisted of five linear layers with
dimensions 750, 500, 250, 125, 60, and 1, respectively.
The first input layer corresponds to the output number
of Ana-E’s encoder. Each linear layer is followed by a
ReLU activation function. The output of the final layer
undergoes a sigmoid function for binary classification be-
tween normal and error trials.

Training and evaluation: We trained and evaluated
Ana-E both within-participants and between participants.
For the within-participants case, we split each partici-
pant’s session into train/val/test splits of 0.6, 0.2, and 0.2,
respectively. In the between-participants case, the model
was trained on sessions from all participants except the

one being tested, resulting in 8 training sessions and 1
testing session. The 8 sessions, after being combined,
were split into train and validation sets of 0.8 and 0.2,
respectively. This process was conducted iteratively for
each participant. The model was trained for 250 itera-
tions with a batch size of 64.
We selected Adam as an optimizer with a learning rate
of 1 × 10-3 and weight decay of 1 × 10-6. For the loss
function, we chose the Mean Squared Error (MSE) as
we wanted our model to be fine-tuned based on the dif-
ference between the original input and the reconstructed
output. The most optimal parameters for the models, such
as training iterations, batch size, learning rate, weight de-
cay, and the number of neurons of the final linear layer of
the encoder, were selected based on GridSearch.
For our classification head (CH), we used 200 training it-
erations with a batch size of 10 using Adam with a learn-
ing rate of 1 × 10-3 and weight decay of 1 × 10-6. We
employed Binary Cross-Entropy (BCE) as the loss func-
tion.

Ana-E: Error classification as downstream task: To as-
sess the effectiveness of our architecture in extracting re-
liable features for developing pre-trained error detection
models, we compared the features extracted by Ana-E
with the raw (preprocessed) EEG trials within and be-
tween participants. In each comparison, we employed
two classifiers: our CH and Linear Discriminant Analysis
(LDA) [17], resulting in four different pipelines: AnaE-
LDA, AnaE-CH, RAW-LDA, and RAW-CH. In the RAW
pipelines, we flattened the 3D EEG trials into 2D. Each
epoch’s input for LDA and CH in the RAW pipelines con-
sisted of 11 electrodes multiplied by 500 time points. To
meet the specified input size of 750 in the first layer for
CH, we added an extra layer with an input of size 11 *
500 and an output size of 750.
We evaluated the quality of each pipeline and its abil-
ity to differentiate between classes by examining accu-
racy scores, True Negative Rates (TNRs), and True Pos-
itive Rates (TPRs) for 2-class classification within and
between participants.

RESULTS

First, to assess the quality of our feature extractor in the
within-participants case, we provide the grand average
(GA) per pipeline, together with each participant’s ac-
curacy and TNRs and TPRs. We observe that the best
GA is achieved by RAW-CH (M = 79%, SD = 0.08).
For the second-best performance, both AnaE-LDA (M =
78%, SD = 0.11) and AnaE-CH (M = 78%, SD = 0.11)
performed equally well, while the worst accuracy was
achieved from RAW-LDA (M = 73%, SD = 0.13).
Further inspection of the accuracy per participant reveals
that the top three pipelines performed equally well across
participants, as each pipeline resulted in the best per-
formance across three participants. Differences in GA
are reflective of the variation of classifiers’ performances
within each participant. For example, our custom classi-
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Figure 3: Within-Participants: Classification accuracy

Figure 4: True Negative and True Positive Rates: Within-
Participants

fication head seems to achieve the best GA due to the dif-
ference it has with the other classifiers in participant 6 and
not due to being the most optimal classification method.
Additionally, we notice that all pipelines across all partic-
ipants scored higher than the binary classification chance
level (50%), with the best performances achieved in par-
ticipants 3 and 5 (>80%). Our top three pipelines consis-
tently perform around the 70 mark for almost all partici-
pants. (Fig.3).
To gain a better understanding of the quality of the clas-
sification made by our tested pipelines, we further inves-
tigated the TNRs and TPRs (Fig. 4). We observed that
the LDA pipelines predict both classes more equally, with
the normal class being predicted slightly more frequently.
In contrast, the Ana-E pipelines seem to predict the er-
ror condition more strongly, as evidenced by the average
TNRs and TPRs (Fig. 5).
Similarly, to assess the quality of our approach between
participants, we provide the GA for each pipeline to-
gether with the accuracy performances per participant
and then TNRs and TPRs. The best GA is reached by
AnaE-CH with a score of M = 72% (SD = .07), the
second-best metric is achieved by both RAW-CH (M =
64%, SD = .14), and AnaE-LDA (M = 64%, SD = .05).
By investigating the accuracy metric per participant, we

Figure 5: Average True Negative and True Positive Rates:
Within-Participants

Figure 6: Between-Participants: Classification accuracy

observe that our pipeline (Ana-E) performed above av-
erage in all participants and achieved the best accuracy
in 4 out of 9 participants. Additionally, we notice that
our custom classifier coupled with the preprocessed data
(epochs) performed the best in 5 out of the 9 participants
but next to chance levels in the remaining participants
(Fig. 6).

By further inspecting the average TNRs and TPRs per
pipeline, we notice that pipelines utilizing our feature ex-
tractor perform the best in terms of error condition recog-
nition. Although RAW-CH seems to achieve the best per-
formances in 5 out of the 9 participants in terms of ac-
curacy metrics, we now notice that the classifier mainly
learns to predict the normal trials and performs poorly in
terms of error detection.

Furthermore, by inspecting the average TNRs and TPRs,
we can deduce that when classifiers were utilizing the fea-
tures extracted by our encoder, they were firstly able to
better predict error conditions while secondly maintain-
ing more stable performances across the different partic-
ipants (Fig. 8).Finally, by inspecting the TNRs and TPRs
per participant we can observe the effects that are respon-
sible for the below chance level of error condition pre-
dictions as in 4 out 9 participants the custom classifier
trained on the preprocessed data predicts every class as
normal trials (Fig.7).

DISCUSSION
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Figure 7: True Negative and True Positive Rates: Between-
Participants

Figure 8: Average True Negative and True Positive Rates:
Between-Participants

The study aimed to explore the development of pre-
trained error detection models using an autoencoder in
a semi-supervised learning (SSL) setup. Initially, a
game simulation was designed in Unity, where partic-
ipants navigated obstacles, with 30% of trials contain-
ing simulated errors. EEG data were recorded during
the game. We adapted an autoencoder, termed Ana-
E, for SSL, training it on a reconstruction task and
utilizing EEG features for classification. Our pipeline
(AnaE) was compared against preprocessed EEG data
(RAW) using two classifiers. Both within-participant
and between-participant analyses were conducted. In
the within-participant analysis, the top three approaches
(RAW-CH, AnaE-LDA, AnaE-CH) performed equally.
In the between-participant analysis, AnaE-CH outper-
formed RAW-CH and AnaE-LDA.
Our within-participant analysis offers insights into the
performance of our architecture within a classical BCI
framework, where models are trained and tested on the
same participant session. Results suggest comparable
performance among our top three pipelines (RAW-CH,
AnaE-LDA, AnaE-CH), with minor variation. Further
examination of TNRs and TPRs reveals a tendency for
our custom architectures (RAW-CH and AnaE-CH) to ex-
hibit stronger predictions for positive class instances (er-
ror conditions). Moreover, it is noteworthy that the sam-
ple size for training and testing within participants was
significantly smaller compared to between-participant

analysis. Given the complexity of Ana-E, the avail-
able data may not have been sufficient for our model to
learn highly discriminable features. Potentially a solu-
tion could be implemented by integrating variational au-
toencoders (VAE) [18] or other generative models [19]
in the processes and amplifying the total number of EEG
samples [20]. Furthermore, while the within-participant
analysis highlights the usability of our architecture as a
"classical" BCI paradigm, the between-participant analy-
sis will provide evidence regarding the feasibility of de-
veloping pre-trained error detection models.
The between-participants analysis provided insight into
the potential of pre-trained models, as it underscores the
capacity of an architecture to generalize to unseen partici-
pants while being trained on a sizable dataset comprising
multiple individuals. However, in the context of BCIs,
certain constraints, such as the non-stationarity of EEG
recordings [21], hinder the application of classical train-
ing approaches similar to those used in image processing.
In this study, we implemented an architecture designed
to learn generalizable features from an unsupervised task
(pretext) and subsequently transfer the learned EEG fea-
ture representations to a downstream classification task.
Our architecture (AnaE-CH) achieved the highest GA,
surpassing the second-best approach by 8%. Further ex-
amination of the TNRs and TPRs revealed that our classi-
fiers were more reliable in predicting the error condition
only when our encoder (AnaE) was used to extract fea-
tures. Conversely, when preprocessed trials were utilized
to train the classifiers, they primarily predicted normal
trials and struggled to identify the error condition. Our
approach provides support for the idea of generalizable
features across participants, laying the foundation for pre-
trained error detection models. Integration of such mod-
els into classical BCI scenarios could potentially reduce
the need for calibration sessions.
In the current study, there were certain limitations that
could have hindered the performance of our architec-
ture, such as the lack of sufficient datasets in our within-
participants analysis. The small sample size for training
and testing within participants might have limited Ana-
E’s robustness and generalizability in terms of feature
learning. Insufficient data can impact the model’s capac-
ity to learn complex EEG signal patterns and features,
potentially leading to suboptimal performance. A poten-
tial solution could involve the integration of VAE [18] or
GANs [19] to amplify the number of trials within partici-
pants without increasing the duration of participants’ ses-
sions. By doing so, we could further examine the quality
of our approach as a classical BCI pipeline. Furthermore
it should be highlighted that the results of this study are
based on an offline analysis where excessive attenuation
of artifacts was possible.
Moreover, our study diverged from the classical autoen-
coders. Typically, autoencoders aim to reduce dimen-
sions, but in our case, the number of dimensions in-
creases with each layer. Existing literature suggests that
autoencoders with large inter-layer dimensions may sim-
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ply copy input to output without learning meaningful fea-
tures [22]. Despite the increasing dimensions, our model
achieved improved classification performance based on
the learned features, indicating meaningful feature repre-
sentations from our encoder.Further investigation could
explore classical autoencoder principles to determine if
the improvements seen in this study stem from our archi-
tectural choices.

CONCLUSION

In conclusion, our study investigated the feasibility of
developing pre-trained models for error detection using
an autoencoder architecture in a semi-supervised learn-
ing (SSL) setting. We designed an experimental setup
simulating a game scenario to collect EEG data, which
were then employed to train our proposed approach. The
results demonstrated comparable performance across dif-
ferent pipelines in the within-participant analysis and a
notable enhancement in classification performance in the
between-participant analysis when utilizing Ana-E. Par-
ticularly promising was our architecture’s ability to gen-
eralize to unseen participants, indicating its potential util-
ity in real-world applications. Moving forward, further
research should explore alternative architectural modi-
fications to enhance the adaptability and robustness of
Ana-E. Overall, our study provides valuable insights into
the opportunity of developing pre-trained models for er-
ror detection in BCI scenarios, laying the foundation for
future advancements in the field.
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ABSTRACT: BCIs using code-modulated visual evoked
potentials (c-VEP) have become popular for their re-
liable, high-speed control of applications and devices.
However, traditional circular shifting paradigms based
on black & white stimuli can cause eyestrain for some
users. We previously showed that adjusting the number
of code events and spatial frequency can enhance user
comfort. Despite c-VEP calibration being notably shorter
than other BCIs, the optimal number of calibration cycles
for effective system control remains unexplored. This
study aims to investigate the impact of calibration dura-
tion on various c-VEP-based BCIs, with stimulus vari-
ations to improve user experience. We evaluated per-
formance with different calibration cycles using five p-
ary m-sequences encoded with shades of gray and eight
spatial frequency variations of checkerboard-like stimuli.
Results indicate that all conditions achieved over 90% ac-
curacy and 80 bpm with calibration durations ranging be-
tween 6–70 seconds. These findings highlight the impor-
tance of selecting a configuration based on the functional
requirements of the BCI.

INTRODUCTION

Non-invasive brain-computer interface (BCI) systems en-
able users to control external applications or devices by
processing their electroencephalographic (EEG) activity
in real-time [1]. However, direct interpretation of users’
intentions from EEG signals is not feasible, making nec-
essary to rely on task-based paradigms that elicit spe-
cific control signals. These paradigms encompass strate-
gies that induce measurable deflections in the EEG dur-
ing cognitive tasks or the processing of external stimuli,
such as visual flashes [1]. Among such approaches, code-
modulated visual evoked potentials (c-VEPs) have gained
popularity in recent years due to their ability to achieve
high-performance BCIs with short calibration times.
Traditional c-VEP-based BCIs utilize flickering stimuli
generated by pseudorandom binary codes that shows per-
fect autocorrelation properties [2]. These time series en-

code selectable commands using temporally shifted ver-
sions of the same code. Calibration in this paradigm,
known as circular shifting, typically requires extracting
the brain response elicited by the original code over the
primary visual cortex as a template. It is assumed that the
response to subsequent commands corresponds to tempo-
rally shifted versions of this template according to each
command’s lag [2]. Thus, the main advantage of the cir-
cular shifting paradigm is that calibration is drastically
reduced by estimating the brain response to a single se-
quence, independently of the total number of commands.
Despite the excellent performance of high-contrast flick-
ering produced by binary codes, which encode com-
mands with black and white flashes, several studies have
highlighted potential issues such as visual eyestrain and
fatigue among certain users [3, 4]. One of the current
areas of research in the state-of-the-art is focused on
improving users’ comfort without compromising perfor-
mance. Previous studies have shown that this goal can
be achieved through various methods, such as increas-
ing the stimulation rate [5], employing customized codes
that confine spectral density to high-frequency bands [6],
using sequences with a high number of events allowing
encoding with different shades of gray rather than high-
contrast stimuli [5], or increasing the spatial frequency of
checkerboard-like stimuli [7]. Specifically, we have pre-
viously demonstrated in studies by Martínez-Cagigal et
al. (2023) [5] and Fernández-Rodríguez et al. (2023) [7]
that these two latter approaches effectively enhance user
comfort while maintaining similar levels of accuracy and
information transfer rate (ITR).
In comparison with other systems, such as those based on
P300 potentials or sensorimotor rhythms, c-VEP-based
BCIs require notably fewer calibration trials. Neverthe-
less, some authors have proposed adaptive algorithms to
further reduce or completely eliminate the need for cal-
ibration. For example, Spüler et al. (2013) [8] intro-
duced an unsupervised clustering-based approach with
two calibration targets, Thielen et al. (2021) [9] pre-
sented an adaptive version of “reconvolution” tailored for
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zero-shot calibration contexts, and Stawicki & Volosyak
(2022) [10] explored the potential of transfer learning to
minimize recalibration across multiple sessions.
In spite of the increasing popularity of c-VEPs in non-
invasive BCIs, to our knowledge, no study has specifi-
cally investigated the number of calibration cycles needed
to effectively control the system. Consequently, this has
not been explored for stimulus modifications aimed at en-
hancing user experience either. Therefore, the aim of
this study is to analyze the impact of calibration dura-
tion in circular shifting c-VEP paradigms. Specifically,
we examine typical binary black and white stimuli, p-ary
m-sequences encoded with different shades of gray, and
variations of spatial frequencies in checkerboard patterns.

SUBJECTS

In this study, we utilized data from two previously
recorded databases [5, 7]. In both databases, all aspects
of BCI operation were managed using open-source ap-
plications of MEDUSA©, accessible at medusabci.com
[11]. Visual stimuli were presented on an LED FullHD @
144 Hz monitor (model: KEEP OUT XGM24F+ 23.8”)
with a refresh rate of 120 Hz. EEG signals were regis-
tered using a g.USBamp device (g.Tec, Guger Technolo-
gies, Austria) from 16 active Ag/AgCl channels at po-
sitions F3, Fz, F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7,
POz, PO8, Oz, I1, and I2, according to the International
System 10/5. The device was grounded at AFz and ref-
erenced to the right earlobe. All participants provided
informed consent before participating [5, 7].

P-ary m-sequences database: This dataset com-
prises 15 healthy participants (aged 28.80 ± 5.02
years, 10 males, 5 females) [5] who engaged in BCI
spelling tasks using the open-source “P-ary c-VEP
Speller” application of MEDUSA©, accessible at medus-
abci.com/market/pary_cvep [11]. Participants completed
a single session consisting of a calibration phase compris-
ing 300 cycles and an online spelling task comprising 32
trials (with 10 cycles per trial) for each p-ary m-sequence.
A total of five p-ary m-sequences were assessed: binary
GF(26) with a base of 2, GF(35) with a base of 3, GF(53)
with a base of 5, GF(72) with a base of 7, and GF(112)
with a base of 11. Events were encoded using various
shades of gray; e.g., GF(26) employed black and white
flashes, while GF(53) used three equidistant grey tones in
addition to black and white flashes, and so forth. Fig-
ure 1(A) illustrates all p-ary m-sequences, along with
the arrangement of commands’ lags. Online selections
were made using a 4× 4 command matrix (chance level
of 6.25%), comprising alphabetic characters from A to
P. For further details, please see Martínez-Cagigal et al.
(2023) [5].

Checkerboard database: This dataset comprises 16
healthy participants (aged 29.63 ± 4.06 years, 11 males,
5 females) [7] who undertook BCI spelling tasks using a
modified version of the open-source “c-VEP Speller” ap-
plication provided by MEDUSA©, accessible at medus-

abci.com/market/cvep_speller [11]. Participants com-
pleted a single session, which included a calibration
phase consisting of 300 cycles and an online spelling
task comprising 18 trials (with 8 cycles per trial) for
each spatial condition. All conditions employed a binary
m-sequence of 63 bits encoded with black-background
checkerboard (BB-CB) patterns, i.e., the encoding rep-
resented “1” with a checkerboard pattern and “0” with
a black flash. Each condition assessed a specific spatial
frequency of the stimuli, which refers to the size of the
squares within a checkerboard-like stimulus, measured in
cycles (pairs of squares of two alternative colors) per de-
gree of visual angle (c/º). A total of 8 conditions were
examined: C001 (0 c/º), C002 (0.15 c/º), C004 (0.3 c/º),
C008 (0.6 c/º), C016 (1.2 c/º), C032 (2.4 c/º), C064 (4.79
c/º), and C128 (9.58 c/º). The stimuli and the arrange-
ment of lags are shown in Figure 1(B). Online selections
were made using a 3× 3 command matrix (chance level
of 11.11%). For further details, please see Fernández-
Rodríguez et al. (2023) [7].

METHODS

Paradigm: In both datasets, the circular shifting
paradigm was employed, which relies on using shifted
versions of a pseudorandom sequence to encode individ-
ual commands, ensuring that only the original sequence
needs to be calibrated. Consequently, it is imperative
for the sequence to demonstrate minimal autocorrelation,
thereby facilitating subsequent decoding [2]. Maximal
length sequences (i.e., m-sequences), represent pseudo-
random temporal series characterized by nearly optimal
autocorrelation properties. These sequences are gener-
ated employing linear-feedback shift registers (LFSR).
The characteristics of m-sequences are determined by
three main factors: the base p, denoting the quantity
of different events (e.g., p = 2 for binary m-sequences:
events 0 and 1); the order r, indicating the number
of LFSR taps; and the generator polynomial expressed
within a Galois Field of p elements, GF(p), which defines
the arrangement of the LFSR taps [5]. In addition to con-
forming to various mathematical constraints, the length
of a m-sequence exactly equals N = pr − 1 bits, repeat-
ing cyclically [5]. The larger the m-sequence, the greater
the number of commands that can be encoded with it.

Signal processing: During the calibration stage, par-
ticipants are instructed to focus on a single command en-
coded by the original m-sequence (without delay) for a
duration covering k cycles (i.e., repetitions of the same
m-sequence). Initially, the EEG signal undergoes pre-
processing using a filter bank comprising three bandpass
filters (ranging from 1 to 60 Hz, 12 to 60 Hz, and 30 to
60 Hz) and a notch filter set at 50 Hz [5, 7]. Two ver-
sions of the EEG response are subsequently computed
for each signal: (1) concatenated epochs, denoted as
AAA ∈R[kNs×Nc]; and (2) epochs averaged over the k cycles,
denoted as BBB ∈ R[Ns×Nc]. Here, Ns represents the num-
ber of samples per cycle, and Nc represents the number
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Figure 1: Stimuli details for both databases. (A) Gray encoding of each p-ary m-sequence over time, depicting associated lags for
each command in the p-ary m-sequence database (shown in red) and checkerboard database (shown in blue). (B) Binary patterns of
the black-background checkerboard (BB-CB) stimulus for the eight distinct spatial frequencies assessed in the checkerboard database.
Note that all patterns (event 1) were coupled with a flickering monochromatic black square (event 0).

of channels. Subsequently, a canonical correlation anal-
ysis (CCA) is utilized to train the spatial filter ωωωb that
maximizes the correlation between the projected versions
of AAA and BBB. In this process, BBB is replicated k times to
match the dimensions of AAA. The main template (i.e., for
the command without delay) is established by projecting
the averaged signal using the spatial filter ωωωb, resulting
in xxx0 = BBBωωωbbb. Templates for the other commands are
then generated by cyclically shifting this main template
based on their respective delays. Following this proce-
dure, Nt × 3 templates, each for a command and filtered
signal, are obtained, where Nt indicates the number of
commands in the online stage. Therefore, Nt = 16 for the
p-ary m-sequences database, and Nt = 9 for the checker-
board database. Calibration epochs with a standard devi-
ation three times greater than the average standard devia-
tion of all epochs were excluded before training the CCA
[5, 7]. During the online mode, a similar approach is em-
ployed to determine the command the user is focusing on
in real-time. The EEG signal undergoes preprocessing,
and individual epochs are averaged and projected using
the spatial filter ωωωb. The correlation between the result-

ing projection and all templates is then computed, yield-
ing ρ̂ρρ ∈ RNt×3 values. After averaging across the filtered
signals, ρρρ ∈ RNt is obtained. The selected command cor-
responds to the one that produces the highest correlation
value, identified as argmaxi(ρρρ) [5, 7].

RESULTS

To understand how the duration of the calibration period
affects the system’s final performance, we (1) selected a
specific number of calibration cycles k, (2) trained the
model as outlined in the methods section, and (3) pre-
dict the outcome of the test trials and extract accuracy
and ITR while varying the number of online cycles. The
parameter k was systematically increased until the entire
calibration dataset was utilized for each database, i.e.,
k ∈ [1,300]. Figures 2 and 3 depict the grand-averaged
accuracy across subjects for each condition and dataset.
This accuracy is presented as a function of the number
of calibration cycles k and the number of online cycles.
The amount of calibration data is expressed in both the
number of cycles and duration in seconds. As depicted, a
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Figure 2: Grand-averaged accuracy across subjects for the p-ary m-sequences database as a function of the number of calibration cycles
and the number of online cycles. The x-axis illustrates the quantity of calibration data utilized to train the model, expressed in both the
number of cycles (bottom axis) and duration in seconds (top axis). Each curve represents a distinct number of online cycles (i.e., the
length of the test epoch). Each plot corresponds to a different base. Chance level was 6.25%

Table 1: Analysis of plateau performance on the p-ary m-sequences database.

Base 2, GF(26) Base 3, GF(34) Base 5, GF(53) Base 7, GF(72) Base 11, GF(112)
Noc 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

0.9M
cal. (s) 74.55 9.45 5.78 96.00 37.33 28.67 19.63 10.33 5.17 - 24.40 12.40 34.00 27.00 24.00
acc. (%) 89.45 89.84 89.84 88.09 87.89 87.89 90.04 91.02 91.02 - 89.65 89.84 89.06 89.45 89.06
ITR (bpm) 177.3 71.53 35.76 135.3 53.90 26.95 91.25 37.31 18.66 - 93.47 46.94 92.24 37.22 18.45

0.95M
cal. (s) - 34.12 31.50 - 76.00 52.00 62.00 22.73 11.37 - 73.60 65.20 195.0 47.00 37.00
acc. (%) - 94.73 94.34 - 92.97 92.97 95.12 95.51 94.92 - 94.53 94.53 93.95 93.95 94.14
ITR (bpm) - 79.91 39.60 - 60.45 30.22 102.4 41.34 20.39 - 104.4 52.21 103.0 41.21 20.70

1M
cal. (s) - - 109.2 - - 175.3 - - 276.9 - - 118.8 - - 237.0
acc. (%) - - 99.22 - - 97.66 - - 99.80 - - 99.41 - - 98.83
ITR (bpm) - - 44.61 - - 33.73 - - 23.06 - - 58.88 - - 23.17

Noc indicates the number of online cycles, M the maximum accuracy for each base, “cal” the duration of the calibration in seconds, “acc.” the accuracy
in %, and “ITR” the information transfer rate in bits per minute. This analysis unveils the minimum calibration duration necessary to achieve 90%, 95%,
and 100% of the maximum accuracy for each base, provided that such accuracy can be attained with each number of online cycles.

performance plateau is generally observed across all con-
ditions. Tables 1 and 2 summarize the minimum calibra-
tion duration required to achieve 90%, 95%, and 100% of
the maximum accuracy for each condition and database.
Results are provided for varying numbers of online cy-
cles. If that accuracy cannot be achieved with a particular
number of online cycles, it is denoted with a hyphen.

DISCUSSION

As expected, the longer the calibration duration, the
greater the accuracy achieved, regardless of the p-ary m-
sequence or the spatial frequency of the BB-CB stimuli.
While all conditions reached a performance plateau after
a specific number of calibration cycles, independently of
the number of online cycles, the slope (learning curve)
appears to be dependent on the database or condition.

In the p-ary m-sequences database, all conditions
achieved an average accuracy higher than 97% when us-
ing the maximum calibration duration. Overall, it is evi-
dent for all conditions that at least 2 online cycles are re-
quired to reach suitable performance. However, the per-
formance plateau varied among them, indicating a trade-
off between calibration duration and final performance.
Specifically, GF(53) and GF(26) exhibited higher accu-
racy with less calibration duration, followed by GF(112),
GF(72), and GF(34). Considering an intermediate num-
ber of 5 online cycles, the 95th percentile of maximum
accuracy (all above 92%) was achieved by using the fol-
lowing calibration durations, as shown in Table 1: 22.73 s
for GF(53), 34.12 s for GF(26), 47.00 s for GF(112),
65.20 s for GF(72), and 76.00 s for GF(34). These con-
figurations also yielded ITRs above 40 bpm in all cases,
i.e. maximum of 104.1 bpm for GF(72), and minimum
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Figure 3: Grand-averaged accuracy across subjects for the checkerboard database as a function of the number of calibration cycles and
the number of online cycles. The x-axis illustrates the quantity of calibration data utilized to train the model, expressed in both the
number of cycles (bottom axis) and duration in seconds (top axis). Each curve represents a distinct number of online cycles (i.e., the
length of the test epoch). Each plot corresponds to a different spatial frequency. Chance level was 11.11%.

Table 2: Analysis of plateau performance on the checkerboard database.

C001 C002 C004 C008 C016 C032 C064 C128
(0 c/º) (0.15 c/º) (0.3 c/º) (0.6 c/º) (1.2 c/º) (2.4 c/º) (4.79 c/º) (9.58 c/º)

Noc 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8

0.9M
cal. (s) 3.67 3.67 9.45 6.83 8.93 7.35 7.88 5.78 4.20 4.20 3.67 3.67 7.88 6.30 12.07 9.45
acc. (%) 90.97 91.67 89.93 89.58 90.97 89.93 92.71 90.28 90.63 90.97 89.58 91.67 88.19 90.62 88.89 88.19
ITR (bpm) 73.37 46.58 71.67 44.44 73.37 44.79 76.31 45.14 72.80 45.86 71.11 46.58 68.91 45.50 70.00 43.07

0.95M
cal. (s) 6.83 5.25 13.12 9.45 14.70 12.07 12.60 7.88 5.25 5.78 6.30 5.25 9.97 7.88 23.10 18.90
acc. (%) 94.10 95.49 94.10 94.10 94.79 94.44 95.14 95.83 95.14 97.22 95.14 94.79 94.10 93.06 93.06 93.06
ITR (bpm) 78.76 50.83 78.76 49.23 80.03 49.62 80.68 51.25 80.68 52.98 80.68 50.02 78.76 48.07 76.91 48.07

1M
cal. (s) - 71.92 - 44.10 - 68.25 124.95 31.50 - 19.43 - 71.92 - 32.02 - 71.92
acc. (%) - 98.96 - 98.61 - 98.96 100.00 100.00 - 100.00 - 98.96 - 97.92 - 97.92
ITR (bpm) - 55.37 - 54.86 - 55.37 91.43 57.14 - 57.14 - 55.37 - 53.89 - 53.89

Noc indicates the number of online cycles, M the maximum accuracy for each base, “cal.” the duration of the calibration in seconds, “acc.” the accuracy
in %, and “ITR” the information transfer rate in bits per minute. This analysis unveils the minimum calibration duration necessary to achieve 90%, 95%,
and 100% of the maximum accuracy for each base, provided that such accuracy can be attained with each number of online cycles.

of 41.21 bpm for GF(112). Nevertheless, the tradeoff
between calibration/online selection duration and perfor-
mance makes it difficult to select any specific configura-
tion. For instance, in GF(26), it is feasible to calibrate
with only 9.45 s, albeit at the cost of reducing the av-
erage accuracy to 89.84% and utilizing 2.62 s of online

selection duration (at 71.53 bpm). Conversely, an impres-
sive ITR of 177.3 bpm (at 89.45%) can be attained with
an online selection duration of only 1.05 s by employ-
ing a calibration duration of 74.55 s. To sum up, all p-
ary m-sequences prove capable of achieving above 90%
mean accuracy through various configurations of calibra-
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tion and online durations.
Regarding the checkerboard database, all spatial fre-
quency conditions displayed similar performing plateaus.
Once again, two online cycles are necessary to attain a
practical level of control over the system. Note that con-
dition C001 (0 c/º) is analogous to GF(26), and its supe-
rior performance may stem from the fact that the checker-
board database comprises only 9 commands instead of 16
[5, 7]. For 5 online cycles (2.62 s), all conditions demon-
strated more than 93% accuracy and 76 bpm. Condition
C016 stands out by achieving 95.15% accuracy and 80.68
bpm using only 5.25 s of calibration. Extending the cali-
bration duration to 19.43 s and the online cycles to 8 (4.20
s), C016 attains 100% accuracy and 57.14 bpm. While
we emphasize C016, similar behaviors are observed for
C008 and C032, as indicated in Table 2. Generally, cal-
ibrations lasting between 3.67–12.07 s are sufficient to
achieve accuracies around 88%-90% for all conditions,
where C128 likely exhibits the poorest results.
It is evident that there exists a four-variable tradeoff in-
volving calibration duration, online selection duration,
system performance, and user comfort. Although all
conditions can provide high-speed and high-performance
BCIs, the performance plateau varies among them. The
total number of commands also plays a significant role
in interpreting these results. In conclusion, performance
levels around 95% accuracy and 80 bpm can be readily
attained with calibration durations ranging of 6–35 s and
online selections of 2–3 s for binary m-sequences. Higher
bases (i.e., p > 2) would lead to increased user comfort,
as suggested by Martínez-Cagigal et al. (2023) [5], albeit
at the cost of longer calibration periods. Concerning spa-
tial frequencies, C016, followed by C008, emerged as the
BB-CB stimuli associated with higher comfort scores [7].
Ultimately, the choice of configuration would depend on
the functional requirements of the BCI system.

CONCLUSION

To our knowledge, this is the first study to examine
the impact of the calibration phase on circular shifting
paradigms for c-VEP-based BCIs. Regardless of the p
base of the code or the spatial frequency of the BB-CB
stimuli, all conditions can achieve high-speed and high-
performance BCIs with sufficient calibration. We iden-
tified a tradeoff between calibration duration, online se-
lection duration, performance, and user comfort. Perfor-
mance levels nearing 95% accuracy and 80 bpm can be
reached with calibrations lasting 6–70 s. While achiev-
ing over 95% accuracy with approximately 5 s of cali-
bration and a selection duration of 2.62 s is possible with
binary m-sequences, we stress the importance of select-
ing a configuration based on the requirements of the final
BCI system, such as target performance and user comfort.
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ABSTRACT:  The  description  of  the  event-related 
desynchronization  and  synchronization  phenomena  in 
the mu and beta frequency bands has to a significant 
extent shaped our understanding of motor-related brain 
processes.  Accordingly,  Brain-Computer  Interface 
applications  leveraging  attempted  or  imagined 
movements  usually  depend  on  spatially-  and  band-
limited power changes as the brain markers of interest. 
Yet,  converging  neuroscience  evidence  question  the 
idea  that  signal  power  best  describes  the  movement-
related modulation of  brain  activity.  On a  single-trial 
level,  beta  band  activity  is  characterized  by  short, 
transient and heterogeneous events termed bursts rather 
than  sustained  oscillations.  In  a  recent  study  we 
demonstrated that a beta burst analysis of hand motor 
imagery binary classification tasks is often superior to 
beta  power  in  terms  of  classification  score.  Here  we 
expand upon this idea proposing a comparable to state-
of-the-art algorithm. We confirm our previous results by 
using  convolution  kernels  extracted  from beta  bursts. 
Moreover, we show that these kernels can effectively be 
used in inter-session transfer learning strategies.

INTRODUCTION

Three  decades  ago,  a  number  of  seminal  studies  in 
motor  neuroscience  revealed  for  the  first  time,  time-
locked  changes  in  induced  power  within  specific 
frequency  bands  [1-3].  These  studies  described  a 
relative-to-baseline  gradual  reduction  in  the  power  of 
brain signals recorded during an ongoing movement or 
motor imagery (MI) task in the mu (~8-12 Hz) [3-6] and 
beta (~13-30 Hz) [3, 5] frequency bands, termed event-
related  desynchronization  (ERD).  They,  also, 
demonstrated a  relative increase in  power in  the beta 
band shortly after the end of the task, known as event-
related  synchronization  (ERS)  [6-8].  The  ERD  is 
considered  to  be  a  high-level  indication  of  brain 
processes  pertaining  to  movement  preparation  and 

execution,  and  is  particularly  prominent  in  the 
contralateral sensorimotor cortex [2, 9-12].
Because of this spatial and frequency specificity, ERD 
is  the  main  marker  of  interest  for  motor-related  and 
especially MI-based, non-invasive BCI applications [13, 
14].  Typically,  signals  recorded  during  MI  are 
transformed  in  the  time-frequency  domain  (TF)  [15–
17],  and are then spatially filtered using the common 
spatial pattern algorithm (CSP) [18-20]. This results in 
an  increase  of  signal-to-noise  ratio  and  extracts  the 
signal power in specific time windows and frequency 
bands  of  interest,  while  also  maximizing  the  spatial 
disparity  among  different  MI  classes  (e.g.”left”  or 
“right” hand).
The hypothesized reliability and reproducibility of these 
signal characteristics has also served as the basis for a 
range  of  transfer-learning  attempts.  Transfer  learning 
refers  to  the  exploitation  of  specific  signal  features 
extracted  from  past  recording  sessions,  different 
subjects  and/or  experiments  to  guide decoding during 
future sessions [21].
Despite  the  fact  that  the  ERD  and  ERS  are  widely 
observed,  their  nature  is  not  well-understood  and 
converging  neurophysiology  evidence  puts  these 
phenomena  into  question.  The  ERD  and  ERS  are 
typically revealed by averaging signal power in the TF 
domain  over  multiple  trials,  especially  in  the  beta 
frequency  band  [11,  22],  under  the  assumption  of 
sustained  oscillations.  However,  this  evidence  points 
out  that,  on the contrary,  on a  single  trial  level,  beta 
band activity occurs in short events, termed bursts [11, 
22–26].  The  rate  of  these  beta  bursts  is  more 
behaviorally relevant in motor processes [11, 24, 27-30] 
than averaged beta band power. Moreover, it has been 
shown that beta bursts comprise heterogeneous events 
[29]  with  different  functions,  alluded  to  by  their 
differential modulation during different task conditions 
[31, 32] or phases [29, 30].
In a recent study we showed that the analysis of beta 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-042

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

236



bursts  from  channels  C3  and  C4  during  hand  motor 
imagery can be advantageous to beta power in terms of 
classification,  confirming  the  hypothesis  that  on  the 
single-trial level beta burst rate modulations are more 
behaviorally  relevant  than  beta  band  power  changes 
[31].  In  this  article  we  expand  upon  that  study.  We 
introduce an algorithm that exploits beta bursts in order 
to transform brain signals into measures of waveform-
resolved burst rate. Moreover, this algorithm can take 
advantage  of  an  arbitrary  number  of  recorded signals 
while being computationally efficient, thus constructing 
decoding features that are comparable to state-of-the-art 
in  BCI.  We  analyze  the  activity  during  “left”  and 
“right” hand MI of three open EEG datasets and show 
that the use of beta bursts instead of beta band power 
can improve classification results. Finally, we adopt a 
transfer  learning  approach  and  show that  beta  bursts 
detected  in  one  recorded  session  can  be  exploited  to 
guide the decoding in other sessions.

MATERIALS AND METHODS

     Datasets: We analyzed three open EEG MI datasets: 
BNCI 2014-001 [13],  BNCI 2014-004 [33] and Zhou 
2016  [34],  all  available  through  the  MOABB project 
[14]  (Table  1).  These  datasets  are  composed  of 
recordings of numerous subjects who were required to 
perform  sustained  MI  following  the  appearance  of  a 
visual  cue  on  a  screen.  For  our  analysis  we  only 
considered  trials  corresponding  to  the  ‘left  hand’  or 
‘right  hand’  classes  even  though  two  experimental 
paradigms  consisted  of  more  MI  classes.  A  brief 
account of the tasks is described in [31].
     Pre-processing: Each subject’s epoched recordings 
were loaded with the MOABB python package (v0.4.6) 
LeftRightImagery class,  and were  filtered with  a  low 
pass cutoff of 120 Hz (zero-phase FIR filter designed 
with the windowed approach and transition bandwidth 
of 25% of the low pass frequency). Then, we rejected 
trials using the autoreject python package [35] (v0.4.0, 
function  get_rejection_threshold)  (Table  1).  We  refer 
the reader to [31] for  more details  regarding the pre-
processing.
     Burst-detection: Following pre-processing, a subset 
of channels above the sensorimotor cortex was defined ( 
‘C3’,  ‘Cz’,  ‘C4’,  and  ‘FC3’,  ‘FCz’,  ‘FC4’,  ‘CP3’, 
‘Cpz’,  ‘CP4’  when  available;  as  in  [31]).  The 
corresponding recordings were first transformed in the 
time-frequency (TF) domain from 1 to 43 Hz using the 
superlets algorithm [36] (parameters: omin = 1, omax = 40, 
c = 4) with a frequency resolution of 0.5 Hz. Then, we 
identified bursts  within the beta frequency range (15-
30Hz)  from  each  TF  matrix  using  a  previously 
published  procedure  that  allowed  us  to  extract  the 
waveforms  of  the  beta  bursts  within  a  fixed  time-
window (see [29] for more information on the algorithm 
and  [31]  on  how it  was  specifically  applied  to  these 
datasets).
    Kernel selection: For each dataset and subject we 
randomly sampled 10% of the recording trials (or all

Table 1. Dataset attributes

Dataset BNCI 2014-
001

BNCI 2014-
004

Zhou 2016

# Subjects 9 9 4

# Channels 3 22 64

# Sessions 2 5 3

Min  -  Max  # 
Trials  across 
subjects

288 680-760 290-319

Min  -  Max  # 
Trials  (after 
trial rejection)

217-287 269-621 114-280

Sampling 
freq. (Hz)

250 250 250

Trial  duration 
(s)

4.0 4.5 5.0

Reference [13] [33] [34]

trials  corresponding  to  a  recording  session  when 
assessing transfer learning) of each participant after trial 
rejection  (Table 1) ensuring class balance, in order to 
create  a  large  sample  of  beta  burst  waveforms while 
restricting  the  number  of  trials  per  participant  we 
excluded from classification (see Feature Selection and 
Classification). We aggregated  all  detected  bursts 
within these trials in a matrix (irrespective of the trial 
class, i.e. ‘left hand’ or ‘right hand’) after robust scaling 
(scikit-learn  package  [37],  v1.0.2).  Then,  we  used 
principal  component  analysis  (PCA) [38]  (scikit-learn 
package, v1.0.2) in order to reduce the time dimension 
of the waveforms. We defined an index of lateralized 
modulation  of  the  average-per-axis  PCA  score  Im (a 
metric  of  the difference between any burst  waveform 
and the  average shape)  from the  baseline  to  the  trial 
periods of the recordings as using electrodes C3 and C4:

I m=|(uipsi
C 3 −ucontr

C 4 )−(uipsi
C 4 −ucontr

C 3 )|, m∈ {2 , ... ,9}

u=|̂score trial period − ŝcorebaseline|

where  ipsi  (contr) refers  to  bursts  recorded  from 
channels C3 / C4 during a left / right (right / left) hand 
MI. Using this index, we identified the three PCA axes 
that maximized  Im among components 2 to 9. We did 
not  consider  the  first  PCA  component  as  it  simply 
describes the temporal skew of the burst waveforms [29, 
31]. Finally, based on our previous study [31], we split 
the computed score range of each of the three selected 
axes in seven equally spaced groups. We considered the 
two groups that lie further away from the origin (score 
equal  to  0),  grouped  similarly  shaped  bursts  together 
and defined 2 kernels per PCA axis by computing the 
average waveform of all bursts within these two groups. 
As a result, we ended up with 6 kernels that describe the 
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Figure 1: Average decoding score (area under the curve of the receiver operator characteristic) and standard deviation 
per dataset, subject and classification feature.

burst  waveforms that  were  expected to  be  maximally 
rate-modulated during the task,  compared to baseline, 
for each participant of each dataset separately.
Feature  selection: We used  these  kernels  in  order  to 
transform the available EEG recordings  of all initially 
available channels, not considering the subset of trials 
that  were  used  for  defining  the  kernels  (the  random 
trials sample or a given recording session). Specifically, 
a copy of each subject’s epoched data was convolved 
with one kernel, resulting in a proxy of the waveform-
resolved burst rate. Then, each of the temporally filtered 
epoched  data  was  spatially  filtered  using  the  CSP 
algorithm (MNE package [39], v 1.5.1, function CSP, 
parameters:  n_components  =  4,  transform_into  = 
“average_power”).
We  also  created  band-limited  spatial  features  with  a 
standard filtering technique. Specifically, we computed 
the  envelope  of  the  epoched  data  Hilbert  transform 
(MNE package,  v  1.5.1,  function  apply_hilbert)  after 
independently  applying  a  single  filter  in  the  beta 
frequency band (15-30 Hz) and a wider frequency range 
encompassing both the mu and beta bands (6-30 Hz). 
Then,  these  signals  served  as  inputs  to  the  CSP 
algorithm (we kept the parameters unchanged).
In order to assess whether the number of spatial features 
used  for  classification  (24  for  the  beta  burst  kernel 
approach  versus  4  for  the  Hilbert  power  approach) 

affected the observed results,  we also adopted a filter 
bank approach. We split either frequency range in non-
overlapping filter banks of 3 Hz range; this resulted in 5 
filters for the beta band (15-18 Hz, 18-21 Hz, 21-24 Hz, 
24-27 Hz, 27-30 Hz) and 8 filters for the mu-beta band 
(6-9 Hz, 9-12 Hz, 12-15 Hz, 15-18 Hz, 18-21 Hz, 21-24 
Hz, 24-27 Hz, 27-30 Hz) corresponding to 20 and 32 
spatial features respectively.
We also  estimated  kernel-specific  CSP filters  on  one 
session and used these filters in the remaining sessions. 
For  comparison,  we  estimated  the  CSP  filters  of  a 
session and used them to transform the signals of the 
other  sessions  for  each  of  the  previously  described 
filtering techniques.
    Classification: The resulting spatially filtered data 
were concatenated in a single matrix, once per subject. 
Using  a  repeated  (n=10),  5-fold  cross  validation 
procedure we shuffled the remaining trials (Table 1) and 
estimated the decoding score using LDA (scikit-learn, 
v1.0.2) as a classifier using the whole trial recordings. 
Τhe decoding scores were based on the area under the 
curve  (AUC)  of  the  receiver  operating  characteristic 
(scikit-learn,  v1.0.2).  All  numeric  computations  were 
based on the numpy python package (v1.21.6; [40]) and 
an environment running python (v3.10).
Statistical analysis: To estimate, at the population level, 
any statistical difference between methods, we compa-
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Figure 2: Average difference in decoding score (area under the curve of the receiver operator characteristic) between 
classification score of a transfer learning session and classification score obtained using all available trials per subject.  
A value of 0 indicates no difference in decoding between the two approaches.  Positive values or  negative values 
indicate a performance gain or loss respectively when adopting a transfer learning approach.

red classification results of the waveform-resolved burst 
features  against  multiple  band-limited power  features. 
We  used  a  generalized  linear  mixed  model  with  a 
binomial  distribution  and  logit  link  function  with 
across-trial average classification score as the dependent 
variable setting the number of trials as prior weights, the 
type of classification feature as a fixed effect, and the 
subject nested within the dataset as random intercepts. 
We also compared the across-session average difference 
in  classification  score  between  a  transfer  learning 
approach  and  an  across-session,  global  classification, 
using a similar model but with a Gaussian distribution. 
Statistical analyses were conducted using R (v4.1.2) and 
lme4 (v1.1-31; [41]). Fixed effects were assessed using 
type II Wald X 2 tests using car (v3.1-1; [42]). Pairwise 
Tukey- or Sidak-corrected follow-up tests were carried 
out using estimated marginal means from the emmeans 
package (v.1,8,7; [43]).

RESULTS

We  estimated  the  across-session  decoding  score  per 
subject  of  each  dataset  using  the  waveform-resolved 
approach.  In  order  to  assess  the  significance  of  the 
waveform-resolved  burst  rate  features  we  also 

computed classification features based on signal power 
and compared the different decoding results.  We used a 
filter  bank approach to assess whether the number of 
spatial  features  used  for  classification  affected  the 
decoding scores (Fig. 1). 
Across  all  datasets,  the  waveform-resolved  burst  rate 
features resulted in statistically significant improvement 
in decoding performance compared to beta band power 
estimated  using  a  single  filter  (X2 (5)  =  97.081,  p  < 
0.001), non-significant differences compared to the beta 
band  filter  bank  and  mu-beta  band  single  filter 
approaches (p = 0,1047 and p = 0,9987 respectively), 
and  significant  decoding  score  decrease  compared  to 
mu-beta band filter bank approach (p = 0.004).
Moreover, we assessed whether the beta burst kernels 
can be exploited in a transfer learning approach. To do 
so,  after  trial  rejection we  iteratively  estimated  the 
kernels based on the recordings of one session and used 
them for transforming the recordings of the remaining 
sessions. We also examined whether we can use kernel-
specific CSP filters for transfer learning. We compared 
these approaches to transfer learning of CSP filters after 
applying the standard filtering techniques.
The difference between the results  depicted in  Fig 1. 
and the transfer learning approach results per subject of 
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each  dataset  are  depicted  in  Fig.  2.  Negative  values 
indicate greater decoding performance when estimating 
the results  based on all  available  recordings,  whereas 
positive  values  indicate  an  improvement  in  decoding 
score using transfer learning. Without surprise, transfer 
learning based on the beta burst kernels slightly reduced 
the overall  decoding score,  but  was,  interestingly, the 
only method that had the potential to improve decoding 
for some of the subjects. The two kernel-based transfer 
learning approaches yielded statistically non-significant 
discrepancies  in  decoding  score  difference  (X2 (6)  = 
28.8,  p  =  0.93).  Transfer  learning  based  only  on  the 
kernels  yielded  significantly  smaller  reduction  in 
decoding  score  difference  compared  to  all  filtering 
methods (p = 0.013 vs beta band filter; p < 0.001 vs beta 
band filter bank; p = 0.0237 vs mu-beta band filter; p = 
0.0011 vs mu-beta band filter bank). Transfer learning 
based  on  kernel-specific  CSP  patterns  resulted  in 
significantly smaller  decoding score differences in  all 
comparisons  except  for  filtering  in  the  mu-beta  band 
using a single filter (p = 0.0392 vs beta band filter; p = 
0.0161 vs beta band filter bank; p = 0.3061 vs mu-beta 
band filter; p = 0.034 vs mu-beta band filter bank).

DISCUSSION

Recently,  the  fields  of  neurophysiology  and  systems 
neuroscience  have  been  experiencing  a  surge  in  the 
development  of  novel  methods  for  analyzing  neural 
recordings.  An  increasing  number  of  articles  are 
concerned  with  unveiling  traditionally  disregarded 
signal  characteristics  [11,  22-26,  29,  30]  with several 
important  implications  for  BCI.  Particularly,  the 
description  of  beta  bursts  has  put  into  question  the 
importance of band-limited power modulations in motor 
or MI tasks.
BCI applications often rely on signal power under the 
assumption  of  sustained  and/or  oscillatory  signals. 
However,  the  description  of  waveform-specific  beta 
burst modulations opens up new possibilities and holds 
the potential of improving decoding [31]. In this article 
we verified that waveform-resolved burst rate features 
can  be  informative  markers  of  the  underlying  brain 
activity during MI tasks. In line with previous results 
we  showed  that  indeed  waveform-resolved  burst  rate 
features can be more informative than beta band power 
alone. We also showed that the information content of 
these features is comparable to that of filtering within a 
wider  frequency  band  encompassing  the  mu  band, 
although the mu-beta filter bank approach still yielded 
the best decoding results. A possible explanation for this 
finding  is  that  beta  burst  kernels  also  capture  slower 
modulations  of  the  underlying  activity  and,  thus,  by 
adapting the  waveform-resolved burst  rate  features  to 
the mu band characteristics [45, 46] we may be able to 
further improve decoding.
Additionally,  we  adopted  an  inter-session  transfer 
learning  approach,  and  showed  that  the  waveform-
resolved  features  are  relatively stable  over  recording 
sessions.  We  demonstrated  that  on  the  dataset  level 

reduction  in  classification  score  can  be  minimal,  and 
that  these  features  can  even  contribute  in  improving 
decoding for subjects with low classification score. This 
finding is important because it proves that, despite the 
difficulty  of  exploiting spatial  features  learned during 
previous sessions, there is potential in improving how 
previously acquired data can be leveraged during offline 
calibration  or  even  online  decoding  sessions. In  the 
future,  an  assessment  of  the  across-subject  kernel 
similarity  may open the  path  for  more  reliable  inter-
subject transfer learning.

CONCLUSION

The  waveform-resolved  burst  rate  analysis  is  a 
promising,  neurophysiology-grounded  alternative  to 
classic descriptions of beta band activity in motor and 
MI  tasks.  The  results  of  this  work  reaffirm  that 
classification  features  based  on  beta  bursts  can 
efficiently  decode  MI  binary  classification  tasks  and 
suggest  that  beta  bursts  kernels  are  stable  across 
recording  sessions,  thus  potentially  serving  as  an 
interesting feature inter-session transfer learning.
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ABSTRACT: The use of EEG brain-computer interfaces 
(BCI) during movement is inherently difficult due to 
motion artifacts interfering with measured brain signals. 
Thus, most BCI research utilizes rather immobile 
conditions, thereby decidedly limiting its range of use 
cases. We aim to overcome this restriction by introducing 
a novel virtual reality paradigm which allows full-body 
movement of participants in combination with a 
processing pipeline specifically designed to deal with 
motion artifacts. Stimulus discrimination (target versus 
distractor) upon fixation was tested in 32 participants. 
Results indicate that targets elicit a higher P300 
amplitude than distractors. Comparing the performance 
of different classifiers, shrinkage linear discriminant 
analysis (sLDA), support vector machine (SVM), and 
EEGNet, yielded equally sized, above chance 
classification accuracies. Overall, the results suggest the 
feasibility of studying and applying BCI in full-body 
motion paradigms given refined data preprocessing. The 
authors conclude with suggestions for future BCI studies 
in motion.      

 
INTRODUCTION 
 
After the first years of brain-computer interface (BCI) 
research, during which BCI was mainly investigated as a 
means to partially compensate lost motor functions in 
people with severe motor disabilities, research on 
applications of BCI expanded to its use in non-medical 
areas. Following Zander and Kothe [1], BCI will be most 
beneficial to a wide range of applications if it does not 
replace or compete with fundamental human interaction 
patterns, like using hands or speech. Rather, it should 
substantially add value to the human-computer 
interaction (HCI) without distracting the user in his/her 
task. Because this kind of BCI covertly, or rather 
passively boosts HCI, it’s referred to as passive BCI 
(pBCI) which will be the object of this paper. 
Promising fields for BCI usage beyond medical 
application are summarized by van Erp, Lotte, and 
Tangermann [2] as device control, user state monitoring, 
evaluation, training and education, gaming and 
entertainment, cognitive improvement, as well as safety 
and security.  
Even though, there is a definite vision to apply pBCI in 
real-life contexts, most of the research has been 
conducted in highly controlled laboratory settings which 

are limited in their ecological validity. A major challenge 
in investigating pBCI under highly realistic (simulated) 
or real scenarios lies in their inherent complexity 
comprised of artefacts, non-brain influences, and other 
mental states [3]. Some research has been done to fill this 
gap and promising results were obtained, yet most studies 
were conducted in seated scenarios, notably driving, 
aviation, and desktop gaming. Of all studies included in 
the review [3], only one investigated participants who 
were standing and moving rather freely while performing 
a surgical task [4]. We believe it is imperative to conduct 
more studies allowing for free full-body movement in 
order to make pBCI applicable universally in real-life 
scenarios and not only in seated conditions. To achieve 
this goal, we introduce a new paradigm which allows 
participants to move and interact freely in a relatively 
fast-paced game-like scenario. First promising results of 
electroencephalography (EEG) analysis will be presented 
underlining the feasibility to work with pBCIs in a rather 
movement-intensive environment.  
To deal with motion artifacts, we adopted methods from 
another discipline which has emerged to understand brain 
and body in motion: Mobile Brain-Body Imaging (MoBI; 
[5]). For MoBI studies, it’s common to apply joint 
measurements of EEG, muscular activity, motion 
capture, and eye tracking. This, in combination with 
elaborate data processing techniques, like independent 
component analysis (ICA) for artifact rejection or 
machine learning for pattern recognition, proved to be 
efficacious in studying EEG in moving participants [6,7]. 
We combined MoBI with virtual reality (VR), an 
emerging tool to investigate more realistic scenarios, 
permitting participants to move around freely, while at 
the same time being highly controllable [8].  
To demonstrate the feasibility of our setup, we 
investigated two well-established findings of BCI 
research. First, we aimed at replicating the P300 response 
and second, we compared the most common BCI 
classification algorithms in terms of their performance in 
a visual categorization task. In both cases we investigated 
fixation-related potentials (FRP), i.e. the cortical patterns 
locked to the onset of a fixation. 
     Replicating the P300 component: The main goal of 
this first step is a proof of concept: investigating whether 
we can replicate a typical pattern of cortical activation, 
the P300 in response to targets vs. distractors, in such a 
movement-rich paradigm.  
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Figure 1: Stimulus presentation in virtual reality. Spheres 
flow towards the participant. The translucent blue hand 
represents positioning of the controller and bursts spheres 
upon touch. Depicted is a condition in which sphere color 
is permanently visible and colors are easy to distinguish. 
 
While the P300 speller is probably the most popular 
application of this cortical potential in a BCI (first 
demonstrated by Farwell and Donchin, [9]), there are 
numerous examples of BCI studies investigating the 
P300 [10]. De Vos, Gandras, and Debener [11] 
investigated the P300 on walking participants while they 
performed an auditory oddball task. They were not only 
able to replicate the P300 component to rare targets, also 
single-trial classification in the P300 time window 
worked with a decent accuracy of 64%.   
In our experiment, P300 was analyzed to visually 
presented targets and distractors. Since stimuli were 
appearing in a rather fast paced, free-viewing 
environment, some challenges had to be addressed to 
obtain a meaningful FRPs (for a detailed discussion of 
free-viewing paradigms see [12]). First, fixation 
durations were shorter than the following cognitive 
processes: a fixation usually lasts around 200-300ms 
[13], but some cognitive components, like P300, occur 
even later. Hence, components to subsequent fixations 
would overlap. This overlap can be controlled for 
mathematically with a linear regression [14,15]; which 
also deals with non-uniformly distributed artifacts caused 
by eye movements systematically affecting FRP 
averaging [16]. Thus, we chose to “detangle” FRPs in a 
regression-based approach. In the first part, we focused 
on the cortical activation to targets versus distractors in a 
time window of 200-600ms. It was hypothesized that 
amplitudes to targets will be larger than to distractors.  
     Comparing classifiers for visual categorization: 
Next, cortical activation to targets and distractors was 
classified with different algorithms in order to 
demonstrate the feasibility of EEG classification in such 
a motion-intensive VR task. Therefore, we compared the 
performance of the three most popular classifiers in BCI 
research as reviewed by Värbu, Muhammad, and 
Muhammad [17]: linear discriminant analysis (LDA), 
support vector machines (SVM) and convolutional 
neural networks. We investigated the standard LDA as 
well as shrinkage LDA (sLDA) and we worked with 
EEGNet as neural network. LDA and sLDA both aim to 
find a linear combination of features that most effectively 

separates two or more classes, with sLDA being less 
prone to overfitting [18]. SVMs find hyperplanes to 
maximize margins between different classes [19]. Lastly, 
EEGNet is a specialized compact convolutional neural 
network architecture tailored for the interpretation and 
analysis of EEG signals, designed to offer both high 
interpretability and robust performance in BCI tasks [20]. 
EEGNet performs feature extraction autonomously based 
on the data, whereas for LDA and SVM features must be 
extracted in a separate step.  
For all methods, we hypothesize that the validation 
accuracy will be significantly above chance. Further, we 
expect the best classification performance for EEGNet, 
as it is specifically designed to classify EEG signals. Due 
to overfitting issues, LDA might work least accurately. 
 
MATERIALS AND METHODS 
 
     Participants: 48 participants were invited to the study 
and met the inclusion criteria: good health, sobriety, 
right-handedness, no preexisting neurological issues, 
normal or corrected-to-normal vision. During the 
experiment, 16 participants were excluded due to 
inaccurate eye-tracking (7), technical issues (6), motion 
sickness (1), pain from EEG cap (1), or below chance 
performance in the task (1). In total 32 participants (age 
22-45, x̄ = 28.81 ± 5.00 years, 19 female) finished the 
experiment and were included into analysis.  
     Study design and procedure: After giving informed 
consent, participants answered demographic questions 
and were set up with an EEG. They then performed a 
workload calibration task which will be part of another 
analysis. The main object selection task was performed 
in a visually sparse VR environment created in Unity 3D. 
It consisted of a grey floor and sky with the controller 
represented by a translucent blue hand. In the 
experiment, spheres with a diameter of 0.5 m spawned 
with an angle of ± 50° left or right in front of the 
participants. Spheres were colored either bright blue or 
yellow, grayish blue or yellow, or in isoluminant gray. 
Spheres floated towards the participant where they 
disappeared either because the participant touched a 
sphere, or it reached the center of the virtual world. Upon 
destruction, three different sounds were played 
depending on whether the destruction was a hit, false 
alarm, or a miss. No sound was played for a correct 
rejection. Color, speed and spawn distance of the spheres 
depended on the condition. A 2x2x2 repeated 
measurements design resulted in varying difficulty levels 
with the factors: distinguishability (color was easy or 
hard to distinguish), predictability (constant or random 
inter-stimulus intervals), and visibility (color visible 
permanently or upon fixation). During 4 training blocks, 
participants got accustomed to the conditions. In the main 
part, all 8 conditions were presented in pseudo-random 
order, split into 2 blocks each, while the target/distractor 
color was counter-balanced over all participants. Each 
block contained 240 spheres (120 targets) and lasted 
180s. After each block NASA-TLX [21] and 3D-SART 
[22] were collected for a separate analysis. In total, the 
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experiment lasted for 3.5-4.5 hours per participant, 
including breaks. 
     Instruments: For workload calibration a 27” HD 
monitor was used. The main experiment was conducted 
using a head-mounted display (HMD, HTC Vive) and an 
HTC VR controller. Positions of HMD and controller 
were tracked with the SteamVR Lighthouse tracking 
system. The HMD additionally had an inbuilt eye 
tracking system by SensoMotoric Instruments. Both 
motion and eye tracking data was streamed with a 
sampling rate of 90 Hz using Lab Streaming Layer (LSL, 
[23]). Events such as block starts and ends, sphere 
spawns and destructions, and eye gaze fixations were 
recorded in LSL. EEG was recorded using a 128-channel 
ANT eego sports system with passive Ag/AgCl 
electrodes and active cable shielding (ANT Neuro, 
Hengelo, Netherlands) with a backpack-worn tablet PC 
streaming the data wirelessly to LSL. To our knowledge, 
no high pass filter was applied during recording. The 
EEG was referenced to the vertex electrode, grounded 
with an electrode at the ear lobe and recorded with a 500 
Hz sampling rate. Impedances were below 20 kΩ.  
     EEG preprocessing: Preprocessing of the EEG data 
was done in EEGLAB [24] in MATLAB using the 
BeMoBIL Pipeline with minor adaptations [25]. Taken 
together, preprocessing consisted of three steps: (1) Data 
import and synchronization of the different streams. (2) 
Data downsampling to 250 Hz, line noise removal using 
Zapline-plus [26], detection and interpolation of bad 
channels using the clean_rawdata EEGLAB function, 
and referencing to the average. (3) Artifact removal using 
the adaptive mixture independent component analysis 
(AMICA; [27]), rejecting all non-brain components as 
determined by the ICLabel toolbox [28].  
     Calculating fixation-related potentials with the 
Unfold toolbox: To prepare for further analysis, the 
cleaned EEG data was filtered with a low pass filter of 35 
Hz and a high pass filter of 0.2 Hz passband edges, 
respectively. To deconvolve overlapping EEG signals 
and to model the influence of artifacts the Unfold toolbox 
for MATLAB was used [29]. The Unfold toolbox was 
designed to recover isolated neuronal responses from 
originally overlapping cortical signals by reconstructing 
the deconvoluted signal mathematically. For every event 
of interest, a regression model is defined which is then 
fitted to each time point and channel relative to the onset 
of an event. The following events were supposed to 
influence the phenomenon of interest and were therefore 
included as a regression model: last fixation onset, 
fixation onset, final fixation exit, sphere spawn, sphere 
destruction, and sphere collision. For a more detailed 
description of the process including regression equations, 
see Rabe [30]. The Unfold toolbox returns beta weights 
which we then used to reconstruct the deconvoluted 
FRPs by summing up grand mean, regression weights of 
main effects, and interaction terms. 
The following data was included into further analysis: (1) 
only trials in which participants correctly reacted to 
targets (hit) or distractors (correct rejection), (2) only last 
fixations on a sphere, i.e. before an action was performed 

on it (hit a target) or not (dismiss a distractor), (3) 
activation from -1 to 2 ms around the fixation event (750 
timepoints), (4) only Pz electrode because the most 
elevated P3 amplitudes can be expected over the 
centroparietal cortex [31]. Paired t-tests comparing target 
amplitudes against distractor amplitudes were conducted 
for each timepoint. Peak amplitudes to targets and 
distractors were averaged +/- 10 ms around the peak in a 
time window of 200-600 ms. Then, a one-sided t-test 
(hit>distractor) was conducted. Normal distribution was 
assessed visually with QQ-plots and could be assumed.  
     Classifying on target and distractors: Classification 
was performed on the preprocessed but not unfolded 
dataset. All input time intervals were locked to fixation 
onset. In order to exclude brain responses related to 
motor execution we only included fixations on spheres 
that were more than 4 meters away (head to sphere 
distance), i.e. out of reach for the participant.  
For classification, four algorithms were applied: LDA, 
sLDA, SVM, and EEGNet. Features needed to be 
extracted as input for LDA, sLDA, and SVM while 
EEGNet is designed to detect features automatically, thus 
it used the preprocessed data directly. Feature extraction 
will be described in the following.  
First, epoching was done with a time window of [-1000 
1500] ms and a baseline between [-400 -200] ms. 
Epoching steps were conducted in EEGLAB and resulted 
in a three-dimensional data matrix (channel x time x 
epoch). Second, the timeframe of [0 600] ms was used 
for feature extraction. This 600 ms period was split into 
15 non-overlapping moving windows of 40 ms each. 
Third, amplitude averages were calculated for each 
window across all channels and epochs. Lastly, the 
resulting feature matrix (epoch x 1935) was fed into the 
classifiers (LDA, sLDA, SVM). To validate the 
classifiers’ performance, 5-fold cross-validation was 
conducted. Finally, statistical significance levels were 
calculated with a permutation-based approach, written by 
Laurens Krol (based on [32]). It generates a synthetic 
dataset of the same size and randomly shuffles the classes 
25,000 times. This produces a distribution of random 
correct assignments for comparison with our 
classifications. For α = 0.01, significance is reached with 
53.06% accuracy.  
MATLAB R2021a and the EEGLAB 2022.1 toolbox 
were used for preprocessing. The SVM model used a 
linear kernel and a box constraint value of 0.01 to prevent 
overfitting. The LDA, sLDA and EEGNet models were 
developed using Python 3.8.8. For EEGNet, Keras (v3.0) 
was used. The software components were executed on a 
system equipped with the following hardware 
specifications: an AMD Ryzen 5 3600X 6-core processor 
running at a clock frequency of 3.80 GHz, 16 GB of 
RAM. 
 
RESULTS 
 
     P300 to targets and distractors: Our hypothesis was 
that amplitudes of the FRPs in a time window of 200-600 
ms on Pz electrode would be larger to targets (i.e. hits)  
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Figure 2: (A) Fixation-related potentials (FRP) to last fixation onset, 0 ms, on target or distractor. Significant differences 
in amplitude are indicated (pairwise t-test per timepoint, p<0.05) (B) Performance of different classifiers for classification 
of brain activation to targets or distractors. Each boxplot indicates the spread of accuracy percentages. Statistical 
significance level of above chance performance is indicated with a horizontal dashed line at 53.06%. 

than to distractors (i.e. correct rejections). T-tests of the 
amplitudes on every single timepoint against each other 
revealed a significant difference with p < 0.05 for most 
timepoints between around -100 ms to 750 ms 
(timepoints marked in Fig. 2). Comparison of the peak 
amplitudes indicated that during the 200-600 ms period 
after fixation onset, the average peak amplitude for 
targets was 1.05 µV (SD = 0.96), while for distractors it 
was 0.79 µV (SD = 0.95), showing that targets had a peak 
amplitude that was, on average, 0.26 μV higher than that 
of distractors (SD = 0.47). A paired one-sided t-test 
comparing the peak amplitudes (targets > distractors) 
confirmed a significant difference (t (31) = 3.12, p < 0.01, 
d = 0.55).  
     Classifier performances: For the evaluation of EEG 
data classification, four algorithms—LDA, shrinkage 
LDA, SVM, and EEGNet—were assessed using 5-fold 
cross-validation. Fig. 2 demonstrates the distribution of 
the validation accuracies. On average, 2307 valid epochs 
were included for each participant, with an almost 
balanced ratio of targets to distractors. We hypothesized 
classification accuracies above chance for each method, 
with EEGNet performing best and LDA performing 
worst. Results show that all classifiers except LDA (𝑥" = 
52.7%) performed above random - sLDA 𝑥" = 55.5%, 
SVM 𝑥" = 56.3%, and EEGNet 𝑥" = 56.0% -, i.e. median 
values exceeding the estimated threshold of 53.06 %. All 
classification accuracies for training and validation can 
be seen in Tab. 1.  
 
DISCUSSION 
 
In this study, participants had to react to floating spheres 
of two colors in a VR environment. While the spheres 
were approaching towards the participants, they had to 
touch targets and dismiss distractors. We were interested 
in the cognitive reaction to targets and distractors upon 

fixation and the possibility of a fixation-based BCI. Our 
analysis was split into two parts: (1) comparing FRP 
amplitudes upon last fixation onset to correctly identified 
targets (hits) and distractors (correct rejections), (2) 
assessing the performance of different classifiers (LDA, 
sLDA, SVM, EEGNet) to distinguish between targets 
and distractors. For the first part, the amplitudes in a P300 
time window were larger for targets than for distractors, 
both during peaks and at each time point. In the second 
part, above chance classification accuracies were 
achieved for all classifiers but LDA. Performance of 
SVM, sLDA, and EEGNet was almost equal.   
     Cortical activation around fixation: Since the 
participants were in full-body motion during the 
experiment, we investigated whether it was generally 
possible to replicate a well-studied cortical response in 
our paradigm despite movement artifacts. The P300 was 
analyzed because it has been repeatedly shown to be a 
discriminator between targets and distractors [33–37]. 
Our analysis confirmed the hypotheses: during the P300 
time window, FRP amplitudes to targets were higher than 
to distractors, both for the peak and for each timepoint. 
Unexpectedly, this difference emerged already 100ms 
before stimulus fixation which was not reported by other 
free-viewing studies [33,34,36]. The sustained elevation 
of amplitude to targets compared to distractors from -100 
ms to 750 ms around fixation onset may stem from 
parafoveal processing before fixation onset, potentially 
present in all blocks where color visibility was constant  
 
Table 1: Median training and 5-fold validation accuracies 
for the different classifiers 
Classifier Training Validation 
LDA 92.9% 52.7% 
sLDA 71.8% 55.5% 
SVM 68.8% 56.3% 
EEGNet 60.1% 56.0% 
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(half of the trials). Such modulations might have affected 
the overall FRPs calculations. Indeed, early modulations 
of amplitudes can be seen in free-viewing tasks, and not 
in replay or oddball tasks [35]. Another possibility is that 
participants already distinguished between stimuli during 
earlier fixations. Unlike in the last fixation (which we 
investigated), a person is likely to decide during the 
initial fixation whether a stimulus requires further 
attention. This might influence the cortical activation to 
that same stimulus during following fixations. 
Supporting this idea, another study showed FRP 
modulations for repeated object fixation [38].  
The prominent spike at approximately 40-120 ms post 
fixation onset most likely reflects a visually evoked 
lambda response, a potential unique to free-viewing 
studies and originating from the striate or extrastriate 
cortex [12]. 
Overall, and most importantly, we could demonstrate a 
substantial difference in amplitude to targets compared to 
distractors after stimulus fixation even in a paradigm 
with full-body movement and fast-paced events. This 
serves as a first proof of concept for the feasibility of 
analyzing brain responses in our novel VR interaction 
paradigm. Further investigations should address the 
potential influence of parafoveal stimulus discrimination 
and repeated stimulus fixation to improve understanding 
of cortical responses in free-viewing paradigms and to 
pave the way for EEG analysis in more realistic research 
scenarios.  
     Classifying stimulus discrimination: In an online 
classification of neuronal processes, it might be of 
interest to identify whether a participant is evaluating a 
stimulus as target or as non-target, for example to 
indicate whether the participant intents to interact with 
that stimulus. As a first step towards that goal, we 
compared the performance of four different classifiers, 
offline, to predict target and distractor discrimination 
from brain activation after fixating a stimulus. Three of 
the classifiers, sLDA, SVM, and EEGNet, yielded an 
above chance accuracy. Only LDA failed to reach that 
level. Low performance of LDA was predicted before 
because of its overfitting issues [18]. We expected the 
best performance of EEGNet, however all classifiers 
performed equally well with mean validation accuracies 
between 55.5-60.0%. One reason for the similar 
outcomes might have been the relatively noisy data, 
compared to other paradigms. We argue that it may create 
a ceiling effect in classification accuracy which could be 
topic of investigation in subsequent analyses.   
We identified several factors that, if considered in future 
analyses, could improve classification accuracies. 
Probably, the overlap between cortical activation to 
subsequent stimuli hampered the classifiers' ability to 
effectively distinguish between targets and distractors. In 
the first part of our analysis, we showed that by 
“detangling” overlapping cortical responses with a 
regression-based calculation we were able to replicate 
results of studies without this overlap. It is advisable to 
come up with a similar method that can integrate well 
with classification to reduce the noise produced by 

overlapping responses. Further, all EEG channels were 
used for classification without spatial filtering. 
Optimization could be achieved by concentrating on 
more relevant electrode locations. As target and 
distractor discrimination represented by the P300 is 
primarily found over the centroparietal cortex [31], we 
argue that respective electrodes should be elevated by a 
spatial filter. Finally, motion artifacts might still have 
obscured some of the brain signals as the paradigm was 
quite motion-intensive. Since all applications of BCI in 
motion will face similar issues we suggest the 
exploration and integration of more sophisticated artifact 
rejection techniques to ensure cleaner, more reliable data 
inputs. 
 
CONCLUSION 
 
To the best of our knowledge, this was the first study 
classifying stimulus discrimination in a 3-dimensional 
VR environment with high stimulus frequency and full-
body motion, investigating more innate interaction 
patterns than standard 2-dimensional monitor based 
experiments. The findings indicate that it is feasible to 
classify cortical activation patterns to stimulus 
discrimination despite body movements. Our results can 
be regarded as a promising first step to investigate and 
apply BCI in motion, making it more accessible for a 
wide range of human-computer interactions.  
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ABSTRACT: This study investigates neural patterns
of acceleration in virtual reality (VR) using electroen-
cephalography (EEG). Participants experienced accel-
erating white spheres in VR while EEG signals were
recorded. Significant EEG differences were found at
the fronto-central region between acceleration and slow
speed, regardless of direction, and at the central region
depending on the acceleration direction. Topographic re-
sponses also show differences in spacial patterns between
the conditions. These findings give insights into the per-
ception of acceleration in the brain and show potential for
passive BCI applications.

INTRODUCTION

Although there are numerous definitions of VR [1], it can
be succinctly defined as “A real or simulated environ-
ment in which a perceiver experiences telepresence” [2].
The user’s psychological response to immersion in VR,
termed “presence” [3], provides valuable insights into
user behavior and experience. Understanding user re-
sponses to specific stimuli in VR is crucial for enhanc-
ing overall user experience and mitigating issues such as
cybersickness [4].
Recently, there has been growing interest in leveraging
BCIs to enhance VR experiences, aiming to create more
immersive and interactive environments [5]. This paper
investigates brain responses to acceleration in VR to iden-
tify potential markers of acceleration perception. Our ex-
perimental setup involved the simultaneous use of a 16-
electrode EEG headset and a VR headset. Participants
were presented with stimuli consisting of moving white
spheres within the VR environment. These spheres ini-
tially moved at a slow constant speed before undergoing
a sudden acceleration, either forward or backward, fol-
lowed by a return to the initial speed. This experimental
paradigm allowed us to examine the neural responses as-
sociated with the perception of acceleration in different
directions.
The study of acceleration perception in VR is particularly
relevant given the association between the subjective sen-
sation of movement called vection and the user’s experi-

ence in VR . Specifically, cybersickness has been asso-
ciated with vection [6] and could be better understood
through that prism.
Thus, studying the perception of acceleration serves as a
foundational step in investigating vection and its associ-
ated neural correlates.
We identify two potential neuromarkers:

1. A frontal marker of visual acceleration characterized
by a positive potential between 300ms and 700ms
after the start of the acceleration.

2. A signal differentiating the direction of the accel-
eration, whether it was forward or backward in the
central region.

To the best of our knowledge, these findings have not
been previously reported in the literature. They entail
two potential meanings for the fields of neuroscience
and BCIs. Firstly, they highlight fundamental cortical
responses associated with acceleration perception. Sec-
ondly, they pave the way for passive BCIs that utilize this
neuromarker to tailor the user experience accordingly. By
identifying markers of acceleration perception, we can
develop algorithms capable of discerning user attention
towards acceleration events. Aligning detected accelera-
tions with corresponding neuromarkers offers insight into
user engagement with such stimuli.
In summary, this study contributes to the growing body of
literature on BCIs and VR by hinting at the neural basis
of acceleration perception and its potential applications in
human-computer interaction and immersive technology.

MATERIALS AND METHODS

Objective: This protocol aims to generate accelera-
tion perception responses using Virtual Reality (VR). To
achieve this goal, a user study was designed to trigger a
potential through two types of trials: (1) sudden forward
acceleration FA1 and (2) sudden backward acceleration
BA1 (see Figure 1). Following this event, the participant
slowed back down to their initial speed by either a for-
ward (FA2) or a backward (BA2) acceleration.
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Figure 1: Illustration of a trial: Evolution of speed over time
is depicted. Dashed durations represent variable delays, with
one of the three delays chosen randomly. The second delay is
selected to ensure that the cumulative sum of delays amounts to
6 seconds.

Participants and Ethics: Twenty healthy participants
with normal or corrected-to-normal vision (12 men, 8
women; age µ = 28.1, σ = 7.99, min = 20, max = 56)
took part in the experiment. Ethical approval for this
study was obtained from the Ethics Committee of the
University of Lille with approval number 2021-526-S97.
The study adhered to the principles outlined in the Dec-
laration of Helsinki. Written informed consent was ob-
tained from all participants, who were explicitly informed
of their right to withdraw from the experiment at any
time without repercussion. Special attention was given
to inform the participants that they can withdraw should
they experience cybersickness. Data was anonymized
and stored in compliance with the General Data Protec-
tion Regulation (GDPR). Participants were given their
anonymized ID and could withdraw their consent at any
time after the experiment, removing their recordings from
the dataset.

Experimental Setup: The VE was displayed us-
ing a Valve Index Head-Mounted Display (HMD) con-
nected tp a DELL PRECISION 3640 personal com-
puter with an NVIDIA RTX 3080 video card. EEG
data were recorded using OpenVibe 3.1.0 software and a
g.GAMMAcap2 EEG cap from g.tec medical engineer-
ing GmbH®(Austria) with 14 electrodes positioned at
FPz, Fz, F1, F2, FCz, FC1, FC2, Cz, C1, C2, CPz, CP1,
CP2, Pz and a reference electrode placed on the right ear-
lobe. The VE was created using the Unity game engine
software (version 2020.3.11f1).

Trial Design: Each trial lasted 17 seconds and con-
sisted of four phases:

1. The Static phase: The environment fades in over 2
seconds and remains still.

2. The Slow speed phase: The environment accelerates
to a speed of 3m/s over 2 seconds and maintains
this speed for a variable duration of 1 to 5 seconds.
This phase is used to have an EEG baseline of visual
stimulation without strong speed or acceleration.

Figure 2: Depiction of the visual experience presented to partic-
ipants, featuring a virtual scene composed of point clouds and a
central crosshair.

3. The Acceleration phase: Participants experience a
sudden forward acceleration FA1 or backward accel-
eration BA1 of 12m/s2 for 1 second. The resulting
speed is maintained for two seconds before return-
ing to the initial slow speed with either a forward
acceleration FA2 or a backward acceleration BA2.

4. The End phase: The environment maintains a speed
of 3m/s for a duration matching the slow speed
phase before fading out over 2 seconds.

Environment: The VE consisted of a minimalistic en-
vironment with stationary white spheres arranged cylin-
drically around the participant, following what has been
done in the literature [7]. Participants were instructed to
focus on a red crosshair at the center of the visual field
to minimize ocular movements. Spheres gradually be-
came visible from 150 meters away and were updated in
real-time to reflect the current speed. The participant’s
view can be seen in Figure 2. Participants experienced
78 trials organized into four blocks. Each condition was
evenly distributed amongst the trials, with 39 of each for-
ward and backward trials, as well as 26 of each duration
before acceleration (1, 3 or 5 seconds).

Data Processing: EEG data were processed using
MNE-python for filtering and epoching. Noisy channels
were identified and excluded, and data were re-referenced
using common average referencing (CAR). Data were re-
sampled to 128Hz and filtered from 0.3 to 10Hz using
a 4th order Butterworth filter. Epochs ranged from 0.5s
before stimulus onset to 1s after stimulus offset. Epochs
containing voltage exceeding 125µV were rejected. Data
were stored in EEG Brain Imaging Data Structure (BIDS)
standard for easy sharing. Visualization was performed
using the seaborn library.

RESULTS

In our subjects, we split the EEG data between different
conditions:

• Baseline: This is taken during the slow speed phase,
as shown in Figure 1. Where the subject is going at
a constant speed of 3m/s.

• FA1, BA1, FA2, BA2 As described in the Trial Design
subsection.
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Figure 3: Topographic map comparison of the average response
for all subjects to baseline (top) and the first acceleration, FA1
and BA1, averaged (bottom)

Figure 4: Mean values of the FCz electrode for FA1 (blue), BA1
(orange), and baseline (green). The 95% confidence interval is
shown for each event. The shaded gray area corresponds to the
time period where there was a statistically significant difference
between the signals. FA1 And BA1 present similar patterns dis-
tinguishable from the baseline.

In this study, we evaluate the significance of observed dif-
ferences using a non-parametric bootstrapping approach.
First we perform 10,000 resamples on our data with re-
placement. Then we compute the 95% confidence in-
tervals which correspond to the range between the 2.5th
and 97.5th percentiles of the resampled data distribution.
These confidence intervals are represented as shaded ar-
eas in the figures. Additionally, we utilize topographic
maps to underscore spatial differences between condi-
tions, with cubic interpolation applied to obtain values
between electrodes.

Marker of acceleration: The spacial response shows
differences between the baseline and the acceleration
condition as shown in Figure 3 which presents a much
higher positive peak along the central regions and es-
pecially the fronto-central region peaking at 600ms. A
better temporal representation can be found in Figure 4,
which shows a significant difference at electrode FCz be-
tween periods of strong acceleration (FA1 or BA1) com-
pared to slow speed (3m/s), regardless of acceleration di-
rection. We see the characteristic strong positive potential
between 300 and 700ms after acceleration onset. Both
FA1 and BA1 follow a similar pattern in this region. This
particular pattern in the region could represent a marker

Figure 5: A comparison of the average topographic map across
all subjects for FA1 (top) and BA1 (bottom)

Figure 6: Mean values of the Cz electrode for FA1 (blue) and
BA1 (orange). The 95% confidence interval is shown for each
event. The shaded gray area corresponds to the time period
where there was a statistically significant difference between
the signals. The Cz presents a significant difference between
FA1 and BA1.

of acceleration, regardless of direction.
Marker of direction: The spacial response to the di-

rection of acceleration also shows differences. Compar-
ing the topographic maps in Figure 5, we find a stronger
negativity in the parietal region for the FA1 condition
around 400ms, that becomes a frontal and positive over
the course of the next 200ms. The BA1 condition shows a
much stronger negativity, especially around the central
electrodes, that increases until 600ms. Looking at the
Cz electrode, a significant difference was found between
forward and backward acceleration, as seen in Figure 6.
The BA1 condition differentiates from the FA1 condition
by showing a higher peak around 400ms and keeping a
stronger positive potential until 700ms after acceleration
onset.

Return to slow speed: Responses when returning to the
slower speed were not as pronounced as the responses we
found in the initial acceleration condition. We did find a
distinct marker for the return to slow speed section during
the Acceleration phase, as seen in Figure 7. First we ob-
serve a small difference in conditions around 350–500ms,
which is followed by a more pronounced late marker.
This late marker showed a significant difference between
the FA2 and BA2 conditions between 750–1000ms after
acceleration onset.
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Figure 7: Mean values of the Pz electrode for FA2 (brown) and
BA2 (purple). The 95% confidence interval is shown for each
event. The shaded gray area corresponds to the time period
where there was a statistically significant difference between
the signals. The Pz presents a significant difference between
FA2 and BA2.

DISCUSSION

Interpretation: The identification of distinct neural ac-
tivation patterns in response to acceleration stimuli opens
the door for a deeper understanding of acceleration per-
ception circuits in the brain. Further understanding of
the neural mechanisms underlying acceleration percep-
tion may reveal insights into motor control processes.
Some of these responses, notably the one exhibited in
Figure 6 bears resemblance to P300 responses from the
literature in its timing and location [8]. As the P300 is
associated with surprise and decision-making, the per-
ception of a sudden acceleration could trigger a decision-
making process in the brain.
Importantly, these findings lay the foundation for future
research on passive BCIs that use acceleration percep-
tion as a neural signal. Acceleration perception could be
used in a similar manner to established passive BCI sig-
nals such as mental workload [9, 10] or changes in error-
related potentials [11]. Such systems could adapt a user’s
environment and inputs, knowing if the user perceived an
acceleration and in which direction he perceived it. For
example, a passive BCI could detect if a driver in a vehi-
cle is paying attention to the road by using the markers of
acceleration perception along with an accelerometer.

Limitations and future work: In this paper, we find pat-
terns when going from a slow speed to a high speed (FA1
and BA1), but very different patterns when starting from
a high speed and going back to normal (FA2 and BA2).
All four patterns are unique, we do not explain this dif-
ference, and it warrants further study to be better under-
stood. Moreover, while this study shows a signal specific
to acceleration perception and direction, these findings
are limited to specific conditions: the subject is sitting, in
VR, with a stimulation consisting of white spheres.
Continued research in this direction could uncover how
the response evolves as we add sensory indicators of ac-
celeration such as sounds. One could also compare this
signal to those exhibited ecological experiences of accel-
eration in VR as well as in real-world scenarios. Beyond

the perception of motion, this opens the door to under-
standing how the brain perceives self-motion induced by
visual stimuli, or vection, which bears importance for the
field of VR and cybersickness. Thus, another direction
could be correlating this signal with the subjective per-
ception of the participant.

CONCLUSION

In this study, we find neural responses associated with
perceptual changes induced by sudden accelerations in
VR. We find different spatial responses characteristic of
both acceleration and acceleration direction. We also un-
cover differences in EEG signals at electrodes FCz and
Cz during acceleration perception, suggesting the exis-
tence of distinct neural markers for acceleration direction.
These findings have implications for the development of
passive BCIs and the enhancement of virtual reality ex-
periences. By leveraging these neural markers, future re-
search can design adaptive BCIs and create more immer-
sive and interactive VR environments. Overall, this study
contributes to advancing our understanding of the neu-
ral mechanisms underlying acceleration perception and
paves the way for innovative applications in brain com-
puter interfaces.
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ABSTRACT: The neurofeedback (NF) inefficacy prob-
lem refers to the variability in NF success and has been
associated with attentional and motivational factors. Sus-
taining attention on any task over an extended period is
demanding and leads to attentional drops. By using eye-
tracking and skin conductance, we aimed at extracting
physiological features linked to cognitive work, with the
further purpose of monitoring changes in task engage-
ment during NF sessions. Here, we present preliminary
results on pupil diameter (PD) and phasic skin conduc-
tance responses (ISCR) linked to cognitive task execu-
tion. We observed that changes in both features are as-
sociated with performance and time-on-task. Thus, PD
and ISCR decreased along the task while the performance
increased. However, this trend is affected by manipula-
tion of the task difficulty level. We also monitored, in the
same participants, PD and ISCR during one NF session.
Finally, we discussed preliminary ideas for target adapta-
tion during NF sessions based on eye-tracking and skin
conductance monitoring.

INTRODUCTION

Neurofeedback (NF) consists in feeding-back a patient
with information about its neural activation to learn self-
regulating its own brain activity [1]. It is therefore a
powerful technique to trigger brain plasticity [2]. More
importantly, NF has been postulated as a brain rehabil-
itation technique as it has the potential to reduce mor-
bidity by correcting maladaptive patterns of brain func-
tion associated with a broad range of brain disorders [3].
NF is usually based on real-time electroencephalography
(EEG) feature extraction, and it has been studied for sev-
eral decades [4]. However, the NF inefficacy problem
refers to the variability in NF success, as around 38% of
participants undergoing NF training do not learn to regu-
late their own brain activity [5]. Among the different el-
ements that may influence NF response, motivational [5]
and attentional [6] factors have been identified as pre-
dictors of both performance and learning. Interestingly,
motivation is likely to influence attention, as poorer per-
formances can increase fear of incompetence and reduce
mastering confidence which can lead to disengagement
with the task and a potential label of “non-responder” [7].
To have the best success in NF training, it has been sug-

gested to monitor participant’s motivation [8], as well
as, to adapt NF sessions to the participant [9]. A recent
review on NF for post-stroke motor rehabilitation con-
cluded that adaptation of NF target could lead to better
meet patients’ needs [10].
Sustaining attention on task-relevant information over an
extended time is crucial for successful performance in
any task, however, it is demanding and leads to atten-
tional lapses (i.e., disengagement from the task). Perfor-
mance relies on the “inverted-U shape” relationship be-
tween arousal and attentional states, linked to different
on-task and off-task engagement states [11]. Only inter-
mediate arousal activity is linked to task engagement and
good performance [12]. Eye-tracking (ET) [13] and skin
conductance (SC) [14] tools have been extensively used
to measure physiological features related to both atten-
tion and arousal levels.
In the present study, by using ET and SC, we aim to ex-
tract features linked to cognitive task execution, with the
further purpose of monitoring changes during NF ses-
sions. To synchronize our multi-modal set-up, and to
extract features of interest, we first collected data while
participants were engaged in cognitive tasks. As proof of
concept, the same participants performed one NF train-
ing session to observe physiological changes over time.
Here, we present preliminary results on pupil diameter, as
it has been strongly associated with cognitive load [15],
performance [16], fatigue and task engagement [17], and
on the phasic component of SC activity, as it has been
linked with arousal [18] and it changes faster than the
tonic component [14]. Finally, we monitored the same
features during the NF session.

MATERIALS AND METHODS

Participants: Twenty right-handed volunteers (11 fe-
males, age range=20−60 yo) reporting normal vision to
watch the screen participated in our study after signing
informed consent. This study has been accepted by the
COERLE, the Ethics Review Board at INRIA complying
with the European General Data Protection Regulation.

Procedure: The protocol was divided into a 10-minute
session of NF, followed by 30 min of randomised cog-
nitive tasks, conducted while sitting in front of a screen
with 1920×1080 display resolution in a dark room, while
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simultaneously recording EEG, ET and SC (Fig. 1A).
Cognitive tasks: Participants completed two different

tasks aiming to stimulate workload, (1) an adapted ver-
sion of the Stroop task [19], and (2) an Addition task
adapted from [20]. (1) During the Stroop task, partici-
pants were presented with two rows of words. In the row
above the name of a colour (jaune, vert, rouge, bleu) is
presented with the font in one of the following colours:
yellow, green, red, and blue. In the row below, the name
of a colour is written in black. The task of the partici-
pant was to judge if the meaning of the word below cor-
responds to the colour of the font of the row above or
not, and press the corresponding key. Each trial was pre-
sented for 1250ms, followed by a 30ms inter-trial inter-
val (ITI). Three task blocks (2min each), were interleaved
with three rest blocks (2min each). (2) In each trial of the
Addition task, a number from 1 to 9 was presented in the
centre of the screen flanked by two other numbers. The
task of the participant was to add the last two numbers
presented in the centre of the screen and select the correct
response among the flanker numbers by pressing the cor-
responding arrow on the keyboard. Three blocks of task
(1min each) were alternated with three rest blocks (1min
each). The time of appearance of the numbers decreases
across the blocks to increase the difficulty level and pre-
vent habituation (3sec in the 1st block, 2sec in the 2nd,
and 1sec in the 3rd). An ITI of 30ms was set between tri-
als. For both tasks, during rest blocks, a heart-coherence
disengagement video was presented in which a blue dot
increase (in 4sec) and decrease (in 4sec) repeatedly in the
center of the gray screen.

Skin conductance: A BrainVision galvanic skin re-
sponse set was used to acquire electrodermal activity
from the index and middle fingers. After downsampling
to 10Hz, SC responses were estimated through a Contin-
uous Decomposition Analysis using MATLAB toolbox
Ledalab [21]. Integrated phasic driver activity (ISCR),
which corresponds to the area of the phasic driver within
each temporal window, was extracted by setting 10sec
consecutive temporal windows. Z-scores were computed
along each task.

Eye-tracking: Eye activity was recorded by using a
screen-based eye-tracker Tobii Pro X2-120 and the output
was saved with Tobii Pro SDK. When pupil detection was
judged as valid for both eyes according to the SDK va-
lidity codes, pupil diameter (PD) was averaged between
both eyes. Z-scores were calculated for each task. To
observe PD progression along time and for plotting pur-
poses, PD was averaged within 10sec temporal windows.

Neurofeedback: Participants were instructed to per-
form a motor imagery task with both hands simultane-
ously. They were presented with a visual metaphor, a
yellow ball moving inside a blue square rotated 90 de-
grees (Fig. 1B), depicting event-related desynchroniza-
tion (ERD) activity of the C3 and C4 electrodes. The
participant’s goal was to keep the ball during all the runs
in the upper corner of the metaphor, corresponding to a
simultaneous motor imagery of both hands. They were

informed that if their focus was more directed to the right
or the left hand, the ball would move to the respective
corner of the metaphor. The NF session consisted of
one calibration run, eight training runs, and one post-
run. Each run was composed of one rest (30sec) fol-
lowed by one task block (30sec). To record EEG activ-
ity, we used a Brain Products actiCAP set of 32 active
electrodes and an actiChamp amplifier. The Cz electrode
was used as the reference. The OpenVibe software [22]
was used for signal processing. Signals were epoched on
the last 2 sec every 0.25 sec. A discrete Laplacian spa-
tial filter with an 8 coefficient for the C3 and C4 chan-
nels and a -1 coefficient for their respective neighbours
FC5, FC1, CP5, CP1 and FC6, FC2, CP6, CP2 was ap-
plied to the resulting samples, Lap(C3) and Lap(C4).
Other channels were ignored. The power of Lap(C3)
and Lap(C4) denoted Bp(C3), Bp(C4) is computed in
the 8-30Hz frequency band. Powers Bp(C3) and Bp(C4)
were continuously sent to a dedicated program via the
LSL library to compute neurofeedback scores and dis-
play the ball in the right position on the metaphor. Neu-
rofeedback scores for each electrode were computed with
Score(t) =

Bpre f −Bp(t)
Bpre f

where Bpre f is defined as Bpre f =

med(Bprest |[10,20]), the median of the bandpower during
the 10 sec central interval of the last rest block [23]. The
goal target was set for each hand independently based on
the 70th percentile of the scores achieved during calibra-
tion. If this score was lower than 0.15, the target was set
to 0.15.

Figure 1: (A) Setup for data acquisition synchronously collect-
ing EEG, eye-tracking and skin conductance signals, while the
participant is engaged in a neurofeedback session and in re-
solving cognitive tasks presented on the screen. (B) A neu-
rofeedback run composed of 30 sec rest, in which a heart-
coherence video (increasing/decreasing blue dot), and 30 sec
task, in which participants performed a motor imagery task of
both hands simultaneously.

In addition, we preprocessed data offline with EEGLAB
v2022.0 to test the difference between rest and task con-
ditions during NF training. EEG was pass band filtered
(1-40Hz) and re-referenced to average. EEG signal was
corrected for ocular, muscular and noise artefacts using
ICLabel 1.5 [24]. For power spectrum analyses, EEG was
first selected with 1-29 sec time limits based on events
corresponding to the beginning of the rest or the task con-
ditions. For each condition, data was epoched in 2-sec
no-overlapping temporal windows. Power in 8-30Hz fre-
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quency band was compared between rest and task condi-
tions. On the other hand, to observe ERS/ERD, data was
epoched on 60 sec no-overlapping temporal windows, in-
cluding rest (30 sec) and task (30 sec) conditions for each
run (8 x subject).

Statistical analysis: To observe differences in perfor-
mance along the task blocks, a one-way ANOVA was
conducted for each task including accuracy as a depen-
dent variable and block order (i.e. 1,2,3) as independent
factor. For statistical analyses on both ISCR and PD,
each task was analyzed independently and z-scores were
averaged within each block. First, a one-way ANOVA
was conducted including ISCR z-scores as the depen-
dent variable and condition as the independent factor (i.e.
baseline, task, rest). A two-way ANOVA was conducted
including ISCR as the dependent variable and condition
(i.e. task vs rest) and order (i.e. 1,2,3) as independent
factors. To investigate the relationship between ISCR and
accuracy, Pearson’s correlations were conducted between
ISCR and accuracy for each task block independently,
for the total task (average among all three blocks), and
for the whole task but including each block score sepa-
rately. In addition, a delta score (block 3 - block 1) was
calculated for both ISCR and accuracy scores. The cor-
relation between these delta scores was also tested. The
same analyses were conducted using mean PD z-scores
within each block as a dependent variable on 13 subjects
as the eye-tracking data for the first 7 subjects was ex-
cluded due to a change in the screen luminosity. To test
learning during the NF session, paired sample t-test were
conducted between calibration and post NF scores for C3,
and for C4 on 18 subjects due to recording problems in
the post-block for the first 2 subjects. The difference be-
tween NF scores for C3 and C4 was tested for both the
calibration and the post runs. Finally, to observe changes
in the NF score along the session, a one-way ANOVA
was conducted one for C3 and one for C4 including NF
scores as dependent variable and run as independent fac-
tor. To test changes in the synchronization between both
hands, a one-way ANOVA was conducted including the
difference in the NF scores between C3 and C4 as depen-
dent variable. To compare power spectrum between the
rest and task conditions during the training, paired t-tests
were conducted for all channels independently (31 chan-
nels) and p-values were Bonferroni corrected. Analyses
to investigate changes in ISCR along the NF session were
conducted on 16 subjects due to recording problems on
the first 4 subjects. A two-way ANOVA was conducted
including ISCR as dependent variable and condition (i.e.
rest vs task) and run (i.e. from 1 to 8) as independent fac-
tors. The same analysis was repeated for PD as depen-
dent variable in 13 subjects. All p-values corresponding
to post hoc tests included in this study were Bonferroni
corrected. Statistical analyses were conducted on JASP
0.17.2.1.

RESULTS

Behavioral performance: For the Stroop task, mean
accuracy across participants in the task was 80% (sd =
0.13) for the 1st block, 89% (sd = 0.09) for the 2nd
block, and 91% (sd = 0.07) for the 3rd block. The
difference in accuracy between blocks was significant
(F(2,57) = 7.263, p = 0.002). Specifically, accuracy in
the 1st block was lower than in the 2nd (t(38) =−2.793,
p = 0.021) and 3rd (t(38) =−3.642, p = 0.002) blocks.
Thus, performance increased along the task. For the
Addition task, the mean performance across participants
in the task was 89% accuracy (sd = 0.15) for the 1st
block, 80% (sd = 0.17) for the 2nd block, and 44% for
the 3rd block (sd = 0.18). As expected, the difficulty
level between blocks was different (F(2,57) = 40.755,
p < 0.001), with the 3rd block being significantly more
difficult than the others (both p < 0.001).

Skin Conductance: For the Stroop task (Fig 2A),
the one-way ANOVA evidenced a significant difference
in ISCR between conditions (i.e. baseline, task, rest)
(F(2,137) = 26.071, p < 0.001). Post hoc comparisons
evidenced that the ISCR for the rest condition was signif-
icantly lower compared to the baseline (t(78) =−5.022,
p < 0.001) and the task condition (t(118) = −6.629,
p < 0.001). The two-way ANOVA, including ISCR as
dependent variable and condition (i.e. task vs rest) and
block order (i.e. 1,2,3) as independent factors evidenced
a significant main effect of both condition (F(1,114) =
73.537, p < 0.001) and order (F(2,114) = 17.583, p <
0.001), and a significant interaction (F(2,114) = 10.104,
p < 0.001). Post hoc comparisons showed that ISCR
during rest was lower than the task condition (t(118) =
−8.575, p < 0.001) and that ISCR in the 3rd block was
lower comparing the 1st (t(78) =−5.898, p< 0.001) and
2nd blocks (t(78)=−3.480, p= 0.002). Specifically, the
task 1st block was significantly different from both the
2nd (t(38) = 4.659, p = 0.002) and 3rd (t(38) = 6.673,
p < 0.001) task blocks, and from all the rest blocks (all
p < 0.001). ISCR in stroop task blocks 2 and 3 was
not different, but the 2nd task block was different from
the 1st and 3rd rest blocks (both p < 0.002). The rest
blocks were no different. Mean ISCR during all three

Figure 2: Stroop task. (A) Skin conductance responses (ISCR)
and (B) Pupil’s diameter (PD). Black line: the mean across sub-
jects. Red area: +/-2 standard deviations. Blue shadow: task
blocks. White areas: rest blocks (2 min each block). Total du-
ration: 12 min plus 30 sec baseline at the beginning.
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tasks blocks negatively correlated with mean total ac-
curacy in the Stroop task (r = −0.48, p = 0.034) and,
when observing the relationship for each block indepen-
dently, ISCR negatively correlated with accuracy in the
2nd block (r = −0.44, p = 0.05) and the same tendency
was observed in the 3rd block (r = −0.39, p = 0.09).
Delta ISCR did not correlate with delta or mean accu-
racy. The correlation between accuracy scores and ISCR
for the complete task, including all blocks independently,
was significant (r = −0.47, p < 0.001), reflecting the
decrement in ISCR and the improvement in accuracy
along the task (Fig. 3A).

Figure 3: Stroop task. Pearson’s correlations between accu-
racy scores and (A) Skin conductance responses (ISCR), and
(B) pupil’s diameter (PD). Dotted lines: linear correlations for
each block. Black line: correlation over all blocks.

For the Addition task (Fig. 4A), the one-way ANOVA
evidenced a significant difference in ISCR between con-
ditions (i.e. baseline, task, rest) (F(2,137) = 42.773,
p < 0.001). Post hoc comparisons evidenced that the
ISCR during the addition task was significantly different
from both the baseline (t(78) = 6.210, p< 0.001) and the
rest (t(118) = 8.607, p < 0.001). The two-way ANOVA,
including ISCR as dependent variable and condition (i.e.
task vs rest) and block order (i.e. 1,2,3) as independent
factors evidenced, as expected, a significant effect of con-
dition (F(1,114) = 84.986, p < 0.001), a tendency for an
order effect (F(2,114)= 2.832, p= 0.063) but no signifi-
cant interaction. Post hoc comparisons showed that ISCR
was higher during the task compared to the rest (t(118) =
9.219, p < 0.001). Specifically, ISCR during all the task
blocks (i.e. 1, 2, 3) was significantly higher compared
to ISCR in all the rest blocks (all p<0.001). ISCR was
not different among the task nor the rest blocks. The cor-
relation was not significant between ISCR and accuracy
scores for the Additon task. However, we can observe a
negative tendency between ISCR and accuracy in the 1st
task block (r = −0.40, p = 0.081), and this relationship
seems to be inverted in the case of an increment in the dif-
ficulty level linked with an abrupt decrement in accuracy
in the 3rd task block (Fig. 5A). We observed a negative
correlation between ISCR and accuracy scores along all
the tasks when including each block score independently
(r =−0.28, p = 0.031), as accuracy decreased along the
task while ISCR increased with the increment on the dif-
ficulty level.

Eye Tracking: For the Stroop task (Fig. 2B), the one-
way ANOVA including PD as dependent variable evi-

Figure 4: Addition task. (A) Skin conductance responses
(ISCR) and (B) Pupil’s diameter (PD). Lines and coloured ar-
eas are the same as for Fig. 2. Total duration: 6 min plus 30 sec
baseline.

Figure 5: Addition task. Pearson’s correlations between accu-
racy scores and (A) Skin conductance responses (ISCR), and
(B) pupil diameter (PD). Dotted lines: linear correlations for
each block. Black line: correlation over all blocks.

denced a significant difference between conditions (i.e.
baseline, task, rest) (F(2,88) = 20.407, p < 0.001). Post
hoc comparisons showed that PD during the rest was
significantly smaller compared to the baseline (t(50) =
−4.734, p < 0.001) and the task (t(76) = −5.687,
p < 0.001). The two-way ANOVA, including condi-
tion (i.e. task vs rest) and order (i.e. 1,2,3) as inde-
pendent factors, evidenced a significant main effect of
both condition (F(1,72) = 79.651, p < 0.001) and or-
der (F(2,72) = 16.636, p < 0.001), but no significant
interaction (F(2,72) = 2.396, p = 0.098). Post hoc
comparisons showed that PD was bigger during the task
(t(76) = 8.925, p < 0.001) and that PD progressively de-
creased along the blocks, as PD was significantly differ-
ent across all three blocks (all p < 0.05). Specifically,
post hoc comparisons showed that PD in Stroop 1st block
was significantly different from PD in all rest blocks
(all p < 0.001) and the 3rd task block (t(24) = 5.556,
p < 0.001). PD in Stroop 2nd block were also different
compared to all the rest blocks (all p < 0.01). Finally,
PD in the 3rd task block was different from the rest 3rd
block (t(24)= 3.893, p= 0.003), but not from rest blocks
1 and 2. When testing the correlation between accuracy
and PD, no significant correlation was found. However,
the correlation between PD and accuracy scores along
all the tasks, including each block scores independently,
was significant (r =−0.46, p = 0.004), as PD decreased
while accuracy increased along the task (Fig. 3B).
For the Addition task (Fig. 4B), the one-way ANOVA ev-
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idenced a significant difference in PD between conditions
(i.e. baseline, task, rest) (F(2,88) = 67.208, p < 0.001).
Post hoc comparisons showed that PD during the addi-
tion task was significantly bigger compared to the base-
line (t(50) = 3.711, p = 0.001) and rest (t(76) = 11.586,
p < 0.001) and that PD during the rest was smaller also
compared to the baseline (t(50) = −4.482, p < 0.001).
The two-way ANOVA, including PD as dependent vari-
able and condition (i.e. task vs rest) and order (i.e. 1,2,3)
as independent factors, evidenced a significant main ef-
fect of both condition (F(1,72) = 237.530, p < 0.001)
and order (F(2,72) = 7.008, p = 0.002), but no signifi-
cant interaction. Post hoc comparisons showed that PD
was bigger during the task (t(76) = 15.412, p < 0.001)
compared to the rest and that PD increased along the task
duration, as PD in the 3rd blocks were bigger compared
to the 1st and 2nd blocks (both p < 0.01). Specifically,
PD did not significantly change among the addition task
blocks, nor the rest blocks, and PD in all the task blocks
was significantly different from all the rest blocks. Thus,
in the Addition task, we did not observe a decrement in
PD along the tasks. When comparing PD and accuracy
for the Addition task (Fig. 5B), a negative correlation was
observed in the 2nd task block (r = −0.59, p = 0.033)
and, although not significant, the same tendency was ob-
served for the 1st task block (r =−0.54, p = 0.055). An
opposite correlation was observed for PD and accuracy in
the 3rd block (r = 0.63, p = 0.022). Averaged accuracy
did not correlate with averaged PD, however, the PD delta
positively correlated with accuracy in blocks 2 (r = 0.85,
p < 0.001) and 3 (r = 0.65, p = 0.017), and with total ac-
curacy (r = 0.82, p < 0.001). When bigger the increment
in PD is along the task, higher the performance is. There
is a negative correlation between PD and accuracy scores
along all the tasks when including each block score inde-
pendently (r =−0.37, p = 0.022), as accuracy decreased
along the task while PD increased.

Neurofeedback: During the calibration, the NF score
was significantly different between C3 and C4 (t(17) =
−2.189, p = 0.021). When comparing calibration and
post, although not significant, there was an increment in
the NF score only for C3 (t(17) = −1.580, p = 0.066)
(Fig. 6A). The one-way ANOVA conducted along the 8
runs, was not significant for NF scores in C3 nor C4,
nor for the absolute difference between them (Fig. 6B).
When comparing band power (8-30 Hz) between rest and
task along all the NF training, the difference was sig-
nificant for both C3 (t(19) = 4.183, p = 0.016) and C4
(t(19) = 4.3703, p = 0.010), but also for CP1 (t(19) =
4.2515, p = 0.013) and CP2 (t(19) = 4.0952, p = 0.019)
(Fig. 6C). In the ERS/ERD conducted for training runs
(i.e. 30 sec rest, 30 sec task), we observed 8-30 Hz ERD
starting at the second 30, corresponding to the beginning
of the task (Fig. 6D).

The two-way ANOVA including condition (rest vs task)
and order (i.e. from 1 to 8) as independent factors and
ISCR as dependent variable evidenced only a significant
effect of order (F(7,240) = 23.098, p < 0.001), and a

Figure 6: Neurofeedback. (A) NF scores calibration vs post
blocks for C3 (blue) and C4 (red). One line per participant. (B)
mean and SE for NF scores in the 8 task blocks. (C) Topoplot of
task vs rest, and channels with a significant difference (in red)
after Bonferroni correction. (D) ERS/ERD in 8-30Hz frequency
band along NF runs (30 sec rest then 30 sec task).

significant interaction (F(7,240) = 3.283, p = 0.002).
Post hoc comparisons confirmed that ISCR for the 1st
and 2nd runs was significantly higher compared to all
the other runs (all p < 0.01). The same analysis with
PD as a dependent variable evidenced a significant effect
of condition (F(1,192) = 18.263, p < 0.001) and a ten-
dency (not significant) for an order effect (F(7,192) =
1.500, p = 0.169). Specifically, PD in the rest con-
ditions was significantly smaller compared to the task
(t(206) =−4.160, p < 0.001). Although not significant,
PD in runs 1 and 2 tended to be bigger compared to run
7.

DISCUSSION

As expected we observed differences in both ISCR and
PD between the task and the rest conditions for both the
Stroop and the Addition tasks. However, we observed a
different trend for both physiological features (i.e. ISCR
and PD) in the two different tasks. While in the Stroop
task we observed a decrement in both physiological sig-
nals along the task, on the contrary, we didn’t observe the
same trend in the Addition task, in which the difficulty
level was increasing along blocks. Thus, in the Stroop
task performance increased along the task blocks while
physiological signals decreased, probably linked to an ex-
pertise and/or habituation effect. In the Addition task,
both ISCR and PD remained stable along the task, while
the relationship between the physiological features and
performance changed based on the task difficulty level.
In the case of manipulation of the difficulty level, partic-
ipants who showed less decrement in physiological fea-
tures were able to keep a higher performance. For NF, we
observed a decrement in physiological signals during the
session. This may be an indicator of habituation linked
to expertise or, on contrary, linked to fatigue or even to
a lack of cognitive effort allocated on the task. In a fu-
ture study, we aim to develop a method that progressively
adapts the NF target based on individual performance and
physiological features monitoring. In NF protocols, with
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the repetition of sessions, participants may loose engage-
ment on the task and this may be linked to: (1) the task
has become too easy, or (2) they give up due to the dif-
ficulty in achieving the goal. For instance, if NF scores
are high and physiological features are dropping during
the session, we may increase the target difficulty level
to make the session more challenging. However, if NF
scores are high, but also physiological features are high,
the difficulty level might be challenging enough. If NF
scores are low and physiological signals drop, the target
might be set easier to re-engage the participant’s interest.
Finally, we would like to briefly comment on the differ-
ence in the NF score for calibration between c3 and c4.
We understand that, as all participants were right-handed,
the motor imagination of a movement with the left hand
might be less automatic compared to the right. Interest-
ingly, we observed differences only for the calibration,
during the NF runs, the difference tended to decrease.
This study aimed to present preliminary results on the use
of skin conductance and eye-tracking features to monitor
task engagement during NF sessions. These first results
encourage to individually adapt NF targets to keep par-
ticipants engaged in the task. In future analyses, we will
consider also other physiological features that might be
of interest to track cognitive load and attention, such as
blinks, saccades and fixations, as well as changes in the
tonic component of skin conductance.
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ABSTRACT:  
 

Neurofeedback (NF) is a technique where participants 

receive real-time feedback about their brain activity to 

learn how to modulate it. As a non-invasive 

neuromodulation tool, it proves useful in both research 

and clinical practice. However, approximately one third 

of users do not respond effectively to NF, prompting 

efforts to improve responder rates. A promising 

approach involves individualizing feedback by focusing 

on a narrow feedback band that encompasses only the 

individual's peak frequency (IPF), as opposed to a fixed 

broadband. In some frontal-midline-theta (FMT) -

NF paradigms, the IPF is determined during a single 

calibration session and applied over several days. In a 

pilot study involving five participants undergoing seven 

sessions of FMT-NF, we calibrated the IPF using a 

virtual TMaze task and conducted two follow-up 

sessions. Our exploratory analysis across three task 

sessions failed to detect a stable IPF. This, as well as the 

scarce literature on FMT peak frequency stability, casts 

first doubts on the efficacy of this calibration technique. 
 

INTRODUCTION 
 

Neurofeedback (NF) is a promising technique in which 

individuals receive real-time feedback of their brain 

activity, empowering them to consciously regulate it 

[1]. This approach holds significant potential both in 

research settings and clinical applications as a non-

invasive method of neuromodulation [2], [3]. However, 

despite its potential benefits, NF's effectiveness remains 

variable, with approximately one third of users not 

achieving tangible results [4], [5]. In response, ongoing 

efforts are focused on enhancing responder rates [5]. 

One strategy to optimize NF outcomes involves 

individualizing the target frequency bands to each user. 

In traditional electroencephalographic (EEG)-NF, 

electric, oscillatory brain activity was usually extracted 

in relatively broad, fixed frequency bands [6].  

More recent approaches try to increase the signal-to-

noise ratio by narrowing the target frequency band. This 

is done by choosing an individual peak frequency (IPF) 

– the frequency of the band with the most measurable 

activity at scalp level and providing a narrow target 

frequency window around this peak. Hence, unrelated 

frequency responses in broad windows (i.e. noise) can 

be avoided.  

The idea of the general IPF is rooted in the individual 

alpha frequency (IAF, 8-12Hz), which was shown to be 

a trait and hence stable over time [7]. Furthermore, it is 

easily detectable, as humans tend to show a peak in the 

alpha range (8-12Hz) of their power spectrum, when 

closing their eyes, being inattentive or in resting-state, 

with topographies depending on the respective 

inactivity [8].  

Other frequency responses, such as theta (4-8Hz), do 

not show as easily detectable peaks during resting-state 

measurements, but during the performance of specific 

tasks, yet also with specific topographical distributions. 

For example, the task-related theta, linked to cognitive 

control and conflict [9], [10], [11] is localized at frontal 

midline electrodes (Fz, FCz), hence also named frontal-

midline theta (FMT) [12], [13] or midfrontal theta 

(MFT) [14], [15]. 

Concerning peak frequencies, increases in task-related 

theta, when exerting cognitive control, remain in a 

narrower band than the entire theta band [8] supporting 

the idea of IPF-training if the latter is targeted. To find 

the respective individual theta frequency (ITF), several 

definition and quantification approaches exist. One 

classical approach bases itself on the IAF for the 

calibration [8], [16], resulting in an equal stability. More 

recent neurofeedback studies aiming at FMT 

modulation calibrated directly on task-related theta 

peaks [17], [18]. 

Calibrating task-related theta can be quite laborious, and 

often, the same calibration is applied across multiple 

sessions. This approach would be justifiable if 

individual theta frequency (ITF) measured with the 

task-related theta peak quantification was akin to 

individual alpha frequency (IAF) in terms of trait-like 

stability. However, to date, no studies have specifically 

investigated ITF stability for this new type of definition 

and quantification. 

During a pilot study with a particular focus on FMT 

inhibition, involving five participants and seven NF 

sessions each, our design further employed a virtual 

TMaze task to calibrate the IPF in the initial session and 
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Figure 1: Overview of an Approach-Avoidance Conflict trial 

of the virtual TMaze task, displaying the first-person view of 

the participant, the entities he may encounter and the setup of 

the TMaze, with the safety zone behind the participant.  

during two follow-up sessions. 

In an exploratory analysis of the task sessions, we were 

unable to detect a stable theta peak. This unexpected 

finding raises critical questions regarding the reliability 

and efficacy of the calibration technique employed for 

IPF-based FMT neurofeedback. 

In this paper, we present the findings of our exploratory 

analysis, shedding light on the difficulties of 

individualized NF calibration methods, particularly 

concerning FMT modulation. 
 

MATERIALS AND METHODS 
 

     Ethical statement: The study was carried out in 

accordance with the recommendations of “Ethical 

guidelines, The Association of German Professional 

Psychologists” (“Berufsethische Richtlinien, 

Berufsverband Deutscher Psychologinnen und 

Psychologen”) with written informed consent from all 

subjects. All subjects gave written informed consent in 

accordance with the Declaration of Helsinki before they 

participated in the experiment. The protocol was 

approved by the local ethics committee of the 

department of psychology of the Julius-Maximilians-

University of Würzburg (GZEK 2023-45, 

Ethikkommission des Institutes für Psychologie der 

Humanwissenschaftlichen Fakultät der Julius-

Maximilians-Universität Würzburg). 
     Participants: Five participants (3 female, age: M = 

24.4 years, SD = 1.5) were recruited through 

advertisements in an experiment online portal of the 

University of Würzburg. Participants were given course 

credits or a monetary compensation of 12,50€. All 

participants were at least 18 years old, righthanders, 

non-color blind and without a history of a psychiatric 

disorder. They took part in nine experimental sessions 

within three weeks: An initial calibration session 

(virtual TMaze) was followed by seven neurofeedback 

sessions. The virtual TMaze was recorded again directly 

after the last neurofeedback in session eight, as well as 

one week later in session nine.  

     Virtual TMaze: The virtual TMaze used in this study 

is an adaptation of the original design of [19], [20], [21] 

into a more recent games engine, the Unreal Engine 4. 

Participants interacted with the virtual environment 

using a gamepad, navigating through a TMaze in a first-

person view (see Fig. 1). 

By virtually moving in the TMaze it was possible to 

encounter two entities: The participant could be caught 

by a scary kraken, leading to credit loss and an aversive 

sound being played, or the participant could catch a cute 

seal, leading to credit gain and a harmonic sound.  

Each 18 second trial started with the participant 

positioned in a passage, facing the T-arms of the maze.  

The study incorporated four distinct trial types: 

Avoidance Trials (n=20): A red light indicated the 

presence of the kraken in one of the arms. Avoidance 

was possible by retreating behind the starting passage 

into a safety-zone instead of entering the T-arms. 

Approach Trials (n=20): A green light indicated the 

presence of the seal in one of the arms. 

Approach Avoidance Conflict Trials (n=30): A green 

and a red light indicated the presence of both entities.  

Ambiguous Events (n=30): A yellow light indicated the 

presence of an unspecified entity in one of the arms. 

Unbeknown to the participants, the probability of 

encountering one or the other entity was at 50 percent.  

     Neurofeedback: Given that the neurofeedback does 

not constitute the central focus of this paper, 

neurofeedback results are not discussed in this paper. 

Each session consisted of six blocks of five one-minute 

trials, leading to a total of 30 minutes of neurofeedback, 

aiming at FMT-inhibition. A three-minute resting-state 

was recorded before and after each session. Participants 

received real time feedback of their FMT activity at Fz, 

at the assumed ITF (+/-1Hz). The ITF was calibrated on 

the event-related theta of conflict and ambiguous trials 

of the virtual TMaze task of the first session. 

     EEG: For the recording of the EEG ActiCap 

electrodes and BrainAmp EEG amplifiers (Brain 

Products GmbH, Gilching, Germany) were utilized. 

During session one, eight and nine (all three sessions in 

which the TMaze was recorded) 62 scalp-electrodes 

were placed according to the 5-10-system. Two 

electrodes (O1/O2) were sacrificed to be used as 

electrooculogram (HEOG/VEOG, right eye). The 

reference electrode was placed at FCz. All data was 

recorded using LabStreamingLayer (LSL-Connector, 

LabRecorder) at a sampling rate of 250Hz.  

     Preprocessing: All EEG data was processed in 

MATLAB using the code of and following the EPOS-

Pipeline [22]. First a notch filter for line noise and 

resonance frequencies (50,100Hz) was applied. Next, 

bad channels were detected and interpolated. Detection 

was based on a statistical threshold of z > 3.29 [23] for 

joint probability, kurtosis and the power spectrum. Then 

the data was re-referenced to common average, 

restoring the previously used reference electrode FCz. 

Epochs were cut from -1 to 5 seconds after cue 

(appearance of lights in the TMaze) onset. A 1Hz 

highpass-filter was applied before an independent-

component-analysis (ICA) was performed. The 

components were used to select bad segments based on 

the same statistical criteria as before. A second ICA was 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-046

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

261



computed, this time artifactual components were 

automatically detected using MARA, ADJUST and 

SASICA. After removal of the selected components the 

data was finally re-referenced to current source density. 

To analyze time frequency responses the data was cut 

into shorter epochs from -1 to 2 seconds. Data was 

baseline corrected, using the one second before stimulus 

onset, and subsequently decomposed using Morlet 

wavelets.  

     Calculation of the ITF: As we discovered the 

instability of the ITF with the pipeline, we used for 

calibration during the study, we considered alternative 

ways of peak detection to calibrate the neurofeedback 

system. To investigate these alternative ways, we 

employed a “mini”-multiverse analysis, comparing 

combinations of multiple reasonable decisions along the 

pipeline. 

The theta-peak was searched in a time window from 

250-450ms after stimulus (light cue) onset. We varied 

the pipeline at five steps, with two to four alternative 

decisions per step, resulting in a total of 96 analyses. 

1) Unit of time-frequency response 

1A: Power  

1B: decibel (dB) - to account for 1/f dynamics of the 

power spectrum. 

1C: dB change to baseline - to account for differences 

in baseline activity. 

2) Spacing of frequency bins 

2A Linear – to have equally spaced bins. 

2B Logarithmic – to account for 1/f dynamics of the 

power spectrum. 

3) Search Time (250-450ms after cue) 

3A: Peak Window (50ms window) – the peak is 

detected on a singular timepoint. Additional 25ms of 

data before and after this peak are included in the 

analysis. 

3B: Center of Gravity (50ms window) – to detect 

peaks lower in amplitude but extended in duration 

we utilized the average of a moving window of 

50ms with 10ms steps.  

4) Search Band (4-8Hz) 

4A: Broadband– detecting the peak (timewise) in the 

broadband, and afterwards extracting activity of 

each sub-band of the peak. This approach tackles an 

overall theta peak. 

4B: Sub-bands – detecting the peak (timewise) for 

each sub-band and correspondingly extracting the 

activity. This allows the investigation of frequency-

interferences. 

5) Peak Detection 

5A: Frequency with the highest average activity of 

only those trials where the specific frequency was 

the frequency with the most activity. 

5B: Frequency with the highest summed activity of 

only those trials where the specific frequency was 

the frequency with the most activity. 

5C: Frequency with most trials where the specific 

frequency was the frequency with the most activity. 

5D: Frequency with the highest average activity of all 

trials. 

    Peak Timing: To investigate whether peaks in the 

different frequency bins may interfere with each other 

we looked at the distribution of peak timings in the 

individual sub-bands and compared the standard 

deviations of peak timings for each individual trial.  

     Statistical Analysis: To assess peak stability, we 

calculated inter-class-correlations (ICC) across the three 

sessions for every pipeline. To quantify the variability 

between the 96 pipelines we calculated the ICC for the 

pipelines for each session of each participant. Due to the 

small number of participants (n=5) results from these 

statistical tests should be taken with caution. 
 

RESULTS 
 

     ITF Peak Detection: Due to the immense number of 

comparisons possible we display only the most 

important ones. Nonetheless all analyses performed are 

available on GitHub 

(https://github.com/iamraP/FMT_Peak). 

We observed variability in the ITF across participants, 

sessions as well as calibration pipelines. The employed 

approaches did not provide a stable peak, except for 

instances where it is questionable whether the stability 

was provided by edge artifacts of the frequency band 

processing [24] . The ICC for the pipelines was 

especially low (ICC: 0.03, 90%-CI [0.02,0.06]). The 

evaluation of the peak frequency stability was 

impossible in 55 pipelines as the strength of the edge 

artifacts led to zero variability in the detected peak. All 

three pipelines which would still be rated as fairly 

reliable (ICC > 0.5) [25], present a strong tendency 

towards edges of the frequency band. The low ICC of 

the other 38 pipelines challenges the assumption of a 

stable ITF across sessions. In the following we will 

refer to differences in peak detection > 1Hz as 

“meaningful differences”, since they would lead to a 

different setting in the neurofeedback system. 

     1) Unit of time-frequency response: The blue panels 

of Fig. 2 display the difference between the different 

choices for 1 (A-C). It is exemplary for our observation 

over all the performed analysis, displaying the three 

issues of the analysis: first, edge artifacts at the lowest 

frequency for power, second, edge artifacts at the 

uppermost frequency for the dB transformed data, and 

third, high fluctuation of the detected peak for dB 

transformed data in relation to the baseline.  

     2) Spacing of frequency bins: Decision on step 2(A-

B) did not lead to such extreme effects, but nonetheless 

observable and meaningful differences, most 

pronounced in combination with 1C (Fig. 2, blue vs. red 

panels).  

     3) Search Time & 4) Search Band: Another 

meaningful difference was observed for the decision 

between center of gravity (3A) and peak window 

detection (3B), again most visible in combination with 

1C. Interestingly the observed meaningful difference of 

search time (3A-B) remained relevant only in 

combination with 4A (broad-band) (see Fig. 2, green 

panels). For the sub-band peak search (4B) the 
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Figure 2: Detected frequency peaks for each participant 

(colors) for the three sessions (1: Initial Session (Day 0); 8: 

after 7 NF sessions (Day 10-14), 9: 1 week later (Day 17-

21)). Each panel displays the results of a different pipeline, 

highlighting changes induces by design choices.  

Blue: Differences for unit of time-frequency response. 

Pipeline choice pattern: 1A-C – 2B – 3A – 4A – 5D.  

Red: Linear spaced frequency bins instead of logarithmic 

bins. Pipleline choice Pattern: 1C – 2A – 3A – 4A – 5D. 

Green: Center of gravity vs. Peak Window and Broadband 

vs. sub-bands. Choice Pattern: 1C – 2A – 3AB – 4AB – 5D. 

Gold: Differences choice of peak detection. Choice pattern: 

1C – 2B – 3A – 4A – 5A-D. 

 

approaches 3A-B remained similar enough to not 

change the frequency band of the neurofeedback (see 

Fig., 2 green panels). Choosing the band within which 

to search for the peak also impacted the detection in a 

meaningful manner itself. While detecting the peaks in 

the sub-bands lead to a higher likelihood of the peaks 

being detected at edge frequencies (93% of peaks either 

>7.5Hz or <4.5Hz), detection of the peak in the broad 

band led to the inclusion of more centered frequencies 

(76% of peaks either >7.5Hz or <4.5Hz). 

     5) Peak Detection: Except for 5C, only minor 

differences between the different approaches for 

detecting the peak were notable (see Fig. 2, gold 

panels). An issue posed by approach 5C was the 

possibility of several frequencies accumulating the same 

number of trials, therefore not providing a single peak 

frequency.  

     Peak Timing: Investigations of the distribution of the 

peak timing for the sub-bands showed, that peaks 

tended to occur across the entire time for any frequency, 

but also a slight variation of timings between them. 

Nonetheless for no participant any frequency displayed 

a more specifically time-locked peak than the others. 

Comparing the divergence of peak-timing for individual 

trials revealed that the timing is not consistent over 

frequencies, as indicated by high standard deviations 

(on average 44ms per trial within a 100ms time 

window). 
 

DISCUSSION 
 

The exploratory findings of our pilot study reveal 

several critical insights into the calibration of Individual 

Peak Frequency (IPF) for Frontal-Midline Theta (FMT) 

Neurofeedback (NF). The inability to establish a stable 

IPF across sessions raises significant questions about 

the reliability and effectiveness of current calibration 

methods, particularly in the context of FMT-NF. This 

discussion will critically analyze these findings, 

examining the implications for neurofeedback research 

and practice, and suggesting potential avenues for future 

studies. 

The core challenge identified in this exploratory 

analysis is the stability of the ITF. Our results indicate 

substantial variability in ITF across participants, 

sessions, and calibration pipelines. This instability could 

be attributed to several factors: 

     Trait vs. State: Some differences are expected as 

human brain activity is inherently variable, influenced 

by factors like cognitive state, attention, and even 

diurnal rhythms [8]. This variability could lead to 

fluctuations in theta activity. Nonetheless if an IPF is 

supposed to be used over several sessions, it needs to be 

trait- and not state-dependent, hence intraindividual 

differences should be minimal. 

     EEG-Pipelines: The methods employed for detecting 

the IPF, such as the time-frequency response units and 

the peak detection algorithms, showed heterogenous 

outcomes. This suggests that the choices of 

methodological approach play a crucial role in the 

calibration process, which is supported by previous 
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investigations of the effects of different design choices 

in EEG analysis pipelines [26]. However meaningful 

peak stability was not achieved with any of the applied 

approaches.  

     Processing Artifacts: The lower-edge artifacts shown 

for analysis with 1A (power), are explainable by the 1/f 

dynamics of EEG-data - lower frequencies displaying 

higher activity and hence are more prone to be detected 

as peaks. Opposingly, the decibel transforms (1B) 

supposedly correcting for these dynamics overcorrects 

it, leading to the opposite edge-artifact. The third choice 

1C (dB change to baseline) introduces other artifacts 

which may be caused by a variance in baseline activity. 

The issue of edge artifacts may be tackled by 

emphasizing the analysis on the center of the signal by 

using padding or a specific window function such as 

Hanning windows.   

Diverse padding methods could be tested in further 

pipelines, such as zero-padding, mirror-padding, or 

constant-padding, to make the edges of the signal 

smoother or more consistent with the central parts, 

whereas the Hanning window for example tapers the 

signal, giving more weight to the center and less to the 

edges and corners. 

     Task Design: The variance in baseline activity is 

likely caused by the task design. While we used a rather 

complex task to elicit conflict-related theta (the virtual 

TMaze), previous neurofeedback studies using task-

based peak detection relied on more simplistic tasks 

focusing on the exertion of cognitive control (Stop-

Signal-Task, Stroop) or working memory (Delayed-

Match-to-Sample, n-back) [17], [18]. 

Even though the stability of the peak frequency was not 

explicitly reported in former studies, it is still plausible 

to assume it could have been stable. Three differences 

may have influenced detectable peak stability in our 

design. First, while the conflict-related theta elicited in 

the TMaze is also part of the cognitive control domain, 

the complexity of the task may still influence the 

stability of the underlying processes. It may have led to 

a less consistent baseline, hence influencing the baseline 

corrected dB transform: Second, the underlying 

processes of conflict-related theta and working 

memory-related theta may differ, which could explain a 

trait for one but not for the other. Third, the TMaze may 

also suffer from habituation, e.g. participants 

developing a strategy to deal with the conflict, which is 

not possible in the simpler designs aiming at inhibitory 

control (e.g. Stop-Signal Task). A comparative study, 

employing different tasks over several sessions would 

be necessary to shed further light on the suspected issue.  

The variability in ITF suggests a need for more 

personalized NF protocols. While individualizing NF 

based on IPFs in general is a promising approach, our 

study indicates that a one-time calibration may not be 

sufficient for FMT neurofeedback. Dependent on the 

intention of the modulation, e.g. if non-sleep-related 

processes are targeted, we believe an IPF approach to be 

more applicable than broadband feedback, but 

continuous or frequent recalibration might be necessary 

to account for the dynamic nature of FMT activity. 

     Peak Timing: The investigation of peak times for the 

different sub-bands displayed inconsistencies across 

them. This may indicate a band interference, where one 

sub-band may cancel out the other when averaged, 

hence we would assume an individual investigation 

(4B) of each sub-band may lead to more accurate results 

than the peak detection on the broadband (4A). 

     Outlook: A recent meta-analysis showed, FMT-NF 

based in on IPFs did not outmatch broadband feedback. 

[27]. Chances are, the IPF did not outmatch the 

broadband feedback because both approaches are 

equally well, but due to the not yet established pipeline 

for ITF detection. To investigate this proposed issue of 

ITF peak instability and possibly for providing a stable 

pipeline, a larger multiverse analysis is planned, 

including different steps of design choices on an 

existing dataset of TMaze data, as well as newly 

recorded data from several tasks eliciting FMT.  
 

CONCLUSION 
 

In conclusion, while individualizing FMT-NF by 

focusing on the IPF might be a promising approach, to 

tailor feedback to NF-users our study underlines the 

challenges in achieving reliable IPF calibration. Even 

though with such a small sample these results should be 

interpreted with caution, the underlying lack of 

literature concerning ITF stability together with the 

current observation necessitates a reconsideration of 

current calibration methods of FMT-NF and highlights 

the need for more sophisticated approaches. As NF 

continues to evolve, addressing these challenges will be 

crucial for maximizing its efficacy and applicability in 

both research and clinical settings. 
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ABSTRACT: Research on BCI-illiteracy in the imagined 

speech domain has been scarce. In the current study, we 

therefore investigate the relationships between both 

motor imagery vividness as well as inner speech habits, 

and classification accuracy based on the neural activity 

evoked by speech imagination. For this purpose, we 

classified electroencephalography-derived brain activity 

with respect to four imaginatively spoken phonemes: /a/, 

/i/, /b/ and /k/. We found that individuals who engaged 

more frequently in dialogic inner speech exhibited 

significantly higher classification accuracies, while 

motor imagery vividness showed no effects.  

Neurophysiological findings indicate that a higher 

expression of dialogic inner speech is associated with a 

suppression of redundant or counteractive neural 

information. These findings extend our understanding of 

the substrates of classification performance, respectively, 

BCI-illiteracy in speech imagery-based systems. 

 

INTRODUCTION 

 
     Imagery vividness and inner speech habits Brain-

computer interfaces (BCIs) rooted in 

electroencephalography (EEG) attempt to enable 

individuals with motor impairments to control a certain 

device by leveraging electrophysiological brain signals. 

Motor imagery has been used extensively for this 

purpose [1,2]. The classification of imagined speech 

emerged more recently and is considered an intuitive 

means for the development of speech prostheses [3]. 

Irrespective of whether one imagines movements or 

speech, some individuals fail to control BCIs via own 

brain signals. This phenomenon is referred to as BCI 

illiteracy. An estimated 15-30% of BCI-users are 

affected by this [4]. Regarding the roots of the illiteracy 

phenomenon, structural brain heterogeneity, 

insufficiently discriminative classification algorithms 

and a lack of neuroimaging diversity have been discussed 

in the literature [5]. Furthermore, associations between 

motor imagery vividness and classification performance 

[6–8] or corticomotor excitability [9] have been reported. 

Vuckovic [7], for example, showed that kinesthetic 

motor imagery vividness was highly correlated with the 

classification accuracies of a kinesthetic motor imagery 

task. Visual motor imagery vividness also was positively 

correlated with the classification outcome, but to a lesser 

extent. Despite being a motor imagery process, the role 

of motor imagery vividness has not yet been investigated 

in speech imagery. Corresponding questionnaires, 

however, may not accurately capture the full dynamics of 

the underlying ability to vividly imagine speaking, as 

they neglect the auditory component thereof entirely. 

Since no speech imagery vividness questionnaire exists, 

previous studies [10,11] alternatively used the Varieties 

of Inner Speech Questionnaire (VISQ) [12] to quantify 

the degree to which  individuals “mentally” talk to 

themselves on an everyday basis. However, it is 

important to note that conceptual and procedural 

discrepancies between naturalistic inner speech and 

experimentally manipulated imagined speech exist [13]. 

The former is produced naturally and spontaneously, 

while the latter is elicited as part of an investigation. The 

former often serves a function, e.g. to remind oneself of 

something or to monitor one’s actions, while the latter 

frequently consists of isolated stimuli, such as phonemes 

[3] and yes/no contrasts [14]. For this reason, we refer to 

experimentally elicited imagined speech as imagined 

speech and to naturally occurring inner speech as inner 

speech throughout the rest of this paper. Despite the 

differences, naturalistic inner speech habits may 

represent a more suitable proxy for speech imagery 

vividness compared to motor imagery vividness, as they 

capture the predominant auditory component of 

imagined speech. 

 

     Neural substrates of imagined/inner speech Neural 

correlates of imagined speech have been researched 

thoroughly over the last decades. Evidence derived from 

reviews [15,16] suggests the involvement of an extensive 

perisylvian, respectively, sylvian network including the 

left pars opercularis, premotor cortex (especially ventral 

portions), insula, supplementary motor area, inferior 

parietal gyrus and superior and middle temporal gyri. 

Similarly, findings of a recent fMRI study [11] indicate 

the recruitment of left-hemispheric areas, including the 

inferior frontal gyrus, medial frontal gyrus, insula and 

nucleus caudatus regarding both dialogic and monologic 

inner speech. Additionally, the authors found significant 

correlations between the activation contrast 

Dialogic>Monologic inner speech and self-reported 
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dialogic inner speech usage as assessed by the 

corresponding VISQ subscale in the right medial 

temporal gyrus as well as the right precuneus. The 

remaining subscales were not associated with any voxel 

activity cluster. With respect to identifying the drivers of 

BCI-illiteracy in imagined speech classification 

problems, discovering the neural markers of imagined 

speech discriminability might be of higher relevance than 

those of imagined speech per se. For this purpose, 

imagined speech classification studies frequently 

reported the discriminative power of features. In terms of 

frequency bands, higher frequency components (beta, 

gamma) have been shown to hold a larger amount of 

discriminative information [14,17,18]. Regarding the 

role of brain areas, respectively, EEG channels, evidence 

suggests that, similarly to the neural correlates of 

imagined speech in general, perisylvian areas, consisting 

of inferior frontal, inferior parietal and superior temporal 

channels, provide the most discriminative information 

[14,18]. However, it is difficult to draw general 

conclusions from the literature, as feature types, 

neuroimaging methods and classification algorithms vary 

strongly between studies [17].  

In the current study we examine the relationships 

between motor imagery vividness as well as inner speech 

habits and classification performance regarding 

“mentally” spoken phonemes /a/, /i/, /b/ and /k/. In a 

second step we attempt to establish associations between 

dialogic inner speech and the discriminability of features, 

as quantified by mutual information scores, provided that 

a substantial relationship between the Dialogic inner 

speech subscale and classification performance emerges 

in step one. This choice was based on Alderson-Day and 

colleagues [11], who demonstrated significant 

associations between the Dialogic subscale and fMRI 

activity clusters for both dialogic and monologic inner 

speech. In a third step, we identify features that are 

significantly associated with classification accuracy. 

Finally, we enter them into a multiple regression model 

alongside dialogic inner speech in order to get insights 

into whether inner speech habits uniquely predict 

classification performance beyond the influence of 

neurophysiological features. Through this, we intend to 

provide preliminary evidence regarding the role of motor 

imagery vividness and - with a main focus - naturalistic 

inner speech habits in imagined speech classification 

paradigms and, consequently, imagined speech based 

BCI illiteracy. 

 
MATERIALS AND METHODS 

 
     Participants Twenty-seven individuals participated 

in this study. Due to technical errors during 

measurements and noisy EEG signals, five participants 

had to be excluded. Thus, the data of 22 individuals 

between the ages of 19 and 37 (M = 25.41, SD = 4.02) 

were subjected to the analyses. 10 of them were male and 

12 were female. All were native German speakers, right-

handed and had normal or corrected-to-normal vision. 

Participants reported no psychiatric or neurological 

disorders, or medical diseases. Further, no use of 

medication that could influence the central nervous 

system was reported. Recruiting was performed via 

university-wide mailing distribution. Compensation in 

the form of either 28 Euros (8 Euros per hour) or course 

credit for psychology students was offered. To 

participate, individuals had to sign an informed consent 

document. This study was approved by the ethics 

committee of the University of Graz, Austria and 

conforms to the ethical principles of the Declaration of 

Helsinki. 

 

     Procedure Participation comprised attendance on two 

sessions with 1 hour and 45 minutes each (3.5 hours in 

sum) on two separate days. Participants were seated in a 

comfortable armchair approximately 100 cm in front of a 

24.5-inch computer screen. A COVID-19 questionnaire, 

the German version of the Vividness of Movement 

Imagery Questionnaire 2 (VMIQ-2) [19], the Varieties of 

Inner Speech Questionnaire – Revised (VISQ-R) [10] 

and sociodemographic questions were answered prior to 

the beginning of the study paradigm. Instructions and test 

trials were presented on the computer screen. In this 

phase, participants were exposed to audio recordings of 

all four phonemes. These were carried out via near field 

studio monitors at a constant volume of approximately 

75db at the position of the participants. Audio stimuli 

were self-recorded and digitally manipulated to exhibit a 

fundamental frequency in the gender-ambiguous range of 

140-170 Hz. Two conditions were embedded into the 

study paradigm: Phoneme imagination and phoneme 

perception. However, as the phoneme perception data are 

not relevant for the current study and merely derived as 

part of a larger investigation, they were not subjected to 

the analyses. All participants engaged in the mental 

speaking of four phonemes: /a/, /i/, /b/ and /k/. The reason 

for this is the articulatory differences, as well as phonetic 

dissimilarities between these phonemes [20]. Although 

no specific imagination instructions were provided, the 

imagination condition was consistently referred to as 

“imagining speaking something” throughout the entire 

paradigm. We did not provide any specifics about the 

imaginative content, as we wanted to ensure that 

participants apply their most natural form of speech 

imagination. Trials consisted of 5 seconds of visual 

phoneme presentation. Phonemes occurred once per 

second for 0.5 s. Prior to and after trials a fixation cross 

was displayed for 1 and 2–4 s, respectively. 20 trials of 

the same phoneme represented one block. Eight phoneme 

imagination blocks (2 repetitions * 2 conditions * 4 

phonemes) were presented in each session. An inter-

block break of 15 s was incorporated. With this design 80 

trials were carried out for each imaginatively spoken 

phoneme. The paradigm was constructed and presented 

in PsychoPy2 (version 1.85). 

 

     Questionnaires The German version of the VMIQ-2 

was used in the current study. It measures the vividness 

of motor imagery and is comprised of three subscales: 

internal visual (In), external visual (Ex) and kinesthetic 
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(Ki) imagination. Each of the three factors has high 

internal consistency (α > .7). Test-retest-reliability of .69 

is moderate. The VISQ-R assesses the phenomenological 

varieties of inner speech and consists of five factors: 

‘Dialogic’ (D), ‘Evaluative/Critical’ (E), ‘Other People’ 

(O), ‘Condensed’ (C) and ‘Positive/Regulatory’ (P) inner 

speech. Dialogic inner speech denotes talking to oneself 

in a discursive manner, a recurring back and forth. 

Condensed inner speech, on the other hand, implies a 

rather short, fragmented inner speech rather than 

complete dialogue. The “Evaluative/Critical” scale 

comprises items that measure to which degree one tends 

to mentally criticize and evaluate oneself, whereas the 

“Positive/Regulatory” scale represents a self-praising, 

comforting inner speech variant. The “Other People” 

Scale assesses to which degree individuals experience the 

voices of others in their inner speech. Internal 

consistency is excellent, ranging from .80 to .91 across 

subscales.  

 

     Data Acquisition EEG was derived from 45 electrodes 

distributed across the whole scalp. Electrode positions 

conformed to the international 10-5 system to facilitate 

an even whole-head distribution. EEG was recorded by 

using actiCAP active wet Ag/AgCl electrodes (Brain 

Products GmbH), a BrainAmp EEG amplifier (Brain 

Products GmbH) and the accompanying recording 

software BrainVision Recorder (version 1.21) at a 

sampling rate of 500 Hz. The average of the left and right 

mastoid signal was used as a reference. The ground was 

placed at Fpz. Three ocular signals were derived from 1 

cm above the nasion (vertical eye movements) and the 

lateral canthi (horizontal eye movements). Furthermore, 

fNIRS signals were concurrently acquired. However, as 

they are not relevant for the research questions of the 

current study and merely derived as part of a larger 

investigation, they were not subjected to the analyses.  

 

     Preprocessing Bandpass filtering was conducted with 

a 1 Hz high-pass and a 70 Hz low-pass setting. A notch 

filter at 50 Hz was also applied. Ocular artifacts were 

addressed by regressing the EOG signals out of the EEG 

data [21]. Subsequently, EEG data were visually 

inspected to mark artifact corrupted trials and channels 

for removal. Finally, the data were segmented into 5 s 

epochs (0 to 5 s) with adjacent baselines of 1 s (-1 to 0 s).  

 

     Feature selection and classification Power spectral 

densities (PSDs) were calculated for the predefined 

frequency bands alpha (8-12 Hz), beta (12-30 Hz) and 

gamma (30-70 Hz). This selection was grounded on the 

results of Preedapirat and Wongsawat [18] and 

Sereshkeh and colleagues [14], who identified higher 

discriminative potentials of the alpha, beta, and gamma 

frequency range with respect to an imagined speech 

classification problem. This resulted in a total of 135 

features per trial (45 EEG channels * 3 frequency bands), 

provided that no channels were excluded. By using 5-fold 

cross-validation on the training data, the number of used 

features was optimized. The k = 10, 15, 20, 25, 30 

features with the highest mutual information scores were 

subjected to this. Classification was performed by means 

of a multilayer perceptron. Individual classification 

results, however, are not reported; the focus of this study 

exclusively lies on the relationship between classification 

performance and motor imagery vividness, respectively, 

inner speech habits. However, we do want to emphasize 

that all classification accuracies exceeded chance level 

by more than 25% and exhibited an average accuracy > 

70%. 

 

     Statistical analyses To quantify the relationships 

between motor imagery vividness, inner speech habits, 

feature discriminability and classification accuracies 

simple bivariate Pearson classification coefficients are 

reported. These underwent bootstrapping with 20000 

iterations to test them for significance. In an integrative 

data-driven effort multiple linear regression analysis was 

conducted to identify more robust, unique effects. 

Predictors for this were selected as follows: The dialogic 

inner speech subscale was incorporated if it showed a 

substantial correlation with classification accuracy. 

Again, this was based on the findings of Alderson-Day 

and colleagues [11]. Further, features that showed 

significant correlations with classification accuracy were 

also entered. Due to large intercorrelations between 

features, gamma and beta features were averaged, 

resulting in one consolidated gamma and beta predictor 

each. Variance inflation factor was below 5 for all 

predictors. 

 

RESULTS 

 

     Inner speech habits and motor imagery vividness with 

respect to classification performance Correlative 

analyses indicated a positive relationship between the 

Dialogic, the Evaluative/Critical as well as the 

Condensed inner speech subscale and phoneme 

classification performance of r = .32 (bootstrap 95% CI 

[-.18, .73]), r = .30 (bootstrap 95% CI [-.13, .62]) and r = 

Figure 1: Correlation map containing the variables of 

interest.  
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.21 (bootstrap 95% CI [-.18, .61]), respectively (Fig. 1). 

Note that bootstrapping did not attest the correlation 
coefficients significance. Partial correlation analysis 

indicated that the correlation between the dialogic inner 

speech subscale (D) and classification performance (C) 

persists beyond the influence of Evaluative/Critical inner 

speech (E) (rDC.E = .26). All other questionnaire scales 

showed absolute correlation coefficients < .17. 

 

     Inner speech and feature discriminability Negative 

correlations arose between gamma- as well as beta-based 

mutual information scores, and the Dialogic inner speech 

subscale (Fig. 2). A fronto-central beta network 

consisting of FC3 (r = -.54, bootstrap 95% CI [-.75, -

.19]), FC1 (r = -.44, bootstrap 95% CI [-.67, -.03]), FC2 

(r = -.57, bootstrap 95% CI [-.81, -.18]), C1 (r = -.51, 

bootstrap 95% CI [-.77, -.13]) and Cz (r = -.52, bootstrap 

95% CI [-.78, -.18]) emerged. Further, in both the gamma 

and the beta frequency band CPP5h showed a significant 

correlation (r = -45, bootstrap 95% CI [-.69, -.13]; r = -

.49, bootstrap 95% CI [-.73, -.11] for beta and gamma, 

respectively). Finally, mutual information values of the 

gamma frequency band at C4 (r = -.50, bootstrap 95% CI 

[-.74, -.18]) and the beta frequency band at TTP8h (r = -

.35, bootstrap 95% CI [-.61, -.07] exhibited a significant 

correlation with Dialogic inner speech. This constitutes a 

small right-hemispheric centro-temporal cluster. Lastly, 

O2 beta also showed a significant association (r = -.44, 

bootstrap 95% CI [-.71, -.12]) with the inner speech 

subscale. 

 

     Feature discriminability and classification accuracy 

Several significant correlations regarding mutual 

information scores of features and classification accuracy 

were observed (Fig. 3). A predominant left fronto-central 

gamma network consisting of F7 (r = .37, bootstrap 95% 

CI [.00, .66]), Fz (r = .50, bootstrap 95% CI [.05, .76]), 

FFT7h (r = .41, bootstrap 95% CI [.08, .66]), FC1 (r = 

.58, bootstrap 95% CI [.30, .76]), FCz (r = .51, bootstrap 

95% CI [.23, .70]), C3 (r = .46, bootstrap 95% CI [.06, 

.71]), C1 (r = .50, bootstrap 95% CI [.14, .72]) and Cz (r 

= .49, bootstrap 95% CI [.12, .72]) emerged. 

Additionally, left parietal and right frontal contribution 

was observed at P3 (r = .39, bootstrap 95% CI [.10, .65]) 

and FFC6h (r = .43, bootstrap 95% CI [.13, .66]), 

respectively. A more diffuse pattern was found in the beta 

band with significant correlations at FFT7h (r = .48, 

bootstrap 95% CI [.10, .73]), Cz (r = -.50, bootstrap 95% 

CI [-.76, -.11]) and CP4 (r = .44, bootstrap 95% CI [.10, 

.77]). 

    

Integrative model Multiple linear regression analysis 

yielded the following results: gamma-based mutual 

information scores (b = .069, p = .001) as well as the 

Dialogic inner speech subscale (b = .047, p = .009) 

emerged as significant predictors with respect to 

classification accuracy (Tab. 1). Beta-based mutual 

information scores did not prove significant (b = .017, p 

= .332). In sum, the model explained approximately 60% 

of the variance of classification accuracy (R2 = .595, p < 

.001).  

 

Table 1. Multiple linear regression results 

 b SE t 

Gamma .069** .017 4.115 

Beta .017 .017 0.996 

VISQ D .047** .016 2.935 

R2 = .595 R2 adj. = .527 F = 8.807 p(F) < .001 

Note. Gamma: Averaged mutual information values of 

gamma features. Beta: Averaged mutual information 

values of beta features. VISQ D: Dialogic inner speech 

subscale of the VISQ-R 

**p < .01 

 

DISCUSSION 

 
     Motor imagery vividness and inner speech habits The 

aim of the current study was to investigate the 

relationships between motor imagery vividness as well as 

inner speech habits and classification performance on 

grounds of neural activity evoked by imaginatively 

spoken phonemes. Literature suggests that visual [6,8] as 

well as kinesthetic motor imagery vividness [8,22] have 

an impact on the classification of neural reaction patterns 

evoked by motor imagery. Dissonantly, by means of 

correlative methods, we were unable to establish a 

connection between visual or kinesthetic motor imagery 

vividness and classification performance in the imagined 

speech domain. Despite not withstanding bootstrapping-

based significance tests, inner speech habits, however, 

indicated promising effects: dialogic and evaluative inner 

Figure 2. Topo plots of the correlation coefficients between mutual information scores of the frequency bands of interest 

and the VISQ-R Dialogic subscale. Significant correlation coefficients are marked in white. 
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speech both showed a moderate, and condensed inner 

speech exhibited a small to moderate correlation with 

classification performance. Hence our results suggest 

that, while individuals who can vividly imagine 

movements cannot produce more differentiable neural 

signals on grounds of imaginatively spoken phonemes, 

individuals engaging frequently in dialogic, evaluative 

inner speech can. Although, in previous studies, motor 

imagery vividness was shown to have reliable influence 

on motor imagery classification, it is not surprising that 

this mechanism cannot simply be translated to speech 

imagery. The established motor imagery vividness 

questionnaires do not assess speech imagery or any other 

form of imagery with an auditory component. Since the 

content of imagined speech is considered to be not only 

of articulatory, but also auditory nature [13], this may 

explain the larger influence of naturalistic inner speech 

on classification performance compared to motor 

imagery vividness. 

 

    Neurophysiological contribution To obtain a more 

comprehensive depiction of the role of naturalistic inner 

speech habits in an imagined speech classification 

paradigm, we investigated the embedding of the 

discriminative power of features. Negative correlations 

between the mutual information values, i.e., the 

discriminability of features and dialogic inner speech 

emerged. A prominent fronto-central network of beta 

channels emerged, along with isolated significant 

channels in left superior temporal, right occipital and 

right medial temporal regions regarding beta, and left 

superior temporal and right inferior central regions 

regarding gamma. To our knowledge, only one study 

exists that investigated associations between VISQ scales 

and neural data [11]. Our results are only partially 

overlapping with those reported in the referenced study, 

as the authors consonantly reported a significant 

association between the Dialogic subscale of the VISQ 

and an fMRI cluster in the right medial temporal gyrus, 

but additionally in two clusters of the right precuneus. 

Note that the authors did not report the direction of the 

correlation. Since our network is much more diffuse, 

caution is advised with respect to interpreting these 

findings. While being negatively correlated with the 

discriminability of EEG-channels, dialogic inner speech 

shows a positive relationship with the overall 

classification performance. Consequently, individuals 

who engage more frequently in dialogic inner speech 

may be more successful in suppressing redundant neural 

information, which in turn increases accuracy. We found 

associations between feature discriminability and 

classification performance that support this notion. An 

increased expression of dialogic inner speech suppresses 

features that show a negative or no influence on 

classification performance. A higher expression of 

dialogic inner speech might therefore not only act as a 

noise cancelling mechanism but also directly suppress 

the recruitment of counteractive features. However, 

significant positive correlations between feature 

discriminability and classification performance were also 

found. In this regard, a predominantly left-hemispheric 

frontal gamma network emerged,  which is in line with 

previous literature [11,14,18]. Despite existing findings 

showing more diffuse discriminability maps [14,18], 

comparisons are limited, as these reflect mere 

discriminability values and not correlations. Ultimately, 

we integrated these results in a data-driven approach by 

building a multiple linear regression model to predict 

classification accuracy based on dialogic inner speech 

and the beta as well as gamma features that showed a 

significant correlation with classification accuracy. In 

line with previous findings [14,18], gamma indicated a 

significant influence on classification performance that is 

independent from all other predictors. Similarly, dialogic 

inner speech yielded a significant unique effect that goes 

beyond the neurophysiological predictive power. As 

indicated in the bivariate correlative analyses, this 

supports the notion that a high tendency towards every-

day dialogic inner speech acts as a noise cancelling 

mechanism, inhibiting redundant neural contributions 

rather than increasing feature discriminability. Lastly, 

beta features did not influence classification 

performance. 

 

CONCLUSION 

 
We were able to shed light on the complex action 

mechanisms surrounding the role of naturalistic inner 

speech habits and motor imagery vividness in imagined 

speech classification. In opposition to previous studies, 

no link between motor imagery vividness and BCI 

performance was found. Dialogic inner speech, however, 

 Figure 3. Topo plots of the correlation coefficients between mutual information values of the frequency bands of interest 

and classification accuracy. Significant correlation coefficients are marked in white. 
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was found to significantly predict classification accuracy. 

The auditory imagination component, which might be 

captured by the inner speech, but not by the motor 

imagery vividness assessment, may be the reason for this.  

Although promising, the presented findings are 

preliminary. Further studies are needed to gain an in-

depth understanding about the role of naturalistic inner 

speech habits in speech imagery based classification 

performance, respectively, BCI-illiteracy. 
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ABSTRACT: We introduce REVIRE (REhabilitation in
VIrtual REality), an immersive virtual reality platform
for post-stroke upper limb rehabilitation with integrated
EEG recording. REVIRE immerses users in a 3D vir-
tual environment where they can practice motor tasks that
reflect everyday activities while providing comprehen-
sive performance data with synchronized hand trajecto-
ries and EEG signals. Our proof-of-concept study tested
the application on four healthy individuals across multi-
ple training sessions. We observed significant effects of
training on performance, evidenced by reduced task com-
pletion times. Changes in performance coincided with a
decrease in EEG sensorimotor activity, consistent with
existing motor learning research. In addition, the low
incidence of cybersickness reported by participants indi-
cates a comfortable and user-friendly experience, mak-
ing our setup suitable for patient use. Our preliminary
findings demonstrate the suitability of our virtual reality
platform for BCI-based motor rehabilitation for clinical
environments and beyond.

INTRODUCTION

Stroke is a critical global health concern, resulting in sig-
nificant motor deficits that heavily impact patients’ qual-
ity of life. Upper limb (UL) impairments, in particular,
severely limit patients’ independence and ability to per-
form activities of daily living. Traditional therapy ap-
proaches that involve face-to-face, therapist-led physi-
cal exercise often fall short of fully addressing patients’
needs. Constrained by limited financial and personnel
resources, traditional hospital-based rehabilitation strug-
gles to provide sufficiently engaging, intensive, and per-
sonalized therapy [1]. In response to these challenges,
recent years have witnessed a surge in research on novel
technology-based approaches aimed at making rehabili-
tation more effective, individualized, and accessible [2].
Brain-computer interfaces (BCIs) represent a significant

innovation in this field. By providing direct feedback on
brain activity, BCIs encourage patients to actively engage
in the self-regulation of their neural states. This approach
has been shown to promote neural plasticity and improve
functional outcomes [3]. When combined with immer-
sive virtual reality (VR) as a feedback modality, BCI-VR
systems can provide ecologically valid environments for
task-specific and intensive practice, controlled through
the patient’s brain activity [4]. Despite the growing de-
mand for rehabilitation services that extend beyond hos-
pital settings, the widespread use of BCIs is currently lim-
ited by the cost and complexity of the required hardware.
Nonetheless, with recent advancements in VR technol-
ogy, the application of BCI-VR outside the traditional
clinical settings is becoming more feasible.
New generations of VR head-mounted displays (HMDs),
such as the Meta Quest 21, have become lighter, more
portable, and more affordable. A major advancement
has been the implementation of full hand tracking, which
monitors the movement of the entire hand, including all
fingers, joints, and nuanced gestures. This allows users
to interact with the virtual environment more naturally,
without the need for controllers. It also provides clini-
cians with direct access to patient movement trajectories,
a feature previously only available with high-end motion
capture systems and robotic rehabilitation devices. In ad-
dition, newer HMDs have considerably reduced the inci-
dence of cybersickness, the motion sickness-like adverse
effects [5], which had been a concern for VR use in pa-
tient populations.
Recently, several rehabilitation games have been devel-
oped to leverage the advantages of contemporary VR-
HMDs for post-stroke UL recovery. Mekbib et al. found
that the addition of immersive VR UL training to oc-
cupational therapy resulted in significantly greater func-
tional improvements compared to occupational therapy

1https://www.meta.com/at/en/quest/products/quest-2/
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alone [6]. Fregna et al. developed an immersive envi-
ronment for telerehabilitation, incorporating a client app
for real-time remote supervision [7]. Current BCI-VR
applications predominantly employ the motor imagery
paradigm to provide patients with feedback on imagined
or intended movement [4]. However, emerging research
suggests a potential for expanding BCI-VR paradigms.
A study on BCI-VR for gait rehabilitation by Luu et
al. observed an increase in cortical involvement during
treadmill walking when participants controlled the virtual
walking avatar via neurally decoded gait kinematics com-
pared to when the avatar mirrored their actual steps [8].
In this paper, we introduce REVIRE, a novel VR ap-
plication for post-stroke UL rehabilitation that features
an immersive, easily customizable training environment.
Our application supports comprehensive patient monitor-
ing through full hand tracking and integrated EEG signal
recording. Moreover, we employ commercially available
low-cost VR hardware for utilization outside clinical or
laboratory environments. We evaluated the feasibility of
our setup with a sample of healthy participants. By col-
lecting data across multiple recording sessions, we aimed
to verify whether our system could produce viable data
for assessing user performance and progress. We also
sought to ensure that the setup was comfortable for users
and did not induce adverse effects. In the following sec-
tions, we describe the game environment and tasks, the
data collection methods, and the preliminary analysis re-
sults. We demonstrate that our application is well-suited
for BCI-VR rehabilitation research, extending its poten-
tial use beyond clinical environments.

MATERIALS AND METHODS

REVIRE Design: We developed an immersive VR
game using the Unity 3D game engine2. The source code
is freely available on GitHub3. In the 3D environment,
we created motor tasks that closely mimic everyday ac-
tivities. We presented the game via the Meta Quest 2
HMD.

REVIRE Environment: The REVIRE environment is
set in a home interior. Users are seated behind a table,
both in the physical and in the virtual world. Before start-
ing the tasks, they are guided through a calibration pro-
cedure that co-locates the physical and the virtual table.
This ensures that users feel a physical sensation when
touching the virtual table, thereby increasing the sense
of immersion and presence.Virtual hands, seen from the
first-person perspective, animate the users’ hand and fin-
ger movements and enable them to interact with virtual
objects.

REVIRE Tasks: The game consists of three functional
motor tasks, shown in Fig. 1. In the Pouring task, users
pour water from the bottle into the glass, filling it to a
specified line. The task is completed when the bottle and
the filled glass are returned to their respective starting ar-

2https://unity.com/products/unity-engine
3https://github.com/praggam/REVIRE

eas. In the Drinking task, users are presented with a glass
filled with water. To drink, they lift the glass towards their
mouth and hold it at an angle until it empties. They com-
plete the trial by placing the empty glass in a designated
area on the table. In the Box task, a podium with three
areas at different height levels is presented on the table,
with a box placed randomly in one of the areas. Users
hold the box with both hands to move it to the target po-
sition.

A B

C D

Figure 1: Gameplay: A - resting period, B - Pouring task, C -
Drinking task, D - Box task.

Each task trial begins with a five-second rest period,
which serves as the baseline for the EEG analysis. Users
are asked to place their hands on the table and remain still
while a countdown to the start of the task is displayed.
Following the rest period, users are presented with the
objects required to complete the task. The goal of each
task is to accurately perform the intended action while
minimizing the completion time. Users can perform the
movements at their own pace and explore different move-
ment strategies to complete the task. At any point in the
game, they can reset the objects to their starting positions
and continue the task without interrupting the trial. At
the end of each task, they receive performance feedback
through task completion times.

Participants: Participants were partially recruited us-
ing the Vienna Cognitive Science Hub Study Partici-
pant Platform, which uses the hroot software [9]. Four
healthy participants, aged 54.0±10.4 years (one female),
took part in the study. All had normal or corrected-to-
normal vision and little to no previous experience with
VR. All participants gave written informed consent and
were compensated for their participation. The study pro-
tocol was approved by the University of Vienna Ethics
Committee.

Procedure: Participants attended four recording ses-
sions over 10.0 ± 3.6 days. The total length of a ses-
sion, including preparation time, was between 2 and 2.5
hours. Participants were seated comfortably behind a ta-
ble for the duration of the recording. After EEG prepara-
tion, we placed the HMD over the EEG cap. The exper-
imental setup is illustrated in Fig. 2. In the first session,
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we instructed the participants on how to navigate in the
virtual environment, and they completed a practice trial
of each task. Sessions consisted of four blocks of the
REVIRE game, each comprising 10 trials of every task
(Pouring, Drinking, and Box, in this fixed order). EEG
was recorded continuously during every block. The aver-
age duration of the VR gameplay was 39.4±4.8 minutes,
which is below the recommended maximum [10]. At the
end of the session, participants completed the Virtual Re-
ality Sickness Questionnaire (VRSQ) [11], administered
in English language and pen-and-paper format.

X

Y
Z

Figure 2: The experimental setup with Meta Quest 2 placed
over the EEG cap. The axes represent the coordinate frame of
recorded movement trajectories.

EEG measurement: We recorded the EEG signals with
64 gel-based passive EEG electrodes following the stan-
dard 10-20 system, with the ground and reference elec-
trodes set at AFz and FCz, respectively. We kept the
impedances below 10-15 kΩ. The EEG signals were
recorded at 1 kHz using the NeurOneTM Tesla4 EEG sys-
tem. The amplifiers were powered by 7V batteries and
connected to the main unit by fiber optic cables.

Data recording: For the integrated recording of the
EEG and REVIRE data streams, we used the Lab Stream-
ing Layer (LSL)5 and its default recording program Lab
Recorder. The REVIRE output included the position co-
ordinates of both hands and a stream of event markers.
The synchronized data streams were saved into a sin-
gle XDF file. A Python6 script was developed to con-
vert the XDF files into FIF files that are compatible with
the MNE-Python7 library, which we used for EEG signal
processing. EEG signals, event markers, and hand posi-
tion data were combined into a mne.io.Raw object con-
taining 64 EEG channels, one STIM channel with event
markers, and six channels for right and left hand positions
(XYZ coordinates for each hand).

Virtual Reality Sickness Questionnaire (VRSQ): As a
measure of cybersickness, we used the VRSQ [11], which
comprises nine symptoms rated on a 4-point Likert scale
ranging from 0 - Not at all to 3 - Severely. The items

4https://www.bittium.com/medical/bittium-neurone
5https://github.com/sccn/labstreaminglayer
6https://www.python.org/
7https://mne.tools/stable/index.html

are divided into Oculomotor and Disorientation cate-
gories. To calculate scores for each category, correspond-
ing items are averaged and scaled to a 100-point maxi-
mum, and the average of both categories represents the
total score.

Task performance: As a measure of performance, we
computed trial completion times based on trial start and
trial end event markers. In twelve trials, completion
times could not be determined due to missing markers,
leaving a total of 1,908 trials (636±2.5 per task).

Movement trajectories: To align and analyze the EEG
data based on the movement events, we determined the
movement onsets from the hand position data. We fo-
cused this preliminary analysis on the reaching move-
ments in Drinking and Pouring tasks where users began
trials by grabbing the bottle and/or glass. The Box task
was excluded due to variability in the starting position of
the box. We identified reach onsets based on peaks in
velocity, which we confirmed manually by visually in-
specting the movement trajectories. We included 1,023
trials, corresponding to 80% of Drinking and Pouring tri-
als, where the onset was clearly identifiable and the rest-
ing period exceeded 2 seconds.

EEG preprocessing: We used the MNE-Python library
and its built-in functions to preprocess and analyze the
EEG data. We cropped the raw EEG signals to include
only the Drinking and Pouring task trials. We filtered the
data with a notch filter at 50 Hz and then bandpass fil-
tered the signals at 1-49 Hz. After visually inspecting
the time series of the filtered signals, we removed and in-
terpolated channels with consistent noise (1.1± 0.4 per
recording). We then re-referenced the signals to a com-
mon average reference. We corrected blink, eye move-
ment, muscle, and electrode noise artifacts through man-
ual inspection of the ICA components. Due to substantial
noise contamination from muscle activity and pressure of
the HMD on electrodes, we took a selective approach, re-
taining 16.6±3.2 or 26% of the components per record-
ing. We segmented the cleaned data into epochs extend-
ing from -2 to 5 seconds around reach onset events. A to-
tal of 1,023 epochs (511.5± 0.5 per task) were included
in the analysis.

Event-related spectral activity: Our preliminary EEG
analysis focused on sensorimotor activity in alpha and
beta frequency bands, which have been associated with
motor learning, e.g., [12, 13], and are commonly used as
features in EEG-BCIs [14]. We used the Morlet wavelet
method to obtain time-frequency representations for the
alpha (8-12 Hz) and beta (13-30 Hz) bands at a frequency
resolution of 1 Hz and with the number of cycles in the
wavelet at half the length of the frequency range. We
summed the spectral power over the frequencies within
each band and computed event-related spectral perturba-
tion (ERSP) values by dividing time-frequency represen-
tations with the mean of the baseline period, followed by
a logarithmic transformation. Focusing on motor activity,
we considered the mean of ten channels at the bilateral
primary motor cortex (C1, C3, C5, FC3, CP3, C2, C4,
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C6, FC4, and CP4). We plotted the EEG response against
the movement trajectories (see Fig. 5) and estimated 0 to
3 seconds after the movement onset as the relevant time
window for the reaching movement.

Statistical analysis: To assess the effects of practice
and task type on completion times and EEG response,
we opted for mixed linear models (MixedLM). The mod-
els were formulated with either ’Completion time’, ’mu
ERSP’, or ’beta ERSP’ as the dependent variable, ’Ses-
sion’ and ’Task’ as fixed effects, and ’Participant’ as a
random effect. The dependent variables were aggregated
across trials within a condition to obtain one value per
task for every participant in every session. To evaluate
whether REVIRE induced adverse symptoms, we com-
pared the total VRSQ scores against a baseline of 25 (cor-
responding to the response 1 - Slightly, indicating mild
symptoms) using a one-tailed t-test. We hypothesized
that the scores would fall below this threshold.

RESULTS

Task performance: Over the course of the practice ses-
sions, participants consistently reduced the time it took
them to complete the task. This trend is evident both
individually and after averaging across participants, as
illustrated in Fig. 3, which shows completion times ag-
gregated across tasks. The results of the MixedLM are
detailed in Table 1. The analysis revealed a significant
decrease in completion times from Session 1 to 4, and a
significant difference between all tasks, but no significant
interaction between the two factors.

Figure 3: Mean completion times across practice sessions, av-
eraged over tasks. Plotted for all four participants (P1 to P4),
and participant average. **p < 0.01

Event-related spectral activity: EEG analysis showed
a consistent increase in mu and beta ERSP across ses-
sions, suggesting decreased involvement of sensorimotor
areas as participants increased their proficiency. Figure
4 illustrates this trend for individual participants and the
participant average, with ERSP aggregated across tasks.
The results of the MixedLM are detailed in Table 2. The
increase in ERSP values for both mu and beta was sig-
nificant in Session 4 compared to Session 1. No sig-
nificant effects of task condition or task-by-game inter-
action were found for either beta or mu ERSP, suggest-
ing the influence of temporal dynamics rather than task-
specific factors on EEG modulation. Fig. 5 illustrates the

Table 1: Mixed Linear Model Results for Completion Time

Effect Estimate SE p

Intercept (S1, T1 vs. 0) 18.54 1.19 < .001
S2 vs. S1 -2.01 1.55 .20
S3 vs. S1 -2.07 1.55 .18
S4 vs. S1 -4.30 1.55 .01
T2 vs. T1 -3.12 1.55 .04
T3 vs T1 -9.83 1.55 < .001
S2×T2 0.45 2.19 .84
S3×T2 -0.73 2.19 .74
S4×T2 -0.67 2.19 .76
S2×T3 0.21 2.19 .93
S3×T3 0.18 2.19 .94
S4×T3 2.11 2.19 .34

Note: The participant variance is 0.87. S is session, T1-3 are
Pouring, Drinking, and Box tasks. SE is the standard error of
the estimate. Statistical significance was set at p < .05.

EEG response to the bimanual reaching movements in the
Pouring task. A characteristic desynchronization of the
sensorimotor rhythms was observed at movement onset.
The magnitude of the response consistently decreased
as the training sessions progressed. Diversification of
ERSP levels across sessions was particularly pronounced
during the first two seconds of the reaching movement.
Alongside changes in motor activity, topographical plots
showed a decrease in frontal activity across the sessions,
suggesting reduced involvement of attentional and exec-
utive processes [13].

Figure 4: Motor beta and mu ERSP across practice sessions,
averaged over tasks. Plotted for all participants (P1 to P4), and
participant average. *p < 0.05. Note: Missing ERSP values for
P3 in session 2 due to a technical issue.

Cybersickness: The descriptive statistics for VRSQ are
detailed in Table 3. We found REVIRE to be well tol-
erated, with minimal cybersickness symptoms reported
by all participants. Specifically, total VRSQ scores
(8.91±7.64) were significantly below the mild symptom
threshold of 25, t(3) = −18.26, p < .001. Fig. 6 depicts
the cybersickness ratings of all participants, which con-
sistently fell in the range of no to negligible symptoms.

DISCUSSION

This paper introduced REVIRE, an immersive VR plat-
form for BCI-based motor rehabilitation. We presented
the results of a proof-of-concept study in which we tested
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Figure 5: Grand-average of EEG responses and corresponding
hand trajectories in the Pouring task. A: Within-epoch progres-
sion of mu and beta ERSP at motor channels. B: Left- and right-
hand trajectories of the bimanual reaching motion on XYZ axes.
C: Alpha (top) and beta (bottom) topographies of mean ERSP
of the reaching movement duration (0-3s). S is session.

our VR-EEG setup on four healthy participants.
Task performance: Our results showed significant ef-

fects of training on participants’ task performance across
sessions, indicated by reduced trial completion times. We
observed this trend not only in aggregated data but also at
the participant level, demonstrating that completion times
may provide an indicator for monitoring the progress of
individual patients. Completion times in VR games have
been found to correlate with clinical assessments [7, 15],
supporting the potential of VR performance metrics as a
meaningful assessment of rehabilitation progress.

Hand trajectories: REVIRE supports full hand track-
ing and stores hand movement trajectories. We have
shown that the trajectories can be used to determine the
precise movement onset or to identify specific actions,
such as reaching movements. This can be a useful tool for
analyzing EEG data recorded during natural self-paced
movements. In addition, hand movement trajectories

Table 2: Mixed Linear Model Results for Mu and Beta ERSP

Effect Estimate SE p

Mu

Intercept (S1, T1 vs. 0) -3.17 1.05 < .001
S2 vs. S1 0.44 0.59 .46
S3 vs. S1 0.64 0.54 .23
S4 vs. S1 1.23 0.54 .02
T2 vs. T1 0.02 0.54 .97
S2×T2 -0.20 0.83 .81
S3×T2 -0.48 0.76 .53
S4×T2 -1.04 0.76 .18

Beta

Intercept (S1, T1 vs. 0) -3.65 0.95 < .001
S2 vs. S1 0.28 0.59 .64
S3 vs. S1 0.30 0.54 .58
S4 vs. S1 1.09 0.54 .04
T2 vs. T1 -0.11 0.54 .84
S2×T2 -0.12 0.82 .89
S3×T2 -0.20 0.76 .79
S4×T2 -0.67 0.76 .38

Note: The participant variance is 3.84 for mu and 3.05 for beta.
S is session, T1-2 are Pouring and Drinking tasks. SE is the
standard error of the estimate. Statistical significance was set at
p < .05.

Table 3: Descriptive Statistics of VRSQ Scales Across Sessions

Variable Mean Mdn St. Dev. IQR

Oculomotor 11.98 8.33 12.16 16.67
Disorientation 5.83 6.67 5.90 13.33
Total 8.91 9.58 7.64 11.04

have applications beyond what has been demonstrated in
this preliminary analysis. By providing a direct quanti-
tative measure of movement quality, clinicians can use
trajectories to assess patient progress and highlight spe-
cific areas that may need improvement, such as range of
motion, speed, or accuracy of movements.

Event-related spectral activity: Our study demon-
strated the feasibility of capturing meaningful neural sig-
nals amidst considerable movement and the placement of
a VR-HMD over EEG electrodes. Specifically, we ob-
served a significant practice-related decrease in mu and
beta ERSP magnitude, which is consistent with previous
research on motor learning-related spectral changes, e.g.,
[12]. Our findings support the potential of EEG features
as markers of rehabilitation progress.

Cybersickness: Participants’ feedback indicated mini-
mal cybersickness symptoms, confirming that our setup is
well tolerated by users and further underscoring the suit-
ability of REVIRE for patient use.

Limitations and future work: The main limitation of
our study is the small sample size, consisting of only
healthy participants, which limits the statistical validity
and generalizability of our findings. Nevertheless, we ob-
served promising trends and demonstrated the capability
of our setup to provide meaningful data.
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Figure 6: VR Sickness Questionnaire scores across sessions.
Plotted separately for all four participants (P1 to P4), and for
participant average. Scores below the red line indicate negligi-
ble to no cybersickness symptoms.

Our results demonstrated that REVIRE is well-suited for
VR-BCI rehabilitation studies. Therefore, a future direc-
tion is to integrate the application into a closed-loop BCI
system. By implementing real-time EEG processing and
modifying the VR software to respond to neural signals,
our application can provide neurofeedback or real-time
customization of the training paradigm to the patient’s
neural state. Our results motivate further research to val-
idate the application for clinical use and beyond, particu-
larly with stroke patients and larger participant samples.

CONCLUSION

In this paper, we demonstrated the potential of REVIRE
to provide an immersive, task-specific rehabilitation envi-
ronment that yields comprehensive behavioral, hand mo-
tion, and EEG data for patient monitoring. We estab-
lished the feasibility of our VR-EEG setup and its utility
for further clinical research, offering a promising founda-
tion for integrating VR and EEG in accessible BCI-based
motor rehabilitation.

ACKNOWLEDGEMENTS

We thank our colleagues Tryggvi Edwald, Peter Fugger,
Akshey Kumar, and Christoph Luther for their technical
and creative support.

REFERENCES

[1] Levin MF, Weiss PL, Keshner EA. Emergence of Vir-
tual Reality as a Tool for Upper Limb Rehabilitation: In-
corporation of Motor Control and Motor Learning Prin-
ciples. Phys Ther. 2015;95(3):415–425.
[2] Everard G et al. New technologies promoting active
upper limb rehabilitation after stroke: an overview and
network meta-analysis. European Journal of Physical and
Rehabilitation Medicine. 2022;58(4).
[3] Mansour S, Ang KK, Nair KP, Phua KS, Arvaneh M.
Efficacy of Brain–Computer Interface and the Impact of
Its Design Characteristics on Poststroke Upper-limb Re-
habilitation: A Systematic Review and Meta-analysis of

Randomized Controlled Trials. Clinical EEG and Neuro-
science. 2022;53(1):79–90.
[4] Wen D et al. Combining brain–computer interface
and virtual reality for rehabilitation in neurological dis-
eases: A narrative review. Annals of Physical and Reha-
bilitation Medicine. 2021;64(1).
[5] Kourtesis P, Collina S, Doumas LAA, MacPherson
SE. Technological Competence Is a Pre-condition for Ef-
fective Implementation of Virtual Reality Head Mounted
Displays in Human Neuroscience: A Technological Re-
view and Meta-Analysis. Frontiers in Human Neuro-
science. 2019;13.
[6] Mekbib DB et al. A novel fully immersive virtual
reality environment for upper extremity rehabilitation in
patients with stroke. Annals of the New York Academy
of Sciences. 2021;1493(1):75–89.
[7] Fregna G, Schincaglia N, Baroni A, Straudi S, Casile
A. A novel immersive virtual reality environment for
the motor rehabilitation of stroke patients: A feasibility
study. Frontiers in Robotics and AI. 2022;9.
[8] Luu TP, Nakagome S, He Y, Contreras-Vidal JL.
Real-time EEG-based brain-computer interface to a vir-
tual avatar enhances cortical involvement in human tread-
mill walking OPEN. Scientific Report. 2017;7:8895.
[9] Bock O, Baetge I, Nicklisch A. hroot: Hamburg Reg-
istration and Organization Online Tool. European Eco-
nomic Review. 2014;71:117–120.
[10] Kourtesis P, Collina S, Doumas LAA, MacPher-
son SE. Validation of the Virtual Reality Neuroscience
Questionnaire: Maximum Duration of Immersive Vir-
tual Reality Sessions Without the Presence of Pertinent
Adverse Symptomatology. Frontiers in Human Neuro-
science. 2019;13.
[11] Kim HK, Park J, Choi Y, Choe M. Virtual reality
sickness questionnaire (VRSQ): Motion sickness mea-
surement index in a virtual reality environment. Applied
Ergonomics. 2018;69:66–73.
[12] Zabielska-Mendyk E, Francuz P, Jaśkiewicz M, Au-
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ABSTRACT: Motor imagery brain-computer interfaces
(MI-BCI) user training aims at teaching people to con-
trol their sensorimotor cortex activity using feedback on
the latter, often acquired using electroencephalography
(EEG). During training, people are mostly asked to focus
their imagery on the sensations associated with a move-
ment, though very little is known on the sensations that
mostly favor sensorimotor cortex activity. Our goal was
to assess the influence of imagining different sensations
on EEG data. Thirty participants performed MI tasks in-
volving the following sensations: (i) interoceptive, aris-
ing from the muscles, tendons, and joints, (ii) exterocep-
tive, arising from the skin, such as thermal sensations, or
(iii) both interoceptive and exteroceptive. The results in-
dicate that imagining exteroceptive sensations generates
a greater neurophysiological response than imagining in-
teroceptive sensations or both. Imagining external sen-
sations should thus not be neglected in the instructions
provided during MI-BCI user training. Our results also
confirm the negative influence of mental workload and
use of visual imagery on the resulting neurophysiological
activity.

INTRODUCTION

Controlling one’s own brain activity when receiving di-
rect information regarding the former is a skill that can
be acquired using neurofeedback training. During such
training, people’s brain activity is acquired, often us-
ing electroencephalography (EEG), and converted into a
feedback that people have to learn to control [1]. The
ability to modulate one’s own brain activity can be used
for two main types of applications. First, to use brain-
computer interfaces (BCIs), that enable the control of ex-
ternal digital systems by producing discriminatory and
stable brain patterns each associated with a specific com-
mand for the system [1, 2]. For instance, BCIs can be
used to control the direction of a character in a video
game or the direction of a wheelchair by imagining right
or left-hand movements [3, 4]. Second, for neurofeed-
back (NF) applications for which the end goal is that the
modifications occurring in the brain activity lead to cog-
nitive improvements, often in clinical applications [5].

For instance, neurofeedback can be used for motor re-
habilitation after a stroke [6].
Many of these applications are based on the users’ abil-
ity to control their sensorimotor brain activity. To do so,
people are often asked to perform motor imagery (MI)
tasks, such as imagining hand movements. Indeed, ob-
serving, executing, or imagining sensorimotor tasks in-
duces a similar desynchronization over the sensorimotor
cortex [7–9]. Two main non-exclusive MI methods are
discussed in the literature [8, 9]. The first one is visual
motor imagery (VMI) when people imagine the visual
characteristics of the movement, which notably involves
the visual cortical network. The second one is kines-
thetic motor imagery (KMI), when people imagine the
somatosensations associated with the movement. Those
somatosensations include both (i) exteroceptive sensa-
tions, i.e., all the sensations arising from the skin, such
as thermal, touch, or vibration sensations, and (ii) intero-
ceptive sensations, i.e., all the information arising from
the muscles, tendons, and joints, such as muscle contrac-
tion but also higher-level information such as knowing
where our limbs are located in space. We recommend
the review from Hillier et al. on the history of the terms
related to proprioception and the assessment of proprio-
ception [10].
When training to perform motor imagery, the learners are
most frequently instructed to perform KMI [1]. As stated
in the first paragraph, most researchers use EEG to ac-
quire brain activity, most likely because it is a portable
and relatively cheap method of acquisition. In the rest of
the article, we will mostly focus on the results obtained
using EEG and specify if the results were obtained us-
ing another acquisition method. The use of KMI instruc-
tions is mostly justified by the results obtained by Ne-
uper et al. in 2005 [8]. Among others, they investigated
the neurophysiological activation resulting from KMI and
VMI. They found that classification performances of the
data acquired when people were doing KMI were signif-
icantly higher than the ones obtained based on the data
acquired when they were performing VMI. The highest
classification accuracy was reached over the left central
electrode site (i.e., electrode C3, which is coherent with
the task performed by the participants to imagine right-
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hand movements) with 67% of good classification with
kinesthetic imagery and 56% with visual imagery. These
results are in line with the results found by [11]. Con-
versely, recent results using EEG measures of connectiv-
ity found a better classification accuracy of VMI com-
pared to KMI [9]. The type of imagery to perform could
also depend on the task that needs to be learned and
the stage of learning [12]. For instance, visual imagery
seems more appropriate to learn the technical motor skill
of drawing complex forms, while kinesthetic imagery en-
abled better temporal representation of the task [13].
The results on the influence of the modalities of feedback
on BCI/NF efficiency could also provide insights regard-
ing the sensations that should be associated with the mo-
tor imagery tasks. As such, the advantage provided by
KMI compared with VMI is consistent with the results
indicating that tactile and proprioceptive feedback (e.g.,
provided with vibrotactile actuators and orthosis) is more
efficient than visual feedback in terms of classification
performance, neurophysiological modifications, and user
preferences [14].
As presented above, KMI involves many different sen-
sations, among which the participants are left to choose
from. For instance, the participants can decide to fo-
cus their imagination on the sensations arising from
their muscles, and/or from their skin. Imagining ex-
teroceptive sensations (i.e., sensation of pressure aris-
ing from squeezing a ball) in addition to interoceptive
ones could significantly improve the classification perfor-
mances based on EEG [15] or fNIRS [16] data, in par-
ticular, the ones of participants with poor performances
(participants with performances below 70% for a BCI
with 2 classes) [15]. Imagining the exteroceptive sen-
sations associated with a movement could activate senso-
rimotor cortical structures and thereby improve BCI/NF
user training [16]. Imagining exteroceptive sensations,
i.e., vibrations on the back of the hand, does elicit desyn-
chronization in alpha and beta bands (8-26 Hz), partic-
ularly in the upper alpha band and lower beta band (10-
16Hz), over the sensorimotor cortex, i.e., C3 and C4 elec-
trodes [17, 18].
Very little is currently known about the MI instructions
that should be provided during BCI/NF user training,
most of all regarding the potential influence of different
external sensations. Our experiment therefore aims to
study the influence of different somatosensory imagery
tasks on neurophysiological activity with the aim of bet-
ter advising our participants on the tasks they must imag-
ine during MI user training.

MATERIALS AND METHODS

The neurotypical participants included in this experiment
took part in a 2-hour long session where they had to imag-
ine five types of somatosensations, corresponding to the
different conditions. A within-participant comparison of
the mental tasks was chosen. The order of presentation
of the conditions was randomized across participants.

Participants: Thirty right-handed participants with
good or corrected vision took part in this experiment (7
women and 23 men; age 21-60, M = 29.4, SD = 9.4).
None of them had any history of neurological or psychi-
atric disorder. The study was conducted following the
relevant guidelines for ethical research according to the
Declaration of Helsinki. Participants gave written in-
formed consent before participating in the study. The
study has been reviewed and approved by Inria’s ethical
committee, the COERLE (approval number: 2023-30).

Experimental protocol: The experiment lasted about
two hours during which the participants were seated in a
comfortable armchair, in front of a monitor. The partic-
ipants first answered two questionnaires notably assess-
ing demographic information, e.g., age and handedness.
The EEG headset was then placed on their heads and a
video presenting the experimental instructions was pre-
sented to them. EEG data was then acquired for 2 minutes
while the participants were asked to focus on the visual
scenery of their choice. The maximum force that partic-
ipants were capable of exerting was then measured using
a dynamometer placed inside a foam ball that the partici-
pants had to squeeze as strongly as they could for 30 sec-
onds. This measure was used to provide instructions cali-
brated to the maximal force of the participants during the
experiment. Following that, the main phase of the exper-
iment began. It was composed of 5 different conditions
during which the participants imagined sensorimotor im-
agery tasks varying according to the type of imagined so-
matosensation, i.e., interoceptive, exteroceptive, or both,
and the number of exteroceptive sensations, i.e., pressure
only or pressure and vibration. For each condition, par-
ticipants watched a video presenting specific instructions
for the movements and sensations to imagine. They also
performed and experienced the movement and sensations
associated with the conditions (see Figure 1):

• Interoceptive sensation (I) – Hand grasping with
force on an invisible object, i.e., without fully clos-
ing the hand to avoid exteroceptive stimulation.

• Exteroceptive sensation of pressure (E1) – Ball
pressed on the inside of the hand without voluntary
movements of the hand.

• Exteroceptive sensation of pressure and vibra-
tion (E2) – Vibrating ball pressed on the inside of
the hand without voluntary movements of the hand.

• Interoceptive sensation and exteroceptive sensa-
tion of pressure (IE1) – Hand movement to squeeze
a ball.

• Interoceptive sensation and exteroceptive sensa-
tion of pressure and vibration (IE2) – Hand move-
ment to squeeze a vibrating ball.

The pressure exerted voluntarily, or involuntarily by the
experimenter, on the participants’ hand was controlled at
20% of the maximum force produced by the participant.
Indeed, previous results found that imagining movement
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Figure 1: Experimental conditions: Interoceptive (I), Extero-
ceptive with pressure (E1), Exteroceptive with pressure & vi-
bration (E2), Interoceptive & Exteroceptive with pressure (IE1),
Interoceptive & Exteroceptive with pressure & vibration (IE2).

with different amount of force impacted the resulting
brain activity [15]. Participants then had to imagine these
different tasks during 20 trials each lasting 10 seconds.
Runs lasted 4 min 30 seconds each. A break was offered
to the participants between runs. At the end of these runs
and for each condition, participants completed a ques-
tionnaire assessing their user experience. The question-
naire was composed of (i) the questions from the NASA-
TLX [19] to assess mental workload and (ii) two ques-
tions based on the kinesthetic and visual imagery ques-
tionnaire (KVIQ) [20] to assess how clear the motor im-
agery task was in terms of visual and somatosensory rep-
resentation with scales ranging from "No image" to "Im-
age as clear as a movie" and from "No sensations" to
"Sensations as intense as when performing the move-
ment/feeling the sensations". All the questions were an-
swered using an analogical scale ranging from 0 to 20.
Finally, the EEG headset was removed and the partic-
ipants completed the final questionnaire that evaluated
which imagery task they preferred and which seemed the
most effective and simple to imagine. This experimental
protocol was presented and discussed at the French na-
tional BCI conference in 2023 [21].

EEG Recordings & Signal Processing: The electroen-
cephalographic (EEG) data was recorded using 20 ac-
tive electrodes, using a g.USBAmp EEG amplifier (g.tec,
Austria). The electrodes were placed on the scalp of the
participant over the sensorimotor area (at locations FC5,
FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4,
C6, CP5, CP3, CP1, CP2, CP4, CP6 and Pz in the 10-
20 system). They were referenced to the left earlobe and
grounded to AFz. The data was sampled at 512 Hz, and
processed online using OpenViBE 3.4.0 [22].
EEG data was preprocessed with MNE-Python [23]. The
signal was filtered using a zero-phase notch filter with
a 50 Hz cut-off and a finite impulse response band-pass
filter with cut-off frequencies of 1 and 49 Hz and then
average-referenced. We extracted epochs from 1 second
before MI instruction cue to 10 seconds after. Epochs
with peak-to-peak amplitude greater than 100 µV were
rejected. Participants with more than 50% of total epochs
rejected were removed from the analysis. As a result, 3
participants were rejected from the analysis.

Variables: Among the neurophysiological characteris-
tics, we investigated the event-related potentials (ERPs),
corresponding to either a desynchronisation (i.e., ERD)

or a synchronisation (i.e., ERS) in the brain activity
of our participants while they performed the different
sensorimotor imagery tasks. To assess the ERPs, we
first computed time-frequency representation using Mor-
let wavelets. We resampled the data at 256 Hz, and used
a Morlet wavelet transform to calculate the EEG signal
power between 12 and 20 Hz.
To have an idea of the evolution of the ERPs throughout
the different trials, the resulting data was averaged across
participants and electrodes (CP3, C3, C4, and CP4) for
each conditions. Previous experiments mostly focused
on C3 and C4. However, somatosensory data is primar-
ily processed in posterior areas leading to the inclusion of
CP3 and CP4 in our analyses [24]. The data was then nor-
malized relative to baseline (the first second before cue)
using a log-ratio of power at each time point relative to
the mean power of the baseline, that we call Power Evo-
lution over Trial in this analysis :

Power Evolution over Trial = log(Task/Baseline)) (1)

Then, Power Evolution over Trial was averaged across
time, excluding the first two seconds and last second of
the trial providing the Average ERD/S value.
Finally, to investigate the potential reasons for the dif-
ference between our conditions, we used the answers
to post-conditions questionnaires, NASA-TLX and the
adapted KVIQ, to observe their correlation with Average
ERD/S values. There are 7 different variables calculated
from the questionnaires: “Mental demand”, “Temporal
demand”, “Performance”, “Workload” and “Frustration”
for the NASA-TLX; “Visual imagery” and “Kinesthetic
imagery” for the KVIQ. Each variable was evaluated on
an analogical scale ranging from 0 to 20, with lower val-
ues indicating lower workload for the NASA-TLX vari-
ables, and less vivid or clear imagery for the KVIQ vari-
ables.

RESULTS

In the first step of our analysis, we assessed the potential
influence of our different experimental conditions on the
cortical activity over the sensorimotor cortex throughout
our trials.
To assess this, we first plotted Power Evolution over
Trial, i.e., the evolution of ERD/S over time in the beta
band (12.5-20 Hz), for our 3 major conditions (I, E and
IE), averaged across participants and across “Nb ext. sen-
sations” for condition E and IE (see Figure 2). A 1-
second sliding average window was used for readability.
On average, it seems that all the participants managed
to desynchronize their brain activity over the sensorimo-
tor cortex for the E and IE conditions, albeit seeming
stronger for the E conditions. For the I condition, the
brain activity over the sensorimotor cortex seems to have
desynchronized until the third second and then steadily
synchronized until the end of the trial.
Then, we were interested in knowing if these observed
differences were significant, to assess this we use ERD/S
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Figure 2: Average Power Evolution over Trial computed for
each condition, with data smoothed using a 1-second window
moving average. The black bar indicates the time window used
for the analysis.

value. First, we used a Shapiro-Wilk test to verify the
normality of ERD/S values. We found no significant de-
viation from normality (W = 0.98, p = 0.66) in our data.
To avoid any distortion in the statistical results, we also
checked the data for outliers. Any participant with an
ERD/S value plus or minus two standard deviations rela-
tive to the median ERD/S value was considered an outlier
and removed from our analyses. In total, 4 participants
were removed from the following analyses.
We first studied the impact of the type and number of
somatosensations imagined on the Average ERD/S val-
ues. As the interoceptive condition (I) was not associ-
ated with a number of exteroceptive sensations, it was
first removed from the analysis. Thus, we assessed if the
number of exteroceptive sensations, i.e., “Nb ext. sen-
sations” (1 or 2) and the type of somatosensations, i.e.,
“Type of sensations”, (E or IE) had an impact on Aver-
age ERD/S values using a 2-way ANOVA with “Type of
sensations” (E and IE) and “Nb ext. sensations” (Pres-
sure and Pressure & Vibration) as independent variables.
Our results indicate that “Type of sensations” influences
Average ERD/S values [F(1, 22) = 7.52 ; p = 0.01 ; η

= 0.047], but “Nb ext. sensations” [F(1, 22) = 1.2 ; p
= 0.208 ; η < 10−2] does not. A small trend could be
present for “MI type * Nb sensation” [F(1, 23) = 3.02 ; p
= 0.1 ; η < 10−2].
To compare condition I to the others and since no sig-
nificant influence of “Nb ext. sensations” was found on
Average ERD/S values, we averaged E1 with E2 into E,
and IE1 with IE2 into IE. We performed a one-way re-
peated measures ANOVA with “Type of sensations” (I, E
and IE) as independent variable and Average ERD/S val-
ues as dependent variable. The results show a significant
influence of “Type of sensations” [F(2, 44) = 7.64 ; p <
10−2 ; η = 0.13]. To gain insight on this significant result,
post-hoc analyses were performed and revealed a signif-
icant difference between I and E (p < 10−2), E and IE
(p = 0.02) but not between I and IE (p = 0.27).
Figure 3 reports the distribution of these values, showing

Figure 3: ERS/D recordings for conditions I, E and IE. Aster-
isks meanings: p<0.05: * ; p<0.01: ** ; p<0.001: ***.

a greater desynchronization for the condition E compared
to both I and IE.
Finally, to assess the potential causes of these significant
differences, we studied the correlations between Average
ERD/S values and the data acquired after each condition
regarding the user experience. The correlations were as-
sessed through Pearson correlation with False Discovery
Rate (FDR) to correct for multiple comparisons. A small
significant positive correlations was found between
Average ERD/S values and Visual Imagery (r= 0.16, p <
10−3, DoF = 478) and between Average ERD/S values
and Mental workload (r = 0.12, p = 0.02, DoF = 478).
These correlations indicate that the more participants felt
mentally overloaded, or felt that they performed realistic
visual imagery, the less they produced strong ERDs.

DISCUSSION

In this study, the electrophysiological analysis focused
on Event-Related Desynchronization/Synchronization
(ERD/S) occurring over the sensorimotor cortex (i.e.,
C3/C4 and CP3/CP4) resulting from different senso-
rimotor imagery tasks performed by the participants.
Visually, it seems that the participants managed to
desynchronize their brain activity over their sensorimotor
cortex in most conditions, except when imaging purely
interoceptive sensation. This result might be related to
the unfamiliarity of performing a hand-grasping gesture
without any object in the center, as familiarity with a task
was found to positively influence single-trial detectability
of imagined movements [25]. There is a trend (p = 0.1)
of interaction between the number of exteroceptive
sensations and the type of somatosensations although
further experiments should verify this interaction.
Our statistical analyses mostly revealed significantly
stronger desynchronization when our participants imag-
ined exteroceptive sensations compared to when they
imagined (i) only interoceptive and (ii) both interoceptive
and exteroceptive sensations. A distinct pattern of activa-
tion when imagining exteroceptive sensations is in line
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with the work of Yao et al. who worked on somatosen-
sory imagery-based BCI and found relatively high aver-
age classification accuracy ranging from 77% to 85% de-
pending on their studies [17, 18]. The classification per-
formances obtained by Yao et al. using somatosensory
imagery-based BCIs are similar to the ones obtained in
motor imagery-based BCI with maybe a smaller number
of persons who could not control the system compared to
other studies. It should be noted that these results remain
difficult to compare in terms of type of somatosensations
imagined by the participants as they are left free to choose
among different strategies [17, 18].

Based on previous work, we were expecting stronger
ERDs when participants imagined both interoceptive and
exteroceptive sensations compared to when they imag-
ined interoceptive sensations alone [15, 16, 26]. This dis-
crepancy could be the result of choices made in the de-
sign of our experimental paradigm. Indeed, when press-
ing the ball against participants’ hands, the contact with
the table added exteroceptive sensations at the back of
the hand and could add a passive movement with small
amplitude of the participant’s hand producing interocep-
tive sensations. Thus, our exteroceptive sensations con-
ditions (E1 and E2) were not purely composed of extero-
ceptive sensations and the amount of exteroceptive sen-
sation was sensibly more important that in the two other
conditions. This difference in exteroceptive sensations
between E and IE did influence our results. We hypothe-
sis that this increase in the amount of exteroceptive sen-
sations could explain the discrepancy between our E and
IE conditions but could also stress the importance of spa-
tially distributed exteroceptive stimulation. Future exper-
iment should consider adding symmetric external force to
the back of the hand while the participants grasp the ball
in both interoceptive and exteroceptive sensation condi-
tions to counteract this bias. Additionally, we used the
same ball for all participants regardless of their hand size
leading to possible differences in the movement executed
and imagined by participants. Following studies could
use balls with different sizes to take into account the di-
versity of participants and keep the movement consistent
across participants. Although, our analyses were compar-
ing intra-participant data, so this factor should not have
influenced our results.

Finally, we also discovered significant positive correla-
tions between the ERDs and the workload experienced
by participants. A negative influence of workload on BCI
performance was already suspected as workload is one of
the main factors influencing learning in general [27] and
poor BCI performances were associated with high theta
waves, which is an indicator of high workload [28]. Our
results are in contradiction with the recent results from
Gu et al. who found a positive influence of high work-
load on MI-BCI accuracy and desynchronization over the
sensorimotor cortex [29]. However, the positive correla-
tion between the ERDs and how realistically participants
visually imagined the task is consistent with previous re-
sults from the literature [8, 11].

CONCLUSION

In this study, we designed and conducted an experiment
studying the influence of sensorimotor imagery tasks
to determine which sensations would elicit the largest
desynchronization of the sensorimotor cortex. Our 30
participants performed five sensorimotor imagery tasks,
each one with a different imagined somatosensation.
Results are consistent with the literature stating that we
should encourage the participants to imagine exterocep-
tive sensations, such as pressure or vibrations, during BCI
user training. We found significantly stronger desynchro-
nization in the low beta band (12-20 Hz) over the sen-
sorimotor cortex when our participants imagined extero-
ceptive sensations (either only pressure or both pressure
and vibrations) compared to when they imagined only in-
teroceptive sensations (from their muscles, tendons, and
joints) and compared to when both interoceptive and ex-
teroceptive sensations were imagined. Even though these
results tend to indicate a limited role of interoceptive sen-
sations imagery on resulting sensorimotor activity, our
participants might still have imagined some interoceptive
sensations while performing passive small movements.
Higher level interoceptive sensations, such as the spatial
perception of limbs in space, were also still present in
the exteroceptive condition even though the exterocep-
tive tasks solicited them much less than the interoceptive
condition. The differences in our conditions could also
be explained by a greater surface of exteroceptive stim-
ulation in the exteroceptive-only conditions. Future ex-
periments with more complex experimental setup should
further investigate this hypothesis.
In this article, we presented preliminary analyses of our
results, the processing of our data is still ongoing. Future
analyses will study more specifically the influence of our
conditions on the temporal, spatial (notably between sen-
sorimotor and motor cortex and lateralization), and fre-
quency bands characteristics of our EEG data. Classifi-
cation accuracy performances should also be computed
to better compare our results to the ones reported in pre-
vious articles. Additionally, potential differences in user
experience among our conditions will be investigated to
gain insights on potential underlying factors explaining
the differences observed in this article, especially the cog-
nitive workload or the use of visual imagery.
Also, our results were obtained offline as our partici-
pants performed the tasks without any feedback on their
brain activity. Thus, our results are not entirely compa-
rable with previous ones that provided feedback to the
participants regarding their brain activity. Future experi-
ments should investigate how providing different sensori-
motor imagery instructions influences participants’ abil-
ity to learn to control their brain activity in BCI user train-
ing.
To build on theses first results, future analysis will focus
on more frequency bands such as alpha/mu rhythms, and
attempt single trial classification to determine which sen-
sation are easier to discriminate from each other.
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ABSTRACT: Epileptic spikes, indicative of the seizure 

onset zone (SOZ), provide meaningful insight for 

neurosurgeons looking to find seizure locations, 

particularly during intraoperative procedures. Many 

algorithms have been proposed to detect epileptic 

spikes, primarily based on offline data analysis. 

However, none of these algorithms have been 

successfully adapted for online applications. In this 

study, we introduce a novel method for online detecting 

epileptic spike patterns in electrocorticography (ECoG) 

data. This algorithm dynamically models statistical 

distributions of signal envelopes, which could 

discriminate between signals containing epileptic spikes 

and those showing background activity. The 

effectiveness of the proposed algorithm is evaluated 

using resting-state data from two patients. The results 

reveal a sensitivity of 73% and a specificity of 95% for 

detecting epileptic spikes online, with an overall 

accuracy of 93% and an f1 score of 52%. Overall, these 

results validate the potential of online detection as a 

valuable method for epilepsy monitoring and diagnosis. 

 

INTRODUCTION 

 

Epileptic seizures result from the excessive and 

synchronized activity of large neuronal groups, making 

epilepsy one of the most common neurological 

disorders globally, impacting around 50 million 

individuals [1]. While many epilepsy patients 

effectively manage seizures with medication, 

approximately one-third continue to experience seizures 

despite treatment [2]. For these cases, surgical resection 

of the brain tissue responsible for seizures becomes a 

feasible treatment, which needs to identify SOZ 

accurately. 

Clinical localization of the seizure onset zone (SOZ) 

requires implanting intracranial EEG (iEEG) electrodes, 

recorded over several days, to capture spontaneous 

seizures [3]. Electrodes within the SOZ are identified 

through visual inspection of iEEG recordings taken 

during seizures, guiding the removal of surrounding 

tissue during surgery. Despite serving as the current 

gold standard for mapping the epileptic brain clinically, 

this manual process is time-consuming, costly, and 

carries potential risks of morbidity [4]. Consequently, 

there is growing interest in automating SOZ localization 

to simplify epilepsy monitoring and facilitate the 

identification of the SOZ [5].  

Interictal epileptiform discharges (IEDs) are 

transient electrographic events observed in patients with 

epilepsy. They serve various diagnostic and monitoring 

purposes, aiding in the identification of epileptic 

activity and the localization of epileptogenic tissue and 

SOZ. During presurgical evaluations [6], neurosurgeons 

often use information from interictal discharges to 

understand where the seizures start in the brain and to 

plan where and how much tissue to remove [7, 8]. 

Studies have indicated that resecting regions exhibiting 

frequent spikes correlates with improved surgical 

outcomes [9, 10]. Research has demonstrated that IEDs 

can effectively localize the seizure onset [11], with the 

most common types of IEDs identified through visual 

and semi-automated detection in long-term monitoring 

(LTM) and visual detection in high-density EEG 

(hdEEG) significantly aligning with the SOZ [12]. 

This study aims to address the growing need and to 

create an automated online epileptic spike detection 

method for SOZ localization. It leverages signal 

envelopes to model the statistical distributions of ECoG 

signals. This approach aims to enable real-time 

epilepsy, including intraoperative application. To 

achieve this goal, electrocorticography (ECoG) data 

from patients with epilepsy were used, in which half-

second segments of data were analyzed to detect 

epileptic spikes. Later, a sequence detection algorithm 

was applied to the identified spikes to capture spatial 

information. This algorithm identifies spikes occurring 

across multiple electrodes in close temporal proximity, 

improving the understanding of epileptic activity 

distribution. 

 
MATERIALS AND METHODS 

 

The study utilized ECoG data from two patients 
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undergoing diagnostic subdural grid implantation at 

Megumino Hospital in Japan. This data collection 

occurred within the Epilepsy Monitoring Unit (EMU) 

during the patients' resting-state sleep at night. The 

recordings were conducted under the influence of 

antiepileptic drugs (AEDs). As a result, it was expected 

that the recorded data would show a decrease in 

interictal epileptiform activity due to the administration 

of AEDs. 

The patients underwent implantation of subdural 

grid electrodes to localize the SOZ and perform real-

time functional mapping to identify critical brain 

function areas, aiming to minimize resection before 

surgery. The implanted grids, sourced from Ad-Tech in 

Racine, WI, USA, comprised platinum discs with a 

diameter of 4.0 mm, spaced apart at 5-10 mm intervals. 

The ECoG signals were acquired in the EMU using 

a 256-channel g.HIamp biosignal amplifier (g.tec 

medical engineering GmbH, Austria). The signals were 

digitized with a high resolution of 24 bits at a sampling 

rate of 4800 Hz. Ground and reference electrodes were 

in the dorsal parietal cortex to ensure signal stability and 

consistency. 144 channels were recorded for patient 1 

and 136 for patient 2 (280 channels total). 

The online detection system for epileptic spikes was 

developed using MATLAB Simulink (MathWorks, Inc.) 

and comprises several key components. Initially, the 

signal was down-sampled to 200 Hz and subjected to a 

high-pass filter with a cutoff frequency of 2 Hz to 

eliminate DC offset. Later, each channel underwent an 

8th-order Butterworth filtering within the 10-60 Hz 

band. Following this preprocessing step, the signals 

were processed using a common average reference 

(CAR) technique to mitigate noise and non-cerebral 

artifacts, a critical step for ensuring the accuracy of 

spike detection algorithms by reducing false positive 

events. The input signal was then segmented into half-

second intervals to facilitate spike detection. The output 

of the spike detection block, depicted in scope with 

markers denoting detected events (Figure 1), relies on a 

real-time adaptation of the method outlined in [13]. 

 

To achieve real-time spike detection, the 

instantaneous envelope of each filtered channel was 

computed using the absolute value of the Hilbert 

transform. Spikes typically produce an energy increase, 

resulting in peaks in the envelope within the 10-60 Hz 

frequency band. Statistical distribution of the envelope 

was computed for each segment, and a model was fitted 

using a maximum likelihood algorithm (MLE). Later, 

the mode and median of the normalized (log-normal 

distribution) data were used to establish a threshold for 

detecting segments containing spikes from those 

displaying background activity. Statistical parameters 

such as mean and standard deviation were calculated for 

each window and accumulated for ongoing threshold 

adjustment to ensure adaptability. This adaptive 

thresholding mechanism optimizes spike detection 

performance across varying signal conditions.  
 

 
Figure 1: The Simulink model of real-time epileptic 

spike detection. 

 

ECoG data were examined for interictal discharges 

to assess the model's performance. For this purpose, a 

10-minute segment of ECoG data was selected. The 

signals were analyzed using g.BSanalyze software 

(g.tec medical engineering GmbH) to identify spikes. 

IEDs typically start with a sharp wave or spike, 

indicating a brief, high-amplitude deviation from 

baseline. Subsequently, a slow wave component may 

follow, characterized by a slower and more prolonged 

deflection than the sharp wave [14]. Figure 2 illustrates 

the labeling of epileptiform discharges. 

 

 
Figure 2: Annotation of epileptiform discharges for use 

compared to the detected event. 

 

After the completion of the simulation, the detected 

events are saved in a file, which are indicators of spike 

occurrence in the signal. Later, these events are 

organized into vectors for each channel. Each vector 

represents the spike times detected for the 

corresponding channel. For the evaluation, true positive 

(TP) is defined as an event where the predicted event is 

located on the marked event in ground truth, i.e., at least 

some samples overlap. A false positive (FP) is defined 

as an event where the predicted event does not overlap 

with the marked event. A false negative (FN) is defined 

as an event where the predicted event does not overlap 

with the event in ground truth. A true negative (TN) is 

defined as an event where no event is predicted, and no 

event is in the ground truth. Several performance 

metrics based on these definitions are calculated. 

Accuracy measures the proportion of correctly 

identified events, computed as accuracy = (TP + TN) / 

N. Sensitivity reflects the model's ability to correctly 

identify true events, calculated as sensitivity = TP / (TP 

+ FN). Specificity gauges the model's proficiency in 

identifying true negative events, determined by 
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specificity = TN / (TN + FP). The F-score, the harmonic 

mean of precision and recall, is computed as F-score = 

(2×FP) / (2×TP + FP + FN). 

 

 

RESULTS 

 

The proposed system was applied to two patients, 

including data collected under the influence of AEDs. 

Figure 3 displays an example output from the scope, 

illustrating the detected epileptic spikes for patient 1. 

This visual representation clearly depicts the identified 

epileptic activity within the recorded ECoG data, aiding 

in assessing and analyzing epileptic spike detection 

performance. 

 

 
Figure 3: Visualization of online detection of epileptic 

spike. 

 

Upon running the model, sensitivity, specificity, 

accuracy, and F-score are calculated for model 

evaluation, as depicted in Table 1. This table presents 

the average performance metrics for patients, where the 

predicted values of the proposed system are compared 

with the ground truth labels of epileptic spikes. The data 

used for analysis were extracted from minutes 3 to 10 of 

the recording. This duration includes 7 minutes of data, 

during which the model's performance was considered 

stable. This specific timeframe was focused on ensuring 

that the analysis is conducted on data where the spike 

detection algorithm has reached a consistent and reliable 

performance level. First, thresholds were established to 

detect epileptic spikes with 95% specificity for the 

entire patient. Then, sensitivities for detecting epileptic 

spike events were calculated on the patients with those 

thresholds. A comparison from Table 1 shows that the 

performance of the online system closely resembles that 

of offline reference methods. This observation 

highlights the effectiveness of the online system in 

accurately detecting epileptic spikes, demonstrating its 

potential as a feasible alternative to traditional offline 

methods. The low F1 score in the comparison is 

primarily due to the high number of false positive (FP) 

events, which arise from the complexity of the 

comparison. In this scenario, the time samples of 

detected spikes with those of marked spikes (ground 

truth) across all channels were compared. This presents 

a significant challenge because the detected spike 

should be aligned with the time sample of a spike in the 

ground truth. In contrast, some other research groups 

solely compare the spike detection algorithm's spike rate 

with the SOZ or spike rate in the ground truth across all 

channels, resulting in higher scores. However, this 

approach overlooks the temporal validation aspect. 

 

Table 1: Performance results of the proposed system for 

datasets 
Methods TP TN FP FN Sens. Spec. Acc. F1 

ONLINE 44 737 43 17 0.73 0.95 0.93 0.52 

REF [13] 47 743 39 11 0.70 0.95 0.94 0.45 

REF [15] 18 768 34 20 0.39 0.95 0.94 0.23 
REF [16] 46 742 39 13 0.69 0.95 0.94 0.48 

 

Figure 4 demonstrates the calibration time of the 

proposed method for detecting spike events in the 

ECoG signals. Here, it can be seen that after minute 3, 

the method could reach a stable detection period.  

 

 

 
Figure 4: Calibration time of epileptic spike 

detection for use in real-time BCI application. 

 

Figure 5 illustrates the spatial distributions of 

epileptic spikes for different methods in a 3D brain 

schema for patient 1. To represent the spatial 

distribution, the spike rate for each channel is calculated 

in terms of spikes per minute. Notably, the seizure onset 

location for patient 1 is in channels 41-43, shown in 

yellow electrodes. By reviewing Figure 5, it becomes 

evident that channels in the models exhibiting high 

spike rates are either located within the SOZ or close to 

it, which is why the proposed method aligns with the 

offline method for pointing the SOZ location. This 

observation strengthens the correlation between 

epileptic activity and the SOZ, emphasizing the 

importance of accurately localizing the SOZ for 

effective diagnosis and treatment of epilepsy. 

 

 
 

          (a) Ground truth   (b) ONLINE 
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  (c) REF [13]      (d) REF [15] 

 

 
(e) REF [16] 

 

 

Figure 5: Epileptic spike rate in 3D brain schema for the 

models. Electrodes 41-43 indicate SOZ. Subfigures a-e 

indicate the epileptic spike rate for ground truth, online 

method, method ref [13], and method ref [15]. 

 

 

DISCUSSION 

 

In contrast to the approach described in [16], the 

current study presents a novel online epileptic spike 

detection method. Unlike the existing offline methods 

[13, 15, 16], which necessitate the use of the full length 

of the signal for detection, the approach in this work 

utilizes only a half-second segment to model the 

statistical distribution of ECoG signals for detecting 

epileptic spikes. Changes to the method described in 

reference [13] have enhanced its online performance. 

This distinction highlights the efficiency and 

effectiveness of the online method, offering potential 

advantages in terms of computational resources and 

speed of analysis compared to traditional offline 

methods. 

In this research, the proposed approach involves 

relying solely on a reviewer for signal labeling, which 

introduces potential limitations. This could be a reason 

why comparing spike occurrences solely in the time 

domain can be challenging due to the inherent 

variability in EEG signals and the potential for small 

temporal deviations between ground truth and detected 

spikes. Furthermore, inherent limitations, such as 

mislabeling or biases towards specific markers, may 

exist. These factors could contribute to the observed low 

sensitivity, specificity, and accuracy values when 

comparing spikes in the time domain to ground truth. 

However, analyzing spike activity in the spatial 

domain, such as plotting the rate of spikes across 

different channels, offers a more comprehensive 

understanding of the underlying neural activity. Spatial 

information provides insights into the specific regions 

or electrodes where spikes frequently occur, allowing 

for a more robust comparison between ground truth and 

predicted data. Therefore, integrating spatial analysis 

can reduce some of these limitations and provide a more 

reliable assessment of spike detection performance. 

 

One of the primary challenges hindering the 

practical implementation of a brain-computer interface 

(BCI) is the long calibration period required. However, 

this paper proposes a novel approach utilizing adaptive 

thresholding, which accumulates statistical 

characteristics of the ECoG signal. This method 

demonstrates stable epileptic spike detection in terms of 

specificity after approximately 3 minutes, thereby 

significantly reducing the calibration time required for 

spike detection in epilepsy monitoring applications. The 

experimental results depicted in Figure 4 illustrate that 

the proposed algorithm rapidly achieves a predefined 

performance level. This capability suggests that the 

algorithm can facilitate real-world applications of spike 

detection without the need for extensive data to train a 

model. Instead, it leverages only a small amount of 

initially available data, making it highly practical for 

deployment in clinical settings. 

 

One of the limitations of this study lies in the limited 

data population of epileptic patients and the reliance on 

a single signal reviewer for marking epileptic spikes. It 

would be beneficial to involve multiple signal raters to 

enhance the robustness and reliability of the statistical 

distribution used to establish thresholds for spike 

detection. By incorporating input from multiple 

reviewers and considering the intersection of their 

marked events across time samples, biases toward 

specific spike patterns can be reduced. This approach 

can improve sensitivity and specificity in spike 

detection, as it captures a more comprehensive range of 

epileptic activity patterns. Therefore, future studies 

should consider involving a larger pool of signal 

reviewers, a longer length of ECoG data, and more 

patient data to address this limitation and enhance the 

accuracy of spike detection algorithms. 

 

 

CONCLUSION 

 

The study introduces a novel automated method for 

real-time detection of epileptic discharges to support 

evaluation for epilepsy surgery. The method employs 

adaptive thresholding based on the statistical 

characteristics of signal envelopes. This approach also 

incorporates spikes' spatial information to capture spike 

propagation patterns. The automated real-time epileptic 

discharge detection system can potentially reduce the 

duration of long-term ECoG monitoring in the EMU. 
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Furthermore, it could be utilized in intraoperative 

monitoring to assist neurosurgeons in localizing the 

SOZ, thus enhancing surgical precision and patient 

outcomes. 
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ABSTRACT: Electroencephalography (EEG) is a 

popular tool in brain-computer interfacing (BCI), due to 

its unique time resolution and simplicity of application. 

For the design of BCIs, rapid and accurate classification 

algorithms are needed to classify the brain state correctly 

in real-time. Recent technological advancements 

facilitate the use of novel methods for signal processing 

and analysis such as real-time source estimation and 

classification via deep learning approaches. In this work 

a previously established convolutional neural network 

(CNN) architecture, the EEGNet, was applied to a 

publicly available motor imagery EEG dataset for 

classification of sensor measurements and source 

estimates that were computed with three different inverse 

approaches. Both for sensor signals and source estimates 

similar classification accuracies as in the literature could 

be achieved. However, no significant difference in 

performance between sensor and source space analysis 

was observed.  

 

INTRODUCTION 

 

In the field of brain-computer interfaces (BCI), the 

electroencephalogram (EEG) remains one of the most 

popular measurement tools for acquiring brain signals, 

due to its many positive characteristics for the BCI use 

case. BCIs offer the possibility to interact with an 

external machine such as a computer or a rehabilitation 

robot based primarily on modulations of brain activity. 

With EEG, electrical brain activity can be measured non-

invasively on the surface of the scalp. EEG is 

comparatively cheap and easy to use, and it is portable. 

In addition, due to its high temporal resolution in the 

millisecond range, the EEG allows for measuring 

ongoing brain activity basically in real-time. EEG-based 

BCI systems are therefore used in a great variety of 

settings such as in rehabilitation, health and attention 

monitoring, entertainment and skill improvement [1, 2]. 

To allow for the control of an external device it is 

necessary to analyze data and derive a control command 

in real time. Various measurement paradigms for EEG-

based BCIs exist to elicit specific EEG patterns from 

which control signals can be generated. Common 

paradigms include motor imagery (MI), visually evoked 

potentials or error-related potentials [2]. 

A control signal is extracted by detecting suitable 

features to distinguish the respective signal patterns and 

then classifying them. To train the classifier in the best 

possible way, a time-consuming recording of training 

data and an offline training phase are usually required. 

Since the goal is to provide BCI users with good, precise, 

and intuitive control of the external device, achieving 

high classification accuracies in real-time is essential [1, 

3]. One of the greatest difficulties in the real-time 

derivation of control signals lies in the low signal-to-

noise ratio (SNR) of single-trial evaluations. Further 

challenges are the large variability of signals between 

subjects, but also within subjects from session to session, 

as well as the large amount of training data required to 

train a classifier [3]. 

One frequently used BCI paradigm, especially in the field 

of rehabilitation, is based on Motor Imagery (MI), where 

the user has to imagine a movement without actually 

performing it. MI-based BCIs have been used for 

example to control a robotic rehabilitation device in 

motor training of the upper extremity after stroke [4], to 

trigger functional electrical stimulation (FES) in muscles 

when using an orthosis after spinal cord injury [5], or to 

elicit electrical stimulation with transcranial magnetic 

stimulation (TMS) during neurorehabilitation to enhance 

cortex excitability [6]. Typically, control commands are 

generated from these signal types using classification 

methods such as linear discriminant analysis (LDA) or 

support vector machines (SVM) [3, 7]. 

Recently, the use of convolutional neural networks 

(CNN) has been increasingly investigated for the 

classification of brain activity. It was stated that CNNs 

work reasonably well even in the presence of artifacts 

and noisy data. Their application is therefore interesting 

to tackle the challenge of poor SNR in real-time analyses. 

In addition, CNNs offer the possibility of being used in 

transfer learning, which can help to reduce time-

consuming data collection from individuals and lengthy 

training cycles. Here, the influence of possible 

differences in the measurement setup and electrode 

configurations between recordings must be considered, 

when data from multiple measurements and various 

individuals are combined [3, 8, 9]. 

The required classification steps for BCIs are usually 

carried out directly with sensor space data, i.e., with 

measurements obtained directly from the scalp surface. 
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However, EEG data can be analyzed not only in sensor 

space but also in source space. In general, source 

modeling is widely used across many fields of EEG 

analysis. This involves transforming the superficially 

measured signals into the source space using inverse 

operations. The signals derived at the scalp are 

influenced and distorted on their way from the brain to 

the head surface by the different tissue layers and their 

diverse electrical properties. In order to counteract this 

so-called volume conduction effect, an attempt is made 

to reconstruct the underlying activity of electrical sources 

in the brain using the signals measured externally on the 

scalp. Popular inverse methods for the transformation 

into the source space are minimum norm estimation 

(MNE), weighted MNE, and beamformers [10–13]. 

While source estimation has already been used 

occasionally in the context of BCIs, the combination with 

CNN offers a new perspective. 

The aim of this preliminary work is to combine CNN-

based classification of EEG data with three different 

methods of source analysis to compare the classification 

performance between sensor space and source space. For 

this purpose, a preestablished CNN architecture, the 

EEGNet [9] is applied to a publicly available MI-based 

EEG dataset from the Graz BCI competition IV [14]. 

CNN-based classification is conducted both directly on 

sensor measurements and source estimates generated 

with three different inverse approaches: Minimum Norm 

Estimation (MNE), weighted MNE (wMNE), and 

Beamformer. 

 

METHODS 

 

During this work, all analyses were performed using the 

Graz BCI competition IV dataset 2A [14]. This dataset 

contains EEG measurements from nine healthy subjects, 

who performed four different MI tasks. The four classes 

include cue-based imagination of left-hand, right-hand, 

feet, and tongue movement. There were two sessions 

recorded on different days each containing 288 trials in 

total, yielding 72 trials per class. EEG measurements 

were derived from 22 electrodes arranged according to 

the international 10-20 system with a sampling frequency 

of 250Hz. A more detailed description of this dataset can 

be found in [14]. 

In the context of this work classification of only two 

classes was desired, therefore only data from left-hand 

and right-hand MI were used. For each trial, ten 

overlapping 2s MI-epochs were extracted from the data 

spanning the MI period from 0.5s to 3.5s after cue onset, 

as indicated in [14].  

To perform classification in sensor space, EEG 

measurements from the BCI dataset were provided as 

input to the EEGNet-based CNN, and the performance 

was evaluated using a 10-fold cross-validation. Before 

classification in source space, three different 

representations of source activity were computed using 

MNE, wMNE and beamformer. Then, classification was 

performed on each source estimation using CNN again in 

combination with a 10-fold cross-validation.  

The three different inverse approaches for source 

transformation were computed using MATLAB version 

R2023a (The MathWorks Inc., 

https://www.mathworks.com). As individual head 

geometries were not available, the required lead field 

matrix for inverse computation was taken from the New 

York Head [15], which is a standardized finite element 

human head model that provides lead fields for 231 

electrode locations and approximately 75,000 source 

locations. The scalar lead field matrix for fixed dipole 

orientation orthogonal to the cortex surface was used. 

First, the 22 channels that were also used in the BCI 

dataset were selected and the entire head model was 

down-sampled using cortex2K provided by the New 

York Head to reduce the number of sources. Next, 

regions of interest (ROI) were selected including post- 

and precentral gyrus, central sulcus and paracentral 

lobule according to the Destrieux atlas [16]. In the end, a 

total of 122 source locations remained for estimation. For 

ease of comparison, the same number of sources was 

used for all three inverse operations. Prior to 

classification and source estimation EEG data were 

preprocessed with common average referencing (CAR) 

and the lead field matrix was restricted to the 22 channels 

from the BCI dataset and rereferenced. No further 

preprocessing or artifact removal was performed.  

     Source estimation: In general, the relationship 

between the cortical sources and the resulting signals at 

sensors on the head surface can be described by the 

formulation in equation (1), where y denotes sensor 

signals, x denotes the underlying source activity, L 

denotes the lead field matrix, and n represents noise. The 

underlying sources 𝑥̂ can be reconstructed from 

measurements y following equation (2), where M 

describes the inverse operator that maps the sensor 

signals to the source space.  

 

𝑦 = 𝐿𝑥 + 𝑛    (1) 

𝑥̂ = 𝑀𝑦     (2) 

 

The first and simplest approach for transforming the 

sensor measurements to the source space is MNE which 

uses Tikhonov regularization and minimizes the 

expression described in equation (3).  

 

min
𝑥

‖𝐿𝑥 − 𝑦‖2 + 𝜆‖𝑊𝑥‖2  (3) 

 

For the simple case of MNE, the weight matrix W 

corresponds to the identity matrix I. By solving this 

minimization problem, the inverse mapping operator 

MMNE can be computed as described in equation (4). 

Here, λ denotes the regularization parameter, which was 

estimated from the SNR, and I corresponds to the identity 

matrix. 

 

𝑀𝑀𝑁𝐸 = 𝐿𝑇(𝐿𝐿𝑇 +  𝜆𝐼)−1   (4) 

 

A more refined version of MNE is weighted MNE where 

additional weights W are introduced to compensate for 

the preference of weak superficial sources. The resulting 
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mapping operator MwMNE is presented in equation (5). 

The weights W were computed based on the norm of the 

columns of the lead field matrix L. 

 

𝑀𝑤𝑀𝑁𝐸 =  𝑊−1𝐿𝑇(𝐿𝑊−1𝐿𝑇  +  𝜆𝐼)−1 (5) 

 

Finally, another approach for source estimation is 

provided by the linearly constrained minimum variance 

(LCMV) beamformer. In beamforming, a set of weights 

is computed for each predefined source location 

constructing a spatial filter that relates each sensor’s 

contribution to each source estimate. These weights serve 

as the inverse operator MLCMV and the computation of its 

components mLCMV(r) for the scalar case is described by 

equation (6). Here, R denotes the data covariance matrix 

and l(r) the column of the lead field matrix for a dipole of 

fixed orientation at location r.  

 

𝑚𝐿𝐶𝑀𝑉(𝑟) =  (𝑙𝑇(𝑟)𝑅−1𝑙(𝑟))−1𝑙𝑇(𝑟)𝑅−1  (6) 

 

The resulting three mapping operators, MMNE, MwMNE, 

and MLCMV were applied to EEG measurements from the 

BCI dataset according to equation (2), to compute three 

different time course representations in source space. 

     Classification with CNN: Subsequently, feature 

extraction and classification were performed with an 

EEGNet-based [9] CNN on four different signal 

modalities: sensor signals, source estimates generated 

with MNE, source estimates generated with wMNE, and 

source estimates from LCMV beamformer. The EEGNet 

is a compact CNN architecture consisting of two blocks, 

where at first a 2D temporal convolution is performed to 

learn frequency-specific features followed by depthwise 

convolution to learn spatial filters. In the second block 

2D separable convolution is performed to summarize the 

individual features. In the end, classification is performed 

using a softmax algorithm, however, in the context of this 

work classification based on sigmoid function was used. 

As optimization algorithm the Adam optimizer was used. 

A more detailed explanation of the network can be found 

in [9]. Prior to training the CNN, a hyperparameter search 

was performed to find the most suitable model 

parameters. Based on that eight temporal and two spatial 

filters were implemented, the learning rate was set to 

0.001, batch size was set to 32, and the number of epochs 

was set to 12 both for sensor and source space data. The 

EEGNet-based CNN was implemented in Python using 

TensorFlow (https://www.tensorflow.org/), Keras 

(https://keras.io/), and SciKit-Learn (https://scikit-

learn.org/stable/) libraries. 

In the end, classification accuracies of all four signal 

modalities were compared via the means of Kruskal-

Wallis-Test, to determine whether there is a statistically 

significant difference between the methods. 

 

RESULTS 

 

For the classification in sensor space, an average 

classification accuracy of 79.25 ± 13.90 % for all nine 

subjects was found. Individual classification results for 

each subject for sensor space data are presented in Tab. 

1, where the second column shows testing accuracies 

highlighted in bold, and column three shows training 

accuracies. The lowest accuracy in sensor space was 

found for subject 02 with 56.87 ± 2.92 %, and the highest 

accuracy was obtained for subject 08 with 96.04 ± 1.35%. 

 

Table 1: Classification accuracies in sensor space  

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 85.49 ± 2.71 88.26 ± 7.95 

02 56.87 ± 2.92 79.86 ± 7.39 

03 90.21 ± 3.10 98.19 ± 1.54 

04 65.42 ± 5.65 85.76 ± 4.32 

05 73.68 ± 5.06 88.26 ± 1.72 

06 67.29 ± 4.09 87.92 ± 2.97 

07 84.44 ± 2.41 93.06 ± 2.51 

08 96.04 ± 1.35 99.03 ± 0.82 

09 93.82 ± 0.89 93.06 ± 3.29 

AVG 79.25 ± 13.90  90.38 ± 6.09 

 

The classification accuracies for source estimates 

generated with MNE and wMNE can be seen in Tab. 2 

and Tab. 3, respectively. Again, obtained accuracies on 

the test data are presented in column two and training 

accuracies are presented in column three.  

 

Table 2: Classification accuracies in source space 

generated with MNE 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 71.39 ± 8.87 73.47 ± 12.56 

02 50.21 ± 2.62 78.06 ± 8.33 

03 83.68 ± 13.13 91.46 ± 12.36 

04 51.11 ± 2.08 56.67 ± 9.33 

05 74.44 ± 6.24 83.61 ± 6.60 

06 52.71 ± 2.33 62.36 ± 15.05 

07 69.31 ± 10.25 86.94 ± 12.30 

08 83.33 ± 11.95 94.72 ± 5.44 

09 88.19 ± 3.91 82.85 ± 11.03 

AVG 69.37 ± 14.84 78.90 ± 12.79 

 

Table 3: Classification accuracies in source space 

generated with wMNE 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 65.07 ± 9.47 86.46 ± 4.30 

02 51.67 ± 2.95 77.99 ± 9.62 

03 93.40 ± 0.94 97.64 ± 2.48 

04 50.00 ± 2.07 81.53 ± 4.53 

05 58.12 ± 5.37 81.46 ± 7.74 

06 60.42 ± 6.15 83.68 ± 5.65 

07 67.50 ± 6.40 83.68 ± 10.64 

08 93.06 ± 1.64 99.10 ± 0.98 

09 90.21 ± 3.30 97.99 ± 1.48 

AVG 69.94 ± 17.63 87.72 ± 8.21 

 

The average classification accuracy over all subjects for 

the MNE-based source space was 69.37 ± 14.84 % and 

69.94 ± 17.63 % for wMNE. Here, the minimal accuracy 
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for MNE was found for subject 02 with 50.21 ± 2.62 %, 

and in wMNE for subject 04 with 50.00 ± 2.07 %. 

Similarly, the maximal accuracy in MNE source space 

was obtained for subject 09 with 88.19 ± 3.91 % and in 

wMNE source space for subject 03 with 93.40 ± 0.94 %. 

In Tab. 4 the classification accuracies for sources 

reconstructed using LCMV beamformer are provided. 

The average accuracy achieved with this inverse method 

was 78.14 ± 13.12 %. The lowest accuracy was achieved 

for subject 02 with 55.83 ± 2.60 % and maximum 

accuracy was achieved for subject 08 with 95.56 ± 1.10 

%. 

 

Table 4: Classification accuracies in source space 

generated with LCMV beamformer 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 85.83 ± 3.63 95.35 ± 3.09 

02 55.83 ± 2.60 89.17 ± 5.00 

03 85.07 ± 6.87 98.47 ± 2.29 

04 64.51 ± 6.28 87.71 ± 7.34 

05 81.46 ± 4.31 91.11 ± 2.61 

06 65.00 ± 3.50 90.69 ± 2.89 

07 83.26 ± 5.86 94.58 ± 4.62 

08 95.56 ± 1.10 99.51 ± 0.74 

09 86.74 ± 3.72 97.99 ± 1.62 

AVG 78.14 ± 13.12 93.84 ± 4.34 

 

The distribution of classification accuracies across all 

four modalities for all nine subjects is depicted in Fig. 1. 

The comparison of all four methods with the Kruskal-

Wallis-Test showed that there is no significant difference 

(Chi square = 2.93, p = 0.40, df = 3) in classification 

performance between the different approaches. 

   

DISCUSSION  

 

In this study, the classification performance of a 

previously introduced CNN architecture, the EEGNet, 

was assessed for four different input datasets generated 

from a publicly available MI BCI dataset. The first input 

provided were unprocessed sensor measurements and the 

other three modalities were corresponding source 

estimates computed with three distinct inverse methods. 

Considering the classification accuracies for both sensor 

and source space data, the proposed EEGNet-based CNN 

was able to achieve a comparable performance to other 

standard classification methods from previous studies 

that were also evaluated on the BCI competition IV 

dataset [9, 17–19], with a relatively small number of 

epochs. The presented network yielded an average 

classification accuracy of about 79% on sensor space data 

and thereby shows slightly higher classification 

accuracies than e.g. Schirrmeister et al. who reported an 

average accuracy of about 74% with their 

ShallowConvNet [18] or Kar et al. who achieved an 

average accuracy of about 70% with their CNN-model 

[19]. It has to be considered, however, that the present 

work discriminated only two classes whereas most other 

studies performed classification of all four tasks 

contained in the dataset.  

Figure 1: Distribution of classification accuracies across all four modalities (sensor measurements in blue, MNE 

estimates in orange, wMNE estimates in yellow, beamformer estimates in purple) for all nine subjects. For better 

visualization the y-axis was cut to contain only accuracy values between 45 and 100 %. 
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To keep conditions across models as similar as possible 

the same hyperparameters, including number of epochs, 

were used for all four modalities. Overall, the training 

accuracies in all four cases were quite high while still 

matching the general trend, meaning that subjects with 

lower testing accuracies also had lower training 

accuracies. In some cases, like for example with subject 

02, the training accuracies were considerably higher than 

the accuracies achieved in testing, however, this is likely 

due to a higher intra-subject variability between the first 

and second recording session rather than due to 

overfitting. When comparing the classification results 

from sensor space to those achieved with source 

estimates in Fig. 1, it is evident that the accuracy values 

do not differ noticeably between the different modalities, 

even though it seems that source estimation with MNE 

and wMNE yielded slightly lower accuracies for most of 

the subjects. The Kruskal-Wallis-Test confirms that there 

is no significant difference between sensor space and any 

of the source space data. These findings are in contrast to 

other studies that found an improvement in BCI 

performance when applying source analysis prior to 

classification, although these studies did not use CNNs 

for classification [11, 12]. The results of the present work 

support the idea that CNNs are good at finding optimal 

separation criteria despite noisy data, as the 

compensation for the volume conduction effect via 

source estimation did not seem to significantly affect the 

classification performance. One reason for the 

comparatively weaker classification performance of 

source estimates could be the rather small number of 

measurement channels that are provided with the BCI 

dataset. In this work, 122 source estimates were 

generated using a standardized head model and only 22-

channel EEG measurements with poor head coverage. No 

individual head geometries and exact electrode positions 

were available. It was previously shown, however, that 

an increased electrode density and good head coverage 

allow for improved source reconstruction [20, 21]. Other 

studies that found an improvement in BCI performance 

in combination with source estimation used a larger 

number of sensors distributed over the entire head [11, 

12]. Results of source estimation could further be 

improved by additional preprocessing such as data 

whitening with noise covariances, regional clustering for 

optimally reducing the source space, or introducing 

spatial normalization strategies to beamformers [12, 13, 

22, 23]. So, with measurements providing better 

electrode configurations spanning the entire head 

surface, computation of more accurate source estimates 

and thereby an improvement of classification 

performance might be feasible. 

Nonetheless, as comparable classification accuracies 

could be achieved with source estimates, future 

implementations using CNN and source reconstruction 

for transfer learning in BCIs are promising. The 

transformation of sensor measurements to the source 

space offers the possibility to jointly process data of 

several individuals and different recording sessions in a 

common signal space, as the effect of changes in 

electrode configuration can be circumvented. 

 

CONCLUSION 

 

Accurate real-time classification of EEG data is essential 

to provide users with precise and intuitive BCI control. 

In this study, it was shown that CNNs can achieve 

comparable classification performances based on sensor 

and source space data respectively. Future investigations 

will focus on the real-time applicability of CNNs and 

transfer learning for BCI systems will be explored. The 

reliable classification of source estimates as shown by 

this work is promising for the application in transfer 

learning. Furthermore, CNN-based classification of 

source estimates will also be performed on own recorded 

data during MI and arithmetic learning tasks, to explore 

whether alternative tasks can be discriminated from EEG 

measurements and could be used for providing 

neurofeedback.   
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ABSTRACT: In the past few decades, research has
demonstrated that brain-computer interface (BCI) based
neurorehabilitation for stroke survivors can enhance the
re-learning of lost motor functionality better than tradi-
tional physiotherapy involving professional physiother-
apists. Though BCI-aided systems have several advan-
tages over traditional rehabilitation methods, one of the
major shortcomings of such intervention is its inability to
recognize the relevant motor activity of the brain when
the user gets mentally fatigued, which eventually causes
the deterioration of the BCI performance. In this paper, a
preliminary EEG study on stroke survivors has been re-
ported on how mental fatigue can potentially hinder the
enhancement of motor re-learning and elongate the rehab
process. From the study, it has been inferred that objec-
tive measurement of mental fatigue is essential to pre-
vent any subjective bias, and the rehabilitation paradigm
should be adaptive to the participants’ mental status to
optimize the rehab outcomes.

INTRODUCTION

Stroke is a severe and potentially life-threatening medical
condition that occurs when the blood flow to a specific
brain area is interrupted. The majority of the survivors
face minor to major motor disability depending upon the
severity of stroke [1]. Hence, it has become necessary to
develop efficient assistive neurotechnology for stroke sur-
vivors to regain the motor functionality of their impaired
limb. A previous study reported that traditional physio-
therapy involving professional physiotherapists has less
impact on regaining motor functionality [2]. One possi-
ble reason for this observation could be that the patient
is not actively engaged in relearning the lost motor func-
tions during this type of motor rehabilitation program [3].
The participant’s active engagement is crucial in BCI-
aided intervention for stroke rehabilitation to restore mo-
tor function effectively and efficiently.

Brain-computer interface (BCI) is an emerging technol-
ogy that is increasingly becoming important to estab-
lish effective communication pathways between the brain
and computer-controlled devices (e.g., robotic exoskele-
ton) by using invasive (e.g., electrocorticography) or

non-invasive (e.g., electroencephalography, magnetoen-
cephalography) neuroimaging modalities [4, 5]. Com-
bining motor imagery (MI) or the imagined movement
of a limb with BCI for neurorehabilitation enables users
to control an exoskeleton attached to their impaired limb
[6, 7]. Existing studies show BCI-aided neurorehabilita-
tion exhibits promising improvements in restoring motor
functionality compared to traditional physiotherapy and
other assistive technologies [8].

Though the BCI-aided neurorehabilitation framework
shows promising results for the rehabilitation of stroke
survivors, there is a need to develop a reliable and ef-
ficient assistive system for neurorehabilitation to account
for the variability in brain activity over time because brain
activity changes its characteristics due to changes in dif-
ferent mental states (e.g., mental fatigue, boredom, etc.)
while carrying out the same activity. In previous stud-
ies [9, 10], it has been observed that a shift in mental
state, especially the induction of mental fatigue, nega-
tively impacts the performance of BCI-based rehabilita-
tion. Slower motor movement during a mentally fatigued
state has been reported in [11]. While the impact of men-
tal fatigue on motor performance has been explored in the
existing literature, the impact of fatigue on the enhance-
ment of motor learning has been less studied. Branscheidt
et al., in [12], reported a long-lasting detrimental impact
of muscle fatigue on long-term motor skill learning. Still,
the research did not include the possible effect of mental
fatigue caused by the prolonged cognitive load imposed
during the experiment. Persistence of mental fatigue on
motor control has been reported for healthy individuals
in [13]. Moghani et al. have reported that mental fatigue
causes a loss of self-controlled feedback in motor learn-
ing for healthy people [14].

Though the existing research has explored the potential
impact and persistence of mental fatigue on long-term
motor learning, there is a significant knowledge gap that
correlates the impact of mental fatigue with regaining lost
motor functionality for actual patients with motor impair-
ment.

The study of mental fatigue and its effect on motor learn-
ing is mainly limited to healthy individuals, and to the
best of the authors’ knowledge, no research has been
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done so far to study the impact of mental fatigue on the
re-learning of motor activities in stroke survivors. In
this present contribution, a novel EEG-based preliminary
study on stroke survivors has been reported, aiming to es-
tablish a relationship between motor learning and mental
fatigue.

MATERIALS AND METHODS

Dataset Description:
This contribution used an EEG dataset acquired in [8]
during a stroke rehabilitation program. The original
data contains EEG recordings from 5 chronic stroke (is-
chemic) patients suffering from hemiparesis. The mean
time since the first occurrence of stroke was 21.8±4.49,
within the range of 17 to 28 months. As revealed by
the testimonials of the patients, their motor functionality
stopped improving for the last one year [8]. The dataset
contains 12 channel EEG recordings from F3, F4, FC3,
FCz, FC4, C3, C4, CP3, CPz, CP4, P3, and P4 brain re-
gions. The data were recorded with a g.USBamp (g.tec,
Graz, Austria) biosignal amplifier, along with active ring
electrodes (g.LADYbird having sintered Ag/AgCl crown)
attached to the EEG cap (g.GAMMAcap). The signal
was sampled at 512 Hz, and initially, a band-pass filter
with cut-off frequencies of 0.1 Hz to 100 Hz was applied
with a notch filter at 50 Hz to avoid the power-line noise.
The participants were instructed to perform grasping at-
tempts with their left and right hands, as shown on a com-
puter screen. The rehabilitation program consists of up to
12 BCI-controlled hand-exoskeleton therapy sessions for
each participant, spanning over 5 weeks with 2-3 sessions
per week. Each session consists of 5 runs (the first two
for calibration of the BCI exoskeleton and the last three
with real-time feedback). Each run consists of 40 trials
(20 trials for the left hand and 20 trials for the right hand),
and each trial lasts for 8 seconds with a random 2s to 3s
interval as the inter-trial interval between the two consec-
utive trials, which makes one run roughly 7.5 minutes.
Short inter-run breaks of around 5–6 minutes were pro-
vided for the participants to rest. From the 5 volunteers,
only 3 patients who completed the entire rehabilitation
program (with 12 sessions) were selected for the present
analysis.
The rehabilitation outcomes were measured every week
in terms of standard motor recovery measures: Action
Research Arm Test (ARAT) and Grip Strength (GS) (in
kg). The ARAT measures grasp (score: 0–18), grip
(score: 0–12), pinch (score: 0–18), and gross movements
(score: 0–9). Thus, the total range of ARAT is 0–57. In
this paper, only the ARAT score has been used for analy-
sis, as it already includes measurements related to grip.
Participants were instructed to report their own evalua-
tion of fatigue and motivation level before and after each
session using the visual analogue scale from 0 to 10.

Data Pre-processing:
At first, the continuous data were epoched based on the
trigger information. Then, the ICA-based automated arte-

fact rejection technique was applied to filter ocular and
other common muscle artefacts (using the ’EEGLAB’ ex-
tension ’IClabel’ in MATLAB R2022b), and cleaned data
were visually inspected to check the quality and manu-
ally rejected any remaining artefacts. A band-pass filter
with cut-off frequencies of 0.1 and 50 Hz was applied,
as high-frequency noise had been observed after artefact
correction.
The epoched and pre-processed data had been decom-
posed into different EEG rhythms, namely, Delta (0.1-4
Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz),
and Gamma (30-50 Hz).

Methodology:
In the existing literature, it has been well established
that event-related desynchronization/synchronization
(ERD/S) [15], a relative power decrease/increase of EEG
in a specific frequency band, is highly associated with
physical motor execution and mental motor imagery
[16]. The same study also reported that the ability
to generate ERD/S is highly subjective and involves
sufficient neurofeedback training [16].
In this present contribution, ERD/S have been calculated
for each EEG rhythm separately for all trials from all ses-
sions. As effective ERD/S generation involves rigorous
neurofeedback training, the present hypothesis assumes
the enhancement of ERD/S as a potential indication of
the enhancement of lost motor functionality.
As the pre- and post-task subjective fatigue scores var-
ied in every session, the amount of fatigue exclusively in-
duced by the rehabilitation session has been calculated by
subtracting the pre-task fatigue score from the post-task
fatigue score.
Rhythm-wise band-power estimation was also calculated
for inter-trial intervals to study brain activities during the
short resting states between two consecutive trials. As the
original data were recorded during a rehabilitation ses-
sion, which was not primarily focused on studying the
impact of mental fatigue on BCI performance, no EEG
recordings are available during the inter-run resting peri-
ods.

RESULTS AND DISCUSSIONS

In this present contribution, we studied how behavioural
change occurs in patients with gradual motor functional-
ity improvement. In the BCI community, it has been es-
tablished that learning motor skills enhances the ERD/S
at the motor cortex region of the brain [17]. Hence, the
present analysis has been primarily focused on the C3 and
C4 EEG channels based on the impaired limb of the par-
ticipant.

Inter-session behavioural data analysis:
The variation of fatigue levels across different sessions
has been shown in Fig.1. It is to be noted that the stroke
severity of the participants differed for each individual,
and the final regain of motor functionality was also not at
the same level after completing all 12 sessions. Hence,
to identify the motor ability improvement trend, ARAT
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scores, which were initially rated between 0-57, have
been normalized between 0 and 1 using the "min-max
normalization" technique. Similarly, the induced fatigue
level has also been normalized between 0 to 1.

Figure 1: Trend of fatigue over 12 sessions. Trend line (dashed)
fitted using linear regression

From Fig.1, it can be observed that subjective fatigue
level is decreasing for two participants out of three over
different sessions (trend based on linear regression has
been shown by the dashed line in Fig.1) when ARAT
score clearly demonstrates the improvement of motor
functionality. The observation has been found to be sta-
tistically significant using Wilcoxon’s two-tailed signed
rank test with a 5% threshold for two participants (Sub-
ject 1 and 2). In contrast, no significant change has been
observed for Subject 3.

Inter-session ERD/S analysis:
As reported earlier, ERD/S has been computed for all
aforesaid EEG rhythms, and it has been found that the
beta (13-30 Hz) band reflects the impact of mental fatigue
on motor performance better than all other EEG rhythms.
Such observation may be due to its rich content of in-
formation related to motor activity. Average ERD/S over
different sessions for the motor cortex region is reported
in Fig.2.

Figure 2: Trend of ERD/S across 12 sessions. Trend line
(dashed) fitted using linear regression

From Fig.2, it can be observed that average ERD/S is de-
creased over different sessions for all three participants,
indicating enhancement of ERD/S, which is a potential
indication of motor function development for the im-
paired hand (statistical significance has been observed
only for subject 1 while subject 2 and 3 did not exhibit
any statistical significance). Hence, from Fig.1 and Fig.2,
it can be inferred that subjective fatigue score and ERD/S
have a positive correlation while it shows a negative cor-
relation with ARAT score.

BCI classification performance across different ses-
sions:

BCI classification accuracy averaged across 3 real-time
feedback runs for every session, has been computed to
understand how BCI performance changes across the 12
sessions with gradual improvement of motor functional-
ity. The BCI performance for 3 participants has been re-
ported in Fig3.

Figure 3: Average BCI classification accuracy during 3 feed-
back runs across 12 sessions. Trend line (dashed) fitted using
linear regression

From Fig.3, it can clearly be observed that the perfor-
mance of the BCI system was improving along with the
improvement of motor functions of the impaired hand
and exhibits a negative correlation with subjective fatigue
level. It is interesting to observe that the BCI perfor-
mance of Subject 1 was highest in the session in which
the reported subjective fatigue score was observed to be
the lowest (session 10). But for participants 2 and 3, no
such observation can be made. One of the possible rea-
sons for this may be the understanding of mental fatigue
is highly subjective, and that can bias self-rating of men-
tal fatigue. Previous literature indicates that volunteers
participating in BCI or related experiments often confuse
mental fatigue with other mental states, such as effortful
attention (where the self-perceived effort of the partici-
pant is very high) or boredom [18]. Hence, it is neces-
sary to evaluate mental fatigue objectively to quantify it
without any subjective bias.

Intra-session analysis of ERD/S and beta bandpower:
Along with inter–session analysis, an intra–session study
has also been done to obtain better insight into the un-
derlying neural dynamics. For intra–session analysis, the
first 10 trials and the last 10 trials from every run have
been taken into consideration to calculate average ERD/S
during the commencement and ending of each run. In
Fig.4, intra-session analysis for three subjects for the beta
band has been reported.
Based on the findings depicted in Fig.4, it is intriguing
to note that there is a noticeable decline in the ERD/S
enhancement following the completion of a run (group
of trials without a significant resting period) on multi-
ple occasions. This observation can be attributed to the
potential induction of fatigue. Additionally, it is worth
mentioning that in the majority of cases, the ERD/S im-
proves at the beginning of the subsequent run compared
to the ERD/S at the end of the previous run (statisti-
cally significant changes in ERD/S after short inter-run
breaks have been marked in the figure with ’∗’ when two-
tailed Wilcoxon’s signed-rank test has been done with 5%
threshold). One plausible explanation for this trend is the
restoration of the brain from a fatigued state, potentially
facilitated by a short break between runs. In a few cases,
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Figure 4: Intra–session ERD/S activities for different runs for
(a) Subject 1, (b) Subject 2, and (c) Subject 3

for example, in Subject 3 session 2, it can be observed
that there is a significant decline in ERD/S enhancement
between run 4 and 5, which might indicate that the par-
ticipant got too fatigued to recover during the small break
between run 4 and 5.

Hence, the above analysis shows a possible relationship
between fatigue and re-learning of motor functions by
evaluating ERD/S, subjective fatigue score, and ARAT
score.

Along with ERD/S, beta band power was also investi-
gated for inter-trial intervals where participants were ex-
pected to have low or no motor activity. The analysis
results are reported in Fig.5.

Figure 5: Intra–session beta band power activities for different
runs for (a) Subject 1, (b) Subject 2, and (c) Subject 3

From Fig.5, it has been observed that, for the majority
of the runs across different sessions, beta band power
(which is also associated with focus and arousal [19]) has
been reduced at the end of runs compared to the com-
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mencement of that run. Furthermore, this observation
is found to be consistent across different subjects. The
plausible explanation of this observation may be linked
to the potential inclination of mental fatigue. Similar
to Fig.4, improvement of brain arousal state (increase in
beta band power) has also been identified after short in-
ter–run breaks.

Intra-session BCI classification performance:
The average classification accuracy of the BCI system for
the 3 feedback runs across all sessions has also been ana-
lyzed to obtain more insight into the relationship between
motor re-learning and subjective mental fatigue. It is to
be noted that the first two runs correspond to the calibra-
tion phase, and the classifier did not generate any output.
The intra-session classification performance for all 3 par-
ticipants has been reported in Fig.6.
From Fig.6 and Fig.4, it can be observed that classifica-
tion accuracy exhibits an improvement compared to its
previous run only in the cases where enhancement of
ERD/S occurred after a short mid-task break, indicat-
ing the negative impact of mental fatigue on BCI perfor-
mance which may hinder improvement of motor abilities.
A noteworthy observation is that Subject 3 consistently
reported no subjective increase in fatigue levels during
the rehabilitation sessions. However, the neural activity
exhibited indications of possible fatigue induction. This
reinforces the importance of establishing reliable, objec-
tive markers for fatigue.
From the psychological standpoint, mental fatigue mani-
fests itself in terms of loss of attention and cognitive de-
cline. Shift/loss of attention due to mental fatigue can dis-
rupt participants’ active engagement on task-related stim-
uli and can compromise the production of ERD/S. The
intra-session analysis clearly indicates that BCI perfor-
mance and regaining of motor functionalities are subject
to the participant’s active engagement in the rehabilita-
tion exercise. This observation unfolds another vital as-
pect of BCI research. In existing BCI research, the major-
ity of experimental paradigms related to motor imagery
or motor execution tasks are designed as an open loop
system where session length, number of trials per ses-
sion, and mid-session breaks are fixed by the researchers
and kept the same for all participants while the induction
of mental fatigue is highly subjective and depends on the
mood, emotional condition, and cognitive capacity of the
participant at that moment. From this present contribu-
tion, it can be observed that adaptation and modulation of
the experimental paradigm, based on participants’ men-
tal and cognitive states, are essential to ensuring partici-
pants’ active engagement to optimize the enhancement of
neurorehabilitation more quickly and effectively.
While the analysis mentioned above suggests that band
power and ERD/S activity have the potential to serve as
neuromarkers for monitoring fatigue objectively, further
comprehensive investigations are required. A more de-
tailed study is necessary to delve deeper into these mea-
sures and establish their effectiveness and reliability in
fatigue monitoring. Moreover, previous studies on bore-

Figure 6: Intra–session classification accuracy of the BCI model
for different runs for (a) Subject 1, (b) Subject 2, and (c) Subject
3

dom [20, 21] and mental fatigue [22] report similar types
of decrement in vigilance and increased reaction time.
This indicates a possible overlap between mental fatigue
and boredom in terms of behavioural outcomes. Hence,
it is necessary to identify relevant neuromarkers exclu-
sively associated with mental fatigue while developing a
passive BCI system to monitor mental fatigue.

CONCLUSION

In this present contribution, a preliminary study on the
impact of mental fatigue on the improvement of motor
functionality and BCI performance has been done on 3
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stroke survivors. The study exhibits the potential nega-
tive impact of mental fatigue on enhancing motor func-
tions. This paper also highlights the necessity of objec-
tively monitoring mental fatigue and designing an adap-
tive BCI rehabilitation paradigm for optimal enhance-
ment outcomes. The future scope of this study includes
consolidating current observations on a larger patient
population and identifying neuromarkers explicitly asso-
ciated with fatigue for developing a passive BCI-based
status monitoring system that will assist an active BCI-
based exoskeleton in adapting the rehab sessions based
on patients’ mental and cognitive conditions.
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ABSTRACT: Understanding the intricate coordination 

between the brain and muscles during movement tasks is 

crucial for advancing our knowledge of motor control 

and enhancing Brain-Computer Interface (BCI) devices. 

This study investigates the mechanisms underlying 

grasping movements using diverse objects and grasping 

techniques. Employing a novel ultra-high-density (uHD) 

EEG/EMG system, the study examines neural and 

muscular activity with high spatial resolution. Results of 

three healthy subjects highlight event-related 

desynchronization/synchronization (ERD/S) patterns 

and classification accuracies for EEG and EMG signals 

during grasping tasks. Temporal analysis reveals a strong 

relationship between EMG/EEG activation and 

classification outcomes, supported by kinematic data as 

evidence of motion. S02 achieved the highest average 

EEG and EMG classification accuracies at 69.4% and 

97.8%, respectively, while S01 had the lowest at 64% and 

85.4%. The observed dependencies between accuracies 

imply an interconnected and synergistic relationship 

between EEG and EMG modalities, which holds promise 

for enhancing overall performance in future BCIs. 

 

INTRODUCTION 

 
Examining our brain's and muscles' coordination during 

movement tasks elucidates the intricate mechanisms 

underlying motor control. The primary aim of this study 

is to investigate the grasping of objects, including a 

multitude of grasp types and objects, to enhance future 

brain-computer interface (BCI) devices. Researchers 

have explored the mechanics of grasping in both animals 

and humans using various methodologies [1], [2], [3], 

[4], [5], [6], [7]. Nonetheless, a substantial gap in 

knowledge remains regarding the precise mechanisms 

through which our brains govern these movements, 

particularly as they evolve. Non-invasive techniques 

such as EEG offer high temporal resolution, allowing for 

studying neural dynamics during grasping. However, 

their spatial resolution is often limited, constraining the 

capacity to attain a more nuanced comprehension of 

neural control [8], [9], [10], [11]. Similarly, EMG 

devices, often characterized by low resolution [12], are 

used to investigate muscular activities. Our research 

utilizes a novel ultra-high-density (uHD) EEG/EMG 

system to explore the intricate interplay between neural 

and muscular activity in greater spatial detail. The system 

demonstrates improvements due to its increased sensor 

density, outperforming other high-density EEG systems. 

It has been effectively utilized in research studies focused 

on decoding finger movements [11], hand gestures [14], 

and mapping the central sulcus using somatosensory 

evoked potentials [13]. 

 

We aim to expand the scope of discrimination by 

employing various objects and grasping types, thus 

delving into multiple dimensions for precise analysis. 

Sburlea et al. [3] investigated the slow-frequency EEG 

components with a similar paradigm. They found that the 

grasp types are encoded in motor cortex areas, while 

object properties activate the frontoparietal regions. 

Additionally, they discovered that the grasp types are 

significantly better decoded during the execution and 

release stages than the observation stage. Building upon 

their findings, we focus our investigations on the motor 

cortex area contralateral to the moved hand in the 

execution and release stages. However, we focused on 

extracting EEG frequencies in the 8-30 Hz range, which 

are substantial in movement decoding in EEG research 

[14], [15]. 

 

MATERIALS AND METHODS 

 

Our system incorporates flexible surface electrode grids 

that were applied on the scalp as well as arm, and hand 

muscles. The uHD EEG/EMG system (g.Pangolin, g.tec 

medical engineering GmbH, Austria) has an inter-

electrode distance of 8.6 mm and an exposed sensor 

diameter of 5.9 mm. We used the system to measure data 

from three healthy subjects (two right-handed and one 

left-handed).  
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Two biosignal amplifiers (see Fig. 1A(a)) allow the 

acquisition of an average amount (across subjects) of 330 

channels of biosignal data, with an average of 235 

channels dedicated to scalp recordings (176 (S01), 256 

(S02), and 272 (S03)). We recorded EMG data from 96 

channels across all subjects, focusing on intrinsic (hand) 

and extrinsic (forearm) arm muscles. (see Fig. 1A). Data 

was acquired with a sample rate of 512 Hz.   

Additionally, the kinematics of the hand and arm 

movements are acquired and digitized using the leap 

motion camera [16] at a variable sample rate between 80 

and 120 Hz. The grasping task and six different grasps 

are visible in Fig. 1 B. We distinguished between four 

objects (big sphere, small sphere, big cylinder, small 

cylinder) and three grasping types (power, precision, 

pinch), resulting in a total of 12 grasping conditions, as 

demonstrated by Sburlea et al. [3]. Each grasping type 

was executed 27 times per object per run. Two runs per 

object were performed, with randomized order, resulting 

in 54 trials for further analysis. Additionally, within each 

run, the grasping types were shuffled. 

Figure 1: uHD EEG/EMG system for decoding object grasping 

task. (A) schematic system setup: two g.HIamp (b) (g.tec 

medical engineering GmbH) biosignal amplifiers, each with 

256 channels, connected to the acquisition computer (a) for 

synchronous EEG and EMG recording. The uHD EEG system 

comprises electrode grids with 16 channels and a pre-amplifier 

attached to each grid, connected to the connector box (c). For 

EEG acquisition, an average of 235 channels covers sensory 

and motor areas on the contralateral hemispheres. Six grids (96 

channels) are placed on the extrinsic and intrinsic hand muscles 

for EMG data acquisition. (B) Two objects (small sphere, small 

cylinder) and three grasp types (power, precision, and pinch) 

are depicted; see [3] for all 12 classes of the object grasps. (C) 

Paradigm Procedure: The procedure commences with the 

display of a fixation cross for 2 seconds, followed by 

randomized instructions for the grasping task (4 seconds), 

succeeded by a 2-second relaxation period. 

Subjects are then directed to prepare for the next 8-

second cycle. In total, 54 trials per class were recorded. 

Instructions were given on a computer screen placed 

approximately 1.5 meters in front of the subjects. First, a 

fixation cross was displayed for 2 seconds, followed by a 

4-second observation and execution phase, during which 

pictures depicting the object and grasp to be performed 

were presented, as illustrated in Fig. 1B. Subsequently, 

upon completing the grasping task, participants were 

instructed to return to the starting position, relax their 

arm/hand, and prepare for the upcoming trial (Fig. 1C). 

EEG Preprocessing 

The raw EEG recordings were first notch-filtered at 50 

Hz and its harmonics using a 2nd-order Butterworth 

filter. After notch-filtering, bad channels were identified 

and removed using the approach described in [11], except 

for the band-pass filter ranging from 0.5 to 40 Hz instead. 

Finally, EEG data were common average referenced. 

 

Feature Extraction and Epoching 

For the classification of grasp types, band power features 

based on 8 to 30 Hz (4th-order Butterworth band-pass 

filter) were extracted as this frequency range 

encompasses both mu (8-12 Hz) and beta (13-30 Hz) 

rhythms which are associated with motor functions [17], 

[18]. Note that mu and beta rhythms may be analyzed 

separately. However, this was not done for the current 

classification analysis to keep dimensionality (i.e., 

number of features) low. On the other hand, beta band 

power features were extracted for topography plots. 

The band power was estimated by squaring EEG time 

samples and applying a centered moving average using a 

window length of 0.75 seconds and a step size of 0.1 

seconds. Furthermore, band power estimates were log-

transformed to improve Gaussianity (i.e., normality) 

[19]. Finally, the log-transformed band power features 

were epoched using 1-second pre- and 8 second post-cue. 

 

EEG Classification 

Classification models were employed to investigate if the 

extracted band power features can differentiate between 

the grasp types. Specifically, pairwise classification of 

grasp types was performed for each object, respectively, 

leading to 12 two-class classification problems per 

subject. Pairwise classification was employed instead of 

a 3-class problem to allow for easier interpretation of 

results. Note that a classification analysis between 

objects was not carried out as objects were not shuffled 

on a trial-by-trial basis, which would lead to inflated 

accuracies due to the non-stationarity observed in EEG.  

A regularized linear discriminant analysis (rLDA) was 

utilized as a classification model, with the regularization 

parameter � set to 0.1 [20]. The classification framework 

used was a 10-times 10-fold cross-validation, in which 

the random seed was set to the respective iteration (i.e., 1 

to 10) to allow for reproducible results. 

 

Topography Plots 

Topography plots were created according to [11] and 

[21] using a custom montage creator software (g.tec 

medical engineering GmbH, Austria). Event-related 

desynchronization/synchronization (ERD/S) was 
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calculated using the log-transformed band power features 

of the beta band, with the baseline reflecting 0.5 seconds 

pre-cue. The brain models depicted in the topography 

plots were created using anatomical MRI scans from all 

participants. The brain and skull were reconstructed 

using FreeSurfer software (developed at the Martinos 

Center for Biomedical Imaging in Cambridge, MA, 

United States) based on the T1-weighted MRI data [22]. 

 

EMG  

The raw EMG recordings were notch-filtered at 50 Hz 

and its harmonics, using a 2nd-order Butterworth filter. 

EMG features reflected simple root-mean-square values 

(RMS) of the band-pass filtered EMG (20 to 200 Hz, 4th-

order Butterworth filter) data. The window length and 

step size were set to 0.2 and 0.05 seconds, respectively. 

Finally, RMS features were epoched using 1 second pre- 

and 8 second post-cue. 

 

MVC 

Maximum Voluntary Contraction (MVC) was recorded 

using a commercially available dynamometer. 

Participants performed a maximum contraction with their 

dominant hand for five seconds, followed by a one-

minute break. The contraction was repeated three times 

and was performed by using a power grip on the 

dynamometer. The EMG signals obtained during MVC 

were then used to normalize EMG signals obtained 

during the grasping paradigm [23].  

 

EMG Classification 

EMG classification of grasps per object was analogous to 

EEG classification, except that 3-class classification for 

the grasp types was performed and that � was set to 0.25 

for the rLDA. Thus, four classification problems, one for 

each object, were carried out per subject. The three-class 

classification was carried out as EMG is expected to 

result in much greater accuracy and, thus, easier 

interpretable results. 

 

RESULTS 

 

Fig. 2 illustrates the ERD/S topographies from all 

subjects, with the time points set to 1 second (for S01 and 

S02) and 1.5 seconds (for S03) after task instruction, as 

these time points reveal the most pronounced ERD for all 

subjects, respectively. The large and small object 

conditions were averaged for each grasp type, resulting 

in 6 conditions. During the sphere power grasp, S01 and 

S02 exhibited the most significant ERD at the 

contralateral hemisphere, around the C3 and C4 electrode 

positions, for S02 and S01 respectively. S03 showed the 

greatest consistency across all objects and grasps and 

demonstrated a clear focal spot around the C1 and C3 

electrode positions. In other words, S01 and S02 exhibit 

more lateralized ERD, whereas S03's ERD is slightly 

more central. A weaker ERD was observed for S01, and 

the sphere object led to a stronger ERD than the cylinder.  

 

Figure 2: ERD/S Topographical maps were created for each 

participant and the corresponding grasping type. The 

hemispheres are shown contralateral to the hand-side of the 

grasp, with S01 being left-handed and S02 and S03 right-

handed. The maps were constructed utilizing the beta frequency 

range (13-30 Hz) at 1 second for S01 and S02 and 1.5 seconds 

for S034values in dB. 

Fig. 3 shows the topographical ERD/S time course 

obtained for the beta frequency band features, averaged 

over both sphere objects (big and small), and power 

grasps for subject S03. The time window was set to -1 s 

pre-task instruction and 8 s post-task instruction (1 s 

steps) for a detailed temporal representation. The 

representation of the EMG RMS power for the same 

tasks was separated into intrinsic (blue) and extrinsic 

(green) muscles and depicted as mean (SD). The EMG 

RMS filtered from 20-200 Hz was calculated as a 

percentage according to the MVC measurement. The 

data from the leap motion camera was used for kinematic 

analysis. The retrieved velocity of the vertical movement 

from the hand/arm is depicted as mean (SD) in m/s  

(magenta). The EEG Accuracy graph in the last row 

(orange) is calculated in 0.1 s steps as mean (SD) for the 

ten runs from the 10 times 10-fold cross-validation. The 

EMG accuracy graph (cyan) reflects the outcome of a 3- 

lass problem. Similar to the EEG classification, the mean 

(SD) from the ten classification runs was plotted. 

Empirical chance levels were obtained by generating null 

models in which the class labels were shuffled and 

marked as dashed lines in Fig. 3. 
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Table 1: EEG Accuracies for all classification pairs 

Grasps / Subjects S01 S02 S03 

Big Sph. Power vs. Precision 47.9% 69.4% 76.9% 

 Power vs. Pinch 63.5% 61.1% 70.4% 

 Precision vs. Pinch 57.3% 57.4% 66.7% 

Big Cyl. Power vs. Precision 65.6% 78.7% 63.9% 

 Power vs. Pinch 55.2% 74.1% 70.4% 

 Precision vs. Pinch 77.1% 71.3% 64.8% 

Sm. Sph. Power vs. Precision 58.3% 76.9% 69.4% 

 Power vs. Pinch 69.8% 74.1% 66.7% 

 Precision vs. Pinch 67.7% 64.8% 57.4% 

Sm. Cyl. Power vs. Precision 66.7% 65.7% 71.3% 

 Power vs. Pinch 72.9% 75.9% 75.0% 

 Precision vs. Pinch 65.6% 63.9% 67.6% 

Tab. 1 shows the pairwise EEG classification accuracies 

of all the grasping techniques across objects. For each 

subject, 12 accuracies are depicted. The classification 

pair with the highest averaged accuracy was found for  

Small Cylinder Power vs. Pinch with 74.6% across 

subjects. Subject S02 reached the highest average 

accuracy of 69.4% for all pairs, S03 reached 68.4%, and 

S01 had the lowest accuracy of 64%. 

Table 2: EMG accuracies for 3-class problems 

Grasps / Subjects S01 S02 S03 

Big Sph. 90.4% 97.7% 96.4% 

Big Cyl. 98.1% 98.8% 95.9% 

Sm. Sph. 100% 98.6% 98.1% 

Sm. Cyl. 53.1% 96.2% 99.4% 

Tab. 2 shows the EMG classification accuracies 

computed as 3-class problems (all grasping types 

included). The object with the best accuracy was the 

small sphere, with an average accuracy of 98.9% across 

subjects. The subject with the highest accuracy is similar 

to EEG S02, with 97.8% across objects. S02 reached 

97.5%, and S01 has the lowest average accuracy of 

85.4%. 

Figure 3: Subject S03 detailed analysis of the sphere power condition (small / big sphere merged). The time axis ranges from -1 to 8 

seconds, with 0 as the task presentation on screen and the relax instruction at 4 seconds. The first row shows the ERD/S topographical 

time course. The maps were constructed utilizing the beta frequency band (13-30 Hz) with power shown in dB (color bar encodes ERD 

in red and ERS in blue). Row 2 represents the EMG MVC (%) time course from the 20-200 Hz filtered RMS signal as mean (SD) in 

blue for the intrinsic muscles and green for the extrinsic hand muscles. Row 3 depicts the kinematics of the arm movement as Velocity 

(m/s) in vertical (Y) direction (lifting/lowering) as mean (SD) in magenta. The last row represents the classification accuracy for EEG 

big sphere power vs. precision (orange) and the EMG accuracies for the 3-class problem classification outcome for the big sphere 

object (cyan). The EEG axis scaling was set to 40-80% (left side), whereas the EMG Accuracies are drawn from 203100% (right side). 

Real chance levels drawn as dashed lines: EEG (orange) and EMG (cyan). 
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DISCUSSION 

As illustrated in Fig. 2 and Fig. 3, the uHD EEG system's 

high spatial resolution enables a thorough examination of 

ERD/S topographies. The spatiotemporal dynamics of 

ERD/S offer valuable insights into the brain patterns 

triggered by grasping movements and their neural 

representation. In Fig. 3 (top row), a desynchronization 

occurs at the time point (1s) after task instruction, 

declining from seconds 2-3, followed by another increase 

towards the offset of the grasping task. Following the 

ERD, an ERS becomes apparent 2 to 3 seconds after the 

movement termination. The topographies show a similar 

focal spot as found in prior studies using the uHD EEG 

system [11], [15] and other studies examining temporal 

ERD/S dynamics [24].  

The EMG results from the intrinsic and extrinsic muscles 

have a similar temporal pattern (see Fig. 3) with an 

activation start around 200 ms after task instruction. 

However, the extrinsic group shows a steeper ascent of 

the curve and a slightly higher MVC percentage value at 

the beginning of the movement, which can be explained 

by a temporal difference in the activation of the muscles, 

meaning lifting off the arm incorporates more extrinsic 

muscles [25]. This is also reflected in the peak values, 

which reach around 1 second for extrinsic muscles and 

1.4 seconds for intrinsic muscles. The intrinsic muscles 

show higher activation throughout the grasping task due 

to active grasping control and the possibility of slightly 

resting the arm on the object. When moving the arm back 

to the resting position, the extrinsic muscles show higher 

activation than the intrinsic. The results from the EMG 

analysis correspond closely with the temporal behavior 

observed in the data from the Leap camera, indicating a 

parallel trend in their patterns over time, with a slightly 

longer delay of approx. 0.5 seconds from task instruction 

to velocity onset can be explained by prior muscle 

activation and real movement detected by the camera. 

The EEG and EMG accuracy traces (Fig. 2 last row) 

started to incline from the chance level at around 1 

second after task instruction, which is closely associated 

with the temporal behavior of the EMG and kinematics, 

however showing an additional 0.5 seconds delay for the 

movement onset [26]. The maximum EMG accuracy is 

stable at around the maximum of 95%; however, in 

comparison, the EEG accuracy declines again after the 

initial peak. This phenomenon may be attributed to 

diminished attention towards movement execution, as 

automatic patterns governed by lower-level brain 

structures entail reduced involvement of higher-order 

control mechanisms [27]. Interestingly, the EEG 

accuracy shows a second increase at the movement offset 

but peaks earlier than the movement onset. This temporal 

phenomenon could stem from anticipating returning the 

arm to the starting position [28].  

S02 reached the highest accuracy for EEG and EMG 

classification with 69.4% and 97.8%, respectively (see 

Tab.1 and Tab. 2). S01 achieved the worst accuracy with 

64% for EEG and 85.4% for EMG classification. 

Considering that S01 has the lowest amount of scalp 

channels used for classification, it also indicates that the 

high spatial density of EEG electrodes is beneficial for 

decoding motor tasks. A similar analysis was done by 

[11] using the uHD EEG, where they showed that when 

subsampling the electrode count, there was a decrease in 

accuracy for decoding individual finger movements. A 

lower ERD power was also observed for S01, which adds 

to the lower performance. For EMG, only the small 

sphere object grasp for S01 showed lower accuracies, 

which could be attributed to the removal of roughly half 

of the trials due to technical issues in the acquisition. The 

observed trend of superior performance in both EEG and 

EMG across subjects suggests a nuanced interplay 

between the examined modalities. This pattern highlights 

how the biosignals are interconnected and complement 

each other, suggesting they work synergistically to 

produce a combined effect greater than the sum of their 

individual contributions. Consequently, future research 

endeavors should prioritize utilizing parameters such as 

corticomuscular coherence alongside advanced 

classification methodologies to optimize the performance 

and functionality of brain-computer interfaces (BCIs) 

and neuroprosthetic systems. 
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ABSTRACT: Moral judgement is a complex human 

reaction that engages cognitive and emotional 

dimensions. While some of the morality neural 

correlates are known, it is currently unclear if we can 

detect moral violation at a single-trial level. In a pilot 

study, here we explore the feasibility of moral 

judgement decoding from text stimuli with passive 

brain-computer interfaces. For effective moral 

judgement elicitation, we use video-audio affective 

priming prior to text stimuli presentation and attribute 

the text to moral agents. Our results show that further 

efforts are necessary to achieve reliable classification 

between moral congruency vs. incongruency states. We 

obtain good accuracy results for neutral vs. morally-

charged trials. With this research, we try to pave the 

way towards neuroadaptive human-computer interaction 

and more human-compatible large language models 

(LLMs). 

 

INTRODUCTION 

 
     Passive BCIs. Passive brain-computer interfaces 

(pBCIs) can seamlessly decode mental states from a 

user’s brain activity [1]. Active BCIs require the 

conscious and intentional modulation of one’s brain 

activity, while reactive BCIs make use of external 

stimuli such as flickering lights to evoke a desired 

reaction [2]. Meanwhile, pBCIs operate in the 

background, capturing the spontaneous reactions to 

specific stimuli in the environment. Most commonly, 

electroencephalography (EEG) signals are collected and 

used for mental state classification. Once decoded, 

pBCIs can provide this real-time information to a 

computer that can then adapt its outputs to cater to 

individual needs and preferences.  This new form of 

interaction has previously been described as 

neuroadaptive [3].  Thus, pBCIs could upgrade human-

computer interaction (HCI) to a more natural, fluid type 

of communication that can be employed in various 

fields. The potential for safer and more efficient 

occupational environments through neuroadaptivity has 

been shown for driving [4], aviation [5] and medicine 

[6], but also for leisure activities such as gaming  [7]. 

Among others, cognitive states like workload [8], error-

perception [9] and surprise [10] have been successfully 

decoded with pBCI. While extensive research has been 

done to explore average EEG correlates of emotions, 

there are relatively few studies that demonstrate robust 

capabilities for emotional state detection at a single trial 

level [11,12]. The most common types of features used 

for emotion classification are event-related potentials 

(ERPs), frontal EEG asymmetry and event-related 

desynchronization / synchronization [13]. To investigate 

single-trial emotion detection from ERPs, a recent study 

combined workload and stress detection in a social 

evaluation context [14]. Using a cross-subject 

classification technique with transfer learning, stress vs. 

relaxation levels were detected with an average 

accuracy of over 80%.   Single-trial classification of 

emotion based on ERPs was also achieved for different 

levels of valence and arousal with a definite advantage 

for arousal discrimination in [15] and [16]. Another 

study using EEG recorded while participants were 

watching music videos managed high classification 

accuracies for stress levels by using entropy-based 

features [17]. Our study proposes exploring how well 

pBCI systems can perform in classifying a specific type 

of emotion, moral emotion [18]. According to the well-

known arousal-valence dimension model of emotions  

[19], moral violations could evoke high arousal and 

negative valence emotions such as anger or disgust 

[20,21]. In contrast, congruent moral stimuli could be 

associated with low arousal and positive valence. In this 

investigation, we try to decode moral emotions with 

pBCI through moral judgements.  

     Moral judgement. We operationalize here moral 

judgement as the degree of agreement or disagreement 

to morally-charged contexts. Moral judgement is a 

complex human reaction that can include both a 

cognitive and emotional dimension [22,23]. As an 

automatic and emotional response, moral judgement can 

be triggered at an unconscious, intuition-based level, 

determined by a combination of factors such as 

personality, culture or motivation [24,25] and is 

associated with deeper structures of the brain [26]. On 

the other hand, especially when explicit moral reasoning 

is required, cognitive functions such as inhibition, 

cognitive conflict, memory and theory of mind 

processes are engaged and different prefrontal cortical 

areas become more active [27,28]. A morally-charged 

stimulus can either resonate with or challenge an 

individual’s moral perspective, thereby evoking a 

meaningful moral reaction. This depends on the 

congruency moral stance with one’s personal values and 

experience with a particular topic. This reaction can be 

recorded with brain imaging methods such as EEG and 

potentially decoded with pBCI. While some EEG 
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studies looked at the signal patterns associated with 

neutral, positive, and negative moral judgements, there 

has not been much work investigating the feasibility of 

single-trial moral judgement detection for text stimuli 

[29]. In [30],  90 morally consistent and inconsistent 

statements were presented to pre-selected groups 

consisting of Christian and non-Christian male 

participants while recording their 

electroencephalography (EEG) data. The statements 

were displayed one word at a time, with the final word 

of each determining the overall moral meaning. In 

reaction to these key words, a small N400 event related-

potential (ERP) was found for morally-incongruent 

words. Also, a late positive potential (LPP) was found 

around 500-600 ms. The congruency of the moral words 

was determined based on participants’ religiosity for 

relevant topics (e.g. “I think euthanasia is 

acceptable/unacceptable”). Another similar study [31] 

used morally acceptable or unacceptable statements 

(aligned or misaligned with social norms) presented 

word by word to elicit moral agreement or 

disagreement. They also found an LPP around the 

fronto-parietal region in the case of unacceptable 

statements. A more recent study that used a multivariate 

pattern classification (MVPA) showed that agreement 

or disagreement to morally-charged statements (e.g. 

“Wars are acceptable / unacceptable”) could be 

predicted from 180ms following the critical ending 

words, based on the approval or disapproval with these 

statements indicated via button presses (“yes” and “no”) 

[32]. Moral attitudes regarding particular topics are 

acquired throughout one's life and are strongly 

correlated with views and values assimilated within 

family, society, and personal experiences. The context 

in which statements appear is also important in eliciting 

corresponding moral reactions. Previous studies have 

shown that negative emotion can that trigger a 

signalling mechanism, making moral situations more 

salient [22]. Thus, a realistic emotional context used as 

an affective priming for the textual stimulus could 

significantly help in this elicitation, as compared to 

passive statements devoid of context [33,34]. This 

might be especially relevant for single trial detection. 

Also, existing theories on effective emotion elicitation 

attest to the importance of constructing agents for moral 

assessments to be attributed to, which also improve the 

elicitation of moral reactions, making the experience 

more relatable and impactful [35,36]. In this paper, we 

investigate the feasibility of moral judgement decoding 

with pBCI for morally-charged statements presented 

following affective priming represented by emotional 

videos on specific topics. Previous work has identified 

video-based stimuli with audios to be considerably more 

efficient in emotion elicitation, as they are more realistic 

[37] and produce the highest number of statistically 

significant features [38]. While most studies that used 

affective priming in the context of moral judgement 

assessment so far have used text-based priming, we 

explore the use of videos with audio here. In light of an 

increasingly digitized world and advanced artificial 

intelligence systems (AI) such as large language models 

(LLMs) [39], successful real-time decoding of moral 

judgement could open a new realm of possibilities for 

better and more human-compatible HCI through 

neuroadaptivity. 

 

MATERIALS AND METHODS 

 

     Participants This pilot study included 3 participants 

(2 males, and 1 female) with a mean age of 31 years. 

The experimental procedure was approved by the 

Research Ethics Committee of the Brandenburg 

University of Technology Cottbus-Senftenberg (ID: 

EK2024-03). 

     EEG recording. Their EEG data was recorded using 

an ActiCHamp amplifier with 64 active actiCAP slim 

gel electrodes (Brain Products GmbH, Gilching, 

Germany). The system provides an electrode montage 

along the extended international 10-20 system (see 

https://www.brainproducts.com/downloads/cap-

montages/ for detailed positions). On the used hardware 

platform the recorded data is natively reference-free and 

was common-average referenced after recording. The 

signal was sampled at 500Hz. 

     Experiment overview. The task involved watching 

videos and reading statements related to 4 social justice 

issues: immigration, racial discrimination, sexism, and 

homosexuality.  Sixteen videos were presented in a 

random order, followed by 10 randomized statements (5 

morally agreeable/congruent and 5 morally 

disagreeable/incongruent). The utilized videos were 

collected directly from YouTube or complied together 

using sequences from a longer Youtube video, such that 

each video lasted approximately 1 minute. They 

represented a segment from real TV or media news and 

they were generally found on channels of multimedia 

news organizations. Each video included audio as well. 

After each visualisation, the participants would read an 

instruction informing them the upcoming statements 

would be comments left under the respective video by 

people on the internet. Thus, we are framing strangers 

on the internet as moral agents responsible for their 

actions, here agreeable or disagreeable statements. In 

reality, statements were created by experimenters with 

the help of the publicly available LLM, ChatGPT. The 

written statements are presented word by word, in a 

Rapid Serial Visualization Presentation (RSVP) manner 

[41] with an Optimal Recognition Point (ORP) 

alignment of the words [42]. Corresponding with the 

ORP position, the aligned letters in each word were 

presented in red, while the rest of the letters remained 

black.  While pre-defined labels were set for these key 

words, the participants also indicated their agreement, 

disagreement, or uncertainty regarding the read 

statement by using keyboard buttons (left arrow for 

agree, downward arrow for uncertain and right arrow 

for disagree). The position of the agreement level 

buttons on the screen corresponded with the position of 

the response keyboard buttons. The ending, key word of 

each sentence determined the entire moral stance of the 
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sentence and represented the events used for 

classification. In total, there were 160 statements and 

therefore, 160 key words in the task: 80 morally-

congruent and 80 morally-incongruent. Following, we 

will illustrate one video-statements example. One of the 

videos included in the study was a short news piece on 

the persecution and abuse gay people experience in 

Uganda due to strict anti-homosexuality laws. In this, 

there are depictions of people expressing their 

disappointment and fear regarding these laws and 

sequences of politicians communicating morally 

controversial statements such as: “We are going to 

reinforce the law enforcement officers to make sure that 

homosexuals have to space in Uganda.”  After this 

video the sentences in Tab. 1 were presented in a 

randomized, word by word manner. The speed of the 

word presentation differed based on the character length 

of each non-key word, with 700ms base time and 20ms 

added for each character besides the first one. For 

instance, the word must was presented for 760ms. The 

ending, morally-charged words were all presented for 

1500ms. The task lasted one hour. 

 

Table 1. Example of morally congruent and incongruent 

statements 

Congruent 

1.  Uganda's laws for gays should be humane. 

2.  Gay people in Uganda deserve freedom.  

3. Gay people in Uganda should be treated with 

dignity. 

4.  Gay Ugandan citizens merit more respect. 

5.  Equality or gay individuals in Uganda is 

essential. 

Incongruent 

6. In Uganda, laws regarding gays must be harsh. 

7. Uganda's gay people deserve prison.  

8. Gay Ugandans should be shown disrespect. 

9. Ugandan gays merit more punishment.  

10. For Uganda's gays, equality is unacceptable. 

 

     Classification method. The classification was 

performed offline, using MATLAB R2022a (The 

Mathworks, Inc., Natick, MA, USA) and BCILAB 1.4-

devel [43]. Responses that did not align with the 

predefined classes (congruent vs. incongruent) were 

excluded from the classification. Thus, in the sentence 

“Gay people in Uganda deserve freedom.” the pre-

defined label for the word freedom was congruent. If 

the participants pressed on the “disagree” or uncertain 

buttons instead, this trial was excluded from the 

classification. We also explored the classification of 

moral (congruent and incongruent moral combined 

trials) vs. neutral trials. The neutral trials were 

categorized based on list of 86 words that appeared 

within sentences. Examples of neutral words include: 

“eventually, ultimately, casual, concept, idea, fact”. A 

windowed means approach [44] was used for the feature 

extraction. The data was bandpass-filtered between 0.1 

and 15 Hz. Regularized linear discriminant analysis 

(LDA) with a (5x5)-fold cross-validation was used for 

the classification of congruent vs. incongruent trials and 

moral vs. neutral trials. Epochs of 1 second were 

extracted with a start time at stimulus onset (key word 

presentation). We explored two sets of 50 ms time 

windows in which amplitude is averaged. One set of 

time windows we used were between 300 and 600 ms 

after the stimulus, with 6 consecutive time windows. 

The second set of time windows were set between 

400ms and 1000 ms, with 12 consecutive time 

windows. These windows align with the assumed 

occurrence of N400 and LPP effects as discussed in 

[30]. 

 

RESULTS 

 

The average classification results on congruent vs. 

incongruent classes (CvsI) and neutral vs. moral (NvsM) 

for both sets of time can be seen in Tab. 2. Only one 

participant reached classifier significance for the 400-

1000 set, with an accuracy of 65%. The chance level in 

this case is at 57%, which coincides with the associated 

average accuracy. In contrast, all classifiers for both 

time window sets reached significance for the neutral 

vs. moral trials. Averaged ERP potentials for channels 

Fz and Cz were obtained for both types of classes after 

independent component analysis (ICA) and non-brain 

component removal. ERPs for morally congruent vs. 

incongruent trials are illustrated in Fig. 1 and ERPs for 

morally-charged vs. neutral trials are illustrated in Fig. 

2. 

 

Table 2. Classification results for congruent vs. 

incongruent (CvsI) and neutral vs. moral (NvsM) trials 

 

DISCUSSION 

 

While decoding accuracy for morally congruent and 

incongruent trials was not successful with this simple 

approach, we could observe good decoding accuracies 

for neutral vs. morally-charged words. This was also 

reflected in the grand-average ERP. Our results are not 

entirely surprising, given the difficulty of emotion 

detection from EEG at a single-trial level [12] and the 

complexity of moral emotions. A recent pBCI 

investigation [29] also found chance-level results when 

looking at the potential of single-trial detection for 

morally acceptable and objectionable trials on data 

collected in [30] and [31]. However, we found good 

performance classification for neutral vs. morally-

charged trials. We postulate that while the chosen moral 

words are relevant enough to produce genuine reactions 

Time windows TP (%) TN (%) Accuracy (%) 

300 - 600 
CvsI / NvsM 

49 / 83 52 / 69 50 / 78 

400 - 1000 
CvsI / NvsM 

59 / 80 54 / 72 57 / 77 

TP = True positives (incongruent); TN = True 
negatives (incongruent) 
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in comparison to neutral stimuli, the current feature 

extraction and classification approach might need 

improvements to better capture potential signal 

differences between morally congruent and incongruent 

trials.  Encouraging results come from recent studies 

that explored more sophisticated algorithms and feature 

extraction methods for emotion detection [17,45]. 

Another way we plan to improve our results in a larger 

study is to only include participants that align with a 

certain profile, such that we can ensure they hold clear 

moral stances towards the topics. Previous studies have 

identified the importance of moral attitude strength for 

effective moral emotion elicitation [46] and the 

corresponding impact on neural signals [23]. In this 

study we assumed that participants will have the 

expected, coherent moral value system. We excluded 

trials, where the manual answers were incompatible 

with our assumptions. As we only discarded a few trials, 

we think the participants shown here share our assumed 

morality. In the recruitment for the main study 

following up this pilot, we will pre-assess the moral 

value system of each participant. More specifically, we 

will include questionnaires meant to assess the 

participants’ attitudes towards sexism [47], immigration 

[48], racism [49] and homosexuality [50]. Hence, only 

participants who highly agree with immigration and 

homosexuality and highly disagree with sexism and 

racism will be invited to the study. Successful real-time 

decoding of mental states in reaction to written stimuli 

could transform human-computer communication in the 

context of LLMs. For instance, training of LLM could 

benefit from replacing or augmenting human explicit 

feedback in Reinforcement Learning with Human 

Feedback (RLHF) [51,52] with neural-based implicit 

feedback [53], potentially offering new solutions for a 

better synergy between humans and machines.  

 

CONCLUSION 

 

In this pilot investigation, we looked at the feasibility of 

single-trial detection of moral judgement from text after 

video-based affective priming. Our work offers insights 

into the neural correlates of moral judgement, as well as 

ideas for classification improvement for a study that 

includes more participants and better-suited participant 

profiles. 
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ABSTRACT: During neurofeedback (NFB) user training,
participants learn to control the feedback associated with
specific components of their brain activity, also called
neuromarkers, to improve the cognitive abilities related to
these neuromarkers, such as attention and mental work-
load. The recent development of methods to record the
activity of several people’s brains simultaneously opens
up the study of neuromarkers related to social interac-
tions, computed from inter-brain synchrony (IBS). Here,
we review the previous articles that trained participants to
control electroencephalographic neuromarkers computed
from inter-brain metrics. The topic remains relatively un-
explored as we only identified seven articles in the liter-
ature. We specifically studied the characteristics of the
user’s training, i.e., instruction, task and feedback, and
the neuromarkers used to provide feedback. The reported
results are promising as four studies including subjective
measures of interaction report higher interaction and re-
lationship scores with higher IBS during NFB training.
Finally, we draw guidelines, identify open challenges,
and suggests recommendations for future studies on this
topic.

INTRODUCTION

Neurofeedback (NFB) refers to a paradigm that trains
participants to voluntarily modulate specific components
of their brain activity, also called neuromarkers. The de-
sired modulation of these neuromarkers is rewarded by
sensory stimuli based on the acquired neurophysiological
data [1]. The aim is to improve cognitive abilities asso-
ciated with these neuromarkers as a results of the NFB
training. NFB has been widely used for clinical and non-
clinical purposes, such as a treatment of social anxiety
disorder (SAD) [2] and improving brain-computer inter-
face (BCI) performance [3]. The development of simul-
taneous multi-brain recording enabled the study of neuro-
markers that are specific to social interaction with many
new promising applications. In this regard, Saul et al. [2]
suggested developing new NFB-based treatments of SAD
based on neuromarkers acquired from multi-brain record-
ings. This suggestion is based on the previous finding
of a relationship between inter-brain synchronization and
SAD [4]. In addition to self-centered individual NFB,
the extended use of NFB aims to integrate individual par-

ticipants’ brain activities in a common framework to de-
tect synchronous brain activities during social interaction
paradigms.
However, there is a lack of literature specifically focused
on brain-to-brain real-time interactions, as the majority
of NFB studies concern individual brain activities [1,
5] rather than inter-brain activities. Also, the majority
of hyperscanning studies are investigating offline neuro-
markers rather than online synchronization-related neu-
romarkers [6]. In this regard, the current review aims
to provide an overview of the current state of research
on inter-brain synchrony-based NFB to identify related
challenges, provide recommendation and suggest ideas
for future research. We targeted online inter-brain NFB
experiments, focusing on feedback scenarios involving
more than one participant and online inter-brain neuro-
markers. We report on the validation of these neuro-
markers, in addition to common essential information
in these NFB studies: goals, instructions, sensory stim-
uli and outcomes. Moreover, we focused this review
on electroencephalography (EEG) based on the analysis
from Saul et al. that EEG would be the neuroimaging
technique of choice for inter-brain NFB studies as EEG
provides brain activity measures with high temporal res-
olution, a requirement for duration-bound experimental
stimuli [2]. EEG provides also great portability, which
is an advantage for studies in naturalistic environments,
as the EEG is not limited to specialized spaces, such as
shielded rooms.

MATERIALS AND METHODS

Study selection: This review mainly focuses on both
the user training and the neuromarkers characteristics of
these NFB protocols. To retrieve all relevant papers, a
systematic literature search has been conducted in the
Scopus and Web of Science databases as described in
Figure 1. The following keywords were used: (EEG
OR Electroencephalography) AND (Brain-Computer In-
terface OR Brain-Machine Interface OR Neural Inter-
face OR Neurotherapy OR Neurofeedback) AND (IBS
OR Inter-Brain OR Hyperscanning OR Brain Synchrony
OR Social interaction). Papers published until the end
of December 2023 were included. Two of the authors
(KW and LP) reviewed the titles, abstracts, and KW read
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Figure 1: PRISMA flowchart for the inclusion of studies.

the whole papers if there was a doubt. Both reviewers
agreed on the selection of the studies. The inclusion cri-
teria used were the following ones: (1) presentation of ex-
perimental results on NFB training using inter-brain syn-
chrony/similarity for the online feedback (2) electroen-
cephalographic neuromarker used for the NFB training.
Studies that did not satisfy both of the inclusion criteria
were excluded. The exclusion criteria were the following
ones: (1) non-clinical studies including social context,
but individual recording and neurofeedback, (2) clinical
studies including social context, but individual record-
ings and neurofeedback, (3) studies not incorporating
neural synchrony as online feedback but as offline mea-
sures (4) hyperscanning studies not incorporating inter-
brain features to limit our focus on feedback training
based on direct measure of inter-brain synchrony (vot-
ing for decision-making and competition are also interac-
tions, but the performances are often calculated in online
scenarios by combining individual features or classifica-
tion results rather than inter-brain synchrony) (5) stud-
ies proposing the development of an algorithm, an appli-
cation, or a framework instead of a neurophysiological
analysis.

Data extraction: In this review, we extracted informa-
tion related to the: (1) objective and results of the NFB
study, (2) online neuromarkers used for the NFB, (3) in-
teraction task and feedback, (4) instructions provided to
the participants. Additional validation or analyses are de-
scribed, such as re-calculation of synchrony with statis-
tical validation and correlation analysis with subjective
measurements.

RESULTS

Our search led to the inclusion of seven papers in this re-
view. A summary of experimental scenarios, feedback,
online features, and overall characteristics for each se-

lected paper is provided in Tab. 1. Among the selected
studies, the two studies [7, 8] from the same group in-
clude different numbers of participants and offline data
analysis, but they had the same characteristics that we fo-
cused on in this review. Eventually, we summarized these
two studies in the same row (the fourth row in Tab. 1).

Neurofeedback outcomes: To investigate neurofeed-
back outcomes, five studies out of the selected studies
conducted subsequent offline analyses to validate syn-
chrony and investigate correlations to subjective mea-
surements through more sophisticated artifact reduction
and complex synchrony metrics with statistical valida-
tion [7–11]. For example, Susnoschi Luca et al. [9] re-
calculated synchrony using phase-locking value (PLV)
instead of their online measure (relative alpha) and val-
idated it through a permutation test. As a result, they
found that the PLV obtained during the baseline period
did not pass the permutation test, meaning that partic-
ipants did not exhibit synchrony during this phase. In
contrast, the PLV during the task showed significant syn-
chrony in theta, alpha, and beta bands, showing that the
synchrony-based NFB could also affect different bands
other than the target bands. Müller et al. found a sig-
nificant positive correlation between the synchrony in
theta band and the self-reported partner’s likeability [10],
and Salminen et al. found higher self-reported empathy
toward partners with synchrony-based feedback blocks
compared to no-feedback blocks [7, 8]. Lastly, Dikker
et al. re-calculated synchrony with two different mea-
sures, imagery part of coherence (iCOH) and projected
power correlation (PPC), and found significant correla-
tions between PPC (7-8 Hz) and relationship duration,
iCOH (21-22 Hz) and social closeness, and PPC (14-15
Hz) and personal distress.

Neurofeedback scenario and stimuli: Among the se-
lected papers, five studies provided visual feedback [7–
11], and two studies involved auditory feedback [12, 13].
As visual feedback, Dikker et al. [11] used a mutual wave
machine in a dome-like environment during public exhi-
bitions where two participants were seated face-to-face.
The participants were engaged in a 10-minute face-to-
face interaction, and the light pattern of the mutual wave
machine was rendered so that higher synchrony between
partners corresponded to brighter lighting projected onto
each surface. Salminen et al. [7, 8] designed a shared
virtual environment of meditation called DYNECOM,
where multiple avatars representing participants were sit-
ting in a ring on a small shrine-like platform with natural
wind sounds. A bridge connected the two facing avatars,
and the participants were instructed to concentrate on em-
pathetic feelings toward their partner. The synchrony be-
tween the two participants modulated the intensity and
color of the light shining on both sides of the bridge be-
tween the two avatars. Susnoschi Luca et al. [9] designed
a GUI that consists of two gauge bars on the left and right-
sides representing the relative alpha for each participant
and a seesaw in the middle indicating the balance be-
tween their relative alpha. During the collaborative task,
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the participants were instructed to maintain their relative
alpha levels within 5% to keep the balance of the see-
saw without speaking and body movements. Likewise,
Müller et al. [10] designed an NFB task that consists of
two balls. During the task, the balls got closer or further
away from each other depending on the neural synchrony
between the two participants. The participants were in-
structed to move the balls towards each other by control-
ling their brain activity accordingly, relying on various
mental strategies such as relaxation, mental calculation,
thoughts generation, etc.
Regarding auditory feedback, two studies controlled mu-
sic, such as volume and beats, using neural synchrony.
Winters and Koziej [12] mapped neural synchrony to con-
trol the volume of an ambient music stream (higher syn-
chrony was mapped to increased volume) played through
speakers during natural face-to-face interactions in pub-
lic exhibitions. Ceccato et al. [13] developed a Brain-
Computer Musical Interface (BCMI) that changed music
through the neural synchrony estimation by increasing or
decreasing the interval between musical notes, yielding
more pleasant music in case of high synchrony between
two participants.

Task instructions: We investigated whether the task in-
structions provided in the studies were explicit, i.e., par-
ticipants were told that the synchrony in their brain activ-
ity modulated the perceived stimuli. Salminen et al. [7,
8] implicitly instructed participants to utilize the informa-
tion provided by the environment and concentrate on em-
pathetic feelings toward their pair, whereas Winters and
Koziej explicitly informed participants that they would
hear the music when their brain activities were synchro-
nized [12]. Dikker et al. compared implicit vs explicit in-
structions, and found that explicit instructions increased
synchrony significantly over time, whereas implicit in-
structions induced no significant changes [11].
Additionally, we divided the studies into goal-oriented
and not goal-oriented instructions depending on whether
the participants had a goal to achieve. For example,
Susnoschi Luca et al. and Müller et al. [9, 10] gave their
participants the goal to keep the balance of the seesaw
and to move balls towards each other by modulating their
brain activity. The participants focused on the balls and
seesaw controlled by their synchrony during the NFB.
On the other hand, the rest of the studies places partic-
ipants in a natural face-to-face interaction and did not
specify any goal. Even though synchrony between par-
ticipants modulated the environment (light patterns, mu-
sic, etc.), there was no direct instruction on whether they
should modulate their environment to desired states, such
as maintaining specific light patterns or volume or beat of
the music. In these face-to-face experiments, the partici-
pants just focused on their partner.

Online neuromarkers: To calculate inter-brain syn-
chrony as a neurofeedback feature during online scenar-
ios, amplitude or phase coupling measures between two
participants were assessed. Amplitude coupling was ob-
tained by comparing band power and filtered EEG ampli-

tudes. For example, Susnoschi Luca et al. [9] compared
the relative alpha power (RA) at Pz electrode for each par-
ticipant and instructed them to maintain their RA within
5% of each other to maintain a collaborative state within
pairs. Likewise, Winters and Koziej [12] compared the
average alpha band power of two participants at AF7,
AF8, TP9, and TP10 electrodes. Dikker et al. [11] as-
sessed the similarity by calculating average and highest
Pearson correlation coefficients from all electrode pairs
between two participants (AF3, AF4, F3, F4, F7, F8,
FC5, FC6, P7, P8, T7, T8, O1, and O2) in delta (1-4
Hz), theta (4-7 Hz), alpha (7-12 Hz), and beta (12-30 Hz)
frequency bands. Salminen et al. [7, 8] compared frontal
alpha asymmetry between F3 and F4 electrodes between
two participants.

Phase coupling was obtained by extracting the instanta-
neous phase from EEG data and calculating the phase dif-
ference or consistency of the difference. Müller et al. [10]
calculated the coupling strength as a sum of all possible
electrode pairs within and between the two participants
through frontocentral (F3, Fz, F4, C3, Cz, and C4) Abso-
lute Coupling Index (ACI) in four frequency bins (2.5, 5,
10, and 20 Hz). The ACI counts the number of samples
achieving phase differences ranging between −π/4 and
π/4. Ceccato et al. [13] calculated phase locking value
(PLV) between two participants (Fz, F3, F4, C3, Cz, C4,
Pz, and Oz electrodes). The PLV calculates instanta-
neous phase difference between two signals for each trial
and measures variability of the difference across trials,
assuming the difference between phase-coupled signals
varies little, which is called phase-locking.

DISCUSSION

Neurofeedback outcomes: The selected studies re-
ported neural synchrony during the feedback blocks
and correlations between the neural synchrony and self-
reported questionnaires, such as social relationship du-
ration and likeability. These results show the presence
of neural synchrony during the NFB and its relation-
ship with subjective measures of interaction. However,
it is difficult to investigate the progress of these out-
comes over time since all the selected studies designed
single-session experiments, unlike classical NFB studies,
which often includes multi-session [5]. This is mostly
likely related to the significant additional time and efforts
for installing EEG headsets on multiple people. The se-
lected studies observed significant neural synchrony be-
tween participants during the feedback period. However,
without comparing before and after the feedback, it is
unclear how the NFB modulates neural synchrony over
time compared to the pre-feedback period. Furthermore,
self-reported questionnaires were collected once either at
the beginning or at the end of the experiment with a sin-
gle condition, so it is difficult to investigate whether the
synchrony-based NFB changed the subjective experience
and feeling of partners along the experiment, even though
the correlation between the synchrony and self-reported
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questionnaires post NFB were obtained. A few selected
studies designed control condition, such as a no-feedback
condition in addition to a feedback condition [7, 8, 10].
Salminen et al. designed the NFB with various feed-
back conditions and observed higher self-reported empa-
thy after EEG-based feedback compared to no-feedback
condition [7, 8]. Interestingly, Müller et al. designed
conditions with normal, fake, and negative feedback (re-
warded on weaker synchrony). They found that nega-
tive feedback achieved the highest neurofeedback perfor-
mance, and normal neurofeedback performance achieved
the lowest performance in the ball task, meaning that the
participants could achieve their best performance when
their synchrony was negatively mapped to the balls [10].
Taken together, more evidence is still needed to test the
feasibility of the inter-brain NFB, such as how long the
feedback effects could last, how many sessions are re-
quired to train the synchrony, and how much inter-brain
NFB improves social interaction. Therefore, it seems
necessary to design a multi-session experiment including
pre/post-baseline analysis and various control conditions
to confirm whether the neural synchrony could be trained
by an inter-brain NFB and investigate the progresses over
time.

NFB scenarios and stimuli: The selected studies de-
signed NFB scenarios, including 2D object control [9,
10], natural face-to-face interaction [11–13], and medita-
tion [7, 8]. During the NFB condition, feedback was de-
livered via visual and auditory stimuli. Visual stimuli are
effective sensory stimuli for a single task as they are intu-
itive, and the two studies that used it used objects visually
moving according to the neural synchrony [9, 10]. On the
other hand, for multitasking situations, using only visual
stimuli may not be the ideal stimuli because participants
should separate their visual attention on each task. Dur-
ing the NFB tasks designed by Dikker et al. and Salmi-
nen et al., participants had to look at the same time at their
partner and at the visual feedback (light) controlled by the
neural synchrony. The switch of their gaze back and forth
between their partner and the visual feedback could have
decreased their attention. Attention to their partner and
to the feedback stimuli was probably more easily shared
in the two studies delivering auditory feedback (music
control) during face-to-face interactions [12, 13]. Partic-
ipants were able to look at their partner while listening to
the music controlled by the neural synchrony. Among un-
used sensory stimuli in the selected studies, tactile stim-
ulation could be used as feedback for the multitasking
paradigm. Jeunet et al. incorporated tactile feedback in
a multitasking environment consisting of motor imagery
BCI and counting visual distracters task [14], showing a
better performance than in a condition with visual feed-
back only. In this regard, the tactile stimulation could
be applied within natural face-to-face interactions while
maintaining visual attention to partners. However, the ef-
fects of those multi-sensory stimuli on neural synchrony
and workload should be investigated.

Task instructions: Among the selected studies, we in-

vestigated task instructions in terms of explicitness and
goal-orientation. Regarding goal-orientation instructions,
Susnoschi Luca et al. and Müller et al. [9, 10] provided
specific goals to achieve to their participants, such as
moving balls towards each other and keeping the balance
of a seesaw. On the other hand, the rest of the selected
studies used indirect instructions in the feedback scenar-
ios. Even though the participants were informed that their
synchrony would change their environments, their main
task was to interact face-to-face with their partner or to
concentrate on empathetic feelings. Those instructions
can relate to active and passive NFB, as Saul et al. dis-
cussed that their difference is whether the NFB platform
responds to a participant who is trying to modulate brain
activity to reach or maintain a certain pattern, or to a par-
ticipant who does not consciously attempt to modulate
their brain activity but rather interacts naturally with the
setup [2]. Even though it is unclear whether the partic-
ipants who received non goal-oriented instructions tried
to modulate their brain activity, the fact that they did not
have a specific goal may have led to differences from the
participants who received goal-oriented instructions.

Comparing directly explicit and implicit instructions,
Dikker et al. found that a group who was explicitly told
that their neural synchrony would be reflected in light
patterns showed significantly increased neural synchrony
over time, whereas a group with implicit instructions did
not show significant changes [11]. They hypothesized
that the explicit instruction would function as an incen-
tive for participants to remain focused on the interaction.
It shows that instructions can increase or decrease the ef-
fectiveness of the NFB on neural synchrony by influenc-
ing participants’ comprehension of the task and environ-
ment. It remains unclear which instructions and scenarios
effectively enhance neural synchrony through feedback,
so future research should further investigate the effect of
different instructions.

Online neuromarkers: In general, inter-brain synchro-
nization measures, such as phase synchronization, could
be obtained after dedicated pre-processing, excluding bad
channels and trials, and reducing noise components, such
as motion artifacts and eye blinking. Afterwards, instan-
taneous phase is obtained for each channel and compared
to different channels (intra and inter-brain), yielding ad-
jacency matrices. Each connectivity is then compared to
surrogate data to validate that the connectivity is statis-
tically significant. However, feedback must be delivered
nearly in real time, which limits the processing time to
calculate common synchrony metrics with statistical val-
idation. As a result, we found that the selected studies
frequently used band power comparisons and correlation
of EEG amplitudes to calculate synchrony as online fea-
tures instead of complex synchrony metrics used in previ-
ous hyperscanning studies, as summarized in the follow-
ing reviews [15, 16]. A few selected studies conducted
the subsequent analysis offline to validate the effects of
the NFB [7–11]. Besides band power-based features, one
selected study utilized phase-locking value (PLV) from
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eight electrode channels as neural synchrony, but it needs
to be further validated, as they only included one pair,
and the PLV was not investigated in-depth with statisti-
cal validation [13]. Another selected study calculated
phase coupling measures online from six electrode chan-
nels [10], showing that some measures could be obtained
online. In this regard, it would be interesting to investi-
gate the relationship between the online and offline neu-
romarkers, as the selected studies that conducted further
offline analysis and obtained different synchrony mea-
sures did not compare those online and offline measures
[9, 11].

Future direction: We discussed the characteristics of
the current inter-brain NFB studies and suggested a few
recommendations for future research regarding training
features, instructions, and feedback scenarios to address
the current concerns. In summary, inter-brain NFB
should consider comparing online features to complex
synchrony features, use explicit instructions, and inves-
tigate the training effects over time. With proper valida-
tion of neural synchrony enhancement between two indi-
viduals, it seems to have the potential to address difficul-
ties with daily social interactions, as the selected studies
found correlations in the neural synchrony between part-
ners during NFB tasks with pairs’ likability [10], empa-
thy [7, 8], and social closeness [11].

CONCLUSION

This review provided a comprehensive overview of the
current state of inter-brain synchrony-based NFB. Online
synchrony features in amplitude and phase coupling and
subsequent offline analyses were identified. Regarding
the feedback scenarios and outcomes, we observed the
importance of instruction and the necessity of a multi-
session experimental design. We hope this review con-
tributes to the groundwork of future investigations into
inter-brain NFB based on inter-brain synchrony.
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ABSTRACT: Determination of the wakefulness and con-
sciousness state in patients with disorders of conscious-
ness (DOC) is vital for clinical decision-making. Typi-
cally, behavioral indicators and motor responses are em-
ployed. Recent advancements in neuroimaging have en-
abled motor independent assessment of DOC patients.
We present a single-case analysis of a 24-year-old female,
selected from a sample of n=77 patients, diagnosed with
a DOC. We investigated the single-trial classification of
stimuli within the peri-personal space (PPS) using event-
related potential (ERP) features. Data from two sessions,
conducted ten days apart, were analysed.
We observed significant differences in classification ac-
curacies between sessions (high in session one, low in
session two), which did not correspond to the patient’s
recovery from UWS to MCS. ERP analyses confirmed
the difference between sessions, supporting the observed
changes in classification accuracies.
Our study underscores the importance of longitudinal as-
sessments to accurately diagnose DOC patients. In future
research we aim to expand our analyses to the full dataset.

INTRODUCTION

Reliably determining the state of wakefulness and con-
sciousness of patients with disorders of consciousness
(DOC) is crucial for clinical decision-making, providing
appropriate care and ensuring patient rights. Usually, be-
havioral indicators and motor performance in response to
specific instructions are used to determine this. The Glas-
gow Coma Scale [1], for example, assesses a person’s
level of consciousness based on their ability to open their
eyes and perform verbal and motor responses. The Coma
Recovery Scale-Revised (CRS-R) [2] is a more compre-
hensive assessment tool that covers multiple domains and
allows for a more detailed assessment and differentiation
between states of consciousness such as coma, vegetative
state (VS), minimally conscious state (MCS), and locked-
in syndrome.

In recent times, researchers have been exploring func-
tional neuroimaging technologies and brain-computer
interface-based approaches with the aim to detect unique
cognitive patterns when assessing the consciousness state
of patients who cannot exhibit motor behavior due to
brain injuries [3–5]. One of the several brain networks
that have been targeted for this purpose is the cortical
network that encodes the Peri-Personal Space (PPS). The
PPS is the space surrounding the body that defines the
immediate physical domain and is relevant to the inter-
action between self and others or self and the environ-
ment [6]. It is assumed that the related cortical network
is linked to bodily self-consciousness and therefore hy-
pothesised to be altered in patients with DOC. Indeed, a
physiological index of PPS was identified in evoked elec-
troencephalogram (EEG) responses to tactile, auditory, or
audio-tactile stimulation at distances within and outside
the PPS [7]. Seventeen patients with DOC participated
in the study. The results suggest that the extracted multi-
sensory evoked responses degrade in patients with DOC
and correlate with the Lempel-Ziv complexity, a metric
used to predict global states of consciousness in contin-
uous EEG signals, but not with CRS-R scores [7]. Al-
though these results seem to be in line with neuroscien-
tific findings, they are not yet conclusive and more data
is needed to make more precise statements. Among other
things, because the Lempel-Ziv complexity as a measure
of conscious experience has been called into question [8].
To minimise errors in diagnosis, it is recommended to re-
peat the CRS-R at least five times within a time period
of a few weeks [9]. Given the non-stationarity and in-
herent variability of EEG signals, the question arises of
how many repetitions are required before reliable clini-
cal decision about the state of consciousness of a patient
with DOC can be made when using EEG. To answer this
question, the experiment in [7] was repeated in a larger
cohort of patients with DOC and the EEG and CRS-R as-
sessments were repeated several times per patient. The
study is still ongoing, but in this paper we present initial
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results and a case study that highlights and emphasizes
the need for repeated measurements for making informed
decisions.

MATERIALS AND METHODS

Patients: A dataset of 84 patients (23 female, median
age 53 years, range=18–84) with a disorder of conscious-
ness (CRS-R at assessment median=15, range=0–23) was
recorded at the University Hospital of Lausanne (CHUV),
Switzerland. Seven patients were excluded from the anal-
ysis in this paper due to incomplete data. For the remain-
ing n=77 patients a total of 202 sessions (median=2 ses-
sions, range=1–7 sessions) were recorded.
The patient (Patient A) selected for detailed analysis in
this paper was 24 years old at the time of the experi-
ment, female and admitted with a traumatic brain injury.
Session 1 was performed two days and Session 2 twelve
days post-admittance to the acute care unit. The patient
was diagnosed with unresponsive wakefulness syndrome
(UWS; CRS-R 7) in Session 1 and minimally conscious
state minus (MCS-; CRS-R 11) in Session 2. Approxi-
mately three months post-injury the patient emerged from
the MCS.

Experiment: Three different stimuli were adminis-
tered: (1) auditory close (AC; distance 5 cm from ex-
tended arm; 65.2 dB SPL; 50 ms of white noise via
speaker), (2) auditory far (AF; distance 75 cm; 64.1 dB
SPL; 50 ms of white noise via speaker) and (3) tactile (T;
two FES electrodes attached to dorsal part of arm near
elbow; 50 ms of continuous, sub-threshold stimulation
at 35 Hz). Furthermore, auditory and tactile were com-
bined (tactile + auditory close (TAC); tactile + auditory
far (TAF)). One experimental block consisted of 50 pre-
sentations for each of the five stimuli (250 total). Sessions
were planned as a set of three blocks. However, this was
not always possible due to constraints of the clinical envi-
ronment. Further details can be found in the description
of the original study [7].

EEG recording: EEG data were recorded with 16
channels positioned at Fz, FC3, FC1, FCz, FC2, FC4, C3,
C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 (all refer-
enced to the right earlobe) at a sampling rate of either 500
Hz or 512 Hz (g.USBamp or g.Nautilus respectively, both
by g.tec medical engineering GmbH, Graz, Austria.).

Preprocessing: Recordings were read in GDF format
using Python MNE [10]. Continuous data were high-
passed filtered at 1 Hz. On epoched data (-1 to 2 s) bad
channels were marked using RANSAC [11] and bad tri-
als were marked using AutoReject [12, 13]. Next a 20 Hz
low-pass filter was applied to the continuous data. The
continuous data was then epoched (-1 to 2 s referred to
stimulus onset), bad channels were interpolated, and tri-
als rejected. All the 512 Hz epochs were resampled to
500 Hz. No baseline was applied. This resulted in a me-
dian number of 1358 trials per patient (range=319–4810
trials).

Classification: For classification, epochs from 0 to 1 s

Patient

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Figure 1: Single-trial accuracy at distinguishing close and far
in auditory only mode (i.e,. AC vs. AF). Each boxplot repre-
sents the data of one patient across all sessions of that patient.
Patients on the x-axis were sorted by median accuracy. A high
variance of accuracy was expected as we assumed that some pa-
tients in the sample would not be conscious. For this paper we
decided to investigate the patient with the highest median accu-
racy (on the far right; referred to as Patient A in this paper).

after stimulus presentation were used. These epochs were
resampled to 10 Hz. We trained a shrinkage linear dis-
criminant analysis (LDA) classifier on two classes (AC
vs. AF and TAC vs. TAF) and five classes (All vs. All)
using scikit-learn [14]. Performance was assessed via
mean accuracy using stratified 10-fold cross-validation
independently on each session. We used the median ac-
curacy across sessions to select the patient for discussion
in this paper.

ERP Analysis: We compared the ERPs between Ses-
sion 1 and Session 2 by computing the median response
across channels CP1, CPz and CP2 in the time win-
dow from -0.25 s to 1.0 s around stimulus presenta-
tion using the pre-processed data. Furthermore we per-
formed a time-frequency decomposition using eight Mor-
let Wavelets in a range from 2–18 Hz using 1–9 cycles per
frequency band and used this to compute the inter-trial
coherence (ITC) for Session 1 and Session 2 separately
using all trials. A baseline from -0.25 s to 0.0 s was ap-
plied both for ERP and ITC visualisation.

RESULTS

Patient selection: Binary classification accuracies (AC
vs. AF) of single-trial ERPs ranged from a median of
42% to 62% (median of whole dataset 50%; see Figure
1). For this paper we chose to investigate the patient with
the highest median accuracy (referred to as Patient A in
this paper).

Patient A accuracies: Accuracies dropped for all clas-
sification approaches from Session 1 to Session 2 (see
confusion matrices for two-class AC vs. AF in Figure
2, two-class TAC vs. TAF in Figure 3, and five-class
All vs. All in Figure 4). Binary single-trial classifi-
cation accuracies for Session 1 are close to 70% for
both the auditory (Session 1 median=0.69, SD=0.11,
range=0.53–0.87; Session 2 median=0.54, SD=0.11,
range=0.38–0.76) and tactile stimulus modalities (Ses-
sion 1 median=0.66, SD=0.07; range=0.62-0.83; Ses-
sion 2 median=0.58, SD=0.09, range=0.38-0.7). Five-
class classification accuracy drops in Session 2 in par-
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Figure 2: Two-class (AC vs. AF) normalised confusion matrices
for Patient A. The accuracy drops considerably from session 1
(top) to session 2 (bottom).

ticular due to incorrect classification of pure tactile (T)
and tactile-auditory-close (TAC) trials (Session 1 me-
dian=0.54, SD=0.06; range=0.46–0.66; Session 2 me-
dian=0.35, SD=0.06, range=0.27–0.47). The difference
in accuracy between Session 1 and 2 is statistically sig-
nificant according to t-tests for independent samples with
Bonferroni correction (see Figure 5; AC vs. AF Session 1
vs. Session 2 t18 = 3.73, p = .004; TAC vs. TAF Session
1 vs. Session 2 t18 = 2.72, p = .04; All vs. All Session 1
vs. Session 2 t18 = 6.99, p < .0001).

Patient A ERPs: Investigation of the event-related po-
tentials aligns with the classification results. See Figure
6 for responses to tactile-auditory close and far stimuli
shown separately for Session 1 and Session 2. Phase-
locked responses to the tactile stimulus are visible in
Session 1 between 100 and 300 ms post stimulus. Dif-
ferences in the response to close and far stimuli were
clearly visible in Session 1 between 300 and 600 ms.
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Patient A Session 1
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ue

 la
be

l
0.56 0.44

0.41 0.59

Patient A Session 2

Figure 3: Two-class (TAC vs. TAF) normalised confusion ma-
trices for Patient A. The accuracy drops considerably from ses-
sion 1 (top) to session 2 (bottom).

No phase-locked responses were observed in Session 2.
The time-domain responses align with inter-trial coher-
ence (see Figure 7). In Session 1 strong phase-locking
was observed between 0 and 500 ms post-stimulus with
the strongest response around 7 Hz. The visualisation of
the ITC has no coherent pattern in Session 2.

DISCUSSION

The case study presented in this paper offers insights into
the delineation of PPS in patients with disorders of con-
sciousness using ERP features and single-trial classifica-
tion. To limit the analysis, as a starting point we selected
the patient with the highest median classification accu-
racy in our database (Patient A), who also exhibited high
variability in classification performance across two ses-
sions which took place 10 days apart.
The results demonstrate our approach is capable to dif-
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Figure 4: Five-class confusion matrices for Patient A. The accu-
racy drops considerably from session 1 (top) to session 2 (bot-
tom).

ferentiate stimuli presented within the PPS across vari-
ous conditions (T, AC, AF, TAC, TAF), with notably high
classification accuracies in the first session (particularly
as these results are obtained on single-trial ERPs). These
findings underscore the sensitivity of PPS delineation as
a potential tool for assessing consciousness in DOC pa-
tients independently of motor output [7, 15].
After suffering a car accident, Participant A’s record-
ings were performed 2 and 12 days post-injury (Session
1 and Session 2, resp.), with the patient being deemed
unresponsive (CRS-R=7, UWS) in the first session and
minimally conscious (CRS-R=11, MCS-) in the sec-
ond one. She was discharged from acute care 21 days
post-injury and emerged from minimally conscious state
(CRS-R=21) 2.5 months post-discharge.
The variation in classification accuracy between the first
and second sessions, particularly with the observed re-
covery from DOC as indicated by the final available CRS-

Figure 5: Distribution of accuracy in the 10-fold cross-
validation performed on the data of each session. Colours indi-
cate session: blue Session 1 and orange Session 2. The first and
second violins represent the binary classification results (TAC
vs. TAF; AC vs. AF, resp.) and the third five-class classifica-
tion results (All vs. All). Stars indicate significance according
to t-test for independent samples with Bonferroni correction: *:
p < 0.05, **: p < 0.01, ****: p < 0.0001. The central dashed
line was placed at the median of each violin, the finer dashed
lines at the first quartiles.

R score, may suggest an alteration in sensory processing
or awareness levels as the patient regained consciousness.
This is further supported by the presence of clear ERP
peaks for combined tactile and auditory conditions in the
first session, which seem to diminish alongside improved
consciousness levels. However, the reduction in classi-
fication accuracy during the second session poses ques-
tions about the dynamics of PPS and its neural correlates
as patients recover, such as the representation of PPS and
how it might be centered around the body, offering in-
sights into the neural mechanisms that could be involved
in PPS processing [16]. Thus, the lower accuracy might
occur as a consequence of a reorganization of sensory
processing networks or changes in the salience of peri-
personal stimuli as the patient’s cognitive state evolves.
These observations are critical for developing a nuanced
understanding of consciousness and its manifestations in
DOC patients, providing a foundation for future inves-
tigations into the mechanisms underlying consciousness
recovery.

On the other hand, there are other plausible explanations
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Figure 6: Median ERPs (across channels CP1, CPz and CP2)
from Session 1 (top) following combined tactile-auditory stim-
ulation and Session 2 (bottom) of Patient A. Epochs were base-
lined to the average of the 250 ms before stimulus presenta-
tion. The blue lines indicate the response to the close stimulus
(tactile-auditory close; TAC), the orange the response to the far
stimulus (tactile-auditory far; TAF). The vertical dashed line in-
dicates the timepoint of stimulus presentation. The shaded area
indicates the parametric confidence interval (95%).

for the observed low performance in the second session,
which is particularly surprising as the patient was dis-
charged shortly after and was associated with a higher
CRS-R than Session 1. Firstly, it is conceivable that the
patient may have been in a state of sleep during the sec-
ond session, akin to the absence of responsiveness we
would expect to observe if the patient was unconscious
[17, 18]. Alternatively, technical issues with the record-
ing equipment or environmental factors, the likelihood of
which increases due to the harsh experimental conditions
at bedside in an acute unit, could have influenced the
quality of the recordings and therefore the final perfor-
mance of our classifiers. Finally, the discrepancy between
the results and the CRS-R scores for each of the ses-
sions could be due to the inherent limitations of the CRS-
R themselves [19, 20], particularly as clinical underesti-
mation of conscious awareness may occur (which might
have happened in Session 1 of Patient A). However, it
is important to note that we cannot definitively conclude
which of the four scenarios is applicable in this particu-
lar case and further exploration of the larger database is
needed. The seeming contradiction of CRS-R and ERP
classification results may be resolved by including fur-
ther measures of consciousness in the analysis, such as
measures of EEG signal diversity, such as the Lempel-Ziv
Complexity [21, 22] as suggested in [7]. This measure
can be computed from the spontaneous EEG enabling us
to include this in a future analysis.
A key takeaway from our study is the recognition that re-
lying solely on data from the second session would have
led to an erroneous diagnosis for Patient A. This is par-

Figure 7: Inter-trial coherence computed for all trials of Ses-
sion 1 (top) and 2 (bottom) of Patient A. Stimulus presentation
occurred at 0.0 s. ITC was calculated for 8 frequency bands in
the range of 2-18 Hz. Epochs were baselined to the average of
the 250 ms before stimulus presentation. Colour indicates the
strength (red stronger, blue weaker) of the ITC.

ticularly evident in light of the patient’s reemergence to a
state of minimum consciousness shortly after the record-
ing of this session. Consequently, our findings align with
the perspective advocated by Wannez and colleagues [9]
regarding the necessity of conducting multiple recording
sessions over time, encompassing various times of the
day to account for circadian rhythms. This approach is
essential for accurately assessing DOC and avoiding po-
tentially misleading interpretations based on discrete ob-
servations. In essence, our study underscores the impor-
tance of adopting a longitudinal approach to clinical as-
sessments in this domain.

CONCLUSIONS

In conclusion, our study adds to the body of literature ad-
vocating in favour of conducting multiple recording ses-
sions over time when assessing DOC to minimise erro-
neous diagnoses of patients. However, it is important
to acknowledge that we are basing this stance on results
from a single patient selected from a larger dataset. In
the future, we plan to expand our analyses to the other
patients, with the aim of providing a more comprehen-
sive understanding of the factors influencing variability
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in performance and the implications for clinical practice.
By broadening our scope and methods (e.g., by including
the Lempel-Ziv Complexity measure), we can contribute
to enhancing the accuracy and reliability of diagnostic as-
sessments in this challenging area of healthcare.
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ABSTRACT: This study explores two zero-training
methods aimed at enhancing the usability of brain-
computer interfaces (BCIs) by eliminating the need for
a calibration session. We introduce a novel method
rooted in the event-related potential (ERP) domain, un-
supervised mean maximization (UMM), to the fast code-
modulated visual evoked potential (c-VEP) stimulus pro-
tocol. We compare UMM to the state-of-the-art c-VEP
zero-training method that uses canonical correlation anal-
ysis (CCA). The comparison includes instantaneous clas-
sification and classification with cumulative learning
from previously classified trials for both CCA and UMM.
Our study shows the effectiveness of both methods in
navigating the complexities of a c-VEP dataset, high-
lighting their differences and distinct strengths. This re-
search not only provides insights into the practical im-
plementation of calibration-free BCI methods but also
paves the way for further exploration and refinement. Ul-
timately, the fusion of CCA and UMM holds promise
for enhancing the accessibility and usability of BCI sys-
tems across various application domains and a multitude
of stimulus protocols.

INTRODUCTION

A brain-computer interface (BCI) records the user’s brain
activity and converts these into computer commands, of-
fering an alternative output channel that does not rely
on muscular activity. Electroencephalography (EEG) is
commonly used to record brain activity due to its afford-
ability, practicality, and non-invasiveness. The primary
application of BCIs lies in restoring lost control, particu-
larly in communication. One notable example is the vi-
sual BCI speller, where users can select symbols by fo-
cusing their gaze on them when displayed on a screen.
This technology proves invaluable for individuals facing
challenges such as amyotrophic lateral sclerosis, where
progressive loss of voluntary motor control makes speak-
ing and typing difficult [1].
Prior to BCI usage, a machine learning model capable
of classifying unseen brain signals needs to be calibrated
on labelled EEG data from the same user, as individuals
display different patterns of brain activity. Additionally,
the same user might show different patterns over multi-
ple days of use (session-to-session variability) and even

within-session non-stationarity. To mitigate any negative
effects of these confounders, the user is guided through
an initial stage to record brain activity while being in-
structed which symbol to attend to.
While a trained classification model is necessary for us-
ing the intended BCI application, the calibration record-
ing delays a deployment and may be prohibitive specifi-
cally for users with a limited attention span. In general,
the necessity of calibration may impede the acceptance
and widespread adoption of BCIs by patients and healthy
users. Encouragingly, recent advancements in BCI tech-
nology have surfaced which offer potential solutions to
alleviate this challenge.
The first advancement involves selecting an informative
brain signal feature to minimize the duration of the cal-
ibration phase. BCIs can be driven by various brain
signals, often evoked by advanced stimulus protocols.
Many popular stimulus protocols induce one or more
event-related potentials (ERPs). Among these, the visual
evoked potential (VEP), triggered by a flash, stands out.
VEP-based BCIs are widely embraced due to their effec-
tiveness across diverse user populations [2]. The VEP
can be effectively used in three different ways [3].
Firstly, in a BCI based on time-modulated VEP (t-VEP),
stimuli are sequentially presented to reduce temporal
overlap, resulting in a relatively slow paradigm. Sec-
ondly, in a frequency-modulated (f-VEP)-based BCI,
each stimulus simultaneously and rapidly flashes at a
unique frequency and phase [4]. Despite its speed, f-VEP
faces limitations due to the restricted range of narrow-
band options and potential artefacts that may obscure
signals. Thirdly, in a code-modulated (c-VEP)-based
BCI, each stimulus rapidly flashes with a pseudo-random
noise-code [5]. In this protocol, stimulus sequences
are optimized to be dissimilar, ensuring that their corre-
sponding brain activity is dissimilar as well. Remark-
ably, c-VEP BCI has recently demonstrated unprece-
dented performance [6].
The second advancement involves the choice of the de-
coding approach. In the case of c-VEP, a method was
developed, termed ‘reconvolution’, which relies on a for-
ward model embedded in a canonical correlation analysis
(CCA) [7]. This model characterizes the response to a se-
quence of flashes as the linear summation of responses to
individual flashes. This reconvolution approach substan-
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tially reduced the number of trainable parameters while
it simultaneously increased the number of samples that
were available as training data points. This not only de-
creased the required training data but also empowered the
model to predict responses to unseen stimulus sequences.
Recently, this reconvolution CCA method was shown to
achieve remarkable performances on c-VEP data event
without the need for a calibration session, by finding the
stimulus sequence that best fits the data in a trial [8].
In a recent development, a novel classification ap-
proach was introduced for ERP-based BCI. The ap-
proach, termed ‘unsupervised mean-difference maxi-
mization’ (UMM) does not require labeled calibration
data [9]. UMM does not act on every single epoch, i.e.,
the evoked response of a single stimulus, but on a set of
epochs belonging to one control command, e.g., one trial
that leads to the selection of a symbol in a spelling ap-
plication. Therefore, UMM has similarities to the afore-
mentioned CCA method. While the objective of CCA
is to maximize the explained variance, UMM identifies
an attended target symbol by maximizing the distance
between target and non-target ERPs belonging to one
trial. Diverging from the CCA method, UMM incor-
porates several regularization approaches, including the
use of block-Toeplitz covariance matrices [10] for deter-
mining domain-specific distances, and it can take advan-
tage of a built-in confidence metric. Collectively, UMM
has demonstrated impressive performance across various
ERP datasets, without the need for a training session [9].
In this study, we aim to combine the efficiency of the
c-VEP stimulus protocol and the carefully regularized
UMM approach for zero-training. This will be the first
instance that UMM is applied to c-VEP data, arguably a
much faster stimulus protocol than the conventional ERP
stimulus protocol. In the analysis, we draw a compari-
son with the CCA zero-training pipeline that was already
evaluated on c-VEP data. This study not only sheds light
on the efficacy of CCA and UMM, but also deepens our
understanding of their underlying distinct mechanisms,
unraveling insights into constructing effective BCIs for
communication and control. By eliminating the need for
a calibration session, this research paves the way for plug-
and-play BCIs, marking a significant stride towards user-
friendly and accessible BCI technology.

MATERIALS AND METHODS

Dataset: We assessed the efficacy of the CCA and
UMM zero-training approaches using an open-access
c-VEP dataset [11]. Comprehensive details about this
dataset can be found in the original study [8]. For the
current study, we only used the part of this dataset labeled
as ‘offline experiment’, in which 30 participants engaged
in a copy-spelling task. EEG data were recorded from
8 electrodes placed following the 10-10 system (Fz, T7,
O1, POz, Oz, Iz, O2, T8) amplified using a Biosemi Ac-
tive2 amplifier and sampled at a frequency of 512 Hz.
Throughout the experiment, participants interacted with

a 4 × 5 matrix speller displayed on a 12.9 in iPad Pro
with a 60 Hz refresh rate and a 1920× 1080 px resolu-
tion. The N = 20 cells within this matrix each mea-
sured 3.1 cm × 2.8 cm, with a 0.4 cm separation both hor-
izontally and vertically between cells. The cells were
presented against a mean-luminance gray background.
Each cell i ∈ {1, . . . ,N} was luminance modulated using
a unique binary stimulus sequence at full contrast, with a
1 encoding a white cell and a 0 a black cell. The stimulus
sequences were carefully chosen from an optimized sub-
set of Gold codes [12]. These sequences were modulated
such that they contained flashes of only two durations: a
short flash of 16.67 ms and a long flash of 33.33 ms. The
sequences had a length of 126 = 2 ∗ (26 − 1) bits and at
60 Hz cycling through a stimulation code once took 2.1 s.
Participants completed 5 identical runs, with each run
comprising 20 trials, one for each of the 20 cells pre-
sented in a random order. Each trial started with a 1-
second cue highlighting the target cell in green. Sub-
sequently, all cells started flashing with their respective
stimulus sequences for a duration of 31.5 s (equivalent
to 15 code cycles), during which participants maintained
fixation on the target cell. Post-trial, no feedback was
provided and the subsequent trial commenced without de-
lay. To sum up, each participant contributed 100 trials of
31.5 s, including 5 repetitions for each of the 20 stimuli.
The EEG data underwent preprocessing using Python
version 3.10.9 and MNE version 1.6.0. Initially, a notch
filter at 50 Hz was applied to eliminate line noise. This
was followed by a band-pass filter with a lower cut-off at
6 Hz and an upper cut-off at 50 Hz, which was optimized
in an initial analysis. Subsequently, the data were seg-
mented into single-trials, spanning from 500 ms before
stimulus onset to 31.5 s after stimulus onset. The dataset
was then downsampled to 180 Hz, which is a multiple
of the monitor refresh rate at 60 Hz. Finally, the initial
500 ms of data per trial, which may have caught artefacts
resulting from the initial slicing and subsequent filtering
processes, were removed.

Canonical correlation analysis (CCA): Using CCA,
let’s assume that the current trial X ∈ RC×T contains T -
many temporal features extracted from each of the C-
many channels. Here, C = 8. To decode the attended
target symbol ŷ of a new trial via CCA, each of the
i ∈ {1, . . . ,N} possible hypotheses about which cell, i.e.,
which stimulus sequence, may have represented the tar-
get, are considered. Here, N = 20.
As CCA operates at the trial level, its ith stimulus se-
quence is described by the event time-series Ei ∈ RE×T

for E-many events and T -many temporal features. Here,
we modeled E = 3 events including the two flash dura-
tions and an onset event for the sudden start of the stimu-
lation.
Subsequently, the event time-series are transformed into
a structure matrix Mi ∈ RM×T with M-many event time-
points and T -many temporal features. Let’s assume
equally long responses to each of the E events, then
M = E ∗L. Here, L = 54, which corresponds to 300 ms
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at 180 Hz. This structure matrix is a Toeplitz matrix de-
scribing the onset, duration and overlap of the responses
to each of the events in the ith stimulation sequence.
We fit a CCA model for each of the N candidate stimulus
sequences i ∈ {1, . . . ,N} by learning sequence-specific
spatial filters wi ∈ RC and temporal filters ri ∈ RM:

argmax
wi,ri

w⊤
i XM⊤

i ri

w⊤
i XX⊤wir⊤i MiM⊤

i ri
(1)

Instantaneous classification of the current trial, i.e., deter-
mining the one attended target symbol ŷ from the N = 20
symbols, is then performed by maximizing the correla-
tion, which is equivalent to the square root of the ex-
plained variance:

ŷ = argmax
i

w⊤
i XM⊤

i ri

w⊤
i XX⊤wir⊤i MiM⊤

i ri
(2)

Alternatively to this instantaneous CCA, CCA can learn
across trials. Specifically, previous trials can be included
to improve the estimates for the current trial, as described
in [8]. Equation 1 can be formulated using the spatio-
temporal cross-covariance ΣΣΣXMi ∈ RC×M , the spatial co-
variance ΣΣΣX ∈ RC×C and the temporal covariance ΣΣΣMi :

argmax
wi,ri

w⊤
i ΣΣΣXMiri

w⊤
i ΣΣΣXwir⊤i ΣΣΣMiri

(3)

The estimation of these covariance matrices can be im-
proved by accumulating the data X and predicted struc-
ture matrix Mŷ of the previous trial(s). This cumulative
CCA is an optimistic one, as it assumes that previous tri-
als were classified correctly (i.e., naive labeling).
In summary, in this work, we applied two versions of
CCA. For both we used the empirical covariance matrix
identical to the original work [8]. The first version, de-
noted CCA_e1, was instantaneous and estimated the co-
variance from the current trial only. The second version,
denoted CCA_ec, was cumulative and used previous tri-
als for covariance estimation to facilitate decoding of the
current trial. Code for the CCA approach is available at
https://github.com/thijor/pyntbci.

Unsupervised mean-difference maximization (UMM):
Using UMM, we first slice the current trial into the con-
tained K-many epochs, which are synchronized to each
bit in the stimulus sequences, i.e., the monitor refresh rate
at 60 Hz.
Let’s assume that an epoch x ∈ RD is described by a D-
dimensional feature space, which contains T -many tem-
poral features extracted from each of the C-many chan-
nels, i.e., D =C ∗T . Here, C = 8 and T = 54 for epochs
of 300 ms long at 180 Hz. To decode the attended tar-
get symbol ŷ via UMM for the current trial, each of the
i ∈ {1, . . . ,N} possible hypotheses about which cell may
have represented the target, are considered. Here, N = 20.
For every possible hypothesis i ∈ {1, . . . ,N} we then esti-
mate the mean-difference vector ∆µµµ i ∈ RD, which is the
difference between the flash ERP and non-flash ERP:

∆µµµ i =
1

|A+
i |

∑
j∈A+

i

x j −
1

|A−
i |

∑
j∈A−

i

x j (4)

where x j ∈ RD is the D-dimensional EEG feature vec-
tor of the j-th epoch, and A+

i and A−
i denote the sets of

epochs for which a flash was either presented (bit is 1) or
not (bit is 0) under the current hypothesis of i being the
target stimulus sequence.
Instead of determining the attended symbol of the current
trial by maximizing the Euclidean distance between flash
and non-flash ERPs across all N-many hypotheses, the
metric is first normalized using the inverse of the global
feature covariance matrix ΣΣΣ ∈ RD×D to better cope with
non-spherical feature distributions in the feature space
RD, known as the Mahalanobis distance:

ŷ = argmax
i
(∆µµµ i)ΣΣΣ

−1(∆µµµ i) (5)

Please note that the covariance matrix can be estimated
based on the epochs of the current trial only, which makes
UMM an instantaneous decoding approach that does not
require calibration data. Due to the challenging ratio of
the feature dimensionality and the number of epochs con-
tained in a single trial, we used a block-Toeplitz regular-
ization with tapering to obtain a more robust estimate of
the covariance matrix [10].
Alternatively to this instantaneous use of UMM, know-
ledge from previous trials about both, the estimated class
means and the covariance matrix can be included for ob-
taining improved estimates for the current trial, as de-
scribed in [9]. Specifically, as the covariance matrix
can be calculated without label information the covari-
ance matrix can more robustly be estimated by also using
epochs from previous trials [9]. A similar approach can
be used to more robustly estimate the flash and non-flash
ERPs, by using information from previous trials. How-
ever, for this, label information is required. UMM simply
uses its own predictions from previous trials as pseudo la-
bels (sometimes also referred to as naive labeling). This
approach is made more robust, by weighting the mean
estimates from previous trials by UMM’s confidence in
these previous trials [9]. Specifically, if UMM is very
certain of its own prediction, these ERP means will have
more weight in later trials and vice versa.
In summary, for this work, we used two versions of
UMM. For both versions we used the block-Toeplitz
regularized covariance matrix. The first version, denoted
UMM_t11, is instantaneous by estimating the covariance
and means only from the current trial. The second ver-
sion, denoted UMM_tcw, is cumulative by using previ-
ous trials to facilitate decoding of the current trial. For an
overview of all method’s abbreviations used, please refer
to the legend of Fig. 1. Code for the UMM approach is
available at: https://github.com/jsosulski/umm_
demo.

Analysis: This study assessed the effectiveness of CCA
and UMM in classifying c-VEP data without calibra-
tion, including both an instantaneous approach, where tri-
als are classified without any prior calibration (CCA_e1,
UMM_t11), and a cumulative approach, where trials are
classified while leveraging information from previously
analyzed trials (CCA_ec, UMM_tcw).
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Figure 1: Bandpass hyper-parameters for CCA and UMM. Depicted are the grand average classification accuracy for CCA and
UMM across varying highpass (left) and lowpass (right) cutoff values. Here, a single-trial duration of 31.5 s is used. When varying the
highpass, the lowpass remained at 40 Hz, and when varying the lowpass, the highpass remained at 6 Hz. In order, the symbols behind a
method refer to: the type of covariance matrix being empirical (e) or block-Toeplitz (t); covariance matrices computed instantaneously
(1) or cumulative (c); and the mean vectors (of UMM) computed either instantaneously (1) or using a weighted cumulative average
(w). The dashed gray line denotes the theoretical chance level (5%).

As previously mentioned, we first varied the cutoff fre-
quency of the highpass and lowpass filter in the bandpass
spectral filter used for preprocessing, to explore the in-
fluence of these hyper-parameters on the performance of
the analyzed methods. For the highpass we tested 0.1,
0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0 and 12.0 Hz, for a to-
tal of 9 evaluations, all with a lowpass at 40 Hz. For the
lowpass we tested 10 to 90 Hz in 10 Hz increments, for a
total of 9 evaluations, all with a highpass at 6 Hz. These
evaluations were always carried out using the full trial
durations of 31.5 s. Recognizing that each method may
respond uniquely to these variations, our final compara-
tive analysis focused on the bandpass cutoff frequencies
that resulted in the highest classification accuracy.
To assess the methods, we generated decoding curves by
varying trial durations from 1.05 s (half a code cycle)
to 10.5 s (5 code cycles) in 1.05 s increments, and from
10.5 s to 31.5 s in 2.1 s increments, for a total of 20 de-
coding time steps. Across these time steps, the number
of bits ranged from 63 to 630 in 63-bit increments, and
630 to 1.890 in 126-bit increments, directly correspond-
ing to the available epochs for UMM at each decoding
time step. Because modulated Gold codes have an equal
number of ones and zeros, the number of flash and non-
flash epochs were always equal or deviated at most by
1 when using half a code cycle, for any of the stimulus
sequences. In this analysis, a bandpass filter of 6–50 Hz
was used, as it turned out optimal for all methods.
In this study, all statistics were carried out using a one-
sided paired Wilcoxon signed-rank test to test for a larger
classification accuracy of one versus another method.
The significance level was set to α = 0.025. Reported
p-values were not corrected for multiple comparisons.

RESULTS

In this study, we assessed the performance of two
calibration-free methods when applied to c-VEP data.
These methods, CCA and UMM, were evaluated as an in-
stantaneous version that classified each new trial without
prior information, treating it as the first, and a cumula-

tive version that learned from the insights gained through
previously classified trials.
Acknowledging the potential for each method to ex-
hibit distinct responses to varying bandpass filter hyper-
parameters, our initial focus involved determining the op-
timal hyper-parameters for each method. The classifica-
tion accuracy of 31.5-second trials across different cutoff
frequencies and methods is illustrated in Fig. 1.
In the highpass analysis (Fig. 1, left side), it was evi-
dent that CCA is more sensitive to a low highpass value
than UMM. For both CCA’s instantaneous and cumu-
lative versions, a decline in accuracy was observed for
highpass values below 2 Hz. In contrast, UMM appeared
to be less affected. In the pursuit of the highest accu-
racy, CCA_ec achieved a classification accuracy of 0.97
at 2 Hz, CCA_e1 0.96 at 6 Hz, UMM_tcw 0.94 at 4 Hz,
and UMM_t11 0.89 at 2 Hz. When adopting a common
highpass at 6 Hz for all methods, the methods still at-
tained these peak performances.
In the lowpass analysis (Fig. 1, right side), an inverse
trend emerged, revealing that UMM is more sensitive
to the lowpass value than CCA. Specifically, UMM
achieved a peak performance only when the lowpass
value was set no lower than 40 Hz, whereas for CCA,
this peak was already attained at 20 Hz. In the pursuit
of optimal performance, we identified a peak classifica-
tion accuracy of 0.97 at 20 Hz for CCA_ec, 0.96 at 30 Hz
for CCA_e1, 0.94 at 50 Hz for UMM_tcw, and 0.89 at
50 Hz for UMM_t11. When applying a common low-
pass at 50 Hz for all methods, they continued to operate
at these peak performance levels.
The above mentioned results led to the selection of a com-
mon passband set to 6 to 50 Hz. We then continued ana-
lyzing the behavior of the different methods by estimating
so-called decoding curves that show the classification ac-
curacy across different amounts of data available in each
single-trial, see Fig. 2.
From these decoding curves, two general trends could
be identified. Firstly, the cumulative versions of both
methods (CCA_ec and UMM_tcw) outperformed their
instantaneous counterparts (CCA_e1 and UMM_t11).
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Figure 2: Decoding curve for CCA and UMM. Depicted are the grand average classification accuracy for CCA and UMM across
varying single-trial durations. Here, a bandpass of 6-50 Hz is used. For a definition of method names, see 2. The dashed gray line
denotes the theoretical chance level (5%).

Secondly, overall, the CCA methods (CCA_ec and
CCA_e1) outperformed the UMM methods (UMM_tcw
and UMM_t11). For an overview of the classification ac-
curacy at some time points, please see Tab. 1.

Table 1: Classification accuracy. Listed are the grand average
accuracy reached by the four methods at distinct trial durations.

1.05 s 2.1 s 4.2 s 10.5 s 31.50 s

CCA_ec 0.24 0.52 0.86 0.96 0.97
CCA_e1 0.06 0.29 0.59 0.85 0.96
UMM_tcw 0.13 0.39 0.75 0.94 0.94
UMM_t11 0.09 0.19 0.37 0.69 0.89

The cumulative CCA method (CCA_ec) achieved an ac-
curacy of 0.24 at the smallest trial duration of 1.05 s
(half a code cycle) and 0.52 at 2.1 s (one code cycle).
At these two early time points, CCA_ec did not signif-
icantly outperform UMM_tcw, which reached 0.13 and
0.39, respectively. At all further time points, CCA_ec
did significantly surpass UMM_tcw. At the maximum
trial length of 31.5 s, CCA_ec achieved a classification
accuracy of 0.97, significantly outperforming UMM_tcw,
which achieved 0.94.
The instantaneous CCA method (CCA_e1) achieved a
performance of 0.06 at 1.05 s, while the instantaneous
UMM (UMM_t11) reached 0.09. At this time point,
UMM_t11 significantly outperformed CCA_e1. Instead,
at any further time point CCA_e1 significantly surpassed
the accuracy of UMM_t11. At the maximum trial length
of 31.5 s, CCA_e1 reached a classification of 0.96 which
was significantly higher than UMM_t11 with 0.89.
The cumulative versions always outperformed the instan-
taneous version for both CCA and UMM. Notably, the
instantaneous CCA (CCA_e1) performed almost on par
with its cumulative version (CCA_ec) for trials longer
than 25.2 s. Specifically, at 27.3 s, CCA_e1 reached an
accuracy of 0.95 while CCA_ec reached 0.97, which was
not significantly higher. Also at the 29.4 and 31.5 s trials,
CCA_ec did not significantly surpass CCA_e1.

DISCUSSION

We introduced UMM to c-VEP BCI, a calibration-free
method originating from the ERP domain. We conducted

a systematic offline comparison with the conventional
c-VEP method employing CCA. Both methods under-
went evaluation in an instantaneous manner, classifying
each single trial without prior knowledge, as well as in
a cumulative way, utilizing previously classified trials
as training data. The ultimate goal was to establish a
c-VEP BCI with enhanced usability and broader adop-
tion potential by eliminating the initial calibration ses-
sion. We gave both methods access to EEG data only
that would be available in an online experiment such that
we don’t expect a major problem for online use. For
CCA approaches, online performance was reported in [8]
where the non-instantaneous version matched a super-
vised model after a warm-up period.
Both the conventional method, CCA, and the novel ap-
proach, UMM, hinge on the principle that selecting a sin-
gle symbol from a set of candidate symbols is consid-
erably simpler than the reconstructing the entire stimu-
lus sequence. Using 20 symbols in this study, one has
to evaluate 20 candidate stimulus sequences only for a
symbol selection. In contrast, the exhaustive reconstruc-
tion of the stimulus would invole an exponential growth,
reaching 260 potential sequences for a 1-second stimulus
at a presentation rate of 60 Hz.
Without involving a calibration session, the cumulative
CCA already reached higher than 90 % performance for
trials of 5.25 s, with the cumulative UMM just behind
reaching a similar performance at 7.35-second trials. De-
spite CCA regularly outperforming UMM, astonishingly,
these results demonstrate that UMM performs rather
well, despite not being optimized for c-VEP data.
Furthermore, we demonstrated the capability of instan-
taneous classification, where CCA reached higher than
90 % accuracy at 14.70-second trials and UMM 89 %
at 29.40 s. Instantaneous decoding does not learn from,
or consider in any way, previous trials. Under station-
ary conditions, this scarcity of data may not allow the
model to reach peak performance. On the other hand,
non-stationary feature distributions like latency- or am-
plitude changes of ERP components over time, will likely
not affect instantaneous decoding, while models mainly
trained on data collected before the appearance of such
feature drifts may suffer from performance degradation.
Both CCA and UMM make different assumptions and ex-
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ploit them. These assumptions may be met by different
datasets to various degrees. For instance, CCA strongly
leverages the sequential structure and large overlap be-
tween responses to adjacent stimuli in c-VEP datasets.
Additionally, the event definition used focusses on the
target ERP while discerning between ERPs associated
with short and long flashes, but more and different event
types can easily be implemented. Furthermore, UMM
maintains its operations within the original EEG feature
space, whereas CCA operates in the component space.
In contrast, UMM searches for the stimulus sequence
with the largest target to non-target ERP distance, poten-
tially rendering it less susceptible to slow drifts in the
data, as evidenced by the highpass analysis. Besides,
CCA uses the empirical covariance matrix, which can be
challenging to estimate with limited data, while UMM
employs domain-specific regularization techniques such
as shrinkage and a block-Toeplitz covariance matrix [10].
Lastly, in the non-instantaneous UMM formulation, ERP
mean estimates are improved using previously classified
trials, by carefully weighting mean updates based on the
confidence of each previous trial. Gaining a compre-
hensive understanding of the strengths and limitations of
both methods bears the potential to develop refined ver-
sions tailored to specific characteristics of novel datasets
through thoughtful hyper-parameterization.
Essentially, CCA and UMM necessitate a specific stim-
ulus protocol involving repetitions, and both require
knowledge about the precise timing and sequence of
stimuli within a single trial (i.e., the selection of one sym-
bol). While such information is typically available in BCI
protocols using evoked responses, it may not seamlessly
extend to other protocols like those based on sensorimo-
tor rhythms. Moreover, these decoding methods are only
applicable for benchmarks if the sequence information is
provided, as demonstrated in MOABB [13]. This charac-
teristic classifies the studied CCA and UMM methods as
semi-supervised, given that stimulus information is requi-
site, while label information is not required.

CONCLUSION

We showed that both CCA and UMM offer the poten-
tial to eliminate the necessity for a calibration session,
thereby enhancing the usability for BCI applications, es-
pecially when integrated with the c-VEP protocol. These
findings mark an initial stride toward combining the ro-
bust capabilities of machine learning methods across di-
verse domains. They inspire the exploration of their
cross-application and cross-pollination, unlocking new
possibilities for advancing BCI technologies.
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ABSTRACT: Auditory attention decoding (AAD) aims
to extract from brain activity the attended speaker amidst
candidate speakers, offering promising applications for
neuro-steered hearing devices and brain-computer in-
terfacing. This pilot study makes a first step towards
AAD using the noise-tagging stimulus protocol, which
evokes reliable code-modulated evoked potentials, but is
minimally explored in the auditory modality. Partici-
pants were sequentially presented with two Dutch speech
stimuli that were amplitude-modulated with a unique
binary pseudo-random noise-code, effectively tagging
these with additional decodable information. We com-
pared the decoding of unmodulated audio against audio
modulated with various modulation depths, and a con-
ventional AAD method against a standard method to de-
code noise-codes. Our pilot study revealed higher perfor-
mances for the conventional method with 70 to 100 per-
cent modulation depths compared to unmodulated audio.
The noise-code decoder did not further improve these re-
sults. These fundamental insights highlight the potential
of integrating noise-codes in speech to enhance auditory
speaker detection when multiple speakers are presented
simultaneously.

INTRODUCTION

People suffering from hearing loss often have great dif-
ficulty in scenarios in which multiple individuals are
speaking simultaneously, known as the ‘cocktail party
scenario’, something which normal hearing persons have
no difficulties with [1]. In these scenarios, hearing aids
are not able to provide a good solution, as even though
they are capable to suppress background noise, they
are less capable of suppressing the unattended speakers.
Some hearing aids attempt to mitigate this problem by
using a heuristic, for example by enhancing the loudest
or closest speaker, or the one who stands right in front of
the listener. Unfortunately, these heuristics often lead to
selecting the wrong speaker in real-life scenarios.
As an alternative, auditory attention decoding (AAD)
aims to decode the attended speaker from neural activity,
as the synchronization between the listener’s brain sig-
nals and the attended speech envelope is stronger than
with the ignored speech envelope [2]. This finding laid
the groundwork for more research on hearing aids that
allow for cognitive control, so called neuro-steered hear-

ing aids [3]. These hearing aids aim to identify the at-
tended speaker from neural activity, and correspondingly
enhance this speaker’s audio signal whilst simultaneously
suppressing the other speakers and background noise.
The main idea behind such AAD approaches is to match
the speech signals to the neural activity which synchro-
nizes with the attended speech signal. For practical
reasons typically electroencephalography (EEG) is used.
Most AAD algorithms follow a stimulus reconstruction
approach, also referred to as backward modeling or de-
coding. In this approach, the attended speech envelope
is reconstructed from the EEG using a neural decoder,
before the speaker whose envelope has the highest sim-
ilarity with the reconstructed envelope is assumed to be
the attended speaker [4]. Another approach is forward
modeling or encoding, in which the objective is to pre-
dict the neural response from the speech envelopes via an
encoder, and to compare these against the EEG [5, 6].
A third approach, sometimes referred to as the hybrid
approach, combines decoding and encoding, by trans-
forming both the speech envelopes and the EEG to min-
imize the irrelevant variance [7, 8]. Using such a hybrid
approach, Geirnaert and colleagues [3] achieved a re-
markable performance using canonical correlation anal-
ysis (CCA) to decode the attended speaker. Presenting
audio from two simultaneous speakers, a mean accuracy
of about 85 % was reached using 30 s decision windows.
However, when decreasing the decision window length to
about 10 s, the accuracy quickly dropped to below 80 %.
This poses a significant limitation for real-world scenar-
ios where fast speaker detection is crucial.
Framing the speaker decoding problem as detecting
which of several stimuli a person is attending to, another
paradigm from the brain-computer interfacing (BCI) field
recently reached remarkable performances. Specifically,
the locus of visual attention can be decoded from EEG
data using the code-modulated visual evoked potential
(c-VEP). A c-VEP is the EEG response to pseudo-
random visual stimulation sequences where stimuli are
watermarked using noise-codes, a protocol called noise-
tagging [9]. These noise-codes are selected or even opti-
mized to be dissimilar, such that attending to one noise-
code evokes substantially different brain activity than
when attending to another code, facilitating the decoding
of the attended stimulus. Such c-VEP BCIs have been
reaching state-of-the-art performances up to 100 % clas-
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sification accuracy using 1–4 s decision windows [10] or
recently even within 300 ms [11] and a high number of
stimuli, 29 and 40, respectively.
This study aims to create fundamental insights in the ap-
plication of the noise-tagging protocol for auditory atten-
tion decoding. This can be realized through “watermark-
ing” the speech signal with the pseudo-random noise-
codes. To accomplish this, we propose modulating the
amplitude of each speech audio with the amplitude of a
unique noise-code, effectively embedding the noise infor-
mation within the speech signal. In turn, not only can we
decode the attended speaker based on the speech enve-
lope, but we can also leverage the hidden noise-tags for
enhanced speaker identification.
In this pilot study, we make the first step towards auditory
attention decoding using noise-tagging. Firstly, we aim
to assess the feasibility of decoding the code-modulated
auditory evoked potential (c-AEP), the response to au-
ditory noise-tagging. Therefor, we use sequential pre-
sentation, i.e., only one stimulus is presented at a time.
Secondly, in this work we compare various modulation
depths against no modulation. Thirdly, we compare how
decoding approaches based on the speech envelope and
noise-tag compare in terms of classification accuracy.
Successful implementation could make the step towards
improving the decoding accuracy and speed in identify-
ing the attended speaker. Furthermore, this exploration
may pioneer a novel research avenue for the application
of code-modulated responses in the auditory domain, a
domain that has seen limited application compared to
the visual modality, as so far only one study attempted
this [12].

MATERIALS AND METHODS

Participants: Five participants (aged 19–31 years, av-
erage 23 years, 3 females and 2 males) participated in the
pilot experiment. Two of these participants were authors
of this study. All participants gave written informed con-
sent prior to the experiment. The experimental procedure
and methods were approved by and performed in accor-
dance with the guidelines of the local ethical committee
of the Faculty of Social Sciences of Radboud University.

Materials: The EEG data were recorded at a sample
rate of 500 Hz with 64 active electrodes placed according
to the 10-10 system and amplified by a BrainAmp (Brain
Products GmbH) amplifier. The EEG data were prepro-
cessed with a non-causal FIR notch filter at 50 Hz and a
bandpass filterbetween 1 and 20 Hz before resampling to
120 Hz.For filtering, the default settings were used from
the MNE toolbox, version 1.6.1 [13].
The auditory stimuli were two Dutch short stories [14],
narrated by two different male speakers and recorded at
44100 Hz. They lasted approximately 6.5 min each and
were a subset of the stimulus materials used by Das and
colleagues [15]. Periods of silence exceeding 500 ms
were truncated to 500 ms. The stimuli were normalized
for loudness and presented dichotically to participants via

headphones, with one story consistently presented to the
left and the other to the right ear.
We used two 126-bit binary pseudo-random noise-codes
from a family of modulated Gold codes [16, 17] to
amplitude-modulate the audio. The codes come in sets
that are maximally uncorrelated with each other and each
time-shifted versions of themselves. The codes were
modulated to include only short (‘010’) and long (‘0110’)
events. From the available modulated Gold codes, we
carefully selected one that started with a 1, ended with
a 0, and exhibited an almost uniform distribution of
short and long events. The second code was a 61-bit
phase-shifted version of the first. In this way, the noise-
codes had identical properties, while minimizing auto-
correlation at a maximum delay. The codes were pre-
sented at a bit rate of 40 Hz, and we always used the first
code to modulate audio for the left ear, while the second
code was always used to modulate audio for the right ear.
The two stories were presented in their original form,
or subjected to amplitude modulation using the binary
noise-codes, as shown in Fig. 1. At full modulation depth,
i.e. 100 percent, further denoted as condition 100, the
audio was directly multiplied with the bit sequence, re-
sulting in undisturbed audio when the noise-code is 1
and complete audio suppression when the code is 0. To
avoid potential speech unintelligibility, smaller modula-
tion depths were also tested. For instance, at modulation
90, the audio was dampened by 90 % when the code is 0
and otherwise retained. We tested five modulation condi-
tions: 100, 90, 70, 50, and 0. In other words, condition
0 denotes the unmodulated audio. To address the abrupt
bit transitions of the binary codes, we smoothened their
edges with a raised cosine function, see Fig. 1.

Experiment: During the experiment, participants com-
pleted five runs, each corresponding to a distinct modula-
tion condition. The order of conditions was randomized
over participants. During a run, two trials were presented,
one for each of the two stories, starting with the first story
delivered to the left ear accompanied by silence on the
right, followed by the second story presented to the right
ear with silence on the left. The stories were presented
sequentially, to assess the feasibility of auditory noise-
tagging before testing the more complex parallel case,
where stories would be presented simultaneously.
Throughout a run, a fixation cross was displayed on a
mean-luminance gray background at the center of a mon-
itor, positioned approximately 70 cm in front of the par-
ticipant. Each run started with a 5 s rest, followed by a 1 s
cue that indicated the to-be attended side, succeeded by
the audio presentation. Participants could take self-paced
breaks between runs.

Analysis: The classification of the attended speech in
this work was done using two approaches, the conven-
tional envelope CCA (further denoted as eCCA) in which
only the information of the envelope of the speech sig-
nals is used, and reconvolution CCA (further denoted as
rCCA), in which both the envelope as well as the noise-
codes is used. Both approaches can be applied for the
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Figure 1: Visualization of three different modulation depths using noise-tagging. Depicted is the unmodulated audio, i.e., 0 percent
(blue), and 50 (gold) and 100 (brown) percent modulated audio. Additionally, shown are the smoothened noise-tags used for modulation
(black). Audio was amplitude-modulated by multiplying with the noise-code, retaining full audio amplitude when the code is 1, while
only a percentage when it is zero. Therefore, the noise-code for 50 percent modulation ranges between 0.5–1, instead of 0–1 for 100
percent modulation. To ease comparison, we added the original audio (light gray) at the back of the modulated audio.

modulated audio and corresponding data, however only
the eCCA approach can be applied on the unmodulated
audio condition as here no code information is available
for rCCA. The eCCA is based on the implementation by
Geirnaert and colleagues [3]. The use and implemen-
tation of rCCA follows the work by Thielen and col-
leagues [10].
For demonstrating full selective attention, a parallel pre-
sentation of stimuli would be required. However, in this
pilot study we aimed to make the first step towards audi-
tory noise-tagging, hence the stimuli were presented se-
quentially. Specifically, when a stimulus was presented
to the left ear there was no stimulus presented to the right
ear, and vice versa. To evaluate the models, we did how-
ever simulate as if the other stimulus of the same con-
dition was presented to the unattended ear, leading to a
two-class problem.
Both methods make use of envelope information, which
were obtained as follows: the modulated and unmodu-
lated speech signals were each first filtered by a gam-
matone filterbank resulting in 15 frequency subbands for
each speech stimulus [18]. Then, for each subband the
absolute value was taken, followed by a power-law com-
pression of 0.6. Next, each subband was lowpass fil-
tered at 20 Hz and resampled to 120 Hz, which were a
factor and multiple of the 40 Hz bitrate of the noise-
code, respectively. Finally, for each stimulus all subbands
were summed, with equal weights, to obtain the stimulus-
specific envelopes.
For model evaluation within a single condition, we cre-
ated four partitions of the data. Specifically, we divided
the two 6.5-minute trials into four chronological seg-
ments and allocated one segment of each trial to one
partition. These four partitions were used for 4-fold
cross-validation. This resulted in training and test sets of
9.45 min and 3.15 min, respectively, that had a balanced
label distribution.
During the testing of a particular model for a condition,
a sliding window was moved over the test data of one
class with a stride of 2 samples. To test the sensitivity to
data availability, we tested increasing decision window

lengths of τ 1, 2, 5, 10, 20, 30 and 60 s. The analy-
sis yielded results per sliding window and folds, both of
which were averaged to obtain the accuracy of one model
in one condition at one decision window length for each
participant.
In the following two sections, we explain the two decod-
ing approaches, starting with the eCCA method followed
by the rCCA.

Envelope CCA: The eCCA approach aims to find a
direct correspondence between the EEG data and the
speech envelope to detect the attended speaker. Let’s
assume EEG data X ∈ RC×T of C-many channels (here
C = 64) and T -many samples (here T is one segment
size). Additionally, let’s assume the speech envelope
Ai ∈ RL×T for the ith speaker with L time-lagged en-
velopes (here L = 60 for 500 ms at 120 Hz) of T -many
samples each. Then, eCCA optimizes a spatial fil-
ter w ∈ RC and a temporal filter r ∈ RL such that
the projected data and envelope are maximally corre-
lated. Let’s assume we have a labeled training dataset
{(X1,y1),(X j,y j), . . . ,(XJ ,yJ)} with J segments. Then,
CCA optimizes the following correlation ρ:

argmax
w,r

ρ(w⊤S,r⊤Z) (1)

where S = [X1,X j, . . . ,XJ ] are the concatenated training
EEG segments, and Z = [Ay1 ,Ay j , . . . ,AyJ ] are the ac-
companying concatenated speech envelopes.
To classify new data X ∈ RC×T (here T = τ the deci-
sion window length), eCCA chooses the candidate speech
envelope that maximizes the correlation ρ between the
spatially filtered EEG data and the projected speech en-
velopes:

ŷ = argmax
i

ρ(w⊤X,r⊤Ai) (2)

Instead of using the first component only, as in Eq. 2, us-
ing multiple components can improve classification accu-
racy but requires an additional classification model, e.g.,
a linear discriminant analysis (LDA) [3]. Specifically,
CCA can deliver K = min(C,L) orthogonal components,
ordered on decreasing canonical correlation. The k-th
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component contributes a spatial filter wk and temporal fil-
ter rk, and delivers a Pearson’s correlation coefficient ρki
following Eq. 2. These correlation coefficients across K
components (here K = 3) are collected in a vector ρρρ i for
speaker i, and a feature vector f is created by subtracting
the speakers’ canonical correlation vectors, f = ρρρ1 −ρρρ2.
The low-dimensional feature vector f can then be classi-
fied using a vanilla LDA, solving a binary classification
problem of whether speaker 1 or speaker 2 was attended.

Reconvolution CCA: The rCCA approach consists of
a template-matching classifier that predicts the attended
speaker given the neural response evoked by the binary
noise-code. The reconvolution model is based on the su-
perposition hypothesis, stating that the response to a se-
quence of events is the linear summation of the responses
evoked by the individual events [17].
For the reconvolution, the event time-series Ei ∈ RE×T

for E-many events and T -many samples (here T is one
segment size) denotes the onsets of the E events for the
ith noise-code. In this work, we used E = 2 events being
the short and long events in the noise-codes.
The event matrix is mapped to a structure matrix Mi ∈
RM×T for M-many event time points and T -many sam-
ples. This matrix maps each event to an impulse response
function. Specifically, this matrix is Toeplitz-like and de-
scribes the onset, duration, and importantly the overlap
of each of the events. Assuming both events evoke a re-
sponse of identical length L, then M = E ∗L (here L = 60
for 500 ms at 120 Hz).
In this work, we extend the standard rCCA model from
Thielen and colleagues [10] to incorporate envelope in-
formation. This is a crucial step, because a 1 in the code
does not necessitate that there was audio in the stimulus.
By incorporating the envelope and combining these with
the events in the structure matrix, it can be avoided that
an event is expected even though there was an audio am-
plitude of zero in the speech signal at that time. This is
achieved by element-wise multiplying the event matrix
Ei by the amplitudes of the envelope Ai, before mapping
the event matrix to a Toeplitz-like structure matrix.
Let’s assume we have a training dataset
{(X1,y1),(X j,y j) . . . ,(XJ ,yJ)} including the labeled
EEG data for j ∈ {1, ...,J} trials with the EEG data
X ∈ RC×T of C-many channels and T -many samples and
the associated binary label y ∈ {0,1}. To find the optimal
spatial filter w and temporal response vector r, a CCA
maximizes the correlation ρ in the projected spaces:

argmax
w,r

ρ(w⊤S,r⊤D) (3)

where S = [X1,X j, . . . ,XJ ] are the concatenated single
trials and D = [My1 ,My j , . . . ,MyJ ] are the concatenated
accompanying structure matrices.
To classify new data X ∈ RC×T (here T = τ is the deci-
sion window length), rCCA maximizes the correlation ρ

between the spatially filtered data and the projected struc-
ture matrix that contains the speech envelope:

ŷ = argmax
i

ρ(w⊤X,r⊤Mi) (4)

In this work, for rCCA, we only used the first CCA
component for classification similar to the application of
rCCA in the visual domain [10].
The code for the reconvolution CCA approach is avail-
able at https://github.com/thijor/pyntbci.

RESULTS

This work aimed to investigate fundamental insights in
the application of noise-codes for auditory attention de-
coding. Two different methods were studied: eCCA
which used the speech envelope; and rCCA which lever-
aged the noise-codes. In total, five conditions were used,
from audio without modulation (0), to those with increas-
ing modulation depths (50, 70, 90), to audio with full
amplitude modulation (100). To investigate the speed of
the models, sliding decision windows of length τ rang-
ing from 1 to 60 s were used during testing. The mean
classification accuracy for all conditions and both models
per decision window length is shown in Fig. 2. For an
overview of the decoding accuracy for several decision
window lengths, see Tab. 1.

Table 1: Classification accuracy. Listed are the grand aver-
age accuracy for the modulation conditions and both methods
at decision window lengths τ of 1, 10, 30, and 60 s. Bold val-
ues indicate which method (eCCA or rCCA) reached a higher
absolute accuracy within that decision window for a particular
condition.

τ 1 s 10 s 30 s 60 s

0 eCCA 60.4 80.7 93.2 98.2

50
eCCA 58.3 80.2 89.9 96.4
rCCA 61.7 80.4 89.6 96.4

70
eCCA 63.7 83.0 96.1 100.0
rCCA 61.7 84.7 96.4 99.6

90
eCCA 66.7 89.4 95.7 97.1
rCCA 59.1 75.6 86.0 90.8

100
eCCA 69.2 94.2 99.6 100.0
rCCA 59.6 81.0 94.7 99.0

The eCCA method applied to the unmodulated condition
(0), which was the baseline in this study, reached a 60 %
decoding accuracy for a 1 s decoding window, 80.7 % for
10 s, 93.2 % for 30 s, and 98.2 % for 60 s. Also using
eCCA, but with the 100 modulation, the highest abso-
lute decoding performance was reached for all decision
windows; 69.2 %, 94.2 %, 99.6 %, and 100.0 % for 1, 10,
30, and 60 s respectively. Modulation condition 90 per-
formed better than 0 for all decision window lengths ex-
cept 60 s, where it reached 97.1 %. The 70 modulation
performed better than 0 modulation for all decision win-
dows. Lastly, modulation condition 50 reached lower per-
formances than 0 modulation for all decision windows.
When using rCCA and comparing absolute values, it was
observed that the 70 modulation condition performed best
for all decision window lengths, whereas 90 modulation
performed the worst. The 100 modulation performed
worse than 70 modulation but overall better than 50 mod-
ulation. For example at τ = 30 s and ordered at increasing
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Figure 2: Decoding accuracy across decision window length and modulation depth. Depicted is the grand average classification
accuracy across decision window length τ . Colored lines represent the five modulation conditions: 100 (blue), 90 (orange), 70 (green),
50 (red), and 0 (pink). Solid lines show the performance of rCCA and dashed lines for eCCA. The dashed horizontal gray line depicts
theoretical chance level accuracy (50%).

accuracy, 90 modulation reached 86.0 %, 50 modulation
89.6 %, 100 modulation reached 94.7 %, and 70 modula-
tion achieved a performance of 99.6 %.
When comparing the absolute performance values for
eCCA against rCCA, it can be observed that the 100 and
90 modulation conditions reached higher performances
with eCCA, for all decision windows. For modulation
conditions 70 and 50, rCCA reached overall on par per-
formances as eCCA.
When comparing the absolute performance values of
eCCA on the unmodulated condition (0) and the modula-
tion conditions using rCCA, it can be observed that the 70
modulation condition (with rCCA) achieved higher per-
formances than the unmodulated condition (with eCCA)
for all decision window lengths. For example, for
τ = 10 s, 80.7 % was reached for 0 modulation with
eCCA and 84.7 % for 70 modulation with rCCA, and for
τ = 30 s 93.2 % and 96.4 %, respectively. The 100 mod-
ulation with rCCA reached higher performances than 0
modulation for decision window lengths of τ ≥ 10 s. The
90 modulation condition with rCCA performed worse
than 0 modulation with eCCA for all decision window
lengths. For the 50 modulation condition with rCCA, the
0 modulation with eCCA reached higher performances,
although for some decision windows rCCA reached an
on par or somewhat higher performance, for example for
τ = 1 s 50 modulation with rCCA reached 61.7 % and 0
modulation with eCCA 60.4 %.
In general, using longer decision window lengths τ was
beneficial for the decoding performance of both methods
for all conditions.

DISCUSSION

This preliminary work aims to contribute to our under-
standing of fundamental protocol design decisions when
noise-tagging is integrated to perform AAD. We argue
that noise-tagging may provide additional information to
the audio which could enhance AAD performance. In this

pilot study with sequential presentation of the stimuli, we
studied five modulation conditions for the speech signals
and compared two CCA-based decoding approaches. The
results showed that the envelope CCA (eCCA) method
achieved higher performances with full modulation than
without modulation, while the alternative reconvolution
CCA (rCCA) preferred a 70 percent modulation intensity
to reach peak performance.
For all decision window lengths, the 100 and 70 mod-
ulation conditions performed better than the unmodu-
lated condition for eCCA. It could be speculated that this
is due to the modulation adding distinctive uncorrelated
high-frequency content. Generally, a 1-9 Hz range was
found most informative for cortical tracking of speech en-
velopes [15]. Arguably, adding the noise-tags at a 40 Hz
bitrate increases the envelope’s frequency range, which
could increase the speed with which the envelopes be-
come distinctive for eCCA. Therefore, we used a 20 Hz
lowpass and a higher sampling frequency.
The lowest modulation depth that reached on par or
higher performance with the unmodulated condition was
a modulation of 70, both for using eCCA and rCCA. For
both methods, a 50 modulation depth was able to reach
similar performances as the 0 modulation, for decision
window lengths of τ ≤ 10 s. Future work could assess
the perception thresholds for modulation depths, to ob-
tain the least intrusive protocols for high usability.
Overall, the performance of rCCA matched that of eCCA,
or was lower. However, differences exist between these
methods. Firstly, eCCA emphasizes global and higher-
order activity associated with the speech envelope, while
rCCA may focus more on early sensory responses evoked
by the noise-codes. Secondly, eCCA uses multiple CCA
components and an LDA classifier. While such enhance-
ments could potentially also benefit rCCA, we stayed
close to existing literature for this pilot study. Future
investigations should evaluate rCCA’s decoding perfor-
mance upon integrating these additional optimizations.
A strong characteristic of applying amplitude modulation
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using noise-codes is that the resulting decoding is less
limited by the distinctiveness of the envelope of the audio
signal, for example in speech. The method could there-
fore also be applied more broadly to any type of audio
signal, the envelope of which may be more or less corre-
lated, such as music.
As this work is a preliminary study, a number of inher-
ent limitations should be noted. First, the experiment
only included five participants, of which two were au-
thors with substantial experience as BCI users. This is
a small sample size, which included motivated partici-
pants, and needs to be enlarged in future studies. Second,
in order to assess the feasibility of decoding a c-AEP re-
sponse, this pilot used sequential stimulation instead of
presenting the two speakers in parallel. Future studies
need to investigate, if our observations generalize also to
parallel stimulus presentation protocols.
Future work could include various other improvements,
such as the noise-codes optimized to maintain speech
qualities. Additionally, the noise-codes could be short-
ened, as the number of classes typically may be lower
than 63 in an auditory attention scenario.

CONCLUSION

Our work showed that adding noise-tags to a speech sig-
nal in a sequential paradigm can enhance the decoding
performance compared to decoding the original unmod-
ulated speech signal. Specifically, for shorter decision
window lengths all higher modulation depths (100, 90
and 70) performed better than the unmodulated condi-
tion. The rCCA method on the 70 modulation condi-
tion also performed better than the unmodulated condi-
tion. Lastly, for the modulated conditions, the eCCA
method performed better than or on par with the rCCA
method. Overall, these results show the potential of us-
ing noise-tags in the auditory modality, and is the first
step towards using the noise-tagging protocol for audi-
tory attention decoding.
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ABSTRACT: A limitation of brain-computer interface
(BCI) spellers is that they require the user to be able to
move the eyes to fixate on targets. This poses an issue
for users who cannot voluntarily control their eye move-
ments, for instance, people living with late-stage amy-
otrophic lateral sclerosis (ALS). This pilot study makes
the first step towards a gaze-independent speller based
on the code-modulated visual evoked potential (c-VEP).
Participants were presented with two bi-laterally located
stimuli, one of which was flashing, and were tasked to
attend to one of these stimuli either by directly looking
at the stimuli (overt condition) or by using spatial atten-
tion, eliminating the need for eye movement (covert con-
dition). The attended stimuli were decoded from elec-
troencephalography (EEG) and classification accuracies
of 88 % and 100 % were obtained for the covert and
overt conditions, respectively. These fundamental in-
sights show the promising feasibility of utilizing the c-
VEP protocol for gaze-independent BCIs that use covert
spatial attention when both stimuli flash simultaneously.

INTRODUCTION

A brain-computer interface (BCI) records its users’ brain
activity and translates it into a computer command, open-
ing a novel non-muscular channel for communication and
control [1]. Typically, a BCI records brain activity with
electroencephalography (EEG) because it is affordable,
practical, and non-invasive.
One of the fastest BCIs for communication uses the code-
modulated visual evoked potential (c-VEP) as measured
in the EEG [2]. The c-VEP is observed during visual
stimulation of the user with a pseudo-random sequence
of flashes. As each of the presented symbols concurrently
flickers with a random but unique sequence of flashes,
specific brain activity is evoked when the user attends
to one of the symbols. Subsequently, machine learn-
ing algorithms infer the attended symbol from the users’
evoked brain activity. Such a visual BCI speller allows its
user to select symbols or commands and as such commu-
nicate, bypassing most of the motor system [3].
Unfortunately, an important limitation of a standard vi-
sual BCI speller is the requirement of the users’ eyes to
shift their gaze towards (i.e., fixate on) a target symbol.
Because BCI control is fully dependent on eye move-
ments, this poses a major challenge and quickly renders
the BCI uncontrollable for people who have lost volun-

tary control of their eye movements, i.e., people living
with late-stage amyotrophic lateral sclerosis (ALS).
In the visual domain, several studies have attempted to
develop a gaze-independent BCI. For instance, Blankertz
and colleagues developed a BCI speller called the ‘Hex-
o-Spell’ that used motor imagery (imagined right hand
and right foot movement, i.e., N = 2 classes) of the
user to aid the selection of characters from six hexagonal
fields [4]. They reported a typing speed of 2.3–5 char/min
and 4.6–7.6 char/min, for their two participants respec-
tively. Interestingly, Treder and Blankertz showed that
visual covert spatial attention can also be used to oper-
ate the ‘Hex-o-Spell’ and the ‘Matrix’ speller using the
P300 event-related potential (ERP) [5]. This covert ‘Hex-
o-Spell’ outperformed the covert ‘Matrix’ speller, with a
classification accuracy of 60 % (N = 36 classes) and 40 %
(N = 30 classes), respectively.
Furthermore, work by Treder and colleagues compared
the P300-based ‘Hex-o-Spell’, the ‘Cake Speller’, which
is similar to the former, and a ‘Center Speller’, where
unique geometric shapes with different colors were
closely surrounded by characters, and presented centrally
on the screen in a sequential fashion [6]. A classification
accuracy of 91.3 %, 88.2 %, and 97.1 % was reported for
the three spellers, respectively (N = 30 classes). Sim-
ilarly, Chen and colleagues [7] used an extension of
the P300 oddball paradigm, namely, rapid serial visual
presentation (RSVP). The authors used two versions:
a colored circles paradigm (CCP), and a dummy face
paradigm (DFP). The average performances obtained
from the CCP and DFP paradigms were in the range
51.6 % and 73.5 %, respectively.
Additionally, Treder and colleagues, in another instance,
focused on using changes in alpha band activity induced
by covert attention shifts to classify the direction in which
attentional shifts occurred [8]. The authors showed that
a classification accuracy of 73.65 % was obtained (N =
2 classes). These results indicate the potential of using
alpha activity as a feature for spatial attention decoding
in gaze-independent BCIs.
Furthermore, Kelly and colleagues designed a gaze-
independent BCI for communication by combining fea-
tures from the steady-state visual evoked potential
(SSVEP) and alpha band modulations to decode covert
spatial attention [9]. The authors reported an average
performance of 70.3 %, 72.8 % and 79.5 % when using
the SSVEP, alpha band, or both features in their analysis
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pipeline, respectively (N = 2 classes). Similarly, Egan
and colleagues [10] aimed for a hybrid gaze-independent
speller using the P300 ERP and alpha in addition to the
SSVEP. Importantly, adding the P300 response and alpha
as additional features in their classification pipeline im-
proved the performance by 17 % to an overall 79 % when
compared to the performance using only the SSVEP,
achieving 62 % (N = 2 classes).
In this pilot study, we work towards a gaze-independent
BCI. The gaze-dependent c-VEP has recently demon-
strated exceptional performance, surpassing other evoked
paradigms like ERP and SSVEP [11]. Another study
revealed the reliable decoding of c-VEP from periph-
eral stimulation (away from fixation) compared to direct
foveal stimulation (at fixation) [12].
Our objective is to acquire fundamental insights on
the feasibility of decoding the c-VEP in a fully gaze-
independent manner. Specifically, participants will use
covert spatial attention to concentrate on stimuli, elimi-
nating the need for direct eye movements to foveate on
them. In this pilot work, the stimuli were presented se-
quentially, to assess whether the c-VEP can be decoded
from the far periphery, before testing the more complex
parallel stimulation case, where stimuli would be pre-
sented simultaneously. If successful, this study provides
the first steps to a gaze-independent c-VEP BCI, poten-
tially providing a high-speed neuro-technological assis-
tive device for individuals who may not have reliable con-
trol of their eye movements.

MATERIALS AND METHODS

Participants: Five participants (all male, mean age
31 years, range 24-50 years) were included in this study
after obtaining written informed consent. Two partici-
pants were authors of this study. A pre-screening proce-
dure excluded any participants with a history of epilepsy
or brain injury. All participants had normal or corrected-
to-normal vision and reported no central nervous system
abnormalities. This study was approved by the Ethical
Committee of the Faculty of Social Sciences at the Rad-
boud University Nijmegen.

Materials: EEG data from 64 Ag/AgCl active elec-
trodes placed according to the international 10-10 sys-
tem were recorded at 512 Hz amplified by a Biosemi Ac-
tiveTwo amplifier. The data were preprocessed using a
notch filter at 50 Hz and a bandpass filter with a lower
cutoff at 1 Hz and a higher cutoff at 40 Hz. Subsequently,
the data were sliced to trials starting at 500 ms before
stimulus onset until 20 s after stimulus onset. Finally,
the data were downsampled to 120 Hz, and the 500 ms
pre-stimulus that may have captured filter artefacts due to
initial slicing and subsequently filtering were removed.
The stimulus protocol (see Fig. 1) was displayed on
a 27 in Corsair Xeneon 27QHD240 OLED screen at a
1920×1080 px resolution with a 120 Hz refresh rate. The
participants were seated at a 60 cm distance in front of the
display. A black fixation cross was presented at the cen-

ter of the screen on a mean luminance gray background.
To each of the sides of the fixation cross at a distance of
2.1◦, two circles with a 3◦ diameter were presented.
The circles’ background color was luminance modulated
with binary pseudo-random noise-codes, such that ones
represent a white and zeros a black background. We used
126-bit modulated Gold codes [13, 14], which contained
only short flashes of 16,67 ms (bit sub-sequence ‘010’)
and long flashes of 33,33 ms (bit sub-sequence ‘0110’)
at a presentation rate of 60 Hz. From the available mod-
ulated Gold codes, we carefully selected one for the left
side. For the right circle a 61 bits phase-shifted version of
the left code was used. This was done such that the noise-
codes’ properties were identical, but still had a near-zero
correlation at a maximum delay.
Inside the circles (3◦ diameter), five colored shapes were
presented with a maximum possible height and width
of 1.4◦ each. The shapes and their colors are as fol-
lows : a green circle (1.4◦ diameter), magenta hourglass
(0.9◦ × 1.4◦), cyan inverted triangle (0.9◦ × 1.4◦), red
rectangle (1.5◦ × 0.5◦, rotated by 45◦), and the yellow
triangle (0.9◦×1.4◦). All shapes had the same brightness
and were sequentially presented in random order at a rate
of 4 Hz (see Fig. 1). Participants were asked to count the
number of times that the magenta hourglass, i.e., the tar-
get shape, occurred on the cued side, to facilitate sustain-
ing their attention and to evaluate the behavioral perfor-
mance of attending to each of the sides. Within a trial, the
temporal distance between the presentation of two target
shapes was at least 1 s, the target shape could not be pre-
sented on both sides simultaneously, and the number of
times the target shape was presented differed for the two
sides within a trial.
In this pilot study, we used sequential stimulation in both
overt and covert runs to make the first step towards gaze-
independent c-VEP BCI. That is, only the circle on the
attended (cued) side underwent alternating background
changes based on the pseudo-random noise-code, while
the unattended side retained a constant black background.
Notably, both sides featured distinct shape sequences de-
spite this sequential stimulation protocol.

Experiment: During the experiment, participants com-
pleted five runs: four runs required covert attention and
one required overt attention, the order of which was
randomized across participants. Each run consisted of
20 trials, 10 for each of the two classes, in random order.
At the start of a run, a 5 s period was used to let the par-
ticipant prepare for the upcoming trials. At the start of
a trial, a 1-second cue was presented to indicate the to-
be-attended side using an arrow. Subsequently, for a du-
ration of 20 s, the cued circle flashed according to its bit
sequence while the uncued circle remained static, while
both circles showed their distinct shape sequences. At the
end of a trial, participants were given a maximum of 5 s
to enter the number of target shapes they counted on the
attended side using a keyboard, after which they received
feedback for a period of 1 s on the correctness of their
response. Finally, before continuing to the next trial, a
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Figure 1: Stimulus protocol. In (a), a graphical representation of the stimulus interface is depicted, featuring two stimuli positioned
at 2.1◦ on either side of a fixation cross. The stimuli took the form of circles measuring 3◦ in both height and width. The fixation
cross was 0.7◦ for each side. The shapes presented were bound to a maximum height and width of 1.4◦ each. The shapes’ heights
and widths were as follows: green circle (1.4◦ diameter), inverted cyan triangle and yellow triangle (0.9◦× 1.4◦), magenta hourglass
(0.9◦×1.4◦) and the red rectangle (1.5◦×0.5◦, rotated by 45◦). In (b), a graphical representation of the stimulus protocol is depicted
comprising two crucial components: first, the background of the stimuli underwent alternating black-and-white transitions following
a binary pseudo-random sequence; second, diverse-colored shapes were presented within the stimuli. The stimulus background could
dynamically change with each frame of 16.67 ms (60 Hz), while the shapes within the stimuli changed every 250 ms (4 Hz). A trial took
20 s, within which target shapes (the magenta hour glass) appeared randomly in the sequence with at least 1 s distance. Participants
engaged with the stimuli by counting the number of target shapes on the attended side. In this pilot study, we adopted a paradigm
where only the background of the attended stimulus alternated, while the background of the unattended stimulus remained constant. A
left-attended trial is shown in (b).

1 s blank inter-trial interval was presented. At the end of
a run, the behavioral accuracy of correct responses was
shown on the screen. Participants could take self-paced
breaks in between runs.
In summary, we gathered 20 trials for each participant
in the overt condition, whereas the covert condition in-
volved the recording of 80 trials per participant. In both
conditions, the labels (left and right) were balanced.

Analysis: We used a template-matching classifier to
predict the attended side (left or right) given the recorded
brain activity. Specifically, we used the ‘reconvolution’
method [14], which assumes that the evoked response to
a stimulus sequence can be described by the linear su-
perposition of the responses to the individual flashes in
that sequence. The reconvolution approach can substan-
tially reduce the number of parameters while increasing
the number of samples to train these parameters, which
effectively can limit the required training data [15].
In reconvolution, the event time-series of the ith stimulus
sequence are listed in the event matrix Ei ∈ RE×T for E-
many events and T -many samples. This matrix describes
the onset of each of the events in a sequence. In this work,
the events were defined as the onset of the stimulation
sequence in each trial, and one event for each of the the
flash durations (short ‘010’ and long ‘0110’), for a total
of E = 3 events.
The event time-series are subsequently transformed to a
structure matrix that not only describes the onset, but
also the modeled length and importantly the overlap of
the transient responses for each of the events in the event
matrix. Assuming that the transient response length can
be limited to L samples without losing relevant data, the
structure matrix of the ith stimulus sequence is a Toeplitz-
like matrix Mi ∈ RM×T for M = E ∗L event time points.

Let’s assume we have a training dataset
{(X1,y1),(X j,y j) . . . ,(XJ ,yJ)} including labeled EEG
data for j ∈ {1, ...,J} trials with the single-trial EEG
X ∈ RC×T of C-many channels and T -many samples and
the associated binary label y ∈ {0,1}. With this data, we
can learn a spatial filter w ∈ RC and a temporal response
vector r ∈ RM by maximizing the following correlation
ρ as part of a canonical correlation analysis (CCA):

argmax
w,r

ρ(w⊤S,r⊤D) (1)

where S = [X1,X j, . . . ,XJ ] are the concatenated single
trials and D = [My1 ,My j , . . . ,MyJ ] are the concatenated
accompanying structure matrices.
Having learned the spatial filter and temporal response
vector, we can now predict the label of a new trial ŷ by
maximizing the following Pearson’s correlation ρ:

ŷ = argmax
i

ρ(w⊤X,r⊤Mi) (2)

Here, w⊤X is the spatially filtered data and r⊤Mi is the
predicted response template for the ith stimulus sequence.
To evaluate the performance of the reconvolution CCA
on the overt and covert data, we used a chronological 4-
fold cross-validation within each condition. The classi-
fication accuracy was averaged across folds. Note, the
c-VEP stimulation was only applied on the attended side,
while the unattended side remained a black background
color. In the decoding analysis, we simulated as if the
unattended side had been flashing with the noise-code
other than the one presented on the attended side.
Code for the reconvolution CCA approach is available at:
https://github.com/thijor/pyntbci.
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RESULTS

As this study presents the initial step to decode c-VEP
from peripheral stimulation, aiming towards covert spa-
tial attention, it is imperative to study how classifica-
tion accuracy is influenced by the modeled transient re-
sponse length. Given the potential for distinct transient
responses between conditions, we assessed the mean ac-
curacy across transient response lengths spanning from
0.1 to 0.9 s, for all participants (S1-S5) and both condi-
tions (see to Fig. 2).
In the covert condition, mean accuracy fluctuated from
55 % to 99 % across participants, whereas in the overt
condition, mean accuracy remained consistently at 100 %
for all participants across all transient response lengths.
In the covert condition, participants S3 and S4 achieved
a peak accuracy of 85 % and 86 % respectively, observed
at a transient response length of 200 ms. Participants S1
and S5 reached a highest accuracy of 88 % and 89 %,
respectively, at a transient response length of 300 ms.
Participant S2 demonstrated a peak accuracy of 99 % at
400 ms. Notably, the mean accuracy across participants
in the covert condition was highest at a transient response
length of 300 ms. Hence, for subsequent analysis, we use
a transient response length of 300 ms.
Tab. 1 shows the classification accuracy for a transient
response length of 300 ms. The scores obtained in the
covert condition for S1-5 were 88%,98%,84%,81 %
and 89 %, respectively, leading to an average of 88 %.
The overt condition performed better for all participants
(100 %). All individual scores in Tab. 1 are significantly
higher (p < .001) than chance level (50 %) as verified by
a permutation test using 1000 permutations.

Table 1: Mean classification accuracy. The table shows
the classification accuracy using a transient response length of
300 ms, for each participant and the grand average, for both
overt and covert conditions. All classification results for both
conditions and all participants individually were significantly
higher than chance (50 %) as verified by a permutation test with
1000 permutations (p < .001).

S1 S2 S3 S4 S5 Avg

Overt 1.00 1.00 1.00 1.00 1.00 1.00
Covert 0.88 0.98 0.84 0.81 0.89 0.88

To investigate the differences in characteristics of the spa-
tial activity patterns and transient responses, we com-
puted these at a transient response length of 300 ms for
both conditions. Fig. 3 shows an example of the spatial
pattern and transient responses for S4. Across partici-
pants, we observed that the spatial activity pattern for the
overt condition was more focally distributed, whereas it
was more lateralized for the covert condition.

DISCUSSION

Our pilot study provides fundamental insights into the
plausibility of a c-VEP-based stimulation paradigm for

decoding covert spatial attention, thereby potentially
eliminating the need for the ability to make eye move-
ments to control a c-VEP BCI. We implemented a two-
class paradigm, requiring participants to attend on a stim-
ulus either to the left or to the right of their fixation
point. The stimuli background flashed following pseudo-
random noise-codes, while their foreground simultane-
ously presented a random sequence of five distinct shapes
with an infrequent target shape. Participants were tasked
with counting the occurrences of the target shape amidst
the shape sequence (see Fig. 1). In this pilot study, we
used sequential stimulation to assess the feasibility of
covert c-VEP, before moving to the more complex par-
allel stimulation requiring covert spatial attention.
In our experiment, participants engaged with the stimuli
through either overt means, involving eye movements to
foveate on the target, or covertly, relying on spatial at-
tention to focus on a target. In the overt condition, we
reached a decoding performance of 100 % for all partic-
ipants. In the covert condition, we achieved an average
accuracy of 88 %. To the best of the authors’ knowl-
edge, this marks the first evaluation of a c-VEP BCI using
covert attention, although here we still rely on sequential
stimulation. Our study highlights the feasibility of such a
design for developing gaze-independent BCIs that can be
used by people with ALS.
In the overt condition, all participants achieved 100 % ac-
curacy, likely caused by the large data availability, low
number of classes, and sequential stimulation. Specifi-
cally, this study used 5.3 min of data for training and 20 s
for testing, while 1 min training and 1-2 s testing would
suffice [15]. In the covert condition, we employed 16 min
of data for training, achieving a decoding accuracy of
88 %. This result underscores the lower SNR in the covert
condition compared to the overt scenario. Nevertheless,
although using sequential stimulation, the attained per-
formance surpasses the 62 % accuracy reported in a simi-
lar SSVEP study that used parallel stimulation [10], of-
fering evidence for the potential performance of gaze-
independent c-VEP.
It is essential to approach the results of our study on gaze-
independent c-VEP BCI with caution and consider two
important limitations. Firstly, this preliminary study in-
volved a small cohort of five highly motivated partici-
pants. Secondly, the c-VEP protocol employed sequential
stimulation, where only the stimulus on the attended side
alternated its background based on the pseudo-random
noise-code. In practical online usage of the BCI, simul-
taneous stimulation on both sides is necessary. While our
study offers valuable fundamental insights into the fea-
sibility of gaze-independent c-VEP BCI, it is imperative
to acknowledge these limitations. Further research, in-
cluding a larger sample size and parallel stimulation, is
crucial to fully unveil the potential of this approach.
Additionally, it is important to acknowledge that stim-
ulation paradigms outside the visual domain have been
explored as well for developing independent BCIs. For
instance, Schreuder and colleagues developed the P300-
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Figure 2: Classification accuracy across modeled transient response lengths. Depicted are the participant-specific classification
accuracies for both overt (solid lines) and covert (dashed lines) conditions across transient response lengths ranging from 0.1 s to 0.9 s.
The grand average over participants is shown in black. Please note, that for the overt condition, the classification accuracy was 100 %
for all transient response lengths and all participants. The dashed gray line indicates theoretical chance level (50 %).
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Figure 3: Spatial activity pattern and transient responses of participant S4. (a) and (b) show the spatial activity pattern and transient
responses of S4 for the overt and covert conditions, respectively. For all participants, the spatial activity for the overt condition was
more focally distributed as compared to the more lateralized distribution seen for the covert condition. The spatial pattern a ∈ RC was
estimated as a = w⊤ΣΣΣ, where ΣΣΣ ∈ RC×C is the spatial covariance matrix.

based auditory multi-class spatial ERP (AMUSE) inter-
face reaching a classification accuracy of about 85 %
(N = 6 classes) [16]. Similarly, Brouwer and van Erp
designed a P300-based BCI using vibro-tactile feedback
around the waist with an accuracy of 58 % (N = 6 classes)
and 73 % (N = 2 classes) [17]. Moreover, Van der Waal
and colleagues [18] used tactile stimulation on the fin-
ger tips reaching a classification accuracy of 82 % (N = 6
classes). These results may also highlight the potential
to explore the pseudo-random stimulation protocol in the
auditory and tactile domain.

Our studies’ design enables the use of two additional fea-
tures in the analysis pipeline, possibly further improving
the accuracy. Firstly, the stimulus protocol used in the
study was designed such that the infrequent occurrence of
the target events within the shape sequence could poten-
tially evoke a P300 response. Hence, the P300 response
could be used alongside the c-VEP to decode the attended
side, similar to P300 response that was used alongside
the SSVEP by Egan and colleagues [10]. Secondly,
the alpha-band modulations are expected to be lateral-
ized with respect to the attended side [19]. Specifically,

covertly attending to a stimulus on one side suppresses
visual alpha-activity in the contra-lateral (task-positive)
hemisphere, while it increases alpha in the ipsi-lateral
(task-negative) hemisphere [20]. Hence, visual alpha os-
cillations can also be used as an additional feature, again
similar to the alpha response used alongside the SSVEP
in earlier work [10]. Thirdly, aligning with the antici-
pated lateralization in the alpha-band, we also anticipate
lateralization in the c-VEP itself during the covert condi-
tion. In our current application of reconvolution CCA, a
single spatial filter was employed to decode the attended
side. This method can be extended by incorporating dis-
tinct spatial filters for each side, a concept referred to as
an ‘ensemble’ decoder [21]. Finally, in the present study,
we employed only two stimuli positioned on either side
of the fixation point, using luminance modulation with
two 126-bit Gold codes. Given the limited number of
classes, there is potential to explore shorter codes, which
could lead to faster decoding. Furthermore, alternative
codes, such as the m-sequence or Golay sequence, may
be considered, as they have shown promise in enhancing
classification accuracy [22].
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CONCLUSION

Our study shows the feasibility and high performance of
a novel covert BCI design based on c-VEP. Our design
eliminates the dependence on gaze, which is an essen-
tial feature if BCIs are to be used by people that have
no voluntary control over their eye movements, such as
people living with late stage ALS. Further, the design of
the study makes it possible to use additional measures
of brain activity to improve classification performance,
which is a potential fruitful avenue for future work to im-
prove the efficacy of the gaze-independent c-VEP BCI.
Overall, our results suggest the potential for a high-speed
BCI that does not rely on any overt behavior.
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ABSTRACT: In the BCI field, introspection and inter-
pretation of brain signals are desired for providing feed-
back or to guide rapid paradigm prototyping but are chal-
lenging due to the high noise level and dimensionality
of the signals. Deep neural networks are often intro-
spected by transforming their learned feature represen-
tations into 2- or 3-dimensional subspace visualizations
using projection algorithms like Uniform Manifold Ap-
proximation and Projection (UMAP) [1]. Unfortunately,
these methods are computationally expensive, making the
projection of data streams in real-time a non-trivial task.
In this study, we introduce a novel variant of UMAP,
called approximate UMAP (aUMAP). It aims at gener-
ating rapid projections for real-time introspection. To
study its suitability for real-time projecting, we bench-
mark the methods against standard UMAP and its neural
network counterpart parametric UMAP [2]. Our results
show that approximate UMAP delivers projections that
replicate the projection space of standard UMAP while
decreasing projection speed by an order of magnitude and
maintaining the same training time.

INTRODUCTION

The recording of neural signals offers a window into un-
derstanding brain activity, with potential applications in
various fields. However, a considerable challenge lies in
the fact that these signals, particularly electroencephalo-
grams (EEG), are high-dimensional and very susceptible
to noise. Consequently, this situation requires the devel-
opment of specialized analysis techniques to describe and
eventually understand the underlying neural processes.

Introspectability deficiency is an issue for various use
cases. An example is the brain-computer interfaces (BCI)
field, where providing feedback to the BCI user is key to
either improve the BCI’s performance [3–5] or aid in re-
habilitation therapies [6]. Another example is the inves-
tigation of novel experimental protocols. To evaluate if a
new BCI paradigm is suited, it must be determined if the
resulting brain signals contain discriminative information
related to the task and if this information is sufficient to
accomplish control over an application. Both of these ex-
amples could benefit from data introspection in an online
environment, as providing feedback immediately may en-
able a BCI user to adapt on the spot, and experimenters

to investigate novel paradigms using a rapid prototyping
approach.

Interpretability challenges of brain data can be tackled
by extracting higher-level features, such as the embed-
dings of a neural network, from the data. These features
are typically less noisy and have a lower dimensional-
ity, even though they are still too high-dimensional for a
human to capture. Obtaining such higher-level features,
also known as latent features, is at the core of most ma-
chine learning methods in a BCI system. For providing
feedback to a human and investigating novel paradigms,
these features must be visualized. This may be done by
transforming a set of latent features into a 2D or 3D repre-
sentation and visualizing these features in an image. This
process is known as projecting.

Projecting may be achieved by numerous methods,
such as Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), Uniform Manifold Ap-
proximation and Projection (UMAP) [1], t-distributed
Stochastic Neighbor Embedding (t-SNE) [7], and Isomet-
ric Mapping (ISOMAP).
Unfortunately, not all of these methods are well-suited
for online projections. For example, while ISOMAP is
known to deal well with noisy data, it has a high computa-
tional complexity for larger datasets [8], which increases
the model training time and may stagger the projection
rate. Alternatively, PCA may be used for rapid project-
ing, yet it can not account for complex non-linear struc-
ture in the data [9]. To determine if a projection method
is a good fit for online projecting, we defined the follow-
ing four criteria: 1) The produced projections should be a
sufficiently accurate lower dimensional (2D or 3D) repre-
sentation of the input data. 2) The time it takes to train/fit
a model should be relatively brief, i.e., in the range of
minutes for the typical data dimensionalities encountered
in BCI. 3) Projecting a novel data point into an exist-
ing 2D/3D representation should be fast, i.e., take tens
to one hundred milliseconds at most, 4) Optimally, the
method should be lightweight to avoid strain on the hard-
ware that may impact projection and/or training time, and
to avoid requiring specific hardware or technical knowl-
edge to run.

Uniform Manifold Approximation and Projection
(UMAP) [1] is a good candidate for an online projec-
tion. It comes with benefits such as utilizing a math-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

349

mailto:pierre.guetschel@donders.ru.nl


Table 1: Summary description of the datasets used to evaluate the accuracy of approximate UMAP.

Dataset Classes Samples total Dimensionality Features

Iris plants 3 150 4 Real positive numbers
hand-written digits 10 1797 64 Integers in [0-16]
breast cancer Wisconsin 2 569 30 Real positive numbers

ematical model to solve a clearly defined optimization
problem, making it lightweight. Additionally, UMAP is
widely adopted in the field, as such there are numerous
variations of the method. However, UMAP projection
times are slow, possibly conflicting with the third crite-
rion. To overcome this potential drawback, parametric
UMAP (pUMAP) is a possible alternative [2]. One of
the advantages of pUMAP over standard UMAP is that it
generates projections faster, due to utilizing a neural net-
work. However, pUMAP is less lightweight, which may
conflict with criterion 4.

Approximate UMAP Motivated by the limitations of
existing approaches, we introduce approximate UMAP
(aUMAP), a novel alternative that drastically reduces the
projection time of UMAP. Its training procedure is iden-
tical to standard UMAP and the projection speed increase
is achieved by approximating the standard UMAP projec-
tions using a nearest neighbors approach.

Experiments. The accuracy of the aUMAP projections,
i.e., criterion 1, is evaluated by comparing them with pro-
jections obtained by standard UMAP on three datasets.
The training and projection times, i.e., criteria 2 and 3,
are evaluated for all three UMAP methods. The models
will be trained on data and project data characterized by
varying dimensionality and sample counts in order to ex-
amine the impact of these variables.

Structure of the paper After introducing details of
UMAP, pUMAP and the proposed novel aUMAP method
we provide results related to our research questions. In
the final discussion section, we debate if the presented
UMAP methods satisfy the conditions for online project-
ing we proposed earlier and provide our conclusion as to
which method is most suited for online projecting.

MATERIALS AND METHODS

Approximate UMAP (aUMAP) is designed to be an
adaptation of UMAP that reduces the time it takes to pro-
duce projections on new data points. It does not deviate
from standard UMAP when fitting a model, however, it
does train an additional k-nearest neighbors model in tan-
dem. Additionally, aUMAP has a different approach for
projecting novel data points. It does so by minimizing
the summed Euclidian distance between the new projec-
tion and the projections of the points that lie closest to
the new data point in the input space. The mathematical
equation of this is expressed in Equation 1:

u =
k

∑
i=1

1
di

∑
k
j=1

1
d j

ui (1)

where u is the projection of a new data point x, k is
the number of neighbors considered, u1 . . .uk are the al-
ready existing UMAP projections of the k nearest neigh-
bors x1 . . .xk of point x in the input space, and di =
distance(x,xi).

Benchmarking Data: In order to account for the im-
pact of sample size and data dimensionality on training
and projection times, we generated a number of mock
datasets containing data of varying dimensionality. Each
dataset contained an equal number of samples, allowing
for the selection of subsets for testing multiple sample
counts. The datasets were generated from a multiclass
Poisson distribution. These datasets were used for mea-
suring the training and projection times for the varying
models.
To measure the accuracy of aUMAP, we selected the
sklearn datasets Iris plants, hand-written digits, and
breast cancer Wisconsin. These datasets were chosen for
two reasons. First, they cover a variety of data parame-
ters which includes the number of classes, dimensional-
ity, and sample count, see Table 1. Secondly, standard
UMAP is able to learn an unsupervised solution for each
of these datasets that separates all classes of the data.

Model parameters: The models used during the exper-
iments were initiated using the default parameters pro-
vided by their base implementation. While this choice
clearly leaves room for domain-specific optimizations,
we opted to make use of the default parameters to max-
imize generalizability. The most notable parameters are
the distance metric, number of neighbors, minimum dis-
tance, and number of components used by UMAP and
nearest neighbors (knn) models. These parameters de-
fault to ’euclidean’, 15, 0.1, and 2 respectively. For the
default parameters of pUMAP see the official documen-
tation 1. We diverged from the default parameters on two
occasions only. First, we increased the number of near-
est neighbors used by the knn model from its default 5
to 15 in order to be consistent with the default of the
UMAP model. Secondly, we adapted the parameters of
the UMAP and knn models to produce better UMAP pro-
jections. For the breast cancer dataset, we set the number
of neighbors to 200 and the minimum distance to 1. The
minimum distances for the Iris plants and hand-written
digits datasets were also increased to 5 and 1, respec-
tively. The remaining parameters were kept the same.

Approximate UMAP accuracy: aUMAP only differs
from standard UMAP by approximating novel projec-
tions instead of calculating them. Both methods seek the

1Paramatric UMAP documentation: https://umap-learn.
readthedocs.io/en/latest/parametric_umap.html
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same solution. As such, a suitable way to benchmark
aUMAP is to investigate how closely its projections fit
those of standard UMAP using the Euclidean distance.
The closer the aUMAP projections are in the latent space
to their associated standard UMAP projections, the better
aUMAP achieves its goal. Here, we refer to associated
projections as latent points that have been produced us-
ing the same input data. We measure the distance as the
mean Euclidean distance in the projection space. As the
UMAP projections are arbitrarily scaled, the Euclidean
distance by itself may not be informative without a nor-
malization by the standard deviation of the projected test
points produced by standard UMAP, which we have in-
cluded for this reason.

Runtime Measurements: Training times were mea-
sured for each method across a predefined range of di-
mensionalities and sample counts. A varying dimension-
ality was paired with a static sample count, i.e., we se-
lected multiple of the mock datasets, which differed in
their data dimensionality, and selected an equal number
of training samples across each set. Similarly when vary-
ing the sample count, the dimensionality was kept consis-
tent by drawing subsets from a single generated dataset.
When measuring the projection times, the models of the
previous step were repurposed to produce the projections,
maintaining either a varying dimensionality or number of
training samples. A static number of test samples was
passed to each model for projecting, matching the data
dimensionality of the model’s training data. To account
for data being presented only a few samples at a time in
an online environment, we recorded the training time us-
ing two approaches. In the first approach, referred to as
one-go, all data was given to the model at once, requiring
only a singular call to the projection method. The second
approach, referred to as batching and designed to better
match an online setting, fed data points to each model in
small batches of five points at a time.

Hardware: All experiments were run using an AMD

Ryzen 7 5800x 8-core processor and a NVIDIA GeForce
RTX 3060 Ti. Windows Subsystem for Linux (WSL)
v.2.0.9.0 was used to enable Tensorflow GPU support.
All models, apart from GPU-run pUMAP, were run on
CPU.

RESULTS

Performance of aUMAP: Table 2 shows the perfor-
mance of aUMAP given as the average Euclidian dis-
tance over all test samples in the dataset in standard devi-
ations between aUMAP projections and their correspond-
ing standard UMAP projection. Figure 1 allows visualis-
ing these projections in addition to the projections of the
points used to train the UMAP model used by both meth-
ods. Overall, aUMAP delivers a set of projections that
closely match the standard UMAP projections. There is
only a small number of aUMAP projections that do not
match the classification of the matching standard UMAP
projection. Across all datasets, the mean distance be-
tween the projections lies around 0.1 to 0.25 standard de-
viations. There is a large variance for each mean distance,
which is most extreme for the breast cancer dataset. The
variance is reflected by various outliers as shown in Fig-
ure 1. While the majority of aUMAP projections match
the projection space clusters, the occasional projection
deviates sharply, sometimes appearing projected closer
to a different cluster than its standard UMAP counter-
part. Standard UMAP also produces outliers, yet these
are fewer and less extreme.

Table 2: Average Euclidean distance between novel standard
UMAP and aUMAP projections. Distances are normalized by
the standard deviation of the novel standard UMAP projections.

Dataset Mean distance Variance

Iris plants 0.256 0.150
hand-written digits 0.083 0.104
breast cancer Wisconsin 0.126 0.211

Iris plants hand-written digits breast cancer Wisconsin

UMAP - train UMAP - test aUMAP - test

Figure 1: Comparison of UMAP and aUMAP using three datasets. The 2D projections of the training data and test data produced
by standard UMAP are displayed in addition to the test set projections produced by aUMAP. The gray lines connect projections of
standard UMAP and aUMAP that were obtained from the same test data sample. Colors indicate the classes of the data (not available
to the projection methods).
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Training Time: Figure 2 visualizes the impact of vary-
ing data dimensionality and number of training samples,
concerning the time required to train a model. When
varying the data dimensionality, the number of training
examples used for training was fixed to 5000. When vary-
ing the number of training examples, the data dimension-
ality was fixed to 1000.
We observe that the training times of standard UMAP and
aUMAP are notably lower than those of pUMAP across
any dimensionality or sample count. Training pUMAP
on a GPU takes an order of magnitude longer to train than
standard UMAP and aUMAP for any dimensionality and
sample count. Training pUMAP on a CPU is likewise an
order of magnitude slower across all batch sizes and for
a dimensionality of 1000, while still being slower than
standard UMAP and aUMAP for lower dimensionalities.

The data displays an upward trend across all projection
methods as the number of samples increases. This trend
is most extreme for CPU-run pUMAP and has a minor
effect on GPU-run pUMAP training times until increas-
ing the sample count from 1000 to 5000. Only CPU-run
pUMAP is strongly affected by an increase in dimension-
ality.

Projection Time: The projection times are visualized
in Figure 3. These results were obtained by projecting
500 test samples either in a single batch (one-go) or in
multiple sub-batches of 5 samples (batching). The exper-
iments were repeated 10 times to obtain an average result.
Two outlier training times for specific runs were left out
in the final averages due to these measurements deviat-
ing more than two standard deviations from the average,
whereas the remaining projection times were all within
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Figure 2: Training times. Models were trained on mock datasets generated from a multiclass Poisson distribution. Left: Models
were trained on datasets of 5000 samples with varying dimensionalities. Right: Training across varying sample counts was done using
subsets of a 1000-dimensional dataset. Standard UMAP and aUMAP models were trained on the CPU. pUMAP models were trained
on both, CPU and GPU separately. Note that aUMAP and standard UMAP results are near-identical, causing the line of the latter to
be concealed in the graph. All results shown were averaged across 10 repetitions. Error bars indicate the standard deviation across the
runs.
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Figure 3: Projection times. The models used for projecting were obtained from the training time experiment. For each model and
condition, 500 samples from a multiclass Poisson distribution were passed to the models to be projected. Samples were provided either
in a singular batch of 500, denoted as one-go (upper figures), or in small batches of 5 samples, denoted as batch (bottom figures).
Standard UMAP and aUMAP models were trained on CPU. pUMAP was trained on both CPU and GPU separately. The results were
averaged across 10 repetitions.
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one standard deviation. These outliers occurred for CPU-
run pUMAP under the batches condition, one for dimen-
sionality = 1000 and the other for sample count = 1000.
The results show that the projection speed of UMAP is
significantly worse compared to the other methods. Un-
der the one-go condition, standard UMAP takes over a
magnitude longer than aUMAP and pUMAP. This dif-
ference remains under the batch condition between stan-
dard UMAP and pUMAP, while increasing by an order
of magnitude against aUMAP.
The effects of an increase in dimensionality or sample
count are only notable for aUMAP in both the one-go
and batching conditions. Other methods do not seem af-
fected, except for standard UMAP under the one-go con-
dition at the highest sample count tested, however, this
increase is paired with a significant increase in variance.
Between the one-go and batch conditions, aUMAP re-
tains similar projecting times. For standard UMAP and
pUMAP, projection times are increased by an order of
magnitude when comparing batch to one-go. As a result,
aUMAP runs an order of magnitude faster than pUMAP
for the batched condition, while running at a similar
speed for the one-go condition.

DISCUSSION

In the INTRODUCTION, four requirements are pre-
sented to determine if a projection method is suitable for
an online setting. 1) The produced projections should be
an accurate lower dimensional (2D or 3D) representation
of the input data, 2) The time it takes to train/fit a model
should be relatively brief, i.e. a timescale of minutes,
3) projections should be rapidly producible in an online
fashion on a time scale of tens to 100 milliseconds, 4)
preferably, the method needs to be lightweight to ensure
projection or training times do not suffer due to strain on
the hardware and to avoid a need for specific hardware or
technical knowledge.

Approximate UMAP Accuracy: Our results in Figure 1
show that the proposed aUMAP method upholds the clus-
tering produced by standard UMAP. The average distance
between the aUMAP projections and standard UMAP
projections remains well below one standard deviation of
the standard UMAP projections. Although aUMAP pro-
duces quantitatively more and more extreme outliers than
standard UMAP, it still reproduces the same clustering
in the projection space as standard UMAP. This suggests
that the accuracy of aUMAP is close enough to that of
standard UMAP to suite online projecting, although more
prone to outliers. As such, aUMAP satisfies the Crite-
ria 1.

Training Time: Our results show that all tested meth-
ods satisfy the training time condition. The maximum
of approx. 2 minutes was observed for pUMAP when
trained on 5000 samples of 1000 dimensions. This time
is in line with the requirement we set out. However, it
should be noted that this method is sensitive to an in-
crease in the number of training samples, so it might vio-

late the requirement if more training data were to be used.
Unfortunately, we cannot properly assess the runtime of
pUMAP when using a GPU. A closer look at the GPU-
based pUMAP experiments is presented in a later section.
We observe that pUMAP scales with data dimensionality,
more so than the other methods, yet to a lesser extent than
the input sample size.

Our data shows that GPU-run pUMAP takes more time to
train than CPU-run pUMAP. These results go against our
prior expectations which expected pUMAP to be trained
faster when having access to a GPU. As such, a closer
look at GPU-run pUMAP is presented in a later section.
This and the following section will focus only on CPU-
run pUMAP when discussing pUMAP.
Comparing the training speed of CPU-run pUMAP to the
other methods, pUMAP is notably outperformed by both
standard UMAP and aUMAP, which have about the same
training time due to also fitting a UMAP model which
is what dominates the training duration. aUMAP fits a
nearest neighbors model in addition, yet this only triv-
ially contributes to the training time complexity. Standard
UMAP and aUMAP are trained an order of magnitude
quicker than CPU-run pUMAP and are less influenced
by larger dimensionality and sample size. As a result,
standard and aUMAP would each be the best choices for
a projection method according to Criteria 2.

Projection Time: The observed projection times dis-
play a significant difference between the one-go and
batches condition for all methods except aUMAP, which
consistently obtains the lowest projection times. Under
the one-go condition, the projection time is significantly
faster for standard UMAP and CPU-run pUMAP, be-
ing an order of magnitude quicker. The projections of
aUMAP take longer in the batch condition but remains
on the same scale.
Given that only a few data points are provided at a time
in an online environment, the times given in the batch
condition are of greater interest. Therefore, the following
discussion is based on this condition. Standard UMAP re-
quires a significantly longer time to generate projections
compared to the other methods. For every dimensionality
and training sample count tested, UMAP requires approx-
imately 40 seconds to project 500 samples, translating to
roughly 800 ms per sample, which is significantly longer
than the acceptable projection duration we proposed in
our third criterion. As such, standard UMAP cannot be
regarded as a good fit for online projecting. CPU-run
pUMAP is a better fit, as it projects the 500 points in just
above one second under its slowest conditions, or 2 ms
per data point. This satisfies Criteria 3. aUMAP per-
forms an additional order of magnitude faster, where all
500 projections are generated in less than 100 millisec-
onds. Both aUMAP and CPU-run pUMAP scale with the
number of training samples and dimensionality, however,
not at a significant degree. As such, the impact of the
training sample count or data dimensionality on projec-
tion time may be disregarded unless dealing with values
that are of multiple magnitudes larger than the highest
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values we tested.
This leads to the conclusion that, according to Criteria 3,
aUMAP is most suited for online projecting, however,
CPU-run pUMAP is also a feasible option.

GPU-run parametric UMAP: Finally, we will discuss
GPU-run pUMAP. The results we obtained show that
pUMAP runs faster on CPU than on GPU, both when
fitting a model and projecting. This is contradictory to
our expectations and the results of the paper that intro-
duced pUMAP [1]. Although the pUMAP study does
not comment on the effect of CPU or GPU usage on
the model’s training speed, the authors do compare the
projection speed of a CPU-run model to that of a GPU-
run model, showing that the projection speed is faster
for GPU-run pUMAP. According to that paper, GPU-run
pUMAP achieves a projection time that is approximately
one magnitude lower than CPU-run pUMAP for three of
the six datasets used. Additionally, the study shows the
effect of data dimensionality on the projection time, com-
paring 2 to 64 dimensions, which is in line with our re-
sults.
Based on the results of the original pUMAP paper,
we may make an inference on how GPU-run pUMAP
would compare to the projection times found for CPU-
run pUMAP. At worst, there would be an insignificant
difference, at best, GPU-run pUMAP would run an or-
der of magnitude faster. Given the best-case scenario,
pUMAP would still project slower than aUMAP. This im-
plies that, given Criteria 3, aUMAP would still be a better
projection method for online projecting.
Additionally, the pUMAP paper states that the training
times of pUMAP are within the same order of magnitude
as those of standard UMAP. The study highlights this by
showing the cross-entropy loss convergence of pUMAP
and standard UMAP, which occurs at around 1 second
for two of the three shown datasets and at 102 seconds for
the other dataset. Based on these results, we could specu-
late that training pUMAP, when having access to a GPU,
is as fast as both standard UMAP and aUMAP, making
pUMAP an equally valid choice as an online projection
method in accordance with Criteria 3.

Implementation: The implementation of the aUMAP
algorithm can be found online2. Additionally, a graphical
application for visualizing incoming data stream in real-
time and integrating this algorithm was created in the 3

platform.

CONCLUSION

To conclude, our results suggest that aUMAP can approx-
imate the projection space of standard UMAP sufficiently
well for the targeted application. aUMAP may generate
projections that lay closer to different clusterings than
their standard UMAP counterparts and produces more
and more extreme outliers than standard UMAP.

2aUMAP implementation: https://neurotechlab.socsci.
ru.nl/resources/approx_umap/

3Dareplane: https://github.com/bsdlab/Dareplane

Additionally, our results suggest that pUMAP and
aUMAP are good fits for real-time projecting. Standard
UMAP, on the other hand, does not meet the criteria to
be regarded as a good fit due to its projection times being
longer than our proposed acceptable maximum. Over-
all, aUMAP seems the best option for an online pro-
jection tool, having the lowest training and projection
times while being more accessible than pUMAP. How-
ever, aUMAP is more prone to producing outliers in pro-
jection space than standard UMAP. As such, if high ac-
curacy is desired pUMAP may be a better choice.
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ABSTRACT: Becoming proficient in the use of brain-
machine interfaces (BMIs) represents a challenging task
for the subjects, requiring long and intensive training. In
this paper, we propose and explore the use of a collabo-
rative BMI (cBMI) as an innovative training protocol that
allows two subjects to learn together by cooperating in
the control of a real robotic arm. Preliminary results on
three pairs of subjects spanning five days of training high-
light the promises of the proposed approach in reducing
the training time and possibly mitigating the frustration
in naive users.

INTRODUCTION

Motor imagery (MI) brain-machine interfaces (BMIs)
represent the most natural approach to control brain-
driven robotic devices [1]. Indeed, the endogenous
paradigm used in BMIs provides the advantage that sub-
jects can autonomously initiate mental tasks without re-
quiring external stimuli like visual, auditory, or tactile
cues, making the interaction with the robotic system more
natural [2].
However, becoming proficient using MI BMIs is a chal-
lenging scenario that requires a substantial investment of
time and effort for the subject [3]. In the last years, re-
searchers have shown that training directly on the final
application might be more effective than having subjects
engaged in repetitive and artificial mental tasks [4, 5].
However, this approach may not always be practical for
naive subjects, given the inherent limitations in the accu-
racy of their BMIs and the consequent frustration caused
by their low performances to perform the given task. This
is often attributed to their limited experience, causing
them to struggle in effectively generating effective con-
trol commands [6].
In this scenario, researchers have recently proposed col-
laborative brain-machine interfaces (cBMIs) to deal with
such limited performance [7, 8]. In this approach, multi-
ple subjects are simultaneously engaged in the same BMI
task and the output of their BMIs is combined to enhance
the decoding accuracy or increase the number of com-
mands.
One crucial aspect of cBMIs is how the data originating
from multiple sources is integrated to generate a single
control signal. In the literature, two main approaches

are reported: on the one hand, researchers investigated
the possibility to merge the sources at the feature level
and then to exploit this unified signal to train a single de-
coder [9, 10]. On the other hand, it has been explored the
feasibility to train a decoder for each subject, and then to
combine the output at the decision level to obtain the final
command for the external device [7, 8, 11].
In literature, cBMI are typically employed in experiments
with BMI based on exogenous visual stimulation or pat-
tern recognition. In a study by Wang et al. [11], 15 sub-
jects were divided into subgroups and they performed
animal categorization and single-photograph recognition
with a Go/noGo paradigm through a series of flashing
pictures. Similarly, Poli et al. [7] instructed 10 subjects
to determine whether two subsequent shapes, with the
second one masked, were identical and pressing a but-
ton consequently. In another study by Valeriani et al. [9],
participants were asked to identify the specific geometri-
cal patterns of two horizontal and vertical bars to use a
switch to send the decisions.
To date, research on cBMI with MI BMI is limited, and
the studies that apply this concept to control a robot in
real-life scenarios are neglected. For instance, Yijie et
al. [10] independently trained eight subjects in hands and
feet motor imagery for moving a point on a grid. They
combined the individual subjects’ results offline to simu-
late a collaborative protocol. In a different study, Bonnet
et al. [8] developed a game where subject pairs control
the movement of a virtual ball using motor imagery, both
collaboratively and competitively, to place it inside a net.
The game software uses the two decoders’ output to de-
cide in which direction the ball should move and change
the feedback accordingly. However, the literature pre-
dominantly emphasizes subject performance and meth-
ods to enhance classification accuracy, and there are no
studies reporting on the subject’s learning during cBMI.
In this work, we aim to investigate this particular aspect
by exploring the cBMI as a novel approach to assist sub-
jects during the training of MI BMI. Our training pro-
tocol grounded on the concept that when we learn com-
plex skills in our daily life (e.g., cycling, driving), we are
not alone. Based on this, we have designed an alterna-
tive training protocol utilizing a cBMI where two subjects
work together to accomplish the same task of controlling
a robotic arm during reaching operations. The rationale
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is that the presence of a second subject can help the less
proficient one to still conclude the task, decreasing nega-
tive mental states due to frustration or inefficiency present
in other BMI [12]. We hypothesize that this approach
can increase overall performance and promote learning
in both subjects [13].
The objective of this work is twofold: firstly, to showcase
the viability of MI cBMI for controlling a real robotic
device even in the early stage of the training; secondly, to
investigate this collaborative approach as a promoter of
individual learning of BMI skills.

METHODS

Participants: Six healthy subjects, with an average age
of 25±2 years, were recruited and divided into three pairs
(G1-C7, G2-D7, C9-C8). Moreover, three of them had no
experience with BMI system before (G1, G2, C9). The
first three sessions took place over two weeks in Decem-
ber 2023, while the remaining three sessions were con-
ducted over three weeks in January 2024. Each partici-
pant provided consent by signing a form detailing the use
of recorded data and privacy protocols, adhering to the
principles outlined in the Declaration of Helsinki.

Experimental design: The experiment comprised six
sessions, each consisting of three runs, as illustrated in
Figure 1a. The initial session (Session - Day 0) involved
the calibration and evaluation of the BMI Gaussian de-
coder of each subject. The following sessions (Session -
Day 1-5) focused on online runs, during which subjects
tested the trained decoder, re-training it if its accuracy
where below 70% [14] with two new calibrations and
evaluations, and subsequently controlled the robotic arm
in collaboration with another subject. All sessions are
subdivided into runs, which can be of three types: calibra-
tion runs for recording the data for training the decoder;
evaluation runs to test the decoder performance; control
runs where subjects controlled the robotic arm using the
proposed cBMI.
During the control runs, subjects were asked to move a
robotic arm from a home position to one of the five tar-
get objects placed on a circle of radius 50 cm in front
of the robot. Subjects were allowed to see the robot and
the workspace on a monitor, with superimposed visual
feedback as depicted in Figure 1b. At the beginning of
each trial, subjects were presented with a target object to
pick, indicated by a blue dot, for 1 s (cue period). After
that, the robot initiated the motion based on the output
of the cBMI. When sufficiently close to an object, the
robot autonomously performed the pick, returned in the
home position, and a new trial started. For each run, sub-
jects were required to pick each of the five objects twice,
hence ten trials in total. Figure 1 (c) shows the exper-
imental setup, comprising the subjects, the robotic arm,
and monitors for visual feedback. The combination of the
brain-machine interfaces (BMIs) output is also provided
as visual feedback using a rotating wheel1.

1Video: https://cloud.dei.unipd.it/index.php/s/TgYJ475A9M7tz3x

Figure 1: Experimental design. (a) Schematic representation
of the experiment division for sessions (days). (b) BMI visual
feedback provided to the subject to control the robotic arm. (c)
Experimental set-up for the controlling runs in which both sub-
jects controlled the manipulator.

Collaborative BMI: We acquired electroencephalogra-
phy (EEG) data with a 64-channel amplifier (AntNeuro
eego sports 64, Netherlands) operating at a sampling rate
of 512 Hz. A 2-class MI paradigm was employed where
the subjects were required to make the kinesthetic imagi-
nation of their feet or their hands. Our method was based
on a classical MI BMI already widely evaluated in liter-
ature [6, 15]. In particular, we selected a subset of 32
electrodes placed over the sensorimotor cortex (i.e., FP1,
FP2, FZ, FC5, FC1, FC2, FC6, C3, CZ, C4, CP5, CP1,
CP2, CP6, P3, Pz, P4, F1, F2, FC3, FCZ, FC4, C5, C1,
C2, C6, CP3, CP4, P5, P1, P2, P6) to detect the neural
patterns related to MI. We used the power spectral den-
sity of the EEG signals with Welch’s periodogram (from
4 to 48 Hz every 2 Hz) in 1-second windows sliding every
62.5 ms. The most discriminant features of each subject
were identified using Canonical Variate Analysis (CVA)
and a Gaussian classifier was trained with these features.
The classifiers were trained on EEG data acquired dur-
ing calibration or evaluation runs. During each calibra-
tion run, the subject was asked to perform 10 trials of
both hands imagination, 10 trials of both feet, and trials
of rest, providing always a positive feedback with the vi-
sual interface. During the evaluation, the feedback was
controlled by the BMI output and the subject was asked
to perform 10 trials of each MI class.

During the robot control, the output of the BMIs decoder
of each subject in the pair was fused to allow the col-
laborative control of the robotic system. To merge the
information coming from the two decoders, we applied a
weighted mean on the posterior probabilities:
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ppmerged =
W1 · pps1 +W2 · pps2

W1 +W2
(1)

The weights W1 and W2 were used to balance the con-
tribution of each subject to the control according to their
performance during the last evaluation run before starting
the control. The weights have been computed using the
balanced binary focal cross-entropy loss [16]. In particu-
lar, the weight for the subject s is obtained as Ws =−1/Ls
with Ls calculated as follow

Ls =
N

∑
Tr=1

NTr

∑
n=1


pp(yn)

γ ·log(1−pp(yn))
NTr

yn ∈ class(0)

(1−pp(yn))
γ ·log(pp(yn))

NTr
yn ∈ class(1)

(2)
where N is the number of trials in the evaluation run,
NTr is the number of samples in each trial and pp(yn) is
the posterior probability of the decoder given the features
yn. We fixed γ = 2 as focal factor which is used to re-
duce the impact on the loss of well-classified samples for
which pp(y ∈ class(0))< 0.6 or pp(y ∈ class(1))> 0.4.
Finally, after the fusion process, the merged probability
were integrated over time using an exponential smooth-
ing function as Dt = β ·Dt−1 +(1−β ) · ppmerged , where
Dt and Dt−1 are the current and previous cBMI output,
respectively, and β = 0.96 is the integration coefficient.

Robot control: The commands in output from the col-
laborative BMI were used as input for the robotic manip-
ulator. To this end, the integrated cBMI output Dt was
mapped to an angular direction dR ∈ {−90◦,90◦}, with
0◦ corresponding to the forward direction, for the move-
ment of the manipulator on the horizontal plane through
the following sigmoid functions [17]:

dR(Dt) =


−90◦+ 90◦

1+exp(−25∗(Dt−β1))
0 ≤ Dt ≤ 0.5

90◦
1+exp(−25∗(Dt−β2))

0.5 ≤ Dt ≤ 1
(3)

Parameters β1 and β2 denote the probability values at
which the sigmoid intersects −45◦ and 45◦, respectively.
These parameters were initialized respectively to 0.25
and 0.75 in the first session, and then tailored to each pair
at the beginning of the control runs based on the perfor-
mance obtained in the previous session [17]. Given the
movement direction, a velocity command was thus deliv-
ered towards that direction with constant speed equal to
5 cm/s.
In order to assist subjects in driving the robotic manip-
ulator towards one of the target objects, the robot was
controlled using a shared control architecture for teleop-
eration based on artificial potential fields (APF) presented
in [18]. In short, the system firstly computed the proba-
bility of each target object to be the goal of the reaching
task from the sequence of input velocity commands and
robot positions. Then, an attractor point for the APF was
generated at each time step as the center of mass of the

objects’ position weighted by their probability:

[x,y] =
ntargets

∑
n=1

P(x,y)n · pn (4)

where [x,y] are the coordinates of the attractor point on
the table surface, P(x,y)n represents the position of the tar-
get n, and pn is the probability associated to that target as
computed by the shared control system. The probability
of each object was also shown in real-time to the subjects
through the visual feedback to help them understanding
the behavior of the robotic device. For more details on the
shared control implementation, please refer to [17, 18].

RESULTS

Feature evolution: Figures 2a-b summarize the evolu-
tion of the features, the distribution of the posterior prob-
abilities and the performances of the subjects during the
5-day sessions. In particular, Figure 2b illustrates the
distributions of the posterior probabilities for a pair of
subjects (G1 on the x-axis and C7 on the y-axis) dur-
ing the control of the robotic manipulator. It can be seen
that, while subject C7 was able to span the whole range
of probabilities since the first session, the second sub-
ject G1 started from a distribution quite shrank around
0.5, meaning that he was not significantly contributing to
turning the robot left-right. Nevertheless, thanks to the
training also subject G1 was able to expand the distribu-
tion of probabilities covering nearly the entire probabil-
ity space, particularly around the extreme values during
the last session. This improvement is then reflected in
the distribution of the fused probabilities (Figure 2b, bot-
tom right), where each curve colour corresponds to the
same session in the scatter plots. Initially, on the first
day, they were concentrated around 35% and, as sessions
progressed, the distribution gradually transformed into a
more uniform distribution, encompassing a broader range
of possible velocity commands to control the robot. To
better understand how this improvement is reflected at the
neural level, we analysed the feature maps of each sub-
ject during robot control. In order to provide a reliable
label (both hands or both feet) to each sample, we cal-
culated the angle ϕee−goal between the current position of
the robot’s end-effector and the position of the trial’s goal
with respect to the forward direction. If ϕee−goal ≥ 30◦,
the corresponding EEG sample was labelled as both feet,
if ϕee−goal ≤ −30◦ as both hands, otherwise it was not
considered for the feature maps analysis. Figure 2a shows
for each session the grand-average across all subjects of
the feature maps in the α (8−12Hz) and β (18−22Hz)
bands calculated using the Fisher’s score [4]. Overall,
it can be noted a clear emergence of discriminant fea-
tures through the sessions, particularly in lateral channels
(C4,C6,FC6,FC4 and C3,C5,FC5,FC3) and in the β

band, as expected from our MI paradigm.
BMI accuracy: Figure 2c shows the average accuracy

and the pick error for each pair over the five days. The
pick accuracy is computed by counting the correct trials
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Figure 2: BMI performances. (a) Topographic representations across sessions of the grand-average feature maps of all the subjects
computed as the Fischer’s score in the α (8−12Hz) and β (18−22Hz) bands. (b) Scatter plot of the combined posterior probabilities
of the pair G1-C7 during the control runs of every session (G1 on the x-axis and C7 on the y-axis). The bottom-right plot represents the
distributions of the merged probabilities across the training sessions (same color as the corresponding scatter plot). (c) Pick accuracy
and pick error for every pair of subjects across the five sessions.

Robot pick accuracy [%] Robot pick error [number of objects]
Session 1 2 3 4 5 1 2 3 4 5
G1-C7 30±10 47±25 47±25 40±20 73±5 1.0±0.1 0.7±0.1 0.9±0.7 1.1±0.7 0.3±0.1
G2-D7 20±14 37±5 63±11 20±0 33±20 1.2±0.3 0.9±0.1 0.6±0.1 2.0±0.0 1.3±0.6
C9-C8 43±15 50±8 17±15 46±15 57±11 0.9±0.3 0.8±0.3 1.7±0.2 0.9±0.5 0.5±0.1

Table 1: Average pick accuracy (chance level at 20%) and pick error over the sessions for every pair.

(i.e., trials in which the manipulator reaches the correct
object) over all trials. Instead, the pick error measures the
precision of the control as the number of objects between
the picked object and the correct one. For example, if the
correct object is the one in the forward-left direction and
the users pick the forward object, this error is equal to 1.
On the other hand, if they pick the right-most object, the
error is equal to 3. If a trial is correct, the error is equal to
0 for this trial. This metric is then normalized by the total
number of trials in a single session. The average values
of accuracy and pick error for each pair and each session
are reported in Table 1.
Overall, all the pairs showed an improvement in perfor-
mance from the first to the last session, both in terms of
pick accuracy and error. The best improvement is shown
by the pair G1-C7 with an increase of accuracy from 30%
on average to more the 70% in the last session. Moreover,
in the last session, the wrong picks are limited only to ad-
jacent objects as highlighted by the average pick error of
0.3± 0.1. The worst improvements are achieved by the
pair G2-D7 showing the highest performance in session

three. Nevertheless, they also obtained an increase in the
average pick accuracy of more than 10% in the last ses-
sion with respect to the beginning of the training.

Control performance: Figure 3 illustrates the trajec-
tories computed for a sample pair (G1-C7) throughout
all sessions, wherein the target reached corresponds to
the one prompted by the cue (i.e., correct trials). No-
tably, there is an observable enhancement in spatial ex-
ploration across sessions. In the initial session, the pair
was able to reach only the most central target objects.
While, in sessions two and three, they managed to reach
four targets, and in the subsequent two sessions, they suc-
cessfully reached all five targets. Figure 3b portrays the
Fréchet distance [19] with respect to ideal trajectories,
computed by averaging the trajectories of all the correct
trials of every pair and every session for each target. This
metric is calculated for both correct and erroneous trials,
with the mean value computed for each session. Addi-
tionally, Table 2 outlines the average Fréchet distance for
each session and pair. Except for the pair G2-D7, the
subjects showed a reduced Fréchet distance of more than
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Figure 3: Control performances. (a) Correct trajectories computed by pair G1-C7 for each session. In the initial session, they reached
three targets, while in the subsequent two sessions, they achieved four goals. Remarkably, in the last two sessions, they successfully
reached all five targets. (b) Fréchet distance (in centimetres, cm) for each session and pair of subjects.

G1-C7 G2-D7 C9-C8
session 1 33.0±22.1 36.7±20.0 31.6±22.5
session 2 30.8±21.2 32.0±22.0 27.1±23.5
session 3 32.2±24.8 25.5±20.7 46.5±24.8
session 4 36.4±24.0 51.9±28.4 29.9±23.8
session 5 19.0±14.8 36.6±25.9 24.1±15.0

Table 2: Frechet distance (cm) for each session and pair.

10cm in the last session with respect to the first session,
signifying a reduced deviation of the paths traversed to
the ideal trajectories.

DISCUSSION

As anticipated, the aim of this work is to deviate from
the literature which uses the cBMI only as a method to
increase the BMI performance but rather to exploit it in
combination with a real robotic application as an innova-
tive approach to foster the subject’s learning. As reported
in Figure 2, all the pairs show improvements in control-
ling the robotic device through the cBMI. Indeed, when
the experiment started we hypothesised that each subject
had a low capacity to control the robot, due to inexpe-
rience with this new approach, and because the modula-
tion of brain rhythms is difficult at the beginning. More
in details, at the beginning it was difficult for subject G1
to explore all the probability space of the BMI decoder.
Nevertheless, thanks to the cBMI approach the pair was
able to have sufficient control to directly train on the real
robotic device and subject G1 learnt how to perform the
required mental tasks leading to a more uniform distribu-
tion of the BMI output in the last sessions. It is worth not-
ing that a broader spanning of the probability space is par-
ticularly important in our paradigm as the robotic device
was controlled by mapping the BMI output to continuous
control commands, rather than exploring a discrete con-
trol approach as commonly employed in the literature. By
analysing the evolution of the neural correlates over the
training sessions, we suggest that these improvements of
performance in all the subjects are not only related to a

familiarization of the subjects to the system, but rather
to an effective learning of BMI skills. Indeed, the topo-
graphic maps of Figure 2(b) displays a visible increase in
the number and power of the discriminant features in both
α and β bands, in line with previous works on subject’s
learning in BMI [4, 5].

A thing to note is that the third session was done im-
mediately after the winter holidays, thus more than two
weeks apart from the previous two sessions. This may
explain why all the pairs show a drop in the performance
around the third and fourth sessions, as it can be seen also
in Figure 2(c). Indeed, all the subjects were either com-
pletely naive or not proficient BMI users at the beginning
of the experiment. Thus, they were not able to stabilize
their features and skills in the short-term training before
the stopping period. Nevertheless, when the training was
restarted they recovered and further boosted the discrim-
inant features. The learning of these BMI skills is also
suggested by the performance of robot control. Two out
of three pairs (G1-C7, C9-C8) showed an improvement
in pick accuracy, pick error and Fréchet distance from
the first to the last session, highlighting a more optimal
control of the robotic manipulator directed to the desired
target object.

Our study suggests that cBMI might be exploited as an
alternative training protocol for MI BMIs. However, this
work suffers from some limitations. First of all, the small
number of subjects participating in the experiment, in
fact, a larger pool is required to verify and strengthen our
findings. Secondly, the relatively short training period
(only 5 sessions) that might be not sufficient for all sub-
jects to acquire stable and robust features. Future work
will address these limitations by expanding the number
of subjects and by designing a longitudinal study.

CONCLUSION

In this article, we introduce a novel protocol for collab-
orative MI BMI with shared control for manipulating a
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robotic arm. Our hypothesis posited that with a collab-
orative BMI, both subjects would acquire proficiency in
generating BMI commands and, thus, in controlling the
robotic arm across multiple sessions. The outcomes ob-
tained from a sample of three pairs of subjects, either
completely naive or not expert in MI BMI, suggested
promising results supporting our hypothesis and demon-
strating the feasibility of utilizing this protocol to train
subjects in acquiring BMI skills while directly engaging
with real robotic application since the first days. We be-
lieve that the proposed approach of using the cBMI as
training protocol will help not only to reduce the time
investment required for reaching satisfying BMI perfor-
mance, but also to mitigate the potential frustration expe-
rienced by naive users at the beginning of the training.

FUTURE WORKS

To further validate the proposed approach, we aim to
evaluate in a larger study the improvements introduced
by the collaborative BMI on the subject’s learning with
respect to training the subjects individually. Moreover,
we want to investigate how the learning process is influ-
enced by the pairing of individuals. Thus, we will com-
pare the learning of pairs of both nave subjects with re-
spect to pairing a naive subject with an expert BMI user.
Finally, the use of the proposed cBMI will be extended to
other and more challenging scenarios such as controlling
the robotic arm in daily-living tasks or for entertainment
in collaborative gaming applications.
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ABSTRACT 

 

Funded by the German federal agency Agentur für 

Innovation in der Cybersicherheit - “Innovation for 

Cybersecurity” (Cyberagentur) with a record €30 

million, we announce Zander Labs’ Project NAFAS, 

which aims to integrate Brain-Computer Interface (BCI) 

technology with Artificial Intelligence (AI). By first 

addressing the traditional constraints of EEG-based 

neurotechnology and developing mobile, secure 

hardware capable of decoding multiple mental states in 

real time, this project paves the way for a new era of 

Neuroadaptive Human-Computer Interaction (HCI)—

and, ultimately, Neuroadaptive AI. Beyond the project’s 

scientific aims which we briefly introduce, Project 

NAFAS itself represents confidence in the ability of the 

scientific community to solve the critical challenge of 

transitioning BCIs from theoretical constructs to 

practical real-world applications, and in the positive 

impact the resulting BCI technology can have in our daily 

lives. 

 

INTRODUCTION 

 

Already in the 1960s, when initial thought came to paper 

concerning what was termed man-computer symbiosis, it 

was said to be “likely that the contributions of [humans] 

and [computers] will blend together so completely […] 

that it will be difficult to separate them” [1]. This was 

more than a decade before Vidal introduced BCI as a 

unique human-computer communication method [2], and 

even a few years before Weizenbaum’s ELIZA inspired 

a large movement in AI research to focus on yet a 

different kind of “blend” [3]. In many ways it has been 

this idea of blending, or merging, human cognitive 

processes with digital computation in various forms that 

has guided HCI, BCI and AI advancements ever since. 

Project NAFAS (Neuroadaptivity for Autonomous 

Systems) sees itself in this same tradition, and targets 

these same technologies. By further developing passive 

BCI [4] technology, we enable HCI and AI to become 

neuroadaptive [5], and introduce a more intuitive, more 

natural, and indeed, more symbiotic form of human-

computer or human-AI interaction. 

     Project NAFAS is Zander Labs’ winning proposal to 

a tender published by the Cyberagentur in 2022. The 

project will be executed together with a number of 

subcontractors, which we cannot yet exhaustively list at 

the time of submission. With its states goal “to harness 

key technologies and breakthrough innovations that help 

to enable and improve internal and external security” 

([6], translation from German by the authors), the 

Cyberagentur called for “secure neural human-machine 

interaction” to be developed, with which they thus 

identified (passive) BCI as a key technology of strategic 

interest. With € 30 million, to the best of our knowledge, 

this is the largest single-entity funding ever granted 

within the European Union. The tender in general, and 

Project NAFAS’ win in particular, highlights the 

importance of passive BCI and its related fields, and 

underscores their public recognition as such. We are 

happy to announce this project to the community and are 

looking forward to sharing our results. 

 

OBJECTIVES 

 

In an era where technology increasingly mediates our 

interactions with the world and with other human beings, 

the importance of intuitive and natural forms of human-

computer communication has never been more acute. 

Current BCI and AI technologies, while groundbreaking, 

often remain confined within the realms of academia and 

specialized applications, largely detached from the daily 

experiences of the broader public. 

     Project NAFAS is a four-year effort that was 

formulated to address these and other current limitations 

of neurotechnology in general and (passive) BCI in 

particular. Project NAFAS will develop safe, practical 

neurotechnology that allows a new generation of 

technologies to adapt in real-time to the cognitive and 

emotional states of users. We believe such a development 

will make digital interaction, be it with AI or more 

traditional HCI applications, more fluid, instinctive, and 

human-centered—or, will even remove the explicit need 

to ‘act’ altogether. 

     The safety and practicality of the technology are all 

elements that are explicitly addressed in this project, 

starting with new hardware that will be developed. Also 

the “new generation of technologies” is addressed, by 

developing Neuroadaptive HCI as a core technology, 

Neuroadaptive AI as an AI-focused extension, and a 

series of demonstrators to showcase all of these results. 

 

     Safe and Practical: The Mobile EEG Suite 

 

Central to Project NAFAS is the development of a 

Mobile EEG Suite, which combines mobile, self-

applicable electrodes and amplifiers with dedicated BCI 
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hardware. 

     The electrodes will be designed with a focus on ease 

of use and comfort, such that they can be applied by 

individuals without technical expertise, making the 

technology accessible to a broad audience. We recognize 

self-applicability and comfort as a requirement to reduce 

the current barriers to BCI adoption, and to enable 

widespread use across various environments. We do not 

limit ourselves to specific use cases, but rather target 

usability in the widest possible range, be it personal 

computing environments, outdoor settings, or 

sophisticated research laboratories. 

     Complementing the electrodes, the project will 

develop lightweight, miniaturized amplifiers that further 

increase the system's mobility and practicality. These 

amplifiers will be designed to be compact and efficient, 

with extended battery life suitable for prolonged use. 

Together with the electrodes, this will enable the 

continuous and comfortable monitoring of brain activity 

in everyday settings. 

     The monitored brain activity will also be decoded in 

hardware. A core target of Project NAFAS is to develop 

universal classifiers, allowing for the real-time 

interpretation of brain activity across different 

individuals without the need for dedicated calibration 

sessions. This addresses one of the most significant 

challenges in BCI technology today. A large-scale data 

collection project will be set up to provide the basis of 

these classifiers.  

     When EEG hardware can be worn anywhere, and 

calibration is no longer necessary, a person’s naturally-

occurring brain activity can be recorded and decoded at 

any time. To address the clear privacy issues arising from 

such a technology, the universal classifiers will be 

implemented directly in hardware. This hardware will 

give the user maximum authority over their data: they 

will have full, physical control over the decoding 

process, while the hardware ensures that no unauthorized 

brain activity can leak out. This follows, among other 

guidelines, the privacy- and (cyber)security-preserving 

BCI framework that was previously funded by the 

Cyberagentur [7]. 

     In short, Project NAFAS will address a number of 

fundamental issues of present-day neurotechnology by 

providing mobile, comfortable, and safe hardware 

capable of decoding brain activity in real time without 

explicit calibration periods. This will serve as the basis 

for further developments within the project; specifically: 

Neuroadaptive HCI and Neuroadaptive AI. 

 

     Neuroadaptive Human-Computer Interaction: 

Passive BCI in the Wild 

 

On the basis of the above neurotechnological hard- and 

software solutions, universal passive BCI classifiers can 

be made available in almost any and all HCI context, 

enabling Neuroadaptive HCI. A Neuroadaptive HCI 

software framework, which will be developed in this 

project, will enable systems to implicitly obtain, use, and 

even learn to anticipate, a person’s needs and 

preferences, and to adjust their functionality accordingly. 

Neuroadaptive HCI will thus allow for unprecedented 

personalization of existing HCI systems, and for the 

development of novel systems following neuroadaptive 

principles. For instance, educational software could 

modify its approach based on the learner's current mental 

state, enhancing both engagement and comprehension. 

By also integrating context assessment, the 

Neuroadaptive HCI framework will help ensure that 

interactions are not just personalized but also relevant to 

the user's immediate environment and situation. 

     The Neuroadaptive HCI framework will provide a 

core technology to make future interactive applications 

more intuitive, more natural, and more human-centric on 

the basis of brain activity. 

 

     Neuroadaptive Artificial Intelligence: Empowering    

AI with Human-Like Understanding 

 

One of the main innovations of Project NAFAS will be 

to use all of the above technologies to ultimately expand 

the capabilities of AI. Project NAFAS’ above-mentioned 

results will enable us to provide AI with real-time 

insights into human cognitive and emotional intricacies. 

We believe that this combination can cultivate AI 

systems that are not only more human-like, but ultimately 

even empathetic, capable of engaging in interactions that 

resonate on a human level. 

     With access to the kinds of subjective human nuances 

that are not present in any amount of raw data, but can 

only be obtained directly from implicit mental states, 

these neuroadaptive AI entities can adjust their responses 

and actions in real time, effectively anticipating user 

needs and preferences. Furthermore, we believe that 

these kinds of insights into the inner workings of human 

cognition, mental strategies, and decision making, can be 

used to teach future AIs uniquely human skills that are 

currently beyond their reach. 

     The concept of Neuroadaptive AI, then, represents a 

type of technology that is both uniquely human itself, and 

genuinely tuned to human idiosyncrasies, bridging the 

gap between cold computational processes and the 

dynamic spectrum of human emotion and cognition. 

 

CONCLUSION 

 

The aims of Project NAFAS are bold: to stride toward the 

seamless integration of technology with the essence of 

human experience. But what the project represents, 

beyond the data, results, developments, and solutions that 

it targets, may be even bolder: it's a call to action for the 

global BCI, HCI, and AI research communities to 

envision and create a future where technology doesn't 

just serve us—it understands us, adapts to us, and 

becomes an empathetic extension of our own, human 

intellect. We see this as our collective chance to not only 

advance our scientific and technological frontiers, but to 

also make a profound impact on how we interact with the 

digital world. 
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ABSTRACT 

Neurofeedback (NF) consists in training the self-

regulation of some target neural activity. Yet, the neural 

underpinnings of NF performance remains largely 

unknown. Here, we investigated Motor Imagery (MI) 

based NF with EEG, training subjects to regulate motor-

related activity in the large β (8-30 Hz) band. We 

examined the electrophysiological correlates of NF 

performance across the whole scalp and the frequency 

spectrum. In addition to the rewarded β activity, fronto-

central θ activity predicted NF performance. The 

association was modulated by the participants' sense of 

agency over the feedback with stronger effects in 

participants with lower agency. Fostering agency in NF 

protocols may reduce cognitive effort and reliance on 

additional rythms beyond β. Considering these effects 

could be important for optimizing NF performance. 

 
INTRODUCTION 

Neurofeedback (NF) is a cognitive training procedure 

aiming to train subjects to modulate a specific neural 

activity, by providing them real-time feedback (FB) on 

this activity. The premise is that there is a causal link 

between neural activity and mental (sensory, cognitive, 

or motor) functions. Mastering control over a targeted  

activity may improve or restore the corresponding 

cognitive or sensorimotor ability. However, NF raises 

several scientific and technical challenges. One of them 

is the high percentage of non-responders and the 

variability of NF performance. This raises the question 

of the neural mechanisms of NF learning and the neural 

processes associated with NF performance. 

Among the possible processes involved, placebo effects 

[1,2], non-specific training effects [3], and indirect 

causality effects are debated [4].  

In this study, we focused on motor imagery (MI) NF 

paradigms using electroencephalography (EEG), to train 

participants to reduce the motor-related β band activity 

(here considered between 8 and 30 Hz) by imagining 

right hand movements.  

NF learning has been proposed to rely on reinforcement 

learning, yet this remains untested [5,6]. Psychological 

factors such as technology acceptance, attention and 

spatial abilities are known to influence performance [7]. 

Besides psychological traits, the dynamic cognitive 

processes contributing to NF success were seldom 

investigated. These may entail cognitive control, 

attentional processes, and reward processing among 

others. These processes are underpinned by rhythms 

different from the rewarded β activity, hindering the 

specificity of the training and complicating the 

interpretation of behavioral or clinical effects [4]. In this 

line, recent studies have demonstrated functional 

connectivity outside of the expected motor networks in 

MI-based NF protocols [8]. Moreover, some NF studies 

targetting α, β or γ band activities have reported 

modulations of electrophysiological rhythms beyond the 

rewarded frequency band [9,10], while others provided 

evidence for specificity of NF training [11,12].  

In this study, we aimed to move past identifying 

rhythms whose modulation temporally coincided with 

NF training. We investigated the neural activities 

associated to successful NF performance beyond the 

targeted β activity.  

Exploratory studies have shown that psychological 

predictors of NF performance differ between θ and β 

NF paradigms varies [13]. Additionally, experimental 

factors such as visual or tactile feedback modality 

modulate differential rythms [14]. Thus, psychological 

and experimental factors may modulate the association 

between non-specific activities and NF performance.  

We used an MI-based NF task rewarding the 

downregulation of activity on central, motor regions in 

the 8-30 Hz band. Participants were trained with three 

different FB conditions and we measured their sense of 

agency i.e. sense of control over the FB. An initial 

analysis focused on the relationship between agency and 

NF performance and showed that the subjective sense of 

agency over FB predicted NF performance [15]. Here, 

we focused on the electrophysiological correlates of NF 

performance beyond the rewarded activity and explored 

activities in the θ (3-7Hz), α (8-12 Hz) and β (13-30Hz) 

bands across the whole scalp. We also examined 

whether FB conditions and/or sense of agency 

interacted with these electrophysiological correlates. 
 

MATERIALS AND METHODS 

We used Dussard et al.’s dataset [15]. Full materials and 

Methods details are provided in [15]. 
 

 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-066

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

375



Participants 

Twenty-three healthy right-handed participants (mean 

age 28 ± 7 years, 11 women) were included in this study 

approved by the CPP IdF VI ethics committee. 

Participants gave written informed consent and received 

financial compensation after participation. 

Experimental protocol 

The experiment consisted in one NF session. 

Participants performed the MI-NF task with three 

different FB conditions (Figure 1A).  

The FB conditions were either visual, with 1) a 

pendulum (PENDUL) oscillating to the right, 2) a 

clenching virtual hand (HAND) or multimodal, with 3) 

a clenching virtual hand combined with motor illusion 

vibrations (HAND+VIB). 

For each FB condition, participants performed 2 runs of 

5 trials (Figure 1B). We presented the FB in separate 

blocks to avoid the potential cognitive cost of trial-by-

trial FB switching. The order of the FB conditions was 

counterbalanced across participants. 

Each NF trial lasted 24s and featured 16 FB movements 

lasting 1.5s (Figure 1C). Participants were trained and 

instructed to perform MI at the pace of the rhythmic 

visual FB movements. 

The sense of agency was measured after each run of 5 

trials with a 11-point Likert scale in response to the 

question: “Did you feel like you were controlling the 

movements of the pendulum/hand?”.  

 

 
Figure 1. Illustration of the experimental protocol. A. 

Representation of the different FB conditions, i.e., PENDUL, 

HAND and HAND+VIB. B. Time course of the experiment. C. 

Time course of an example trial in the HAND condition 
 

To control for the effect of FB stimulus on EEG 

activity, participants also underwent control tasks 

consisting in passive trials where they observed random 

movements of the pendulum or the virtual hand and 

eventually received additional vibrations (Figure 1B). 
 

A 2x30s resting state recording with eyes open on a 

fixation cross established NF reference threshold, based 

on median 8-30Hz activity on C3 electrode (computed 

as the Laplacian between C3 and FC1, FC5, CP1, CP5) 

(Figure 1B). Then, during the NF trials, a 10% 

reduction of this activity induced positive FB in the 

form of movement on screen and over 55% reduction 

triggered maximal amplitude of FB movement (either 

swing for the pendulum or clenching for the virtual 

hand). Activity reduction between these upper and 

lower limits triggered a linearly proportional movement 

amplitude. Twenty-one out of 23 participants obtained 

positive visual FB. 

For HAND+VIB FB, vibrations were delivered by a 

vibrator attached on the right-hand extensor tendons. 

They were triggered every 6s if the participant 

maintained an average of 30% reduction in the previous 

6s. Tactile FB was intermittent to avoid habituation-

related opposite direction movement illusions [16].  

EEG Data acquisition 

EEG signal was recorded with an actiCHamp Plus 

system (Brain Products GmbH) using a 32-active 

electrode cap (ActiCAP snap, Brain Products GmbH). 

The signal was referenced to Fz electrode. The ground 

electrode was Fpz. The data were recorded at 1 kHz 

with a band-pass filter of DC-280Hz. Data were 

transmitted to OpenViBE 2.2.0. 

Online EEG signal processing 

A laplacian filter was computed over the C3 electrode 

by subtracting the signals from CP5, FC5, CP1 and FC1 

electrodes. The signal was epoched into 1s time 

windows with 0.75s overlap then filtered in the 8-30 Hz 

band. The signal values were squared and averaged over 

time in each epoch. These epoch values were streamed 

to a Unity application using Lab Streaming Layer (LSL) 

communication protocol. Each FB movement was 

determined by the mean of four consecutive epochs. 

This mean was compared to the pre-determined 

reference threshold. The amount of reduction in β power 

was conveyed by the amplitude of FB movements. 

Offline EEG signal processing 

We performed offline analyses of the event-related 

desynchronisation/synchronisation (ERD/ERS) during 

trials with MNE Python. The continuous raw data were 

filtered with 0.1 Hz high-pass, 90 Hz low-pass, and two 

zero-phase notch filters (50 and 100 Hz cut-off). The 

signal was epoched into NF and control trials. We 

excluded the trials with muscular artifacts. We rejected 

electrodes around the maxillary regions from analysis 

due to frequent muscular artifacts. We removed ocular 

artifacts with independent component analysis. The data 

were average-referenced and downsampled to 250 Hz. 

We computed EEG power between 3 and 30 Hz with a 

Morlet wavelet transform with 1 Hz frequency bins. We 

averaged the resulting time-frequency data across trials, 

for each run of each FB condition, in each participant. 

We normalised power values relative to a 2s fixation 

cross baseline before the trial onset using a log-ratio. 

Finally, we averaged the obtained ERD/ERS data across 

time in each condition.  

Statistical analyses 

ERD/ERS predictors of NF performance 

We used a mass univariate approach based on linear 

mixed-effects regression (LMER) models to explore the 

relationship between NF performance and ERD/ERS 

computed between 3 and 30 Hz over the whole scalp. 

Thus, for each electrode i and each frequency j, we 

computed a model with NF performance as the outcome 
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variable and the ERD/ERS value at the electrode i for 

the frequency j (ERD_ERSvaluei,j) as fixed effect 

factor. We included runs as a fixed effect covariate and 

a random intercept of the NF performance across 

participants.  
 

The models were written in R 4.0.4 with the lme4 

package, as follows: NF_performance ~ ERD_ERSi,j + 

run + (1 | participant_id)  

Model parameters were estimated using Restricted 

Maximum Likelihood and p-values were estimated 

using Type III ANOVA. Parameter estimates of the 

fixed effect of ERD/ERS were extracted for each 

electrode and frequency and tested for significance with 

false discovery rate (FDR) correction for multiple 

comparisons applied to the p values (n = 756: 28 

electrodes x 27 frequencies).  

This analysis allowed the identification of a fronto-

central θ activity predictive of NF performance. We 

investigated further this activity in subsequent analyses. 

Impact of FB condition on fronto-central θ activity 

To control for the potential effect of vibrations in the 

HAND+VIB condition, we repeated the initial LMER 

analysis by excluding the vibration periods from the 

trial data, before averaging the ERD/ERS data across 

time. For this, we excluded NF performance values of 

cycles 4, 8, 12 and 16, which could feature vibrations.  

Potential modulators of fronto-central-θ predictor 

We tested if FB condition and sense of agency 

modulated the identified fronto-central θ activity. To do 

so, we averaged the ERD/ERS values that significantly 

predicted NF performance after FDR-correction on 

fronto-central electrodes in the θ band. We used LMER 

analysis to assess the interaction between this averaged 

fronto-central θ activity and i) agency, ii) FB condition.  

Thus, the model was the following:  

NF_performance  ~ ERD/ERS_Theta*Agency + 

ERD/ERS_Theta*FB + Run + (1 + FB +  Agency + 

ERD/ERS_Theta | participant_id) 

We chose this random-effects structure to control for 

Type I error while allowing model convergence. 

We ran the same analysis on the left central β cluster 

(corresponding to the rewarded activity) as a control.  
 

RESULTS 

Electrophysiological correlates of NF performance 

First, we examined the ERD/ERS patterns that 

accounted for NF performance by computing LMER 

models over the scalp and the frequency spectrum. 

Decreased power in the rewarded 8-30Hz band over the 

left central regions was positively associated with NF 

performance (Figure 2A). This was expected since our 

design trained participants to reduce this activity and FB 

(aka. NF performance) was computed on the basis of 8-

30 Hz band activity on C3 through OpenVibe. This 

effect seemed particularly marked in the 13-30 Hz band 

and extended bilaterally; it extended on parietal 

electrodes in the high-β band. Such activity is typical of 

MI task [17].  

Moreover, power in the low θ band (3-4Hz) over fronto-

central regions was positively associated with NF 

performance: increased fronto-central low θ power 

predicted higher NF performance (Figure 2A and 2B). 
 

 
Figure 2. Parameter estimates of the effect of ERD/ERS on NF 

performance across electrodes and frequencies. Blue indicates 

negative estimates, that is, decreased power predicts higher NF 

performance. Red color indicates positive estimates  increased 

power predicts higher NF performance. A. Topographic maps of 

the parameter estimates averaged in different frequency bands. 

Topmost maps: left map for 3-7 Hz and right map for 8-30 Hz. 

Lower maps depict from left to right: 8-12 Hz, 13-20 and 21-30 

Hz. B. Electrode-frequency representation of parameter estimates, 

with electrodes in ordinate (from frontal electrodes on the top to 

occipital electrodes on the bottom) and frequencies in abscissa. 

Only statistically significant parameter estimates at p<.05 with 

FDR correction are displayed. 

We then focused on this fronto-central θ pattern, which 

stood out as it was not rewarded in our NF protocol and 

is not typically associated with MI.  
 

Impact of FB condition on fronto-central θ activity 

First, we investigated if this fronto-central θ activity 

was influenced by the FB condition. Our previous 

findings showed vibration-locked patterns of θ 

synchronisation in the time-frequency representations 

[16] (see Figure 3A and 3B).  

If θ activity was a byproduct of the vibratory FB, this 

could confound our result since the vibrations were by 

design associated with successful NF performance.  

The effect of the vibratory FB on the θ band was further 

illustrated by displaying topographical maps of θ 

activity averaged over the time periods of the vibrations, 

during the NF trials (Figure 3A top) and the passive, 

control trials (Figure 3B, top). 

 

The fronto-central pattern θ ERS was concomitant of 

the vibrations. Yet, it was somewhat more central in the 

passive condition (Figure 3B, top). 

The θ ERS was short-lived, lasting ~0.5s of the 2s 

vibration duration. Its amplitude decreased from the 

first to last vibration in the passive condition.
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Figure 3. A. Grand average data of the NF HAND+VIB trials. B. 

Grand average data of the passive condition with virtual hand and 

vibration stimuli. Top: Topographical maps of the 3-7Hz 

ERD/ERS during the vibration periods. Bottom: Time-frequency 

representation of ERD/ERS on C3 electrode. 
 

As an additional control, we re-ran our LMER analysis 

by excluding the vibration periods in the HAND+VIB 

trials. The results remained unchanged. This suggests 

that the fronto-central θ effect on NF performance was 

not attributable to a confounding effect of the vibratory 

FB. 

 

Potential modulators of fronto-central θ predictor 

We then investigated whether FB conditions and/or 

sense of agency modulated the association between the 

fronto-central θ activity and NF performance. Indeed, 

our original analysis showed that subjective sense of 

agency over FB was a significant predictor of NF 

performance [16]. 

 

For this analysis, we extracted and averaged the 

ERD/ERS values on the electrodes and the low θ 

frequencies (3-4Hz) where a significant effect on NF 

performance had been found. We then ran an LMER 

analysis taking into account the effects of FB condition 

and agency and their potential interaction with the 

fronto-central θ effect.  

 
Figure 4. Relation between NF performance and fronto-central θ 

activity. Individual data for each FB condition (HAND in orange, 

PENDUL in purple and HAND+VIB in turquoise). Thin gray 

lines represent the individual random slopes and intercepts of the 

effect of fronto-central θ on NF performance. The black thick line 

represents the estimated fixed effect of fronto-central θ on NF 

performance.  

 

This analysis showed when accounting for the effects of 

FB condition and agency, the main effect of fronto-

central θ on NF performance remained significant 

(parameter estimate: = 1.87, 95% CI [0.93, 2.81]; F(1, 

71.9) = 18.8, p < 0.001) (Figure 4). Thus, fronto-central 

θ activity was neither a mere electrophysiological 

correlate of sense of agency nor of FB condition. 

There was no significant interaction between fronto-

central θ and FB conditions (F(2, 81.4) = 0.55, p = 0.58). 

Therefore, fronto-central θ activity seemed associated 

with NF performance regardless of FB condition.  
 

In contrast, there was a significant interaction between 

fronto-central θ and sense of agency (parameter 

estimate = -0.22, 95% CI [-0.34, -0.10]; F(1, 

93.3) = 12.5, p < 0.001). To illustrate this interaction, we 

represented NF performance as a function of fronto-

central θ values, splitting the data according to different 

scores of agency (1st tercile [0-3] in red, 2nd tercile [4,7] 

in brown and 3rd tercile of agency scores [8-10] in 

green, in Figure 5). We represented the model 

predictions by plotting the estimated slopes of fronto-

central θ effect on NF performance at three fixed 

agency values (2, 6 and 8) (colored lines in Figure 5).  

 
Figure 5. Relation between NF performance and fronto-central θ 

activity as a function of agency. Dots represent the individual data 

for each run and each FB condition, colored by agency bin (1st 

tercile in red-orange, 2nd  tercile in light brown, 3rd  tercile in 

green). The colored lines represent the estimated slopes of fronto-

central θ effect on NF performance for the median agency values 

of each tercile (agency values of 2, 6 and 8), with shaded areas 

indicating 95% confidence intervals around these slopes. 

 

This showed a positive correlation between NF 

performance and fronto-central θ for low scores of 

agency. With higher scores of agency, the slope 

declined gradually, reflecting that NF performance was 

less associated to fronto-central θ. 

The same analysis run on the C3 β cluster showed a 

significant main effect of β on NF performance (F(1, 

53.9) = 8.03, p = 0.006). In contrast to the fronto-central 

θ activity, we did not find any interaction between FB 

and C3 β (F(2, 57.9) = 1.86, p = 0.17) or between sense 

of agency and β (F(1, 79.5) = 1.47, p = 0.23). 
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DISCUSSION 

This study investigated the electrophysiological 

correlates of NF performance in an MI-based EEG NF 

protocol. We found significant associations between NF 

performance and ERD/ERS patterns in the central motor 

region in the rewarded β band. Additionally, fronto-

central θ activity consistently predicted NF 

performance. Diving deeper, we identified an 

interaction between this fronto-central θ activity and 

sense of agency. NF performance was more strongly 

associated with fronto-central θ activity in participants 

with lower agency. 

EEG patterns of NF performance 

Our results showed that NF performance was associated 

with power reduction in the rewarded 8-30Hz range in 

left central regions. Left central μ-β desynchronisation 

is reliably associated with right-hand MI-BCI 

performance [18,19]. Our study extends these findings 

by examining performance correlates across different 

FB conditions in a within-subject NF design. 

In addition to the rewarded left central β activity, 

fronto-central θ power predicted NF performance. In 

line with this result, both pre-cue [20,21] and on-task θ 

power [22] were shown to predict BCI performance.  

Frontal θ activity notably emerges in response to 

perceived conflict [23] such as negative FB in NF. 

Negative FB processing would enable for adjustement 

of the NF strategy towards better NF performance. In 

line with this interpretation, an α NF study reported that 

θ activity differentiated sham from NF participants. This 

was seen as a constancy of conflict/error-prediction 

signals in the sham group, while the NF group reduced 

conflict by improving NF performance [24].  

MI modulates frontal θ activity more than motor 

execution, highlighting increased mental effort [25]. 

Specifically, frontal θ shows higher involvment in 

kinesthetic than visual MI [26]. Mental demand has 

been correlated to a θ-β combination in a BCI paradigm 

[27]. Studying within-trial dynamics of θ activity and 

NF performance may reveal if θ activity arises locally in 

response to negative FB or if it reflects overall attention 

and cognitive effort.  

Impact of FB condition on fronto-central θ activity 

Vibrations in the HAND+VIB condition were 

associated with fronto-central θ synchronisation in the 

NF tasks. Midfrontal θ oscillations have been proposed 

to encode the value of tactile delay [28]. This is 

especially relevant because the vibrations were 

delivered following the integration of a 6s time segment 

i.e: they constituted a delayed, asynchronous FB. In 

contrast, during the passive task, θ patterns were more 

central, potentially reflecting sensory processing. 

Vibrations modulate activity on central θ activity [29]. 

However, the relationship between NF performance and 

fronto-central θ activity remained significant after 

excluding vibration segments from the analysis. 

Agency is a modulator of the fronto-central-θ predictor 

Both sensorimotor β [30] and fronto-central θ [31, 32] 

relate to sense of agency. Yet, our analysis showed that 

both θ and β predictors remained significant after 

accounting for agency.  

Further analysis showed that sense of agency modulated 

the association between θ and NF performance: a 

stronger association was observed in participants with 

low sense of agency. We suggest that participants 

reporting high sense of agency may have required less 

mental effort to achieve NF performance. Our findings 

resonate with recent reinforcement learning research, 

which reports differences in θ and β in response to 

positive and negative FB between agent and passive 

participants [33]. Negative FB elicited more fronto-

central θ activity than positive FB. Crucially, the 

difference between positive and negative FB more 

pronounced difference in agent participants. This 

contrasts with our observations that θ dynamics in the 

NF context were heightened in participants with a low 

sense of agency. Altogether, these results suggest a 

potential role for sense of agency in shaping strategies 

employed during reinforcement learning tasks, 

including NF. 
 

CONCLUSION 

This study shed some light on the neurophysiological 

correlates of NF performance, highlighting the role of θ 

activity and its interaction with sense of agency. All in 

all, sense of agency allows for better performance, 

associated with a more specific pattern of modulation. It 

is important to consider that participants can mobilize 

different processes to manage NF performance. It is key 

to control for the activities that are modulated with NF 

training as they may contribute to non-specific effects. 

Monitoring such activities could be important for some 

clinical applications of NF where neurophysiological 

specificity is of crucial importance. 
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ABSTRACT:  

Peripheral nerve stimulation (PNS) is a key method for 

restoring sensory feedback in upper-limb prostheses, yet 

the necessity of invasive feedback for sensory decision-

making remains uncertain. In this study, two 

transhumeral amputees underwent sensory restoration in 

their phantom limbs via PNS. They performed an active 

exploration task using a tablet and closed-loop feedback 

system to assess their sensory decision-making abilities. 

In the task patient needed to differentiate among three 

hidden objects using PNS-based tactile feedback or 

auditory feedback. Interestingly, one patient 

successfully completed the task only in PNS trials, 

while the other demonstrated improved speed and 

accuracy with auditory stimulation. These findings 

suggest varying responses to different feedback 

modalities in different subjects. They indicate the 

potential significance of personalized approaches in 

designing sensory feedback systems for prosthetic users. 

 

INTRODUCTION 

 
Phantom limb pain (PLP) affects 80% of individuals 

who have undergone amputations [1,2] and can be 

managed through neuromodulation techniques like 

peripheral nerve stimulation [3]. These methods not 

only help reduce phantom limb pain but also have 

potential applications in enhancing sensory feedback for 

neuroprosthetics [4]. 

Invasive and noninvasive methods for restoring somatic 

sensations have their advantages and disadvantages. For 

instance, vibromotors have a limited stimulating range, 

leading to restricted sensations [5]. On the other hand, 

the higher spatial resolution can be achieved with 

invasive techniques compared to noninvasive methods. 

Neurostimulation systems integrated as part of 

bidirectional brain computer interface (BCI) enable the 

discrimination of object size and texture, improving 

prosthesis embodiment and enhancing motor control 

[4,6]. 

Nevertheless, the necessity of invasive feedback for 

sensory decision-making remains uncertain. This 

question was explored in our previous study [4], where 

we demonstrated that prosthetic systems utilizing 

transcutaneous electrical nerve stimulation (TENS) may 

offer comparable efficacy to PNS-based systems. 

Additionally, feedback in bidirectional BCI can be 

delivered through alternative sensory modalities such as 

auditory cues [10]. Although these systems do not elicit 

tactile sensations in the phantom or residual limb, they 

may reduce cognitive load [11] and enhance 

performance [9]. Despite extensive research on various 

forms of sensory feedback, it remains unvalidated 

whether invasively delivered somatotopically matched 

feedback can augment sensory decision making in 

amputees compared to auditory stimulation.  

To address this question, we conducted a study with two 

transhumeral amputees completing a sensory decision-

making task under two conditions. In a part of trials, 

they relied on auditory feedback and in the other part 

they relied on a PNS-based feedback that projected to 

their phantom limb as somatic sensations. One patient 

successfully completed the task relying on PNS 

feedback, whereas the second patient exhibited greater 

speed and accuracy when utilizing auditory stimulation. 

 
MATERIALS AND METHODS 

 
Two individuals with amputations took part in the 

research, both experiencing phantom limb pain (PLP). 

The study received approval from the Ethical 

Committee of the Biomedicine School at Far East 

Federal University (FEFU) under Protocol #4 on April 

16, 2021. Prior to their involvement in the experiments, 

each patient provided informed consent. The study is 

registered as a clinical trial on https://clinicaltrials.gov/ 
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under #NCT05650931. 

Participants S12 and S13 underwent the electrode 

implantation in their left residual limb on a level of 

shoulder. The implantation surgeries were conducted at 

the Medical Center of FEFU. Eight-contact electrodes 

(Directional Lead for the St. Jude Medical Infinity™ 

DBS System; Abbot; USA) were implanted in the 

median nerve of all patients while under endotracheal 

anesthesia. 

After the surgery, both patients underwent though the 

sensory mapping procedure where the electrode sites 

that caused sensations in phantom hand were 

discovered. The details about sensory mapping protocol 

can be found in a subsequent research [4]. Since 

sensations evoked by stimulation were stable among 

seven days, both patients were involved in the 

experiment to access their ability to sensory decision 

making. During the sensory mapping, S12 tended to 

report that his sensations were of high naturalness. 

In our previous study we introduced an active 

exploration task where participants explored invisible 

objects using artificial tactile sensations provided by 

TENS and PNS. Here, we used a similar protocol, but 

with the use of auditory feedback instead of TENS. 

Thoroughly, patients used their intact limb to scan the 
tablet surface using a stylus and searched for an 

invisible object. Whenever the stylus made contact with 

the object, sensory feedback was provided through 

sound or electrical stimulation. The objects could be in 

the shape of a square, circle, or pentagon and they were 

randomly selected for each trial along with two types of 

sensory feedback: PNS or Auditory. To increase the 

difficulty of object recognition, the rotation angle of the 

object varied for each trial (Fig. 1). 

 
Figure 1. Different shapes of active exploration task.   

 

For trials with auditory feedback, each time the stylus 

touched an invisible object, 1000-Hz sound was turned 

on. For PNS trials, two modes of stimulation were 

employed, namely baseline and target, with identical 

frequency and pulse width but varying amplitudes. The 

amplitude in the baseline mode remained below the 

sensory threshold while it surpassed the threshold in the 

target mode. The NimEclipse stimulator was linked to 

the laptop, which was connected to the tablet. Upon 

tapping the screen area that corresponded to the 

invisible shape, the Python script transitioned from 

baseline to target stimulation mode, thereby enabling 

the subject to perceive the shape. S12 and S13 utilized a 

stylus held in the intact limb to interact with the tablet. 

For both S12 and S13, stimulation settings were chosen 

individually to elicit tactile sensations in the fingers of 

the phantom limb. 

The active-exploration sessions were held on post-

surgery days 8 and 20 for each subject. On each of these 

days, the experiment consisted of two sessions: a 

learning session and an evaluation session. During the 

learning session, participants saw the history of their 

touches of the screen as black lines. For learning session 

completion, it was required that the subject to correctly 

guess each object twice for both auditory and PNS 

feedback. Each time when an object was recognized 

correctly, the respectful trial was eliminated from the 

list of unguessed yet trials. Next trial was randomly 

selected from that list. 

An analysis of variance (ANOVA) was performed to 
compare the trial durations of patients based on two 

factors: the feedback type (PNS or Auditory) and the 

experimental day (day 8 or day 20) for each subject 

separately. 

 

RESULTS 

 

Both subjects could complete the following task using 

both types of feedback. Patients completed the active 

exploration task by scanning the tablet with a stylus. 

During the first trials, subjects attempted to differentiate 

between objects attempting to draw the entire figure; the 

trajectory of their movements can be seen in the first 

column of Fig. 1. Since the experiment operator did not 

instruct patients on the best approach to resolve this 

task, it took several trials for both patients to discover 

the so-called “border strategy”. In this strategy it is 

expected that a participant discovers objects’ border by 

detecting the moments of stimulation on and stimulation 

off switch.  

During day 8, both subjects met the requirements for 

completing the learning part of the task. S13 needed 7 

trials to complete the training with only one mistake 

made (Fig. 2a). S12 completed the learning session after 

performing 20 trials. During the evaluation part of the 

session: S12 performed with an accuracy of 17%, and 

S13 with an accuracy of 67%. The chance level was 

33%. 
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Figure 2. Active exploration task results. (A) - Each panel 

represents number of trials conducted during day 8 and day 20 

for subjects S12 and S13. Bars in each panel represent the 

number of correctly recognized objects (depicted in purple and 

green) and erroneously recognized objects (depicted in red) 

under both PNS and Auditory feedback conditions. Paired 

bars differentiate the number of trials in learning and 

evaluation sessions, as S12 and S13 required different 

numbers of trials to transition to the evaluation session. (B) – 

Percentage of correctly recognized objects in each 

experimental session (C) - Variation of trial duration for PNS 

and Auditory conditions during sessions in day 8 and day 20  

 

During day 20, S12 completed the training session in 16 

trials. S13 completed the training session in 8 trials. 

During the testing session, performance improved in 

both subjects compared to day 8. Performance accuracy 

was 44% and 75% in S12 and S13, respectively.  In 

S12, accuracy was 22% when using auditory feedback 

and 67% when using PNS feedback, while in S13 

accuracy made up 67% and 83% respectively (Fig. 2b). 

S12 mentioned that he felt as if his phantom limb 

touched the table screen when the PNS-based feedback 

was used. 

We conducted a comparison of the number of seconds 

taken by patients to complete the trial (trial duration) 
using ANOVA, considering two factors: the type of 

feedback (PNS vs Auditory) and the day of the 

experiment (day 8 vs day 20). The analysis for S12 

revealed near significant difference among means of 

trial duration for two feedback types (F-st(1)=4.167568; 

p_value=0.045927; two-way ANOVA), for different 

days (F-st(1)=3.646682;  p_value=0.061309; two-way 

ANOVA) and for the factor interaction (F-

st(1)=3.393133; p_value= 0.070766; two-way ANOVA) 

(Fig. 2c). For S13 the mean trial time was different for 

different feedback types (F-st(1)=4.681291; p_value= 

0.035964; two-way ANOVA) and day-feedback type 

interaction (F-st(1)=3.345151; p_value= 0.074186; two-

way ANOVA), no significant difference was observed 

for different days (F-st(1)=0.008421;  

p_value=0.927299; two-way ANOVA). 

After the pairwise comparison analysis, we revealed 

that S12 needed less time to complete auditory feedback 

trials during the day 20 in comparison with auditory 

feedback trials in day 8 (Mean diff.=-58.4792 ; p-

adj=0.0495; Tukey HSD); PNS trials in day 20 (Mean 

diff.=59.4498 ; p-adj=0.039; Tukey HSD); PNS trials 

on day 8 (Mean diff.=-57.5598 ; p-adj=0.0719; Tukey 

HSD). Similarly, S13 completed auditory feedback of 

day 20 faster than in PNS trials of day 20 (Mean 

diff.=73.937; p-adj=0.0354; Tukey HSD).  

Eventually, S12 had lower accuracy of object 

recognition in auditory trials, despite the increased 

speed. By contrast, S13, having a shorter duration of 

auditory trials, completed the active exploration task 

with the higher accuracy in both types of feedback.  

 

DISCUSSION 

 

In this study sensations in phantom limb of two 
transhumeral amputees were restored with the use 

peripheral nerve stimulation. To estimate their 

capabilities of sensory decision making, they completed 

active exploration task with the use of tablet and closed 

loop feedback system. One of patient was able to 

complete the task only with the use of PNS feedback, 

while the second one was faster and more accurate 

when used auditory stimulation.  

In a previous study, it was demonstrated that active 

exploration tasks can be performed with comparable 

accuracy using PNS and TENS feedback [4]. In this 

experiment, under similar conditions, it was found that 

these tasks could be successfully completed with 

auditory feedback. Notably, participant S13 exhibited 

higher accuracy in shape recognition with auditory 

stimulation, completing trials more quickly compared to 

PNS feedback trials.  

In the same exploration task, another participant, S12, 

achieved a higher score in PNS trials than in auditory 

feedback trials. While the study was limited to two 

patients, indicating caution in drawing broad 

conclusions, a distinct difference between the two 

subjects was observed. This variance may be attributed 

to two main factors. Firstly, S12, who performed better 

in PNS trials, likely had greater familiarity with PNS 

stimulation due to its inclusion in their treatment 

regime. Secondly, S12 perceived PNS as more natural 

during sensory mapping. Though, these two 

observations can be associated, because previously it 

was shown that long-term PNS stimulation in 

neuroprosthetics has been associated with an enhanced 

sense of naturalness [7].  

Since PNS is a primary method for sensory restoration 

in upper-limb prostheses [6], it is of great interest to 

understand the benefits and limitations of PNS 
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compared to other stimulation approaches. PNS can 

evoke natural tactile feedback, enhance embodiment in 

upper-limb prosthetic devices, and alleviate PLP [4,6,8]. 

These preliminary findings suggest individual 

variability in response to different feedback modalities, 

albeit within the constraints of a small sample size. 

They underscore the potential importance of 

personalized approaches in designing sensory feedback 

systems of bidirectional BCI systems and prosthetic 

users particularly, while acknowledging the need for 

further research with larger and more diverse cohorts 

 

CONCLUSION 

 

PNS is an efficient approach to provide feedback to 

amputees in sensory decision-making tasks and allow 

them to differentiate between different objects relying 

on tactile information. However, at least for some 

patients, alternative sensory feedback devices could 

offer upper-limb amputees the opportunity for feature 

recognition without the need for surgery and associated 

risks. 
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ABSTRACT

Brain-computer interfaces (BCI) are systems that process
brain activity to decode specific commands from it such
as motor imagery patterns generated when users imag-
ine movements. Despite the growing interest in BCI,
they present significant challenges, notably in decoding
distinct neural patterns, due to considerable variability
across and within users. The literature showed that vari-
ous predictors were correlated with subject’s BCI perfor-
mance. Among these indicators, neurophysiological pre-
dictors appeared to be the most effective, although studies
generally involved small samples and results were not al-
ways replicated, thus questioning their reliability. In our
study, we used a large dataset with 85 subjects to analyse
the relationship between different predictors identified in
the literature and BCI performance. Our findings reveal
that only four of the six predictors tested could be repli-
cated on this dataset. These results underscore the neces-
sity of validating literature findings to ensure the reliabil-
ity and applicability of such predictors.

INTRODUCTION

Brain-computer interfaces (BCI) are devices that mea-
sure brain activity, typically through electroencephalog-
raphy (EEG), to extract specific commands for computer
input. A particularly widespread paradigm of BCI is mo-
tor magery (MI), which involves decoding EEG patterns
characteristic of movement imagination (typically signals
from 8-13 Hz located over the motor and sensory motor
cortices). MI leads to patterns similar to motor execu-
tion, characterized by an event-related desynchronization
(ERD), i.e, a diminution of the amplitude, within the mu
band (8-13 Hz) and beta band (13-30 Hz) of the contralat-
eral sensory motor cortex, followed by an event-related
synchronization (ERS), i.e an augmentation of the ampli-
tude of the signal within the beta band after the imagined
movement ends. A primary limitation of current MI-BCI
technology is decoding accuracy. Producing clear neu-
rophysiological signals that can be decoded by existing
classification algorithms is not a competence that all BCI
users have. In their article, Blankertz et al. [1] demon-
strate that using a common spatial pattern (CSP) with a

linear discriminant analysis (LDA) classifier, the aver-
age BCI accuracy is 74.4 % ± 16.5 %, with significant
variability among participants, ranging from perfect clas-
sification (100 %) to performance equivalent to chance
level (50 %). More recently, Dreyer et al. [2] published
a large database of 87 first-time BCI users performing
MI-BCI, reporting a mean accuracy of 63.53 % with a
large variability of performances (std = 17.61 %). This
variability may be due to users’ inability to produce clear
and distinguishable patterns that are strong enough to be
classified by current algorithms. It is considered that for
effective BCI control, performance should exceed 70 %
[3]: users below this threshold are deemed "BCI illiter-
ate" or the BCI "BCI deficient". Understanding the pa-
rameters explaining differences in user control of such
devices has been an important research question for the
past 20 years. A better comprehension of those predictors
is essential for developing better BCIs, e.g., to later iden-
tify the best BCI type for each user or to create BCIs that
consider those predictors in their design and into clas-
sification algorithms. The literature identifies a broad
spectrum of predictors that can be categorized into four
main groups: personality traits, cognitive profiles, de-
mographic factors, and neurophysiological patterns [4].
Traits are "stable and enduring, caused by internal cir-
cumstances” whereas mental states, as defined by Chap-
lin et al. [5], are "temporary, brief, and caused by external
circumstances". Demographic characteristics correspond
to personal characteristics (age, gender, etc.), habits, and
environment-related factors. Neurophysiological predic-
tors are predictors from the EEG signal during MI tasks,
pre-cue MI tasks, or during a resting state, serving as
markers of the user’s mental states, such as attention [6]
[7], fatigue [8], or initial capacities for producing the pat-
tern to be decoded [1].
Among personality traits, cognitive profiles and demo-
graphic characteristics correlated with BCI performance.
Jeunet et al. [4] identified 3 major elements : user re-
lationship with technology, attentional capacities, and
spatial abilities. More recently, Leeuwis et al. [9] re-
evaluated these predictors in an experiment with 55 sub-
jects and found that MI-BCI performance was signifi-
cantly correlated with vividness of visual imagery, and
the personality traits of orderliness and autonomy. How-
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ever, Benaroch et al. suggested that personality traits,
cognitive profiles and demographic characteristic might
not be sufficient to predict MI-BCI performance using
statistical models [10]. They conducted a follow-up ex-
periment incorporating into the models neurophysiolog-
ical predictors measured during a two-minute baseline
at rest [11], and measured their predictive capabilities.
They found significant predictability with neurophysio-
logical predictors (p<0.01) while traits and demographic
information led to a predictability that was not better than
chance level (p=0.88).

The most robust neurophysiological predictor of BCI per-
formance is the sensory motor rhythm (SMR) predictor,
with a correlation coefficient (R) of 0.53 validated with
80 participants, proposed by [1]. This predictor is com-
puted from a 2-minute EEG recording during an open-
eye baseline period, wherein the participant is not en-
gaged in MI tasks associated with BCI activities. The
SMR-predictor encapsulates the participant’s capability
to modulate their SMR. The effectiveness of predictions
based on the SMR was confirmed by subsequent stud-
ies [11, 12], which also highlights the efficacy of SMR-
based predictors. Specifically, Tzdaka et al. [11] intro-
duced additional predictors based on the estimation of the
power spectral density (PSD) during the open-eye base-
line. With 56 participants, they showed that the mean per-
formance during the session was significantly correlated
with the number of frequency peaks necessary to model
the PSD at electrodes C3 and C4 (R= 0.351) and with the
temporal variance in the amplitude of the peak within the
mu band during baseline (R = −0.477). This also high-
lights the efficacy of baseline SMR-based predictors of
MI-BCI performances.

Other predictors have also been correlated with BCI per-
formance. Grosse-Wentrup et al. identified in a dataset
of 10 participants a correlation between the high gamma
(55-85 Hz) rhythm in centro-parietal and frontal regions
during the MI-BCI task and the SMR quality score, a
metric of BCI classification performance (r = 0.0786,
p = 9.998× 10−5) [13]. Here, the gamma rhythm was
thought to be related to attentional networks active dur-
ing MI-BCI tasks [7]. Foong et al. demonstrated that for
stroke patients (n=11), the mean relative beta power (12-
30 Hz) before the cue across all trials was correlated with
session performance [8]. This correlation was present
for the relative beta power in the frontal (F3,Fz,F4)(r =
0.251, p = 0.0005) and central (C3,Cz,C4)(r = 0.181,
p = 0.0130) brain regions but not in parietal-occipital re-
gions (r = 0.033, p = 0.6486). It is important to note that
this study made the hypothesis (not empirically verified)
that relative beta power was a neural correlate of fatigue.
Ahn et al. [14] divided the users in two different groups
based on their performances during MI-BCI training, and
have shown that during the baseline the efficient group
has significantly higher θ and lower α than the inefficient
one. Based on these results, they proposed a predictor of
BCI performance, named PPfactor, that combined θ , α ,
β and γ power which had a strong correlation with BCI

performance (R = 0.59) in their 61 subject dataset. Inter-
estingly, although no significant correlations were found
between BCI classification performance and either β or
γ power, they were nonetheless included in the PPfactor
equation.
Despite the extensive literature in the field, identifying
strong and robust predictors of MI-BCI remains a sig-
nificant hurdle. While the SMR predictor efficacy has
been replicated in other datasets [11, 12], it is not the
case for the other predictors. Botrel et al. have high-
lighted the issue, where numerous studies introduce new
potential psychological or neurophysiological predictors
of performance, yet often fail to replicate the findings of
earlier research [15]. Moreover, several of these predic-
tors were identified on small data sets, which can question
their reliability. There is thus a pressing need to consoli-
date these predictors within a single study, on a different
data set than the one on which they were identified, to as-
sess their validity and reliability comprehensively. There-
fore, in this paper, we aim to evaluate these diverse neu-
rophysiological predictors together using a large (n=85)
open source dataset to attempt to confirm their correla-
tions with BCI performance.
This paper is organised as follows. In the Materials and
Methods section, we present the dataset used and the
methodology for extracting the neurophysiological pre-
dictors. The Results Section analyses the correlation be-
tween BCI performance and the neurophysiological pre-
dictors extracted. The Discussion Section finally com-
pares those results with the one obtained by the original
articles.

MATERIALS AND METHODS

In order to validate those different neurophysiological
predictors on a large and open source data set, we need
to first extract those predictors from the dataset and then
correlate them with BCI performance. In this section, we
will first briefly present the dataset, then we will detail
the 6 different neurophysiological predictors and how to
compute them, lastly we will develop the statistical anal-
ysis that we performed.

Dataset: The dataset used in this analysis is sourced
from an open-access EEG database with 87 participants,
collected during a single day of MI-BCI experiments [2].
The experimental protocol was organized into a single
session of motor imagery, divided into six runs. Before
the first runs the participants were asked to perform two
three minutes baseline recordings, one with open eyes,
the other with closed eyes, where the participants were
asked to fix a cross and relax. Participants were then re-
quired to engage in 20 motor imagery tasks (trials) for
each hand per run. The first two runs corresponded to
a calibration phase, where the feedback provided does
not reflect the participants’ actual motor imagery perfor-
mance, but was a sham feedback. Based on the EEG data
from these two first runs, a linear classifier employing
three pairs of CSP spatial filters and a LDA classifier is
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trained. In the subsequent four runs, participants received
real-time feedback, visually represented by a horizontal
bar whose length varied in proportion to the accuracy of
the classifier predictions. The goal for participants was to
maximize the length of this bar through their motor im-
agery efforts. In this analysis, we used epoch-wise accu-
racy (EAcc) as classification performance metrics. This
metrics is expressed in ratio of correctly classified epochs
compared to the total number of classification. We di-
vided each MI trial in 1 seconds epoch with 1/16 overlap
from 0.5 to 4.5 seconds after the visual cue.
Two participants, identified as A40 and A59, were ex-
cluded from the statistical analysis due to missing trials
that could potentially impact the data analysis pipeline in
subsequent steps.

Neurophysiological predictors:
In this paper we focused on six distinct predictors, four
of them are extracted during the two-minute eyes-open
(OE) baseline, one during the motor imagery (MI) trial,
and one across MI trials. The extraction of these neuro-
physiological predictors was conducted as delineated in
their respective foundational studies. The following sub-
sections detail the extraction process for each predictor.
The SMR-predictor [1] is computed from a 2-minute
EEG recording, taken during an open-eye baseline period
when the user is relaxing. The signal is filtered between 4
and 40 Hz using a Laplacian filter around the C3 and C4
electrodes. The SMR-predictor is computed based on an
estimation of the power spectral density (PSD) composed
by the sum of two functions, as shown in Equation 1. The
function g1, given in Equation 2, models the noise floor of
the signal, while g2, outlined in Equation 3, estimates the
peaks in the µ (8-15 Hz) (with µ1 and σ1) and β (15-30
Hz) (with µ2 and σ2 ) bands in order to best estimate the
PSD during the baseline. The SMR predictor is defined
as the maximum difference within the mu band between
the noise floor and the estimated peak g2. From the PSD
estimation, Tzdaka et al. [11] found two other predictors
correlated with BCI performance: The sum of the num-
ber of peaks in C3 and C4 for each PSD reconstruction
g (either 0, 1, or 2 for each channel) and the variance
across time of the peak frequency of the SMR predic-
tor during the baseline. For the latter, the two-minute
baseline signal is divided into 10-second epochs with a
3-second overlap. For each epoch, the PSD of the signal
is estimated with g. The variance is computed across all
the estimations of the SMR predictor for C3 and C4, and
then averaged between the two sensors.

g( f ;λ ,µ,σ ,k) = g1( f ;λ ,k)+g2( f ; µ,σ ,k) (1)

g1( f ;λ ,k) = k1 +
k2

f λ
(2)

g2( f ; µ,σ ,k) = k3φ( f ; µ1,σ1)+ k4φ( f ; µ2,σ2) (3)

where k = (k1;k2;k3;k4) ∈ R4; λ ∈ R correspond to the
steepness of the noise floor and φ(.,µ,σ) indicates the

probability density function of a normal distribution with
mean µ and standard deviation σ .

The PPfactor is calculated using data from a two-minute
baseline period with open eyes [14]. During this phase,
after applying a common average reference and a notch
filter centred at 50 Hz to mitigate power line interference,
the power spectrum of the EEG signal at electrodes C3
and C4 is analysed across various frequency bands:θ (4-
8 Hz) α (8-13 Hz), β (13-30 Hz) and γ (30-70 Hz). The
power values for each band are then normalized by the to-
tal power across the entire spectrum (4-70 Hz) to account
for individual differences in overall brain activity levels.
The PPfactor is subsequently calculated using Equation 4

PP f actor =
α +β

θ + γ
(4)

The high gamma predictor is a marker of attention, ex-
tracted during the MI task [7]. During the entire epoch
of the MI task, only the electrodes from the Frontal, Cen-
tral, Central Parietal, and Occipital regions are consid-
ered. The EEG signal from these regions is filtered be-
tween 55 and 85 Hz to isolate the gamma band. The sig-
nal is then processed as follows: The filtered EEG signal
is squared to calculate the power of the signal at each time
point within the epoch. The mean power is computed by
averaging the squared signal over all time stamps within
the epoch. The power values are then log-transformed
to normalize the distribution. Finally, the mean across
all selected channels is computed to obtain a single value
representing the mean log power for the gamma band dur-
ing the MI task. It is important to note that the signal used
for classification of MI is filtered between 8 and 30 Hz.
Therefore the gamma band is not used as a classification
feature.
The Relative beta power at rest is derived from a 3-
second pre-MI task EEG segment, without explicit rest
instructions, using frontal electrodes (F3, Fz, F4) [8]. As
presented in equation 5 it is computed from the power
ω in the broad band (4-50 Hz) and the power β in the
beta band (12-30 Hz) and is thought to reflect the level of
fatigue of the user during the task.

RelativeBeta = 10∗ log10(
β

ω
) (5)

Statistical analysis: We conducted correlations be-
tween the predictors and the offline classification perfor-
mances. Our approach varied depending if the predictors
is compared with the overall performance during the ses-
sion or if this predictor is compared with the evolution
of performance during the session. In the first case we
performed Spearman correlation and in the second multi
repeated correlation analysis [16]. The detailed analysis
is described below:
- For predictors obtained during the baseline phase, we
explored the correlation between each subject’s overall
performance in a single session and the predictor. We
used Spearman correlation tests for this analysis. Spear-
man correlation was chosen for its ability to capture
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Figure 1: Correlation between subjects’ BCI performance and neurophysiological predictors extracted during baseline. The scatter
plots from left to right represent: SMR-predictor, the number of PSD peaks in the sensorimotor channels C3 and C4, the variance in the
peak of µ-band frequency during baseline, and the PPfactor. Each plot displays individual subject performances against the respective
neurophysiological predictor, with the fitted linear regression line illustrating the trend. Significance levels (p-values) and correlation
coefficients (r) between each predictor’s and the performance are indicated based on Spearman correlation.

Figure 2: repeated measure correlation analysis between indi-
vidual subjects’ BCI performances and their average relative
beta power during rest phases across four runs (n=85 subjects).
The lines correspond to the regression for each subject where
the slope is fixed and correspond to the repeated measure corre-
lation coefficient (r = 0,0043).

monotonic relationships without assuming linearity, for
possibly being more robust to outliers and for reflecting
better neurophysiological dynamics [17].

- For relative beta power at rest, we assessed the multi
repeated correlation for each subject [16] between per-
formance during the run and the mean relative beta power
during resting phases before the MI trials. Repeated mea-
sures correlation is a statistical technique for determin-
ing the common within-individual association for paired
measures assessed for multiple individuals, in this case
the mean performance and the relative beta power at rest.
Note that the original paper [8] found correlations be-
tween beta power at rest and BCI performance across ses-
sions while we assess it across trials for a single session.

- For high gamma predictor, we investigated the corre-
lation between the SMR quality score and high gamma
predictor during MI. The SMR quality score, as defined
in the work of Grosse-Wentrup and colleagues [7], is the

Figure 3: repeated measure correlation analysis between SMR
quality score and the high gamma predictor power during the 40
trials of MI (n=85 subjects). The lines correspond to the regres-
sion for each subject where the slope is fixed and correspond to
the repeated measure correlation coefficient (r = 0,1056).

output of the LDA classifier (negative for left-hand MI
and positive for right-hand MI) multiplied by the sign of
the actual class. Consequently, correct trials yield a pos-
itive SMR quality score, whereas incorrect ones result in
a negative score. It is essential to recognize that the mag-
nitude of the LDA output (positive or negative) directly
relates to the model’s confidence in its classification, indi-
cating that higher positive SMR quality scores denote ac-
curate predictions made with high confidence, and higher
negative scores denote incorrect predictions made with
similar confidence. Correlations were conducted with re-
peated measures correlation per subject to appropriately
analyse these relationships.

RESULTS

In the analysis of neurophysiological predictors extracted
during the baseline phase, we investigated the correlation
between each predictor and the subjects’ performance
during the entire session. Figure 1 illustrates the Spear-
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man correlation coefficients with the linear regression be-
ing also added to illustrate the correlation. The most
significant predictor of performance was found to be the
SMR predictor, which exhibited a positive and significant
Spearman correlation (ρ = 0.49, p < 0.01). The second
most significant predictor was the variance of the peak
frequency necessary to reconstruct the PSD, as defined in
Equation 3. This predictor showed a significant negative
Spearman correlation (ρ =−0.33, p= 0.0029). The third
predictor evaluated was the number of peaks required to
model the PSD during the baseline, demonstrating signif-
icant Spearman correlation (ρ = 0.24, p = 0.028). The
PPfactor did not exhibit any significant correlation with
performance (ρ = 0.07, p = 0.50).

The analyse of the correlation between the mean rel-
ative beta power at rest and the corresponding perfor-
mance, depicted in Figure 2, reveals no significant rela-
tionship (r = 0.0043, p = 0.94). In contrast, the correla-
tion between gamma predictor and SMR quality scores,
as shown in Figure 3, is weak but very statistically signif-
icant correlation (r = 0.1056, p = 9×10−15).

DISCUSSION

The identification of robust and reliable neurophysio-
logical predictors of BCI performance is a challenging
and promising research issue. In this study, we success-
fully validated only four out of six proposed neurophys-
iological predictors using a large dataset comprising 85
subjects. Among these validated predictors, three were
extracted during the baseline and demonstrated correla-
tions with the mean session performance. Interestingly,
the high-gamma predictor showed a correlation with the
SMR quality score, which allows a trial-wise analysis to
understand performance variations. In contrast, the pre-
dictive values of PPfactor and relative resting beta were
not replicated in this dataset.Two important differences
between our study and the initial study showing a corre-
lation with relative beta [8] could explain these discrep-
ancies. Firstly, that predictor was identified in stroke pa-
tients, a group often affected by fatigue [18]. Since rela-
tive beta power was used as a neurophysiological indica-
tor of fatigue, it may have greater predictive value in this
patient population rather than in the general population.
Secondly, in their research, the repeated measure corre-
lation was conducted across multiple sessions, while in
our study, it was assessed across runs within a single ses-
sion with only four runs per subject. Therefore, relative
beta power may serve as a better indicator of overall fa-
tigue rather than reflecting the evolution of fatigue within
a session. Further analysis of this predictors will be nec-
essary to confirm this relationship. Regarding the PPfac-
tor, its lack of reproducibility cannot be attributed to dif-
ferences in the experimental setup. Previous studies at-
tempting to replicate this predictor only found significant
correlations in one out of two datasets they tested [19].
Notably, when they applied a Laplacian filter around the
C3 and C4 electrodes before extracting the PPfactor, this

enhanced the correlation between this predictor and per-
formance metrics as compared to using and C3 and C4
without Laplacian filters. Therefore, incorporating this
filtering step into the PPfactor computation may be es-
sential for enhancing the predictor’s significance.
While previous studies have suggested that demograph-
ical information and personality traits [10, 15] may not
be reliable predictors of perfomance, our study show the
reliability and the reproducibility of most neurophysio-
logical predictors.

CONCLUSION

In this paper, we compiled various studies that identify
neurophysiological predictors of MI-BCI performance
across and within different subjects. We noted that these
predictors have predominantly been explored in small
datasets and lacked widespread replication on indepen-
dent data sets. Therefore, we sought to replicate the
predictive value of six distinct indicators within a large
(n=85), open source dataset. Of these, we managed to
replicate the results of 4 of them: the SMR predictor, the
number of peaks necessary for estimating the PSD during
the baseline, the variability across time in the peak fre-
quency within the mu band during baseline, and the high
gamma predictor during the trial. However, the PPfactor
and the relative beta power at rest were not successfully
replicated. This study reinforces the significance of the
SMR predictor as a robust indicator of BCI performance
and highlights the critical need for replication of results
reported in the BCI literature.
Future research needs to explore the influence of classifi-
cation algorithm on predictors of BCI classification per-
formance and validate that the predictors that we validate
in this article are reliable predictors independently of the
classifier used.
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ABSTRACT: Intracranial electroencepghalography 
(iEEG) signals  have established themselves as a key tool 
for studying human brain function due to its distinct 
combination of high spatial and temporal precision. The 
use of both cortical surface and stereo-EEG in effective 
epilepsy treatment has allowed researchers to study 
electrophysiology throughout the brain in relatively large 
numbers of subjects. This provides an opportunity to 
overcome, the sparse and varied nature of the brain tissue 
sampling inherent to the clinical use of iEEG by 
aggregating data across many subjects. Essential to the 
success of large-scale data aggregation is the efficient 
and robust identification of recording channels that are 
dominated by ‘noise’ or artifacts introduced by the 
recording environment or hardware failure. Here we test 
the effectiveness of training a convolutional neural 
network (CNN) for this purpose across multiple types of 
iEEG recordings. We conclude that a small CNN trained 
on hand labeled data from a small set of subjects can be 
applied to identify artifactual channels.  

 
INTRODUCTION 
 
Electroencephalography (EEG) allows for the recording 
of electrical signals generated by brain function and as 
such provides a precise measure of the temporal 
dynamics of brain function. However, extra-cranial EEG 
presents many challenges in terms of precisely locating 
independent neural sources of this activity. In the past 
decades the need to localize brain activity at the spatial 
resolution of tens of millimeters and with ms temporal 
precision to facilitate the localization seizure focus sites 
for medication resistant epilepsy treatment has led to the 
intracranial implantation of electrodes (iEEG) either on 
the cortical surface, often referred to as 
Electrocorticography (ECoG), or along shafts probing 
cortical and subcortical areas, often referred to as stereo-
EEG (sEEG) [1]. The iEEG’s use in epilepsy treatment 
and increased use in awake craniotomies for functional 
localization during brain tumor resection offers a unique 
opportunity to study the brain function of many humans 
performing a variety of motor and cognitive tasks.  
However, due to the nature of the clinical setting in which 
iEEG is often recorded, the locations that are measured 
from only sparsely sample the brain and vary widely in 
number and location between subjects. Hence, showing 

reproducibility of results over humans on a whole brain 
scale for iEEG requires the aggregation of data across 
tenths or hundreds of subjects.  
To facilitate this scale of iEEG data aggregation a robust 
and efficient method for identifying iEEG signals that are 
dominated by artifacts or noise introduced by hardware 
failure or fed by the environment is needed. Often such 
noise screening relies on the evaluation of experienced 
iEEG clinicians and researchers. This process is 
generally quite labor intensive, subjective, and not 
standard between centers or experts. Here we explore the 
effectiveness of training a deep learning model to do this. 
Multiple groups have use the also attempted to use deep 
learning for noisy EEG channel selection. One approach 
is to apply thresholds to certain statistics computed from 
the signals. For example, APP [2] uses correlation and 
dispersion, FASTER [3] utilizes correlation, variance, 
and the Hurst exponent, Automagic [4] employs an in 
dependent component analysis-based artifact correction 
method, CTAP [5] calculates log relative variance and 
compares it to the median, and so on. Additionally, there 
are unsupervised methods. For instance, the Local 
Outlier Factor algorithm [6] identifies bad channels 
relative to the local neighboring channels, while the bad-
by-RANSAC method [7] uses good channels to predict 
other channels and deems the channel poorly predicted 
by others as bad. Furthermore, supervised neural 
networks have also been utilized [8]. 
     Yet, the transference to iEEG of these methods seems 
to be limited, with fewer reports about bad channel 
detection. The common method is to calculate statistics 
over the signals and input these statistics into machine 
learning methods. For example, in [9], the ensemble 
bagging classifier was applied to sEEG data, achieving 
the best accuracy of 99.77% across 110 subjects. In [10], 
multiple machine learning methods were tested on 
pigeons’ ECoG data, including the K-Nearest Neighbors 
Algorithm (kNN), Support Vector Machine (SVM), 
Random Forest (RF), and others, with the best F1-score 
of 0.9089 achieved using RF and Synthetic Minority 
Oversampling Technique (SMOTE) to address the 
imbalanced dataset. 
We chose for a Convolutional Neural Network (CNN) 
architecture because of the its proven ability learn EEG 
and iEEG signal filters at the lower level of more 
complex deep networks such as HTNet [11]. This allows 
us not to relay on predefined derived signal features 
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while keeping the network relatively simple, since we are 
not interested in differences in electrophysiological 
patterns or there spatial distribution on the cortex, but 
single channel level identification of non-
electrophysiological (noisy or artifactual) signal. We 
apply this model to the three different iEEG recording 
modalities discussed above (clinical-ECoG, high-density 
(HD)-ECoG, HD, and sEEG) from a large number of 
individuals. 
 
MATERIALS AND METHODS 
 
     Data: Data from 47 patients implanted with iEEG 
electrodes for the purpose of drug resistant epilepsy 
treatment at the University Medical Center in Utrecht 
were used is this study. The study was approved by the 
Medical Ethical Committee of the University Medical 
Center Utrecht in accordance with the Declaration of 
Helsinki (2013). The patients had either sEEG or clinical 
scale ECoG electrodes implanted according to clinical 
needs and gave written informed consent to participate in 
research tasks and will be referred to as subjects in this 
work. A subset of the subjects gave additional consent to 
have HD-ECoG implanted solely for research purposes. 
Data from and additional 3 patients undergoing an awake 
craniotomy for tumor removal, in which HD-ECoG grids 
are briefly placed on the exposed cortical surface, who 
also consented to performing brief research tasks were 
also included.  
Data from clinical-ECoG implants were recorded from 
implanted grids and strips of evenly spaced platinum 
electrodes with an inter-electrode distance of 10 mm and 
a 2.3mm exposed recoding surface. Implanted sEEG 
props had 8-15 platinum-iridium cylinder contact points 
of 0.8 mm diameter and 2mm height with a 1.5 mm inter-
contact distance. The HD-ECoG grids used were equally 
spaced grids of 32-128 platinum with 1.3 mm exposed 
surface diameter and an inter-electrode distance of 3 or 4 
mm. 
A total 96 data sets from 50 subjects performing one of 
19 different cognitive tasks. Tasks range from simple 
relaxation without movement to overt and imagined 
movements to overt and covert speech. Subject data were 
organized into groups and based on the type of iEEG 
implant used to facilitate exploration of implant type on 
noisy signal detection (see Table 1). Furthermore the 
Clinical-ECoG group was split into an adult group (Ca) 
and a child group (Cc) test for an age effect on noise 
detection and the HD-ECoG group (HD) was divided by 
the recoding setting since a subset of this data was 
recorded in the operating room (OR) and not in outside 
the Intensive Epilepsy Monitoring Unit (IEMU) like the 
remaining subjects because it is known the OR has more 
noise sources and recordings are made while the 
electrode grids are still exposed to the air. In the case of 
the IEMU recordings are made after the scull has been 
replaced. The sEEG group (sE) was not further 
subdivided. 
 
 

Table 1: Data Groups  
Grid type Sub-

group 
Subject 
count 

Channel 
count* 

Ratio  
good:bad 

Clinocal-ECoG adult 11 1500 44:1 
(Ca + Cc) child 13 1900 104:1 
sEEG adult 10   
(sE) child 4   (14) 2700 43:1 
HD-ECoG IEMU 9   
(HDe + HDor) OR 3  (12) 2000 33:1 

(* = rounded to 100s) 
 
     Preprocessing and labeling: The recordings are from 
over a span of 20 years and have different frequencies, 
ranging from 512Hz to 2048Hz. To ensure that the bad 
channels exhibit similar patterns, all the recordings are 
down sampled to the lowest frequency, 512Hz.  
For every subject, 10 minutes of recordings are included. 
For some subjects 5 minute recordings from the 
beginning are taken from two task files. 
In this study we considered as noisy (bad) channels those 
that are clearly distinct from others in terms of signal 
content and that would likely distort the signals of non-
noisy (good) channels when included in common average 
re-referencing (CAR). Bad channels were identified by 
visual inspection by two independent people (author 2 
and author 3). For that we visually inspected both the 
raw-voltage signals and the power-spectrum (1/f, after 
removal of line-noise and it's harmonics) of every 
channel in one data file. Channels that had a deviant 
voltage amplitude compared with other channels in the 
same file (average voltage amplitude lays between -500 
and 500 mV), excessive amount of line-noise, or 
recurrent large voltage fluctuations throughout the 5 
minutes of data, were labelled as ‘bad’. Besides 
determining bad channels, we also identified borderline-
bad channels, that would not be considered as 'bad 
channel' by an expert but could potentially be labelled as 
such by the algorithm. These channels were labelled as 
'maybe'. The remain channels were labeled as ‘good’. 
In this work a binary classification model is used, since 
we want the model to learn patterns of good and bad 
channels and be able to classify uncertain channels 
afterwards. Therefore, the ‘maybe’ channels are not 
included in the training or testing set.  
The ratio of good vs bad channels in the data is very high, 
ranging from 44:1 to 104:1 (see Table 1). During the 
training, such severely imbalanced data harms the 
performance of the model. To reduce such effects, a 
down-sampling method was used in the training set to 
reduce the ratio of good vs bad channels to 2. The average 
number of good channels needed per subject need to 
achieve the 2:1 with the number of bad channels in the 
training set is calculated. Then random sampling is done 
to reach the designated amount of good channels per 
subject. By down-sampling, the amount of data in the 
training set also decreases, reducing the training time 
drastically. 
According to clinical expertise, a window of 30 seconds 
in a channel contains enough information to show 
baseline patterns and classify channels as good or bad. In 
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addition, the level of noise can change over time due to 
head movements or medical operations. Splitting a 
channel into windows allows the model to classify 
windows in the same channel differently to account for 
possible changes in characteristics over time. Thus, each 
recording is chopped into around 10 30-second windows. 
These windows do not overlap to prevent data leakage 
from the training set into the testing set. For training all 
windows from a channel are given the label of that 
channel. 
     Model and Training: The model is a shallow 
Convolutional Neural Network (CNN) consisting of 2 
convolutional layers with 55 weights followed by 2 linear 
layers with around 500k weights. To prevent overfitting, 
Batch-normalization, MaxPool, and Dropout layers with 
a rate of 0.2 are included. The input of the model is the 
30-sec window, i.e., 30 seconds * 512Hz = 15360 nodes. 
The structure of the model was derived from 
experimentation with a training set containing one or two 
subjects from the Ca group and applied for the rest of the 
analysis. 
     Performance Evaluation: The model produces a 
prediction for each window of data. However, the 
prediction performance of the model for each window is 
not evaluated window-wise. Instead, the prediction of a 
channel is calculated by thresholding on the percentage 
of its windows that are predicted to be bad.  
We chose the Matthews Correlation Coefficient (MCC) 
as our performance evaluation metric because it has been 
shown to be more robust and reliable among common 
metrics for imbalanced datasets [12]. MCC is a metric 
that summarizes a confusion matrix and computes the 
correlation between ground truth and predictions. The 
MCC is bounded from -1 to 1, with -1 indicating all 
predictions are wrong, 0 implying nearly random 
predictions from the model, and 1 indicating all 
predictions are correct.  
Since the channel level performance of the model will 
depend on the chosen windowing threshold discussed 
above a metric for choosing this threshold is needed. In 
this context this comes down to choosing the best 
dividing line between the distribution of percent of 
windows labeled as bad for the set of bad channels 
labeled by the experts as bad and those labeled as good. 
For this we use Brent’s method [13] because it works 
better than other methods for finding the border between 
two distributions when those distributions are multi-
model. Brent’s method is a numeric method to find the 
local minimizer of a certain function. Here, the parameter 
to minimize is the threshold, bounded by 0 and 1. The 
function calculates the negated MCC given the threshold 
and labels of the channels. Brent’s method returns the 
threshold that maximizes MCC.  
In this work we performed both within group and 
between group training-testing comparisons. To evaluate 
within group performance a leave-one subject-out (LoO) 
training testing approach was used. For this all channels 
from a single subject are left out of the training set and 
included in the test set and this is repeated to gain 
prediction results for every subject in the testing group. 

This means that when we reports results for training and 
testing on different sub-groups, if the training group sub-
groups overlap with subgroups in the testing group the 
LoO method was used for subjects within the 
overlapping sub-groups. 
 

 

 

Figure 1: Leave-one subject-out (LoO) results for the 
Clinical-ECoG Adult (Ca) group. Top: Plot of % of 
windows classified as noisy (x-axis) for all channels of 
each subject (y-axis). Red and blue bad and good 
labeled channels respectively. Bottom: Histogram of 
number of channels (y-axis) with a certain percentage of 
windows predicted as bad (x-axis). The red and blue 
bars represent channels labeled as bad good 
respectively. The green vertical dotted line indicates the 
threshold found with Brent’s method. 
 
RESULTS 
 
    The distinction between gad and bad varies over iEEG 
groups As Figures 1 and 2 illustrate the distinction 
between the good and bad channels in terms of the 
percentage of windows classified as bad varies 
considerable between iEEG date groups. When channels 
are clearly bad or good most of the time and the model is 
able to learn a clear distinction between the two signal 
types you would expect to see the distributions found for 
the Ca group in Figure 1. Here we see that almost 100% 
of the windows are classified as bad for most of the 
channels labeled as bad and often not more than 30 % of 
the windows from good channels are classified as bad. 
This means that a wide range of thresholds (30%-90%) 
will give similarly good MMC scores. In this case a very 
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conservative threshold of 92% that allows for good 
channels to have a lot of bad windows is found by Brent’s 
method to give the optimal MMC score of 0.84 (see 
Table 2, first row). This effectively means that only 5 
good channels 4 channels labeled as noisy (out of ~1500) 
are misclassified. However, as Figure 2 shows, in the 
case of the sE group both the distributions of good and 
bad labels are broader. Meaning that either the network 
has a harder time distinguishing good windows from bad 
windows or that the amount of noise in the sEEG signals 
fluctuates over time causing good channels to have noise 
at times and bad channels to be less noisy at times. In this 
situation the optimal threshold really need to balance the 
false positives (FPs) and false negatives (FNs) to reach 
the optimal MMC, which was found to be 0.32 at 68% 
(Table 2) in this case. It should be noted that this MMC 
is still well above 0 and the good and bad distributions 
for sE are still distinct from each other allowing for 
thresholds to be set that can reduce either the number of 
FPs or FN to almost 0, but not both. 
 

 

Figure 2: Leave-one subject-out (LoO) results for the 
Clinical-ECoG sEEG group. Top: Plot of % of windows 
classified as noisy. 
 
    In general bad electrode classification works well for 
Clinical-ECoG As can be seen in Table 2 all analysis that 
involved training and testing on Clinical-ECoG groups 
performed well. The Cc within group test showed and 
even higher MMC score (0.94) that that of Ca and even 
when training on Ca and testing on Cc an MMC score of 

0.89 was achieved. This indicates that there is little 
difference between the good and bad signal 
characteristics between channels implanted in adults and 
children. This is further supported by the fact that training 
on Ca and Cc also gave high MMCs of 0.92 and 0.82 
when testing on Ca and Cc respectively. 
 
Table 2: MMC and Brent threshold across different 
training and test groups combinations.  
Test 
Group 

Train Group MCC Brent’s 
threshold 

Ca Ca 0.84 92% 
Cc Cc 0.94 85% 
sE sE 0.32 68% 
HD HDe+HDor 0.10 48% 
HDe HDe+HDor 0.43 94% 
Cc Ca 0.89 85% 
Ca Ca + Cc 0.92 70% 
Cc Ca + Cc 0.82 70% 
sE Ca + Cc 0.66 76% 
HD Ca + Cc 0.23 77% 
sE Ca+Cc+sE 0.41 85% 

 
    Distinguishing the bad from the good in sEEG is 
harder but promising While the sE group performance 
discussed above is lower than that of the Clinical_ECoG 
groups introducing data from these groups into the model 
training does improve its performance on the sE group to 
an MMC of 0.41 (bottom row, Table 1). In fact, only 
training on the Ca and Cc groups improve the 
performance on the sE group even further to 0.66. This is 
a marked improvement and inspection of the percentage 
bad windows distributions (Figure 3) indicates that by 
training on channels with clearer bad vs. good signal 
distinctions the model was able to more clearly separate 
good and bad sE channel windows. While there are now 
many bad channels with none of their windows classified 
as bad, the number of bad channels with >80% of 
windows classified as bad was relatively unaffected and 
the number of good channels with >50% of their 
windows classified as bad decreased greatly.  
 

 

Figure 3: sEEG window classification based on training 
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on Clinical-ECoG. 
 
    HD-ECoG presents a challenge to automatic noisy 
channel detection While still above 0 the MMC for the 
HD group was only 0.1 (Table 2) and the fact that the 
optimal threshold was around 50% (48%) and the top plot 
in Figure 4 indicate that the good and bad distributions 
were very mixed. In fact, most of the good and the bad 
labeled channels had around 50% of there windows 
classified as bad. This could indicate that the amount of 
noise in the HD-ECoG channels changes a lot over time. 
It is worth noting that this is especially the case for the 
sub-group of subjects recorded in the operating room 
setting (HDor). When excluding the HDor subjects for 
testing, the performance increases to and MMC of 0.43. 
While training on the Clinical-ECoG groups does 
improve performance on the HD group as a whole similar 
to the sE group, this improvement is mostly due to the 
better distinction on the HDe sub-group (Figure 4, 
bottom plot). In the case of HDor subjects, 0% of almost 
all channels are classified as bad. This is surprising since 
the HD group has the lowest good to bad channel ratio 
(Table 1) and the HDor sub-group has a the majority of 
the bad channels in this group, as can been seen by the 
large number of red circles for the HDor subjects in the 
top plot of Figure 4. 
 

 
Figure 4: HD-ECoG noisy window classification for 
within group vs. Clinical-ECoG group training. Top: Plot 
of % of windows classified as noisy. Bottom: Plot of % 
of windows classified for the HDe and HDor groups after 
training on the Ca + Cc groups. 
 

DISCUSSION 
 
In general we found that our simple model worked well 
for identifying noisy artifactual signal in clinical-ECoG 
data and that there is no need to treat signals from 
children as different from those of adults. 
In addition, while we found the our approach was less 
effective regaurding sEEG signals, we did see that  
performance on sEEG channels can be improved by 
applying a model trained on clinical-ECoG channels, 
where there is a larger separation between channels with 
artifactual signals and those with clean 
electrophysiological signals. 
The results suggest that the difficulty in identifying noisy 
sEEG channels could be due to a larger variance in 
electrophysiological signal properties found in sEEG 
signals. When training on sE the model showed a broad 
distribution for both bad and good channels. It is known 
that the electrophysiology of sub-cortical regions differs 
from that of the cortical surface and the model has no 
knowledge of this while the expert labeler does. One 
trend is that the amplitude in signal generally decreases 
with the depth of the implanted electrode. The expert may 
consider this when judging a channel to be good even if 
it has low amplitude. This would indeed make it harder 
to train on sEEG channels as there will be a larger 
variance in the types of patterns associated with channels 
labeled as good. However, the fact the model trained on 
clinical-ECoG greatly increase the number of sEEG 
channels with < 20% of windows labeld as bad without 
decreasing the number of labeled bad or increasing the 
number of labeled good channels with > 80% of widows 
predicted as bad shows that relative to clinical-ECoG 
most sEEG channels contain similar data. This is 
promising for goal of agrigating sEEG data into clinical-
ECoG data sets. 
HD-ECoG presented the hardest challenge to accurately 
predicting bad channels. This was especially true for the 
sub-group of subjects recorded in the operating room. As 
opposed to sEEG this is likely due to an increase in the 
variety of types of artifactual signals in these recording 
compared to clinical-ECoG. This group had the lowest 
good to bad channel ratio and hence the largest number 
of labeled bad channels. The fact that the HD-electrodes 
are smaller means they will have larger impedences and 
potentially pick up more external noise though the wire 
connecting them to the amplifiers. In addition it is known 
that the recordings from the operating room in the HDor 
group will be more sensitive to external noise because 
during the recording the scull is open, unlick in the IEMU 
where the skull has be replaced and the wound sealed, 
before recording. This provides more direct exposure to 
external electrical sources. In addition the fact that most 
labeled bad and good channels have around 50% of their 
windows predicted as bad suggests that there may be 
artifacts that are transient in nature and not consistent 
throughout the recording. Taken together this suggests 
that predicting artifactual signal in HD-ECoG will likely 
require larger set of correctly labeled data to train on. It 
should be noted that often HD-ECoG implants are aim 
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towards BCI use and thus longer term implantation 
where additional work in identifying and labeling 
artifactual signal is justified. 
    Limitations The main limitation of this work is that 
ground truth labeling was based on subjective evaluation 
of channel as a whole. This is sufficient for large scale 
studies, but not a true separation of electrophysiological 
signals from external noise. Each channel is not purely 
noise or brain signal at any one time point. Thus, it could 
also be beneficial to allow for prediction of a percentage 
or probability of noisiness as the recorded signal is 
almost always a combination of both.  
However, this proportion is hard to compute and label. 
This is a limitation inherent to all work on distinguishing 
artifactual signal from electrophysiological signal in that 
work on understanding the true ground truth of what parts 
of recorded iEEG signals are pure reflections of 
electrophysiology is still very much ongoing.  
One approach to overcome this would be to train with as 
good as possible pure electrophysiological signals and 
add known amounts of  simulated noise. In this way there 
would at least be ground truth for the know added signal 
artifacts and knowledge as bout simulating artifacts 
caused by known noise sources is much better due to the 
vastness of the field of electronics. 
Furthermore, the models could be improved by allowing 
for additional types of labels for channels such as the 
cortical or subcortical region where the electrodes are 
located and/or the type of cognitive task the subject is 
performing as these factors are known to influence iEEG 
signal features. In this way, a model trained to identify 
noisy signal characteristics could also be used to specify 
what signal features constitute ‘normal’ iEEG signal 
from different parts of the brain. This suggests another 
possible avenue for future work, which would be to 
explore the signal features encoded in the deeper layers 
of such a CNN. 
 
CONCLUSION 
 
In conclusion we feel this work is encouraging for studies 
aimed at large scale data aggregation over many subjects 
and multiple institutions in that is shows the feasibility of 
automating the identification of channels that can be 
safely included in the analysis and which ones should be 
excluded.  
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ABSTRACT: Motor imagery-based brain-computer in-
terfaces (MI-BCIs) enable users to control digital devices
by performing motor imagery tasks while their brain
activity is recorded, typically using electroencephalog-
raphy. Performing MI is challenging, especially for
novices. To tackle this challenge, neurofeedback (NFB)
training is frequently used and usually relies on visual
feedback to help users learn to modulate the activity of
their sensorimotor cortex when performing MI tasks. Im-
proving the feedback provided during these training is
essential. This study investigates the feasibility and ef-
fectiveness of using thermal feedback for MI-based NFB
compared to visual feedback. Thirteen people partici-
pated to a NFB training session with visual-only, thermal-
only, and combined visuo-thermal feedback. Both visual-
only and combined visuo-thermal feedback elicited sig-
nificantly greater desynchronization over the sensorimo-
tor cortex compared to thermal-only feedback. No sig-
nificant difference between visual-only and combined
visuo-thermal feedback was found, thermal feedback
thus not impairing visual feedback. This study outlines
the need for further exploration of alternative feedback
modalities in BCI research.

INTRODUCTION

A brain-computer interface (BCI) relies on a neurophys-
iological acquisition method, often electroencephalogra-
phy (EEG), to record brain activity that is in turn pro-
cessed and interpreted as a command to control a digi-
tal device. BCIs have been used to control external de-
vices for both non-clinical applications, such as video
games [1], and clinical applications, such as motor re-
habilitation after stroke [2].
One of the main challenges for BCIs, is for their users
to generate a brain activity that is reliably recognizable
by the computer. One commonly used mental task that
produces consistent brain activity is motor imagery (MI),
which has been proven to consistently activate the sen-
sorimotor cortex [3]. However, MI is not an easy task
for novice BCI users. They have to learn to modulate
their brain activity by exploring different MI strategies,
such as imagining different gestures or focusing on dif-

ferent sensations, to reliably activate their sensorimotor
cortex. Consequently, BCIs rely on training users to
control their brain activity. To this end, neurofeedback
(NFB) is mostly used: it consists in a closed-loop tech-
nique providing users with feedback on their own brain
activity so they can learn to modulate it. Thus, provid-
ing users with feedback that they can understand and in-
terpret intuitively is of utmost importance in the learning
process, and improving the feedback is a key factor of im-
provement for BCI efficiency. A feedback can be defined
through three main characteristics: (i) its content, i.e., the
information that it conveys (ex: neuromarker on which
the feedback is based), (ii) its modality, i.e., the way this
information is conveyed (ex: haptic feedback using vi-
brators), and (iii) its presentation timing, i.e., the moment
when it is provided (ex: continuous presentation with a
refreshing rate at 0.1Hz) [4]. Among those, the modality
of feedback is the most investigated characteristic.

Several modalities of feedback are reported in the litera-
ture. A majority of the studies displayed visual feedback,
probably because vision is the sense on which daily life
perception relies the most [4]. Haptic feedback including
vibrotactile, functional electrical stimulation and robotic
orthosis was also provided during MI-BCI user training
(see [5] for a review on haptic NFB). Such feedback could
particularly be interesting for MI-BCI as it activates simi-
lar cortical structures as the ones involved in MI. Contro-
versially, the use of haptic feedback could also contribute
to overtax the cortical structures associated with both its
processing and the performance of the MI tasks. Previous
MI-BCI experiments involving vibrotactile feedback did
not find any significant negative or positive influence on
the resulting electrophysiological activity or BCI perfor-
mances compared to visual feedback [6–8], despite the
fact that participants reported perceiving the haptic feed-
back as more natural than the visual one [6]. Multimodal
feedback, involving both visual and haptic vibrotactile
stimuli at once, seemed however to improve MI-BCI per-
formances [9, 10].

To our knowledge, the thermal component of haptic
stimulation has never been investigated as a potential
NFB modality. Yet, thermal feedback appears promis-
ing as thermal stimulation is inexpensive to develop and
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fairly easy to use. Besides, thermal stimulation could
be perceived as natural feedback since external thermal
sensation is continuously involved when exploring our
environment with our body. Furthermore, such feed-
back could particularly benefit therapeutic applications as
studies showed that thermal stimulation facilitates sen-
sory and motor recovery in stroke patients [11, 12].
Hence, it appears of interest to study the feasibility of
including the so far disregarded thermal feedback in MI-
NFB training. The goal of the present study was to in-
vestigate the effects of thermal neurofeedback on users’
ability to control their brain activity and on their user ex-
perience, in comparison with a visual feedback. To this
aim, we investigated NFB training with thermal feedback
only, visual feedback only, and with a combination of
both visual and thermal feedback.

MATERIALS AND METHODS

We investigated the influence of three different feedback
modalities on participants’ ability to modulate their own
brain activity and on their user experience. The three
modalities were the following ones: visual-only feed-
back (V) in which participants experienced solely vi-
sual feedback, thermal-only feedback (T) in which par-
ticipants experienced solely thermal feedback, and a bi-
modal visuo-thermal feedback (VT) in which partici-
pants experienced both thermal and visual feedback si-
multaneously. All participants experienced the differ-
ent feedback and their order of presentation was pseudo-
randomized (so that the order of conditions was counter-
balanced across participants).

Participants: Twenty-four healthy participants com-
pleted the study (8 women, 15 men, 1 non-binary, age
25.8±3.8 years). None of them had any history of neuro-
logical or psychiatric disorders. All participants provided
written informed consent before the experiment in ac-
cordance with the Declaration of Helsinki and following
amendments. The thirteen initial participants were tested
with a thermal feedback slightly different from the others
(see Section Thermal Feedback). Authors of the study
observed that thermal feedback obtained from equation 4
resulted in a wider stimulation range than desired. The
equation was updated (5) and eleven additional partici-
pants were tested. Results for the second group of par-
ticipants were similar and conclusions thus identical to
the ones of the first group. No significant difference was
found between groups. Both datasets were thus merged
and analysed as a single one.

Experimental protocol: The experiment lasted about
two hours. Participants were seated in a comfortable
armchair, in front of a monitor placed flat on a table
right above their arms (Fig. 1.A). First, participants were
asked to fill in two questionnaires regarding general de-
mographic information and their handedness. Partici-
pants were then equipped with a wearable thermal stimu-
lation system on their right hand. It consisted of a Peltier
cell attached to a heat sink and assembled on a 3D-printed

Figure 1: Experimental setup. A-Participant seated on a chair
in front of the computer screen and wearing the EEG headset.
The virtual hand is superimposed above the participant’s real
hand. B-Thermal stimulation system. Top: top view of the
system; Middle and Bottom: top and left view (respectively) of
the wearable system on the user’s hand.

wearable element (Fig. 1.B). The wearable system was
strapped to the right hand of participants so that the
Peltier cell would be in complete contact with the palm
of their hand. Because thermal stimulation varies from
user to user, we performed a calibration of the thermal
stimulation range to adapt it to each participant (see Sec-
tion Thermal Feedback). Subsequently, participants were
equipped with an EEG headset (see Section EEG Record-
ings & Signal Processing) and an electrode was placed
on the participants’ skin above the anterior proximal part
of their forearm to assess hand electromyographic activ-
ity (EMG). Afterwards, the participants were given in-
structions regarding the experimental protocol, including
the modalities of feedback and the motor imagery task to
perform. They were asked to repetitively imagine clos-
ing and opening their right hand while focusing on the
sensations related to the movement, such as hand mus-
cle contraction, skin and tendon stretch, and tactile and
thermal sensations on the hand. Then, participants were
asked during one run to perform the MI task while look-
ing at a fixation cross (no feedback was provided at that
point of the experiment). Each run consisted of twenty
successive trials of five seconds of rest followed by ten
seconds of MI, for a total run duration of five minutes.
We calibrated the BCI based on the data from this run by
defining a reference ERD (ERDre f ) set as the 30th per-
centile of the produced ERDs. Then, all the participants
successively experienced the three feedback modalities
(pseudo-randomized order across participants). For each
modality, we proceeded as follows. First, we asked par-
ticipants to rest while staring at the center of a white cross
displayed on the screen for one minute while we recorded
their brain activity as a baseline for future analyses. Sec-
ond, we asked participants to perform two training runs
(separated by a short break) with the feedback modality
associated with one of the three modalities. Afterwards,
participants were asked to fill in a questionnaire regarding
their user experience of the two NFB runs they just per-
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Figure 2: Experimental protocol. The three tested condition (V,
T, VT) were performed successively in a pseudo-random order,
in a single session.

formed. Finally, during one run (which we called Replay,
Fig. 2) we replayed the exact stimuli generated during
the second user training run while the participants were
asked to only pay attention to these stimuli without imag-
ining the movement. A short break was also proposed in-
between modalities. At the end of the three modalities,
participants were asked to fill in a final questionnaire re-
garding their preferences in terms of feedback modality.
All the equipment was then removed and we made a short
debrief (Fig. 2).

EEG Recordings & Signal Processing: The EEG
data was recorded with 31 active electrodes, using a
g.USBAmp EEG amplifier (g.tec, Austria). The elec-
trodes were placed over the sensorimotor cortex (at lo-
cations Fp1, Fp2, FC5, FC6, F3, F4, FCz, T7, T8, C3,
C4, Cz, P3, P4, O1, O2, CP1, CP2, CP5, CP6, FC1, FC2,
CP4, C5, C6, FC3, FC4, Pz, C1, C2 and CP3 in the 10-
20 system). They were referenced to the left earlobe and
grounded to AFz. The data was sampled at 512 Hz, and
processed online using OpenViBE 3.4.0 [13].
During the user training runs, the online data used to pro-
vide feedback was processed as follows. We first selected
the signal from electrodes C3, FC1, FC5, CP1 and CP5,
which was then filtered between 8 Hz and 20 Hz. The sig-
nals were then passed through a Laplacian filter centered
on C3 (with electrodes CP1, CP5, FC1 and FC5). Dur-
ing the resting phases of the runs, the output signal was
then epoched using a one second window every 0.1 sec-
ond. The power over the 8-20Hz frequency band was
computed, time-averaged, and the data from the epochs
of the last two seconds of the resting time (20 epochs)
was averaged. This average was used as the Rest value
to compute the ERDs of the following MI phase. Dur-
ing the MI phases of the runs, the output signal of the
Laplacian filter was epoched using a 0.25 s window ev-
ery 0.25 s, epochs whose signal’s power was computed,
time-averaged, and for every epoch, the data from the cur-
rent epoch and last three epochs were averaged. For every
epoch, this average was used as the Task value to compute
the online ERDs (ERDon) as follows:

ERDon = (Task−Rest)/Rest ∗100 (1)

We then used the ERDre f defined from the calibration run

to compute an ERD score (SERD):

SERD = ERDon/ERDre f ∗100 (2)

The SERD was then used to define the feedback score
(SFB) according to the following thresholds:

SERD < 30% ⇒ SFB = 0
SERD ≥ 30% ⇒ SFB = 1
SERD ≥ 60% ⇒ SFB = 2
SERD ≥ 100% ⇒ SFB = 3

(3)

For the offline analysis, the EEG data has been pre-
processed using MNE-Python [14]. The signal was fil-
tered using a zero-phase shift notch filter with a 50 Hz
cut-off frequency and a finite impulse response (FIR)
band-pass filter with cut-off frequencies of 1 and 25 Hz
and then average-referenced. We used an independent
component analysis (ICA) to limit the impact of muscu-
lar artefacts. In average, 3 components were removed
from the analysis of each participant. We extracted 14 s
window epochs from 4 s before the MI instruction cue to
10 s after (one epoch per trial). Epochs with peak-to-peak
amplitude greater than 200 µV were rejected. In total, an
average of 1 epochs out of 20 were removed for each run.
The data was then filtered using a Laplacian filter cen-
tered on C3 (with electrodes CP1, CP5, FC1 and FC5).
Then, we re-sampled our data at 256 Hz, computed time-
frequency representation using Morlet wavelets between
8 and 20 Hz, and normalized it with baseline correction
by taking the logratio of the signal over the average power
during the rest period (-4 s to -1 s before cue). This gave
us the power relative to rest period. Then, we averaged
this power between 1 s and 9 s post-cue and across trials
to obtain ERDo f f .

Visual Feedback: The visual feedback (developed us-
ing Unity 2019.4.18f1) presented to participants during
the modalities V and VT consisted of a right virtual hand
superimposed over the participants’ real right hand. The
virtual hand performed wrist rotations to go towards or
away from a virtual cup containing a steaming hot bever-
age placed on a table. The virtual scene would take place
in a chalet with a view of a snowy environment. There
was a 60° rotation range between the starting position of
the hand and the mug. The SFB i.e., 0, 1, 2 or 3, corre-
sponded to different rotation speeds of the virtual hand,
i.e., −2°/s, 4°/s, 6°/s or 10°/s respectively. The virtual
hand could not move further back than the starting po-
sition. Participants were informed that the better the MI
task was performed, the closer to the mug the hand would
move and that independently from their brain activity, the
virtual hand would continuously open and close (2s pe-
riod). During the resting period, a white cross was dis-
played on the screen. During the calibration and for the
runs with thermal-only feedback modality, a white frame
was additionally displayed on the border of the screen
to inform the participants when they should perform MI
tasks.

Thermal Feedback: To adapt the thermal stimulation
range to participants’ perception, we calibrated the device
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at the beginning of the every experiment using the par-
ticipant’s (i) minimum warmth threshold perception and
(ii) potential uncomfortable warmth perception. The tem-
peratures were chosen among the following predefined
range [21.5°C (room temperature), 38°C]. This range was
chosen based on previous experiments and should not
induce painful temperatures [15]. On average (mean±
standard deviation), participants defined the thresholds
as follows. Lower threshold : 25.9°C ± 1.9°C, upper
threshold: 34.8°C ± 3.0°C). The thermal feedback de-
livered to the participant during the T and VT conditions
was then bounded according to their individually defined
thresholds, i.e., [minimum warmth threshold perception-
1°C, potential uncomfortable warmth perception-1°C].
With the goal of having consistent visual and tactile feed-
back modalities, the thermal feedback was commanded
by the angle between the hand and the mug according to
the following functions (see Section Participants):

Tcom = Tcom,max ∗θ/θmax +(Tcom,min −11) (4)

Tcom = (Tcom,max −Tcom,min)∗θ/θmax +Tcom,min (5)

Tstim = Tamb +Tcom ∗0.15 (6)

where Tcom, Tcom,min and Tcom,max are the current, min-
imum and maximum stimulation commands (respec-
tively) sent to the Peltier system, θ and θmax the current
and maximum (i.e. 60°) angle between the hand and the
mug (respectively), and Tstim and Tamb (21.5°C) the stim-
ulation temperature and room temperature respectively.
Participants were informed that the better the MI task was
performed, the warmer the thermal stimulation would be.
The Peltier cell temperature was controlled through an
Arduino Uno R3 (Arduino.cc) receiving the θ angle in-
formation from the Unity application.

Variables & Factors: Our analyses focused on assess-
ing the potential difference induced by the modalities of
feedback on the electrophysiological changes resulting
from the NFB user training. To that extent, we used three
different variables. The previously described ERDon and
ERDo f f (see Section EEG Recordings & Signal Process-
ing), and a NFB performance variable, PFB, based on the
feedback produced during a run and defined as the sum
of all the SFB produced during a run divided by the max-
imum total score (i.e. all SFB = 3) :

PFB =
∑

N
i=1 SFB,i

3×N
×100 (7)

where N is the total number of online epochs thus of SERD
computed during a run and SFB,i the SFB of the ith epoch.
The statistical analysis of these values consisted of
repeated measures ANOVAs, with associated post-hoc
analyses using the false discovery rate (FDR) method to
correct for multiple comparisons. Our goal was to study
the effects of the modality of feedback (i.e., V, T and VT)
and of the run (i.e., Run1 and Run2) on our variables
(ERDon, ERDo f f , PFB).

Figure 3: Box and scatter plot of ERDo f f for runs Run1 and
Run2. Asterisks: p<0.05: * ; p<0.01: ** ; p<0.001: ***.

RESULTS

We analysed the potential influence of our conditions
on the three variables defined earlier: PFB, ERDon, and
ERDo f f . As repeated measures ANOVA results are par-
ticularly sensitive to outliers, we removed the results
from the participants that were over plus or minus two
standard deviations relative to the median of this variable.
In total, two participants were removed from PFB analy-
ses, five from ERDo f f , and one participant from ERDon
analyses. We tested our data for deviation of normality
using a Shapiro-Wilk test. No significant deviation was
found. Then, using JASP [16] we computed three 2-way
repeated measures ANOVAs to assess if there was an ef-
fect of or an interaction between “Modality” (V, T, VT)
and “Run” (Run1, Run2) on either of the dependent vari-
ables (PFB, ERDon, ERDo f f ).
We found a significant main effect of run repetition on
ERDon and ERDo f f , but not on PFB (Tab. 1). ERDon were
found significantly greater during Run2 (M=-46.9%;
SD=13.5%) than during Run1 (M=-44.9%; SD=13.9%)
[t=3.67, df =21, p=0.001]. ERDo f f were also found sig-
nificantly greater during Run2 (M=-0.15dB; SD=0.11dB)
than during Run1 (M=-0.12dB; SD=0.10dB) [t=3.467,
df =17, p=0.003] (Fig. 3). We found a significant
main effect of feedback modality on ERDo f f , but not
on ERDon nor on PFB (Tab. 1). Post-hoc analy-
ses of the effect of “Modality” revealed significantly
greater ERDo f f for V (M=-0.18dB; SD=0.12dB) com-
pared to T (M=-0.09dB; SD=0.08dB) [t=-3.993, df=17,
p<0.001], and significantly greater ERDo f f for VT
(M=-0.14dB; SD=0.10dB) compared to T [t=-2.444,
df=17, p=0.040]. No significant difference was found
between V and VT [t=-1.549, df =17, p=0.131] (Fig. 4).
P-values were Holm-corrected for multiple comparisons.

DISCUSSION

The aim of the present study was to investigate the fea-
sibility of introducing thermal stimulation as a new neu-
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ERDon ERDo f f PFB

Modality F(2,42)=0.12;p=0.83;η2=0.004 F(2,34)=8.1;p=0.001;η2=0.23 F(2,40)=0.93;p=0.4;η2=0.027
Run F(1,21)=13.4;p=0.001;η2=0.05 F(1,17)=12;p=0.003;η2=0.05 F(1,20)=3.16;p=0.09;η2=0.01

Modality*Run F(2,42)=1.61;p=0.21;η2=0.016 F(2,34)=0.6;p=0.55;η2=0.005 F(2,40)=1.05;p=0.36;η2=0.02

Table 1: Result of the two-way repeated measures ANOVA for Modality and Run. Significant main effects are indicated in bold.

Figure 4: Box and scatter plot of ERDo f f for modalities V, T,
and VT. Asterisks: p<0.05: * ; p<0.01: ** ; p<0.001: ***.

rofeedback modality. To that extent, we compared neu-
rophysiological outcomes of MI-based NFB between a
thermal-only feedback modality, a visual-only feedback
modality, and a visuo-thermal modality (combining both
aforementioned feedback modalities). Through repeated
measures ANOVAs, we studied the effects of the feed-
back modality and run repetition.
We found that run repetition had a significant main effect
on NFB performances (ERDon and ERDo f f ), indicating a
learning effect. We also found that modality had a signif-
icant main effect on offline performances (i.e., ERDo f f )
with significantly greater desynchronization over the left
sensorimotor cortex for the visual-only and visuo-thermal
modalities compared to the thermal-only modality.
The main effect of modality of feedback on brain activ-
ity modulation was observed on the offline NFB perfor-
mance (ERDo f f ) but not on the online NFB performance
(ERDon, PFB). Two main differences between the on-
line and offline NFB performances most likely explain
such differences. Firstly, the offline performances benefit
from the ICA muscle activity artifacts correction, which
is not applied online. Secondly, during online process-
ing the positive values of ERDon, i.e., event related syn-
chronization (ERS), were automatically set to 0% not to
give negative feedback to users, whereas offline process-
ing took into account both ERD and ERS. Thus, feedback
modality shows a significant effect when both ERD and
ERS are taken into account in the processing (ERDo f f )
but not when only ERD are (ERDon). This suggests that
feedback modality has mainly an effect on ERS, with V
and VT modalities resulting in less ERS than their ther-
mal counterpart.
Thermal feedback alone thus appears less effective than

its visual counterpart for MI-NFB learning. A first hy-
pothesis to explain this result may lie in the difference
of intuitiveness between both feedback. Considering the
visual feedback, participants could see the starting and
goal position of the hand (i.e. the mug) and thus appre-
ciate at all times their performance based on the position
of the hand between these two positions. On the con-
trary, during thermal-only NFB runs, participants could
use the room temperature as a starting point, but did not
have any reference cue related to the goal temperature to
reach. Furthermore, thermal noticeable difference, i.e.,
the minimum temperature difference between two stimuli
that a person is able to perceive, may reach a minimum of
0.75°C at 38°C, but rapidly increases for lower tempera-
ture (1.6°C at 32°C) [17]. Thus, considering the tempera-
ture range we used and that a prior characterisation of our
thermal stimulation system gave a temperature variation
speed of around 1°C/s, the perceived feedback variation
experienced by participants during a 10 s task was very
likely lower for thermal stimulation than for visual stim-
ulation. This is corroborated by comments from two par-
ticipants: one claimed to have felt a delay between their
MI and the thermal feedback, and the other participant
mentioned having a hard time figuring out if they were
performing the MI task correctly with the thermal-only
feedback condition and even feeling lost without visual
feedback. Both aforementioned arguments suggest that
visual feedback alone contains a richer information than
thermal feedback alone. Despite eliciting lower modu-
lation of brain activity than its visual counterpart and its
probable lack of intuitiveness, adding thermal sensations
to visual feedback did not decrease the efficiency of the
visual-only feedback, as we did not find any significant
difference in brain activity modulation between V and
VT conditions. A stronger desynchronization could have
been expected for the visual and thermal condition as pre-
vious studies found that multimodal feedback composed
of haptic and visual stimuli has a beneficial influence [9,
10]. This could be caused by an inconsistency between
our visual and thermal feedback due to an increased delay
in thermal stimulation compared to the visual one. Our
results suggest that using thermal feedback coupled with
a visual feedback could be an interesting solution, espe-
cially for NFB application that would benefit from ther-
mal stimulation such as sensory and motor post-stroke
rehabilitation as previously mentioned [11, 12]. Further
analyses of the user experience will provide us with com-
plementary information.

Finally, it must be mentioned that including a repetitive
grasping movement of the virtual hand in the visual feed-
back might have brought about the effect of action ob-
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servation (AO) from participants and thus enhanced the
ERD amplitude in those conditions, as recently reported
by Nagai et al. [18]. Indeed, they found that partici-
pants produced significantly greater ERDs during MI of
fist clenching while synchronously looking at a video of
someone else’s hand performing the movement compared
to pure motor imagery (without AO). Future investigation
of the Replay runs should enable us to quantify the re-
spective influence of AO and MI on the ERDs amplitude.

CONCLUSION

In conclusion, this study sheds light on the potential of
thermal feedback as a novel modality for motor imagery-
based neurofeedback training. We found that it elicits a
less pronounced modulation of the left sensorimotor cor-
tex compared to visual feedback alone and to combined
visuo-thermal feedback. Nevertheless, adding thermal
feedback to other feedback modalities could remain inter-
esting as it does not negatively affect NFB performances
when combined with visual feedback. Overall, this study
contributes to our understanding of feedback mechanisms
in BCI and highlights the importance of considering al-
ternative modalities in pursuit of more intuitive and effec-
tive human-computer interaction paradigms. The investi-
gation into thermal feedback opens new avenues for im-
proving neurotechnologies, particularly in clinical appli-
cations, such as sensorimotor rehabilitation. By address-
ing the challenges associated with MI tasks, we can bring
further the development of NFB and BCIs and broaden
their practical applications. Future research may further
refine thermal feedback protocols and explore its poten-
tial synergies with other modalities to optimize user ex-
perience and BCI performances.
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ABSTRACT: Traditional Neurofeedback (NF) designs 

are rather dull and only little engaging, which can 

negatively influence training performance. NF profits 

from interesting paradigms implementable through tools 

such as Virtual and Augmented Reality (AR). AR, 

however, is still very new in the field of NF and BCI but 

seems promising in hindsight of less Cybersickness and 

easier and cheaper usage for tele-rehabilitation, as 

modern smartphones support AR implementations. 

However, there are still no sham-controlled AR-based 

NF studies with larger samples. We propose a one-

session sham-controlled and double-blinded NF study 

comparing AR with 2D feedback. The NF training 

consisted of sensorimotor rhythm (SMR) up-regulation 

and we tested 89 healthy participants. Results showed a 

numerically but non-significant increase in SMR across 

the NF runs in all four groups. Sham and real feedback 

groups did not differ in their performance. The study 

could show that AR is equally viable to 2D feedback and 

participants were not able to increase SMR within one 

NF training session. 

Keywords: Augmented Reality, Neurofeedback, 

Sensorimotor Rhythm 

 

INTRODUCTION 

 

Since about 30% of Brain-Computer Interface (BCI) 

users are not able to alter their own brain activation [1], 

neurofeedback (NF) and BCI alike profit a lot from 

engaging and interesting paradigms in order to increase 

training adherence of the users. Psychological factors 

such as motivation [2] and attention [3] from the users 

are positively associated with the NF training success. 

Virtual Reality (VR) has in respect thereof already shown 

to be beneficial to increase NF performance [4] over 

simple traditional 2D paradigms presented on computer 

screens. Further, stroke patients undergoing VR NF 

training also reported a high motivation to continue their 

training and showed high interest [5]. However, VR 

presents some downsides in its usage as well. About 80% 

of the users of VR systems are prone to develop 

symptoms of Cybersickness, such as nausea, oculomotor 

problems or disorientation [6], which can on the one hand 

lead to a worse user experience and on the other hand to 

a worse training outcome [7]. Also, VR is costly on 

resources to offer for a group of patients on a tele-

rehabilitation basis, and there are only little options of 

combined VR-EEG systems. Another option that is 

posing some advantages over VR but is still only little 

researched in the field of NF and BCI is the application 

of Augmented Reality (AR). Here, virtual objects are 

superimposed on real world surroundings. On the reality-

virtuality continuum proposed by Milgram and Kishino, 

AR is classified as closer to reality than VR [8]. The 

implementation is done by using, e.g., smartphones, 

webcams, or stereoscopical camera additions to VR 

goggles. An advantage of AR is that it is less prone to 

result in the feelings of Cybersickness [9] in the user. 

They experience less nausea and disorientation during 

the usage. Further, AR seems more easily applicable for 

tele-rehabilitation purposes, as most modern smartphone 

cameras support AR (official list: 

https://developers.google.com/ar/devices). So here no 

expensive combinational devices would be necessary. 

AR enables new opportunities to integrate feedback and 

bodily features can still be visible and can if necessary be 

included to the feedback. It hence offers the creation of 

adaptive paradigms that support the training. [10] 
However, there is a lack of double-blind sham-controlled 

AR-NF studies and only a handful of studies are using 

AR in NF settings. In one study from 2014 the 

researchers created the MindMirror, using a Webcam 

with a virtual overlay to simulate an AR setting [11]. 

Participants would see themselves on a computer screen 

over a webcam with a virtual brain overlay presented on 

their heads. For the training relevant areas would light up 

in different colors. Viczko et al. used an AR NF paradigm 

for a NF meditation application using an Apple iPhone 

and Emotive headband for the feedback. It showed 

butterflies hatching from crystals when brain activity 

reached the desired state and could then be followed with 

the phone camera as an interactive element [12]. Also, 

there are several proof-of-concept studies with relatively 

small samples (5-12 participants in total [13, 14] and no 

sham-control groups, combining for example steady-

state visual evoked potential (SSVEP) based BCI 

systems [15]. The presented studies offered a first insight 

into combinational AR-BCI and NF studies. 

Altogether, studies with big sample sizes and double-

blinded sham-control are still missing. Here, we 

conducted an EEG-based NF study comparing AR 

feedback with conventional 2D bar feedback design with 

regard to NF performance (measured as SMR increase 

over the course of six feedback runs). We hypothesized 

that participants from the AR group would perform better 

in a SMR-NF task than participants undergoing a 2D NF 

with a conventional paradigm. Since VR paradigms have 

previously been shown to result in better NF performance 
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compared to 2D paradigms [4, 16] and AR has previously 

been successfully tested in the field of BCI and rated very 

positively by participants [11], we expected similar 

positive NF results for AR-feedback compared to 2D 

feedback. Also, we assumed participants receiving real 

feedback would perform better than the feedback group 

receiving sham feedback. Previous findings in the 

general field of NF could show beneficial training effects 

specifically for real feedback groups compared to sham 

feedback groups [17, 18]. Hence, we expected similar 

results in our sample with AR-based NF. 

 
MATERIALS AND METHODS 

 

The study was conducted at the University of Graz. All 
participants gave written informed consent before the 

start of the measurement. The ethics committee of the 

University of Graz, Austria, approved all aspects of the 

present study in accordance with the Declaration of 

Helsinki (GZ. 39/119/63 ex 2021/22). 

     Participants: In total, 100 participants were tested 

(see Table 1). Eleven datasets had to be excluded from 

the statistical analysis due to bad EEG data quality, 

problems with the paradigm and drop-outs, hence, 89 

datasets survived for further analysis. Forty-four 

participants performed the 2D NF task, 45 the AR task 

(see Table 1). All volunteers had normal or corrected-to-

normal vision, no neurological, psychological or other 

severe diseases, as well as no reflex epilepsy. They gave 

written informed consent and were either paid for their 

participation (16€) or received research credit hours for 

their Psychology Bachelor program. 

 

Table 1: Description of the sample. 

 

     Neurofeedback-training: Participants were 

pseudo-randomized and assigned to one of the four 

groups: 2D vs. AR feedback, real vs. sham feedback and 

experimenters just as participants were blinded whether 

real or sham feedback was given. In the real feedback 

condition participants got their real brain activation fed 

back in real time, while in the sham feedback condition 

the brain activation from another person of another 

(similar) study was fed back [4]. In the AR condition, 

participants would see three virtual plants growing out of 

real plant-pots placed in front of them. The middle one 

represented the sensorimotor rhythm (SMR; 12-15 Hz) 

recorded over Cz and the two outer plants Theta (4-7 Hz) 

and Beta (16-30 Hz), also recorded over electrode 

position Cz. Participants should make the middle one 

grow as high as possible and keep the two outer ones as 

low as possible. The same principle was followed by the 

2D paradigm, only they saw three 2D bars equally 

representing the three frequency bands regularly on a PC 

screen (see Figure 1). The training consisted of a baseline 

run and six training runs of three minutes each. In the 

baseline run, participants were instructed to watch the 

moving objects without trying to influence it. 

Afterwards, individual threshold values were calculated 

based on this baseline activation. For SMR the mean 

values were calculated and for Theta and Beta the mean 

plus one standard deviation was calculated. The 

thresholds were adapted in the paradigm for the training 

after each run and participants were instructed to be 

physically relaxed and mentally focused to control the 

feedback objects. 

     Technology: The AR paradigm was presented via the 

HTC Vive Pro VR-System. The stereoscopical camera 

ZED mini from Stereolabs was attached to the VR 

goggles to enable AR vision. The SDK Unity Plugin 

version 3.8.0 was used to create the environments in 

Unity, Version 2020.3.30f1 (see Figure 2). For 

superimposing the virtual objects in the AR setting via 

markers, the free Unity trial version of OpenCV (version 

2.4.8) was used. For real-time EEG data streaming the 

LSL4Unity plugin, freely available at 

https://github.com/labstreaminglayer/LSL4Unity was 

used in combination with OpenViBE, Version 3.3.0. 

OpenViBE is a free software to stream and preprocess 

EEG data in real-time. The framerate of both the camera 

and computer screen were set to 60 FPS. Even though the 

2D group got their paradigm presented on a computer 

screen, they also had to wear the VR-AR system to rule 

out any group differences related to wearing the system, 

such as headache or pressure sensations due to wearing 

the whole system. Here, the camera was simply switched 

on, so participants would also see their surroundings 

through the camera. 

     EEG recording and Offline EEG data 

processing: Data was recorded with the gUSBamp 

RESEARCH EEG-amplifier from g.tec medical 

engineering and a sampling rate of 500Hz. We used 16 

sintered Ag/AgCl passive ring electrodes, placed 

according the 10-20 EEG-system, to measure the signal. 

All electrodes were referenced against left mastoid and 

the ground was placed at FPz. A right mastoid placed 

electrode was used to calculate linked mastoid reference 

during the offline EEG data processing. Brain Vision 

Analyzer (version 2.2, Brain Products GmbH, Munich, 

Germany) was used for offline EEG-data processing. At 

first, a 50 Hz notch filter and a low cutoff filter of 0.01, 

as well as a high cutoff filter of 100 Hz were applied. 

Further, big muscle artifacts were excluded and heavy 

drifts during the raw data inspection. Data was referenced 

to the linked mastoid reference to rule out hemisphere 

effects, as the left mastoid was the primary reference 

electrode. Next, a semi-automatic independent 

component analysis (ICA) was performed to eliminate 

blinks and eye movements using a semi-automatic 

independent component analysis (ICA). Lastly, a second 

semi-automatic data inspection followed to exclude 

additional remaining artifacts that survived the other 

 AR 2D 

 real sham real sham 

N (female) 25 (14) 20 (12) 20 (9) 24 (17) 

Mean age 

(SD) 

23.76 

(3.31) 

24.95 

(3.82) 

24.65 

(4.06) 

21.79 

(1.74) 

Responder 16 12 10 14 

Non-Resp. 9 

(36%) 

8 

(40%) 

10 

(50%) 

10 

(41.6%) 
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preprocessing steps (Criteria for rejection: maximum 

allowed voltage step of 50µV/ms, maximum allowed 

difference between values in a segment was 200 µV, 

amplitudes ± 120 µV, lowest allowed activity in 100 ms 

intervals was 0.5 µV, artifacts were marked 200 ms 

before and after emergence). Finally, the frequency 

power bands in the ranges 12-15 Hz (SMR), 4-7 Hz 

(Theta) and 16-30 Hz (Beta) were extracted using 

complex demodulation. Data was segmented into 1s 

intervals and segments with artifacts were removed. 

 

 

Figure 1: The used AR-Set-up with the HTC Vive Pro 

and attached ZEDmini stereoscopical camera. On the 

table one can see the plant pots and the screen shows the 

virtual plants that the participant is seeing via the VR-

googles. 

 

         Questionnaires: In this study we also assessed 

the user experience of participants with several 

questionnaires on Cybersickness, technology anxiety, 

subjective control among others. Results are presented in 

another study which is currently under submission. 

     Statistical Analysis: To investigate the NF 

performance (measured as the changes in SMR power 

across six NF runs) of the four different groups (AR real 

vs. AR sham and 2D real vs. 2D sham), a linear mixed 

effect model with three fixed factors (group, condition, 

feedback runs) was calculated for the dependent variable 

SMR power over electrode position Cz (Type I Sum-of 

Squares Analysis of Variance with Satterthwaite’s 

method). Here, we will only present the findings for 

SMR. To enable a better interpretation of the results we 

split the factor runs in two groups, one for the first 

training half (first three runs) and one for the second 

training half (runs four to six). The factor subject was 

included in the model as crossed random effect. 

To identify non-responders, we checked whether 

regression slopes were increasing or decreasing. They 

were determined by calculating a regression with SMR 

power as criterion and feedback run number as predictor. 

Positive slopes indicate a linear increase, showing a 

successful training and negative slopes a linear decrease, 

showing an unsuccessful training. To investigate whether 

non-responders are equally distributed between all four 

groups we calculated a Chi-Squares test. 

 

 

Figure 2: Traditional 2D paradigm presented on PC 

screen. 

 

RESULTS 

 

The results of the linear mixed effect model showed no 

group-differences of AR/2D or real/sham feedback 

groups (for F-statistics see Table 2). Although SMR 

power increased numerically over the training runs, the 

main effect Runs was not significant (Table 2, Figure 3). 

 

Table 2: F-statistics of the Linear Mixed Effect Model 

with Group (AR/2D), Condition (real/sham), and Runs as 

fixed factors. 

Object F df p 

Group 0.32 1,234.31 .572 

Runs 0.01 1,437.25 .925 

Condition 0.01 1,234.73 .928 

Group*runs 0.03 1,437.21 .855 

Group*condition 0.07 1,233.65 .788 

Runs*condition 0.16 1,437.21 .691 

Group*runs*condition 0.12 1,437.16 .730 

 

 
Figure 3: Line graph showing the training performance 

of all the four groups over the course of the six feedback 

runs. Error bars are indicating the standard error. 

 

Responder/Non-responder: In our sample 41.6% of 

the users were not able to increase their brain activation 

across the six feedback runs (see Table 1). All groups had 

a similar number of non-responders (χ²=0.93, p = .819). 
 

DISCUSSION 

 

We conducted a study, comparing AR and 2D based 
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SMR-NF training in a double-blinded pseudo-

randomized and sham-controlled study with a large 

sample size (N=89). Statistical analyses revealed no 

group differences in the NF performance, all four groups 

showed a comparable small but non-significant increase 

in the target frequency band over the course of six 

feedback runs. 

In the present study, we did not find any differences in 

NF performance between the AR and 2D condition 

within one NF training session. Hence, AR-based NF 

training had no beneficial effects over conventional 

feedback designs. Previous studies also found 

comparable results of conventional and AR NF-

paradigms. In a one-session user study from Mercier-

Ganady and colleagues (2014) using a webcam to 

overlay a virtual brain on the users’ heads also showed 

comparable results between the AR and a conventional 

2D training, where they used a representation of a 

temporal gauge. Participants reported that their AR 

paradigm was less clear but more innovative and original. 

The EEG results were equal for both groups [11]. Hence, 

it seems as if only one NF training session was not 

enough to reveal possible beneficial effects of AR-based 

NF training. It would be interesting to compare training 

results over a longer period with trainings consisting of 

multiple sessions instead of only one to see, whether AR-

based feedback might be beneficial for NF training 

performance over a longer training period. 

Further, both of our paradigms were rather similar, each 

showing three objects growing and shrinking in size. This 

might explain the similar results for both conditions. 

Other studies in this field had either no control group [19] 

or control groups where the outcome or visual feedback 

differ fundamentally between the two groups. For 

instance, previous studies investigated the effects of AR-

based meditation with and without NF on mood [12], or 

compared a visual feedback where participants should 

light up an AR brain-overlay with. a temporal gauge as 

feedback [11]. Future studies should try explore more 

AR-given possibilities of design and interaction. In a 

further study one could for example expand the flower 

idea we used in the current study but for example make 

the task to turn the whole laboratory into a flowerbed 

surrounding the participants. 

Mohammed et al. speculate that AR-BCI studies would 

result in a higher cognitive load as it being more 

cognitively demanding [10]. However, AR still serves 

less visual distraction than does VR with its surrounding 

virtual environments. In a review on the impact of AR on 

tasks performances and cognitive load it could be shown 

that when using AR to complete different tasks, 

participants have less or equal cognitive load, as well as 

a higher performance than those using conventional 

methods [20]. It remains open, whether these results also 

reflect AR usage in NF. To overcome the problem of 

complexity for the participants it might be beneficial to 

implement introductory sessions where participants 

could familiarize with the systems.  

Further, we found no group differences between real and 

sham feedback groups. Even though one would expect 

better NF performance in real feedback groups compared 

to sham groups, it is not uncommon to find comparable 

results in the NF literature especially when performing 

only one NF training session [21]. Ninaus et al. (2013) 

could show in an fMRI based NF study that both 

participants from the real and the sham feedback group 

showed similar active neural networks [22]. Participants 

and experimenters were blinded concerning group 

allocation and were instructed the same way. Hence, both 

groups were instructed to be mentally focused and 

physically relaxed. In a review on ADHD and 

neurofeedback researchers propose that effects from 

neurofeedback need more time in terms of more training 

sessions to develop. It is possible that during 

familiarizing with the task in the first 20-30 minutes, 

attention and concentration increased naturally, leading 

to unspecific changes in EEG activity, which are not 

related to real NF conditions [23]. 

Finally, the number of non-responders in this study is a 

bit higher than in other studies, where mostly 30% are 

reported [1, 24]. However, non-responders of up to 50% 

can be observed in the literature [25]. The AR group did 

not have less non-responders than the 2D group and the 

number also did not differ between sham and real 

feedback groups. It is difficult to determine non-

responders within a single training session, as it is still an 

intensive learning process and for most participants it 

was their first NF training. Here unspecific factors might 

also play a big role, especially with a rather complex set-

up used in our study. It would also be interesting to see 

whether the number of non-responders within the groups 

would change after several training sessions. 

 

CONCLUSION 

 

In the current study we did not find any differences in NF 

performance between an AR NF training and a 

conventional 2D feedback within one NF training 

session. Expanding the AR paradigm to a more complex 

task should shed more light on paradigm differences on 

the NF performance in future studies. Also, sham and real 

feedback led to a comparable NF performance. 
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ABSTRACT: This study addresses a key challenge in
motor imagery (MI)-based brain-computer interfaces
(BCIs): improving the decoding accuracy of electroen-
cephalography (EEG) signals. We investigate the inter-
task transfer learning potential between motor execution
(ME) and MI to enhance the calibration phase of MI-
BCIs. Utilizing the EEGSym deep learning network, we
demonstrate that ME data can effectively train models for
MI classification. Additionally, our analysis identifies a
significant positive correlation between performances on
ME and MI tasks. These findings support the feasibility
of a ME-based calibration approach for MI tasks in BCI
systems, leveraging the neural and functional similarities
between ME and MI. This approach maintains BCI per-
formance and potentially makes it easier to accommodate
new users to the MI task while recording ME data during
calibration, which could serve as an indicator of the ex-
pected MI accuracy. Furthermore, our results suggest that
we can exploit the synergies between ME and MI with-
out significantly reducing decoding accuracy of the user’s
intentions.

INTRODUCTION

Brain-computer interfaces (BCIs) offer a novel commu-
nication channel, directly linking the human brain to ex-
ternal devices [1].These systems are designed as closed-
loop systems with three stages: the recording of brain ac-
tivity, the processing of this data to interpret the user’s
intent, and providing feedback to the user. Electroen-
cephalography (EEG) is favored in the recording stage for
its non-invasive nature, portability, and excellent tempo-
ral resolution [2]. Furthermore, it is more affordable than
the alternative techniques used for capturing brain dy-
namics. An EEG-based BCI system captures the brain’s
electrical activity using electrodes placed on the scalp.
In the processing stage, these signals are analyzed to de-
code the user’s intentions [1]. The processed information
then translates into feedback, which could be provided as
visual cues on a monitor or the manipulation of a pros-
thetic limb [3]. Despite EEG’s advantages, the technique

faces significant hurdles, such as its inherently low spa-
tial resolution and the challenge of a poor signal-to-noise
ratio (SNR). BCIs, therefore, employ various paradigms
to generate recognizable brain patterns in the EEG, fa-
cilitating the decoding process. Motor imagery (MI), the
voluntary simulation of movement without physical ex-
ecution, is one paradigm that has gained increased re-
search interest. MI activates the primary motor cortex
and associated motor regions, mirroring the neural ac-
tivation patterns observed during motor execution (ME)
[4–6]. This neural overlap between MI and ME has crit-
ical implications, particularly in rehabilitative contexts.
Research demonstrates that employing MI-based BCIs in
a closed-loop system, complemented by functional elec-
trical stimulation as feedback, can significantly bolster
brain plasticity. Moreover, such targeted interventions
have been crucial in enhancing ME capabilities among
stroke patients [6].

Nonetheless, one major drawback of MI-based BCIs lies
in the difficulty of achieving high enough decoding ac-
curacy from EEG signals. Conventional machine learn-
ing (ML) approaches often struggle with BCI inefficiency
[7], a phenomenon where BCI systems cannot reliably
interpret and extract distinct features from an individ-
ual’s EEG signals, impacting an estimated 10-50% of
users in MI-based BCI applications [8]. Such users fail
to attain effective BCI control, a condition that prior re-
search identifies as exceeding a threshold 70% accuracy
in binary MI tasks [9, 10]. This inefficiency has been
attributed to the shortcomings in the classification stage
[11], recording system limitations, or diminished user
motivation over prolonged skill acquisition periods [12].
Moreover, there are elusive additional factors that further
contribute to BCI inefficiency. Given that classical ML
techniques need a calibration stage at the start of each
session to address inter-subject and inter-session variabil-
ity [13], ensuring this calibration phase captures accu-
rate and relevant information becomes critical for the ses-
sion’s subsequent success. However, verifying whether
users have correctly comprehended the instructions or are
engaging in the MI task poses a significant challenge. An
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inadequate calibration run can result in confusing feed-
back, reducing user motivation and potentially leading
to BCI inefficiency. This underscores the importance of
having a more robust calibration process that can effec-
tively minimize these issues.
Prior research has identified the calibration phase in BCIs
as a significant bottleneck, proposing the use of deep
learning (DL) models with strong transfer learning ca-
pabilities to overcome the inter-subject and inter-session
variability [11, 14, 15]. These DL architectures could
be employed in a calibration-less scenario by leveraging
MI trials from various users. However, this strategy en-
counters limitations since the data used to train has been
recorded providing feedback of a similar flawed calibra-
tion, or it is collected without providing any feedback to
the user or the observer on the MI being properly per-
formed. In this work, we investigate a less explored strat-
egy: utilizing inter-task transfer learning not just across
users but also between ME and MI paradigms [16–18].
Lee et al. [16] and Miao et al. [18] demonstrate that a
model trained in ME data can effectively translate into an
MI task with a minimal amount of MI examples. Shuqfa
et al. [17] employ data from both ME and MI trials to
train their classifiers simultaneously, aiming to improve
accuracy due to the similarities between the tasks. We
will further evaluate the feasibility of using data from
users performing ME to classify MI trials, specifically
excluding MI trials in the training set. This approach
could enable objective verification of ME activity being
performed by visual inspection, thus eliciting discernible
brain patterns, which will isolate errors to the record-
ing system. Moreover, it could potentially enhance the
preparation for rehabilitation-focused MI-based BCI ap-
plications through closer alignment with actual ME brain
patterns. Furthermore, leveraging ME data from multiple
users could be more reliable to train deep learning models
that focus on more relevant brain patterns.
Our research investigates the correlation between upper-
limb ME and MI, assessing the extent of transfer learning
capabilities of EEGSym [11], a DL network previously
validated in inter-subject MI classification. Additionally,
we aim to elucidate the impact of current EEG record-
ing system limitation on BCI inefficiency by examining
the performance correlation between ME and MI tasks.
To accomplish this goals, we analyze public database of
non-invasive EEG recordings from 109 healthy users per-
forming MI and ME tasks without feedback [19].

MATERIALS AND METHODS

Dataset and preprocessing:
The Physionet dataset [19] encompasses recordings from
109 healthy participants during one session. These ses-
sions included one run of 42-46 trials focusing on MI
without feedback and another run on ME. In both runs,
the duration of the imagination or execution phase for
each trial was 3 seconds. The 64-channel EEG signal was
recorded using the BCI200 system [20]. The majority of

the dataset, covering 105 participants, was recorded at a
sampling frequency of 160 Hz, while the recordings from
the remaining 4 participants were captured at 128 Hz.
Prior to inputting the dataset into the DL network for
classification, we perform a structured preprocessing
pipeline, detailed as follows: (1) we apply a notch filter
to remove the power line signal, (2) we perform common
average reference (CAR) spatial filtering, (3) we do a re-
sampling to 128 Hz to homogenize the dataset across the
different sampling rates of the input for the DL model,
(4) we extract the trials with a time window length of 3
seconds after the onset, and (5) we apply channel-wise
z-score standardization on each trial.

DL architecture and training:
The open implementation of EEGSym [11] will be used
for classification. EEGSym introduces a pioneering con-
volutional neural network (CNN) architecture designed
for the classification of MI across different subjects pre-
sented in our prior work [11]. Leveraging cutting-
edge DL methodologies, EEGSym incorporates residual
connections, implements data augmentation strategies,
employs inter-subject transfer learning, and features a
siamese-network design that capitalizes on the inherent
symmetry of the brain along the mid-sagittal plane. This
CNN has demonstrated significantly improved accuracy
in binary MI inter-subject classification, outperforming
the performance of four previously established CNNs
developed for EEG classification: ShallowConvNet and
DeepConvNet [21], EEGNet [22], and EEG-Inception
[23]. TEEGSym achieved groundbreaking results, setting
a new benchmark for accuracy in inter-subject MI classi-
fication.
The selection of this networks is primarily motivated by
its tailored design for inter-subject classification scenar-
ios, which was proven by its superior performance in such
tasks. It emerges as one of the better choices to discern
and emphasize patterns universally present among users
engaged in both MI and ME tasks [7]. This property is
expected to also boost transfer learning efficiency across
these tasks, thus enhancing the robustness of comparative
analyses regarding task performance.
This model was trained on a NVIDIA 3080 Ti GPU, with
CUDA 11.2 and cuDNN 8.1.0 in Tensorflow 2.10. For
each analysis’ training iteration, we allocated 10% of the
data from each subject present in the training set for val-
idation, to trigger early stopping. This early stopping
mechanism halts the training if the validation loss fails
to improve for 10 consecutive epochs.

Inter-task transfer learning analysis:
To assess the transfer learning capabilities across MI and
ME tasks, we evaluated the following training schemes:

1. Training the DL model on all subjects within the
ME dataset, then evaluating the performance on the
MI dataset data, treating left-/right- hand movement
imagination as if it was the trained left-/right- hand
movement execution. In this training scheme, the
ME data from every user, whose MI accuracy is as-
sessed, is included in the training data.
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2. Initially, pre-training the DL model on every sub-
jects’ trials present in the ME dataset except for
one, following a leave one subject out (LOSO) train-
ing scheme. Subsequently, the model’s accuracy
in identifying MI trials for the excluded user is as-
sessed. This process is replicated for every user.

Moreover, we will examine whether including the ME
data of the evaluated user significantly impacts the results
employing the Wilcoxon signed rank test [24].

Task performance correlation analysis:
We evaluate the correlation between the decoding accura-
cies for ME and MI data. Accuracies are obtained follow-
ing a LOSO training scheme. For each task, we train the
model on every users’ data, except for one subject. The
excluded user’s trials serve as the test set to determine
inter-subject ME or MI prediction accuracy [11]. This
correlation is quantified using Spearman’s rank correla-
tion coefficient, which will describe the monotonic rela-
tionship between these inter-subject performances [25].

RESULTS

Our study yielded several key insights. Firstly, our anal-
ysis demonstrated that a DL network, trained on ME tri-
als, is capable of classifying MI trials in the majority of
participants with a degree of accuracy (≥70%), which
is considered sufficient for BCI control in a binary MI
task [9–11]. Secondly, a significant and positive correla-
tion was established between inter-subject performances
on ME and MI tasks, evidenced by a highly significant
p-value of less than 0.001. Additionally, we found no
significant difference in performance between the model
trained with ME data, including trials from the target
user, and the model trained on MI data from other users.

Inter-task transfer learning analysis:
The efficacy of inter-task transfer learning was exam-
ined through two distinct training schemes, the results
of which are summarized in Table 1. Our findings high-
light that incorporating ME data from the target subject
into the model’s training signifantly enhances accuracy
(p-value<0.05), compared to the model that has not been
exposed to ME EEG signal from the evaluated user.

Table 1: Inter-task transfer learning accuracies
Training scheme Accuracy(%)
ME to MI 85.73 ± 10.02
ME to MI without subject’s ME trials 85.10 ± 9.93

Task performance correlation analysis:
The accuracies of the inter-subject transfer learning for
both ME and MI tasks is presented in Table 2 while
the correlation between both tasks performances can be
observed in Figure 1. The accuracy for the ME task
is significantly superior to the accuracy obtained on the
MI task. Nevertheless, there is a positive and signifi-
cant correlation (i.e., p-value<0.001) assessed by Spear-
man’s rank correlation coefficient of 0.6378. Thus, there
is a certain expectation of obtaining low or high perfor-

mances when classifying MI data depending on the ac-
curacy obtained on ME trials. Noteworthy, the accuracy
obtained is way above the chance level for the Physionet
dataset which is 50% ± 13.86% for individual users and
50% ± 1.40% for the entire dataset, both calculated at a
95% confidence level [26].

Table 2: Accuracies of inter-subject task
Task Accuracy(%)
Inter-subject ME 87.35 ± 8.40
Inter-subject MI 85.65 ± 10.42

Figure 1: Correlation chart between ME and MI performances

DISCUSSION

ME-based preparation run for MI:
The results obtained in this study have provided a clear
picture of the possibilities of transfer learning between
the tasks of ME and MI. Of note, we have obtained a com-
parable performance on decoding MI between a model
only trained with ME data, 85.73% ± 10.02%, and the
same model trained only on MI data of other participants,
85.65% ± 10.42%. There is a minor, but significant, in-
crease in the MI performance obtained between a model
that includes ME data of the final user. Furthermore, the
relationship between ME and MI not is only restricted
to the possibility of this inter-task transfer learning, but
there is also a correlation between ME and MI accuracies
as shown in Figure 1.
There have been previous works that have exploited
the relationship between ME and MI EEG data [16,
18]. While these works explored this relationship, they
have applied it as a previous step to initialize their DL
networks without exploring the fully inter-task transfer

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-072

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

411



learning capabilities. The fully transfer-learning possi-
bility explored in this work, in addition to the correlation
between ME and MI performances, could be exploited
by establishing a preparation run based on ME where the
user can be shown how the instruction and feedback will
be presented. There are clear benefits from this ME-based
preparation run. For new BCI users, understanding how
to perform MI tasks can be difficult. Training users with
ME tasks, which are more intuitive and easier to perform,
can serve as a stepping stone, helping users learn how
to modulate their neural signals effectively before transi-
tioning to MI tasks. This can shorten the learning curve
and improve overall BCI control. Furthermore, ME tasks
can be performed with less mental effort from the user.
Furthermore, the accuracy of this ME-based preparation
run could be used to indicate the expected accuracy on MI
tasks. Additionally, collecting high-quality MI data can
be challenging, especially for BCI users who may strug-
gle with performing consistent MI tasks without physical
movement. Collecting ME data can provide a more ro-
bust dataset for training BCI algorithms, as ME tasks can
be more easily performed and monitored for correctness,
leading to higher-quality training data. Finally, in reha-
bilitation settings, a model trained on ME data could lead
a more targeted recovery of the lost functions since it will
search for the lost patterns common to the users included
in the training ME data.

Limitations and future work:
While our study offers promising insights into the rela-
tionship between ME and MI, as well as the capabili-
ties of inter-task transfer learning, we recognize certain
limitations that future research should address. To be-
gin with, our analysis was focused on binary upper-limb
classification tasks, which may not encompass the com-
plexity or challenge of distinguishing among more var-
ied types of ME/MI tasks involving movements with less
spatially distinct neural activity. Expanding this research
to include multi-class classification tasks that incorporate
a wider range of movements could offer a more compre-
hensive understanding of the applicability of our findings.
In addition, the analysis was conducted using data col-
lected in a single session from participants who did not
receive feedback, limiting our ability to assess the poten-
tial for learning or adaptation over time. Investigating the
long-term effects of using ME-based preparation run on
MI task performance, as well as user satisfaction, could
provide valuable insights for the development of more
personalized and effective MI-based BCI systems. More-
over, assessing the impact of MI-based rehabilitation, en-
hanced with feedback from models trained on ME data,
in comparison to those trained solely on MI data, would
significantly contribute to our understanding of the most
effective strategies for leveraging BCIs in rehabilitation
contexts.

CONCLUSION

In this study, we explored the potential of inter-task trans-

fer learning between ME and MI, uncovering that ME
data can be effectively utilized to train DL models for MI
classification. Additionally, we identified a significant
correlation in performance across both tasks. These in-
sights have prompted us to propose an ME-based prepara-
tion strategy for MI tasks. By integrating this ME-based
preparation run into MI-based BCIs, we introduce a prag-
matic solution that leverages the inherent neural and func-
tional similarities between ME and MI. This approach
not only maintains BCI performance but also improves
accessibility and user experience, making BCIs more in-
tuitive and effective for users. Simultaneously, the ME-
based preparation trials offer the opportunity to generate
a new corpus of EEG data, which assures the presence of
task related information. This enhancement in data qual-
ity facilitates the training of deep learning models with
improved accuracy.
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ABSTRACT: Electroencephalogram (EEG)-based
brain-computer interfaces (BCI) emerged as systems
to aid impaired people in daily life. Nowadays, the
number of applications and target users of BCI has
increased, including those for education purposes.
An example of these applications, called neurotutor,
was posited in 2015 for improving students’ learn-
ing process. As a first step towards developing a
neurotutor, we analyzed the EEG responses related
to two types of reading. Specifically, this work as-
sessed whether a machine learning algorithm can dis-
tinguish accurately between both classes from fea-
tures obtained from the signals using one of three
wavelet-based techniques. Also, the impact of epoch
length on classifier performance was assessed. The
method performance was analyzed under two sce-
narios (intra-subject and inter-subject), outperform-
ing previous work. The best average accuracies
were 94.40 ± 5.10% and 54.40 ± 6.7% for intra-
subject and inter-subject classification, respectively.
Although the progress obtained for the intra-subject
scenario is promising, several steps must be done
to effectively implement a neurotutor, especially in
inter-subject scenarios.

INTRODUCTION

BCIs are systems that leverage the neurons’ elec-
trical activity, to generate an alternative channel
that does not depend on muscular or verbal outputs.
Some BCIs’ applications are rehabilitation systems,
videogames, neuromarketing, and recently in educa-
tion [1].
On the other hand, Intelligent Tutoring Systems
(ITS) are computer assistive systems designed to
provide adaptive, personalized content for students
[2]. In 2015, a novel ITS and BCI application named
Neurotutor was elucidated aiming to enhance stu-
dents’ learning experiences and tailoring the content
to individual needs. [3].
A fundamental skill in education is reading, which
serves as a critical gateway to learning and academic
development. Moreover, reading fosters cognitive
skills, such as information processing and inference,

self-learning, and analytic thinking.
Previous works have attempted to analyze EEG sig-
nals related to the reading process [4, 5]. Also, in
[6, 7] a database of EEG signals associated with two
reading states was collected and processed with a
baseline method to differentiate the reading states.
[8] explored this database to characterize the nor-
mal reading paradigm looking for patterns of event-
related potentials.
In this work, a first step toward the development
of an EEG-based neurotutor was made, by analyz-
ing and processing the dataset collected in [6] to
distinguish between two normally employed reading
strategies (types), comprehension reading (NR), and
Task-Specific Reading (TSR aka scanning). Particu-
larly, this study evaluated the capability of machine
learning algorithms to accurately differentiate be-
tween both reading tasks using three wavelet-based
methods. Additionally, the impact of epoch-length
on classification performance was assessed.
A neurotutor would benefit from assessing reading
comprehension to adapt the contents based on the
readability of a text. During NR, the student focuses
on deriving information about the central themes of
the text and drawing inferences. Whereas TSR is
a reading strategy in which the reader focuses on
specific information (keywords). TSR is usually em-
ployed as a pre-reading strategy, in which the user
can decide whether a text provides relevant infor-
mation for the task in question, or after reading,
to locate segments of interest. Therefore, recogniz-
ing when students engage in one strategy of read-
ing could guide the neurotutor, leading it to adjust
to contents that promote deeper comprehension, all
while trying to maintain the engagement and moti-
vation of the user.

MATERIALS AND METHODS

1. Dataset description and preprocessing
The Zurich Cognitive Language Processing Corpus
2.0 (ZuCo 2.0) is a dataset of two physiological sig-
nals, EEG and eye-tracker, of 18 English native-
speaking subjects recorded during two different read-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-073

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

414



ing tasks. In the experiment, subjects were asked
to read sentences from an annotated Wikipedia cor-
pus (in English), in which each sentence is associ-
ated with a specific semantic relation (i.e. Political
affiliation, education, founder, wife/husband, job ti-
tle, nationality, and employer). Participants were
asked to read sentences with two different purposes,
(1) to find an implicit relation in a text (Task Spe-
cific Reading (TSR), 390 sentences) and (2) to fully
comprehend the meaning of the sentence (Normal
Reading (NR), 349 sentences). To encourage read-
ing comprehension during the NR task, some control
questions were randomly presented after some in-
stances. Additionally, each participant was required
to do a linguistic assessment (Lexical Test for Ad-
vanced Learners of English) to measure their lan-
guage proficiency [6].
In this work, only EEG signals were employed for
classification, seeking to reduce the amount of data
needed for the classification. Moreover, EEG signals
are currently being researched to derive implicit in-
formation about the user’s state (memory load, emo-
tions, etc.), this information could aid in the devel-
opment of a neurotutor. The signals were recorded
using a 128-electrode Geodesic Hydrocel System with
a sampling frequency of 500 Hz. EEG signals were
preprocessed by [6], using Matlab’s Automagic and
the Multiple Artifact Rejection Algorithm (MARA).
Twenty-three electrodes were removed during this
stage because of their predominant muscular and oc-
ular information. Furthermore, to reduce data size
and computational load, signals were downsampled
to 256 Hz.

2. Epoch extraction
Since natural and untimed reading was encouraged
during both task reading, the duration of reading
epochs was variable. To standardize the length of
the signals of all participants, epochs of 1, 2, and
3 seconds were selected to analyze the significance
of epoch length in classification performance, full-
length signals were also analyzed to establish a ref-
erence. Records of at least 3 seconds were selected
for this analysis, which created a class imbalance;
thus a random selection of 100 epochs (samples) per
class was applied. Participant YDR was excluded
from this study because of insufficient epochs per
class. Epochs were extracted from the center region
of each sentence, which means the 1-second epoch is
contained in the other two epochs, and the 2-second
epoch is contained in the 3-second epoch. The whole
epoch was also analyzed to obtain a benchmark and
evaluate the significance of using a shorter epoch for
analysis.

3. Channel selection
After the preprocessing stage, a set of 105 chan-
nels were kept. Given the inherent characteristics
of EEG, certain channels exhibit redundant infor-
mation; for this reason and aiming to reduce classi-

fication times, our experiments were focused on 31
electrodes taken from a standard 32-electrode setup.

4. Feature extraction
Wavelet-based methods have been proven to be accu-
rate techniques to characterize and process biomed-
ical signals [9], which due to their complexity and
variability tend to be hard to analyze. In this work,
three wavelet-based techniques were analyzed to find
the best characterization of the EEG signals related
to reading tasks.

4.1 Discrete Wavelet Transform (DWT)
This method decomposes the signal using a series of
filters. The filtering process is limited by the sam-
pling frequency and the length of the signal. DWT
provides n-levels of decomposition, by dividing the
signal into a high-frequency component (detail co-
efficients) and a low-frequency component (approx-
imation coefficient). A second-order Daubechies is
used as the mother wavelet, with 6 levels of decom-
position. A 2nd-order Daubechies is chosen because
of the similarity between the wavelet and EEG pat-
terns; moreover, it has been used successfully to clas-
sify EEG signals for seizure detection in epilepsy [9].
The EEG signal, located within 0.5 to 50 Hz, has of-
ten been characterized in terms of five brain rhythms:
delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 14 Hz),
beta (14 - 30 Hz), and gamma waves (higher than 30
Hz). DWT analyzes the signal in the time-frequency
domain by decomposing it into sub-bands. Given a
256 Hz sampling frequency, DWT efficiently matches
these frequency bands, enabling the extraction of
characteristics pertinent to cognitive tasks. Then for
each level of decomposition, eleven features were cal-
culated: mean, root-mean square (RMS), kurtosis,
median, maximum and minimum amplitude, stan-
dard deviation, energy, Instantaneous Wavelet En-
ergy (IWE), Teager Wavelet Energy (TWE), and Hi-
erarchical Wavelet Energy (HWE). In total, 77 fea-
tures were computed for each channel, resulting in
2387 features per epoch.

4.2 Continuous Wavelet Transform (CWT)
Continuous Wavelet Transform highlights the intri-
cate relationship among the frequency, time, and
energy of a signal, through a visual representation
known as the ’scalogram’. In this study, CWT of
each EEG channel was computed using an Analytic
Morlet wavelet as the mother wavelet. The scalo-
gram was then divided into the EEG bands described
in Section 4.1: delta, theta, alpha, beta, and gamma.
From each band, a comprehensive set of 29 charac-
teristics was extracted. These features include the
flux at 0, 45, and 90 degrees, as well as the en-
ergy of the scalogram, which reflects amplitude vari-
ations across the frequency and time axes of the
scalogram. Additionally the RMS, mean, standard
deviation, skewness, kurtosis, maximum value, en-
tropy, and three key percentiles (75th, 50th, and
25th) were computed. Furthermore, an entropy filter

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-073

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

415



from Matlab’s Image Processing Toolbox was applied
to each EEG band, this filter computes the entropy
across the image, highlighting the dynamic changes
and complexity of the entropy measure within the
CWT coefficients. For each entropy-filtered scalo-
gram, features such as the mean, standard devia-
tion, RMS, skewness, kurtosis, and the three per-
centiles were computed. Subsequently, the average
waveform was derived by calculating the mean at
each time point across the frequency spectrum of
the segmented scalogram. Seven features were then
extracted from this averaged signal: mean, median,
standard deviation, kurtosis, skewness, RMS, and
sample entropy. As a result, 145 characteristics were
computed for each scalogram, given that 31 chan-
nels were employed within the study, a total of 4495
features were computed per sample.

4.3 Wavelet Scattering Transform
Wavelet Scattering Transform (WST) is a novel
wavelet-based method used for the analysis of time
series that exhibit non-linear and non-stationary
characteristics, such as EEG signals. This advanced
mathematical technique yields sparse representations
that are invariant to translations and stable to de-
formations.
In the first level of WST, a decomposition produces
a series of coefficients at different scales. A modu-
lus operation is then applied to these coefficients to
capture the signal’s energy across various frequen-
cies. The resulting modulus wavelet coefficients are
subsequently averaged, yielding translation-invariant
features of the signal. This operation is recursive
yielding higher order coefficients. Typically, first and
second-order coefficients capture the majority of rel-
evant frequency information of naturally occurring
phenomena. These features are unique to the scat-
tering transform’s framework and serve as the foun-
dation for its powerful signal analysis capabilities.
In this work, the scattering time-invariant first-order
coefficients are divided into five segments related
to brain rhythms (delta, theta, alpha, beta, and
gamma). Similar to CWT, WST yields a visual rep-
resentation often referred to as ’scattergram’, which
relates time, frequency, and power information of
the EEG signal. For each EEG-Band derived co-
efficients, the 29 descriptors described in Section 4.2
were computed, resulting in a total of 4995 features
per epoch.
All three wavelet-based methods were applied to the
three epoch lengths ( 1, 2, and 3 seconds) and for
the complete signal.

5. Classification
This study aimed to compare the wavelet-based
methods for the classification of EEG signals ob-
tained during two types of reading. Given that EEG
signals are highly variably across subjects and even
across sessions, an intra-subject approach was pur-
sued, to validate the discrimination power of the

proposed method. Nevertheless, training individual-
ized models requires gathering extensive data, which
can be time-consuming, so an evaluation of an inter-
subject classification scheme was attempted.

5.1 Intra-subject Classification
For intra-subject classification (IAC), a model was
trained for each subject in the dataset. The model
was evaluated using a 5-fold validation, with 40 sam-
ples (20 of each class) per fold for the testing stage.
Three classification algorithms were tested: Sup-
port Vector Machine (SVM with a quadratic kernel),
K-Nearest Neighbors (KNN with 5 neighbors), and
Random Forest (RF with 100 trees). A total of 36
classifiers were trained per subject due to the lengths
of the four epochs, three feature-extraction methods,
and three classification algorithms were compared.

5.2 Inter-subject Classification
In addition to IAC, an inter-subject classifier (IEC)
was trained, using a leave-one-subject-out cross-
validation. Prior knowledge of the best epoch du-
ration and feature extraction method was inferred
from IAC. 2-second and 3-second epochs were ana-
lyzed, using DWT-based features and RF.

RESULTS AND DISCUSSION

The experiments were carried out to evaluate
whether machine learning algorithms, trained on
time-frequency representations of EEG signals and
with different epoch lengths, could detect differences
in brain patterns from subjects engaging in two types
of reading: TSR and NR. Furthermore, this ratio-
nale was analyzed in two scenarios of classification:
intra-subject (personalized models) and inter-subject
(generalized models).

1. Intra-subject experiments
Figure 1 shows an analysis of epoch length and its
impact on classification performance. In this Figure
the global average accuracy for all subjects is taken,
regardless of the classification algorithm used, pri-
marily to determine if the length of the signal af-
fects classification outcomes. A trend is observed
across all wavelet-based methods; as the epoch size
is increased, the performance of the classifier is en-
hanced. This does not hold when analyzing full-
length signals in DWT-derived features. Last, for
this and the remaining figures the chance level (50%
for two balanced classes) is shown as a dashed line. A
non-parametric, Kruskal-Wallis test, with a post-hoc
follow-up Dunn’s test was performed for each wavelet
feature group. Significant differences were found be-
tween the one-second epoch and the 3-second epochs
in all characterizations. Given the trend observed,
and the reduced computational costs in epoch analy-
sis, the two-second and 3-second epochs were further
analyzed as promising for TSR and NR classification.
A comparative analysis of machine learning algo-
rithms (KNN, SVM and RF) was conducted for
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Figure 1: Comparing how epoch length affects classifica-
tion using wavelet-based features, average accuracy from
IAC is shown across KNN, SVM, and RF classifiers. Re-
gardless of classifier type, accuracies are averaged to em-
phasize epoch length’s impact. Significant differences be-
tween epoch lengths are marked with asterisks (p < 0.05,
Dunn’s test).

all feature extraction methods, using the 3-second
epoch, which achieved the highest averaged perfor-
mance. Figure 2 presents a comparison of the clas-
sification algorithm and its effect on global accuracy
across all subjects. Significant differences were found
in CWT-derived methods, for KNN and RF, as well
as for KNN and SVM algorithms. Using WST, dif-
ferences were found between KNN and RF. On the
other hand, the best performances were obtained for
DWT and WST regardless of the machine learning
algorithm used.
For both wavelet-based methods, the best classifi-
cation performance was yielded using RF with an
accuracy of 94.40±5.10%, DWT and 94.80±5.10%,
WST). Furthermore, DWT-based descriptors exhib-
ited consistent performance across all three machine
learning algorithms. DWT has positioned itself as a
valuable tool for EEG classification since it provides
a time-frequency analysis without information loss
or alteration while reducing computational costs [9].
A baseline classifier was trained using the charac-
teristics proposed by [7], and evaluated through the
same classification scheme. Baseline characteristics
were obtained by filtering each epoch into the rele-
vant EEG bands and obtaining the mean amplitude
from each EEG component. To ensure comparable
results, the 31 channels selected in this study were
also used for benchmark classification.
Even though no significant differences were found
within the proposed features and the benchmark, our
approach utilizes epochs of 2 and 3 seconds, mean-
while, the average signal length from the original
recordings is 5.84 seconds for NR and 4.81 seconds
for TSR[6]. Short epochs reduce computational costs
and would be more suitable for online applications.
Figure 3 shows accuracies obtained for each subject,
employing both the DWT-derived features with RF
classifier and 3-second epochs. The best accuracy
(i.e. 99.50 ± 1.11) was achieved by subjects YAK
and YMS. Besides that, all subject accuracies were

Figure 2: Intra-subject performances compared be-
tween wavelet-based and benchmark features using three-
second epochs (optimal length). Asterisks indicate sig-
nificant differences (p < 0.05, Dunn’s test).

greater than 85%. Additionally, the scores provided
in [6] for NR control questions (NR scores), and cor-
rect semantic text identification (TSR scores) were
analyzed to see if task classification was correlated to
individual performance in each task. No correlation
was found between classification performance and
NR/TSR scores (Spearman test). However, a low
performance across classifiers and epochs was consis-
tently observed for YAG, achieving one of the low-
est performances (i.e. 87.70 ± 4.67). This outcome
could be explained because YAG also exhibited a low
performance on semantic identification. On the other
hand, subjects such as YRK, YLS, YMD, YMS, ex-
hibited great performance in both control tests and
similarly an accurate classification in the proposed
methodology. Although YAK received the lowest
score for the set of random questions in NR, the algo-
rithm demonstrated good performance. Since ques-
tions were randomly presented, for NR scores it is
difficult to assess if scores truly reflect the quality of
the task being performed by the user.

Figure 3: Intra-subject accuracies by RF after 5-fold
cross-validation using DWT-based features and 3-second
epochs. Also, NR and TSR scores are shown [6]. NR
scores show the accuracy of responses to randomly posed
comprehension questions, while TSR scores refer to the
correct identification of semantic relations within the
text.
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2. Inter-subject experiments
Despite constructing a universal model to interpret
highly variable EEG signals being a complex chal-
lenge, an experiment for inter-subject classification
was also performed on the data, using a leave-one-
subject-out validation. For this experiment, only
two and 3-second epochs were analyzed, using the
most stable characterization (DWT). Additionally, a
deep-learning architecture specialized in EEG data
(EEGNet) was trained for the identification of NR
and TSR, for the 2 and 3 second epochs. The hy-
perparameters for the network were selected based
on the recommendations of the EEGNet developers
(128 kernel length) [10]. Also, some parameters were
taken from [4] such as Adam optimizer and a batch
size of 16 instances. Since that work analyzed EEG
signals related to the reading process and obtained
promising results. Likewise, 100 iterations were cal-
culated.
A baseline classifier was trained using the charac-
teristics used in [7] and evaluated through the same
classification algorithms. Benchmark features were
originally calculated using full-length signals. All the
models were trained using data from the 31 selected
channels. Table 1 presents the performance for all
trained models.
The best classification performance, 54.4±6.7, was
achieved by DWT-derived features, using a 2-s
epoch. Despite baseline features achieving a global
classification accuracy lower than the chance level,
all proposed methods and EEGNet slightly outper-
formed the chance level for the two classes. This
could imply different cognitive processes are under-
taken in both reading tasks that could be general-
ized efficiently across subjects through the proposed
methodology and EEGNet. Despite no classifier got
a higher average accuracy than the empirical chance
level for 100 trials per class (58%) [11]; this threshold
was overcome for eight subjects.

Table 1: Performance comparison between DWT-based
models, EEGNet and baseline descriptors for inter-
subject classification.

Method Average Median Max - Min
2-s epoch 54.4 ± 6.7 53.5 68.0 - 45.0
3-s epoch 51.7 ± 7.2 52.0 66.0 - 37.0
EEGNet 2-s 52.9 ± 8.8 52.0 74.5 - 38.5
EEGNet 3-s 48.06 ± 11.54 50.0 66.5 - 27.0
Baseline 49.5 ± 12.0 46.5 80.0 - 31.5

Figure 4 shows the individual test accuracy obtained
after leave-one-subject-out validation. Both the pro-
posed methodology and EEGNet implementation
generally achieved accuracies surpassing the theoret-
ical random classifier. Specifically, EEGNet showed
an accuracy above the 50% threshold for approx-
imately 8 subjects, whereas the proposed method
achieved this for 12 out of 17 subjects. For the em-
pirical random classifier, 5 subjects surpassed the

Figure 4: Test accuracy for each subject after leave-one-
subject-out validation is shown for three methods: (1)
Proposed method using a 2-second epoch, DWT-derived
features and RF; (2) EEGNet classifier, and (3) Baseline
method trained with the features from [7] and RF. The
theoretical and empirical [11] chance levels are indicated
by black and red dashed lines, respectively.

58% threshold. This suggests time-frequency fea-
tures, along with RF might be useful to discern be-
tween reading tasks. Moreover, when compared to
the baseline classifier leveraging features proposed
by [7], this study showed the majority of the partici-
pants (9) obtained the lowest classification accuracy,
while 13 subjects did not surpass the random classi-
fier. Therefore, baseline characteristics do not seem
suitable for the task (even though the overall best
accuracy was obtained using them, through subject
YRP).
Interestingly, subjects who under-perform in the
intra-subject approach (YAG, YDG, and YFS), have
similar low results for the inter-subject classifier, ob-
taining results near random classification (Proposed,
EEGNet), or below it (Baseline). Similarly, subjects
YAC, YFR, YRK, YMD, overperform both in intra-
subject and intersubject analysis.
Reading is a complex task, that requires the activa-
tion of various brain sub-processes; beyond language
processing and visual decoding, reading evokes re-
sponses from attention, working memory load, ab-
stract reasoning, and memory pathways. Conse-
quently, we hypothesized NR and TSR could be
differentiated through EEG patterns since cognitive
and attention demands are different in each read-
ing strategy. Within this study, DWT-based fea-
tures allowed the distinction of the two types of read-
ing using EEG data. These differences, represented
through the time-frequency domain, result from spe-
cific brain processes, such as attention or cognitive
load. Additionally, inter-subject classification rates
above the random classifier reflect subtle patterns
that are generalized across subjects. Research by
Hollenstein et al. furtherly support this idea, using
eye-tracking. In their study, results indicated sub-
jects focused uniformly on each word when engaging
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in NR, on the other hand, in TSR subjects focused
on words that determined a specific semantic relation
and skimmed through the rest. Reading times were
also reduced while engaging in TSR [7]. Despite this,
more studies are required to identify features that al-
low classification, based on cognitive differences.
An ideal neurotutor, would benefit from the detec-
tion of different reading states to provide active feed-
back about the psycho-emotional state of the user.
Cognitive overload and academic stress can impair
students’ well-being and decrease academic perfor-
mance. Likewise, professors could use this as a tool
for monitoring students’ progress or evaluating con-
tents in concordance with students’ comprehension.
Although scanning or TSR is a common reading
strategy, useful for navigating through large amounts
of information, their extensive use could result in sur-
face level comprehension [12]. A neurotutor could
adapt the contents’ readability and encourage read-
ing comprehension through different activities, thus
helping to reduce the use of scanning and pursuing
deeper comprehension in the user.

CONCLUSIONS

The first approach to NR and TSR classification in-
volved an IAC in which an analysis of epoch length,
feature extraction method, and classification algo-
rithm were assessed. Best accuracy (i.e. 94.40 ±
5.10) was achieved using 2s and 3s epochs, DWT-
derived features, and RF classifier. All subjects per-
formed beyond 85% accuracy. Furthermore, for some
cases, a relation was found between classifier per-
formance and control test scores, which could imply
that diminished performance in task completion re-
duces classification outcomes.
IEC proved to be a complex task; nevertheless, both
the proposed method (2s epoch, DWT, RF) and
EEGNet performed above the random and bench-
mark classifier. From this, it could be inferred there
are brain patterns shared across subjects when per-
forming reading tasks, namely NR and TSR.
Future works will explore the relationship between
classification performance and control questions, to
determine if removing low-performing subjects could
increase classifier performance. Further, techniques
of data augmentation could be employed to gain
more insight into differences in the reading patterns.
Likewise, changes in the inclusion criteria for epoch
selection could be performed, even if it results in
unbalanced classes. Inter-subject complexity derives
from the intricate nature of EEG signals, since they
are variable across subjects and even across sessions.
A generalized model, enhanced by a limited number
of training samples from the new user, could improve
classification accuracy while maintaining the benefits
of limited training time.

ACKNOWLEDGMENTS

The authors, H. R-M and J. M-MdO, wish to express
their gratitude for the graduate scholarships granted
by CONAHCYT, Mexico. These grants have enabled
them to conduct the research presented in this work.

REFERENCES

[1] Aricò P, Borghini G, Di Flumeri G, Sciaraffa N,
Babiloni F. Passive BCI beyond the lab: Current
trends and future directions. Physiological measure-
ment. 2018;39(8):08TR02.
[2] Lin CC, Huang AY, Lu OH. Artificial intelligence
in intelligent tutoring systems toward sustainable ed-
ucation: A systematic review. Smart Learning Envi-
ronments. 2023;10(1):41.
[3] Müller-Putz G et al. The future in brain/neural
computer interaction: Horizon 2020. 2015.
[4] Torres-García AA, Martínez-Santiago F,
Montejo-Ráez A, Ureña-López LA. Toward an
educative EEG-based neuroIIR system for adapting
contents. International Journal of Human–Computer
Interaction. 2023:1–15.
[5] Ye Z et al. Towards a better understanding of
human reading comprehension with brain signals. In:
ACM Web Conference. 2022, 380–391.
[6] Hollenstein N, Troendle M, Zhang C, Langer N.
ZuCo 2.0: A dataset of physiological recordings dur-
ing natural reading and annotation. In: 12th LREC.
ELRA: Marseille, France, May 2020, 138–146.
[7] Hollenstein N, Tröndle M, Plomecka M, Jäger
LA, Langer N. The zuco benchmark on cross-subject
reading task classification with eeg and eye-tracking
data. Frontiers in Psychology. 2023;13:1028824.
[8] Liu X, Cao Z. Enhance reading comprehension
from eeg-based brain-computer interface. In: Aus-
tralasian Joint Conference on Artificial Intelligence.
2023, 545–555.
[9] Chen D, Wan S, Xiang J, Bao FS. A high-
performance seizure detection algorithm based on
Discrete Wavelet Transform and EEG. PloS one.
2017;12(3):e0173138.
[10] Lawhern VJ, Solon AJ, Waytowich NR, Gor-
don SM, Hung CP, Lance BJ. Eegnet: A compact
convolutional neural network for eeg-based brain–
computer interfaces. Journal of neural engineering.
2018;15(5):056013.
[11] Combrisson E, Jerbi K. Exceeding chance level
by chance: The caveat of theoretical chance levels in
brain signal classification and statistical assessment
of decoding accuracy. Journal of neuroscience meth-
ods. 2015;250:126–136.
[12] Elleman AM, Oslund EL. Reading comprehen-
sion research: Implications for practice and policy.
Policy Insights from the Behavioral and Brain Sci-
ences. 2019;6(1):3–11.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-073

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

419



1 

ASSESSMENT OF SEVERAL EEG ACTIVE PARADIGMS IN LOCKED-IN 
SYNDROME 

 
P.Séguin1,*, E. Maby1,*, R. Bouet1,  L. Gattaz1, A. Querry1, L. Rizzo1, A. Farnè1, J. Mattout1 

 
1 Lyon Neuroscience Research Centre, INSERM UMRS 1028, CNRS UMR 5292, Université 

Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France  

* Perrine Séguin and Emmanuel Maby contributed equally to this work. 

E-mail : perrine.seguin@inserm.fr, jeremie.mattout@inserm.fr 
 
 
ABSTRACT:  At first glance, Brain-computer interfaces 
(BCIs) appear to offer promising solutions for people  
who have global paralysis and are unable to operate 
conventional communication devices. However BCI 
efficacy remains low. To better assess the possible 
clinical reasons for this lack of efficacy, we conducted a 
study comparing the performance of patients in three 
paradigms: motor attempt, sustained auditory attention 
and spatial selective auditory attention. We included 14 
persons with locked-in syndrome (LIS), one person in 
complete LIS and 27 healthy subjects. Preliminary 
results show that for the patient in complete LIS and a 
significant proportion of LIS patients, we could not 
detect their voluntary modulation of brain signals. 
Surprisingly, this absence of attentional biomarkers seem 
more prevalent in brainstem injury than in ALS. We 
discuss the possible impact of global paralysis on brain 
signals that are used to control BCIs.  
 
INTRODUCTION 
 
Brain-computer interfaces (BCIs) could help restoring 
environmental control and communication for people 
with severe motor disability. Although their aetiologies 
differ, these typical BCI end-users share a clinical state 
of total paralysis resulting from some acquired damage 
to the cortico-spinal pathway or the peripheral nervous 
system. The ‘classical’ locked-in syndrome (LIS) is 
caused by an injury to the ventral pons, most often due to 
a stroke [1], [2]. The patient is totally paralysed except 
for vertical eye movements and blinks, which enable 
them to maintain communication. Others are 
behaviourally non-responsive because of damage to the 
third and seventh cranial nerves needed for these 
movements [2], [3]. This condition can also be 
encountered in the later stages of amyotrophic lateral 
sclerosis (ALS), a neurodegenerative disease of the 
motor neurons in which oculomotor muscles are usually 
preserved [4], except at a very advanced late stage. Then 
these patients are often considered to be in the complete 
locked-in state (CLIS), i.e. conscious, but non-
responsive.  
Another possible cause of a non-responsive state is 
severe diffuse brain injury due to stroke or anoxia 
following a cardiac arrest. After being in a comatose state 

for up to four weeks these patients sometimes remain in 
a state with preserved vegetative functions (e.g. 
autonomous respiration and eye opening) but no sign of 
awareness. They are said to suffer from disorders of 
consciousness (DOC). Some of these patients could be 
conscious, but a combination of impairments (motor, 
sensory, cognitive) prevents them from understanding 
and/or following instructions. Active EEG paradigms 
that were developped to detect consciousness in these 
patients are close to the one used in BCI (e.g., motor 
attempt [5], or attentional focus on sounds [6]).  
 
As a matter of fact, BCIs work poorly with both CLIS 
[7], [8], [9] and DOC patients [10]. Moreover, there is 
also a subpopulation of patients with severe motor 
disabilities who cannot control a BCI [11], [12], [13], 
[14]. This proportion is higher than for healthy subjects. 
As visual modality is often used in BCI, it was argued 
that it is problematic for patient with severe motor 
disability, as they can present oculomotor impairment 
[15], [16]. Also, when the motor system is altered, it 
could impact the robustness of sensorimotor rhythms 
used in motor imagery BCI. But, more surprisingly, even 
auditory BCIs turn out to be hard to control for these 
patients [14]. This may be due to the cognitive 
impairments and altered electrophysiological signals that 
some of these patients sometimes present [17], [18], but 
it is still unclear what factors impact the most BCI 
performance in this clinical context. Thus, the possible 
clinical reasons for this lack of efficacy need to be better 
understood. 
 
We propose here to test three different paradigms: motor 
imagery, auditory selective attention and auditory 
sustained attention. None of these paradigms require 
visual input. We will then confront them to clinical data, 
hoping to find some predictors of the results. 
 
Our project aims to test the robustness of these three BCI 
protocols with people in locked-in syndrome, as well as 
with one patient in CLIS.  
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MATERIALS AND METHODS 
 
We are evaluating three active EEG paradigms, 
oculomotor control and limb motor control. We also 
assessed the functional impact of paralysis with the ALS-
FRS revised scale. Ethical authorizations have been 
obtained (Clinical trial registration N° NCT02567201). 
 
Participants: The subjects in LIS were in need for an 
augmentative and alternative communication device (i.e. 
eye-tracking or letter board) due to paralysis. They were 
expected to have both a score at 0 for the first speech item 
of the ALS-FRS (on speech), and a score smaller or equal 
to 1 at the 14th item of the ALS-FRS-EXT scale (Wicks, 
2009) (i.e. the patient cannot use fingers to control a 
communication device). Etiologies encompass Guillain 
Barré syndrome, ALS or brainstem injury. Their age 
ranges from 20 years-old to 80 years-old. 
 
The CTRL group was composed of 30 healthy subjects, 
aged 20 to 80 years-old. We excluded subjects that 
presented a psychiatric or neurological disease. 
 
Clinical evaluation: For patients, we performed a motor 
assessment thanks to the ALS-FRS scale revised, some 
items from the ALS-FRS-EXT study (Wicks, 2009), and 
the BELIS scale (ref). We also realized a clinical 
oculomotor assessment. The patients with a preserved 
communication code underwent neuropsychological 
assessments adapted to severe motor disability (BELIS 
scale [17]). We collected the medication at the time of 
the EEG experiments. 
 
Active EEG paradigms: We used three previously 
published EEG paradigms that have been independently 
validated with other participants. All participants realized 
the paradigms in the same order: first the auditory BCI, 
then, after a break, the motor attempt one and finally the 
Active-Passive auditory protocol. 
 
– The auditory BCI paradigm is described in [14]. This 
paradigm includes one stream of “Yes” sounds delivered 
to the right ear, and one stream of “No” sounds delivered 
to the left ear. We used a SOA of 400 ms and a variable 
number of deviants, that were balanced between 
conditions. The proportion of deviants was one out of 6, 
and was fixed for each trial. We then varied the length of 
the trials. Patients were asked to alternatively count left 
or right ear deviants. In some trials, randomly, patients 
were asked to report the result of this count in order to 
check that they understood the instructions and that they 
are able to perceive and detect the deviant sounds. There 
were 36 trials in total. 
 
– The Active-Passive paradigm was described in [6]. 
We performed only the most discriminant conditions: 
one where the subjects are mentally navigating in their 
houses when hearing sounds (diverted attention), versus 
the other condition where they focus on the sounds 
(focused attention). We could thereby increase the 

number of stimulations per condition in order to improve 
the signal-to-noise ratio. 
 
– The motor attempt paradigm is the one that is used in 
[5]. There are 48 trials, 24 for the left hand and 24 for the 
right hand. Each attempt lasts five seconds, and is 
followed by 5 seconds of rest. Patients have to try to 
move their hand, whereas healthy subjects have to 
imagine moving their hand.  
 
Material: We used a Vamp amplifier (16 channels, 
BrainProducts), with a sampling rate of 1000 Hz. We 
recorded EEG (13 channels) with reference on the nose, 
EOG right and left (2 channels), as well as ECG and 
breathing with a thoracic belt. For EEG, we included Fp1, 
Fp2, F3, Fz, F4, C3, Cz, C4, TP9, CP5, Pz, CP6, TP10. 
This aimed to cover both motor and parietal regions. 
Temporal electrodes were used to visualize the Mismatch 
negativity in the Active-Passive paradigm.   
 
Extracted variables:  
The signal processing and statistical analysis were 
similar to the ones described in the original publications. 
All raw EEG signals underwent a bandpass filter between 
1 to 30 Hz. We also used the same measures and decision 
criteria, namely: 
• Active-Passive: presence of a “Count” effect, and 

of a “FOC versus DIV” effect. The “Count” effect 
reflects the presence of electrophysiological 
responses to oddball sound when the subject is 
actively counting deviants. The “FOC versus DIV” 
effect reflects the attentional modulation of evoked 
potentials when subjects count the deviant versus 
when they tend ignore them, by performing spatial 
navigation imagery (see Morlet et al 2022 for more 
details).  

• Motor attempt: accuracy of the classification 
between “movement” and “rest” trials. Each of the 
48 trial was divided in 3 epochs of 2 seconds for the 
“moving” condition, and 3 epochs of 2 seconds for 
the rest condition. Then a cross validation with a 
SVM was performed, and compared to a 
permutation test. If less than 5 % of the random 
permutations gave better results than the real 
dataset, then the participant was considered as a 
“responder”. 

• Auditory BCI: accuracy of the classification 
between “attended” and “unattended” sounds. 

 
Statistical analysis: We employed Generalized Linear 
Models (GLMs). For all analysis, we used R packages 
including FactoMineR, lme4, afex, emmeans, and sjPlot. 
 
We first compared demographical characteristics of the 
CTRL and LIS groups. Our variables to be explained 
were the group and our predictors were the age and 
educational level.  
 
We then tested the hypotheses of a difference in EEG 
based classification accuracy between the two groups. 
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Therefore, we performed three GLM, one for each of the 
three active EEG paradigms. 
 
Our main explicative/fixed variables are: 
– GROUPS (LIS vs CTRL) 
– Age 
We used a GLM (Generalized Linear Model). 
 
Whenever one of the above explanatory variables did 
show a significant effect onto the dependent measure, we 
conducted post-hoc analyses using t or z tests on the 
linear predictor scale, with confidence intervals also 
computed on the linear-predictor scale. P values were 
corrected for multiple testing using the FDR method. 
  
RESULTS 
 
The 15 patients and 27 control subjects could realize all 
the three active EEG protocols.  
The results are summarized in Table 1. There weren’t any 
significant differences between the ages of the healthy 
subjects and the patients (Wilcoxon Rank sum test, p = 
0.54).  
For the auditory BCI, there is a significant different 
between performances of patients and healthy subjects (p 
< 0.001). The brainstem injury has a particularly strong 
negative impact on the BCI control: only 2 out 7 patients 
(29%) present an attentional modulation, versus 6 out of 
8 patients with ALS (75%) and 27 out of 27 healthy 
subjects (100%). Moreover, none of the patients with 
brainstem injury has a P300 detected by the automatic 
pipeline, despite being able to hear the deviant sounds 
and to count them. Of notes, only two patients could not 
detect the auditory deviant sounds, and both had ALS at 
a very advanced stage, with a respirator. None of these 
two patients could control the BCI. The patient in CLIS 
did not show any detectable voluntary modulation of 
brain signal.  
Concerning the Active-Passive paradigm, there is also a 
significantly less detectable attentional modulation for 
the clinical population (p=0.01).  
On the contrary, the motor attempt paradigm do not 
reveal any difference of performances between patients 
and healthy subjects. Only an impact of age is observed 
(p=0.01).  
 
The clinical data on motor level, neuropsychological 
abilities and medication are currently being acquired and 
will be analyzed in the coming months, and confronted 
to these BCI performances. 
 
 
 
 
 
 
 
 
 
 

Table 1: Populations characteristics and main results at 
active EEG paradigms 

 ALS,  
N = 81 

Brainstem,  
N = 71 

CTRL,  
N = 271 

Condition    
    CLIS 1 (13%) 0 (0%) 0 (0%) 

    CTRL 0 (0%) 0 (0%) 27 (100%) 
    LIS 7 (88%) 7 (100%) 0 (0%) 

Age 58 (54, 61) 49 (28, 59) 52 (40, 68) 
EEG 

protocols 
results 

      

Auditory BCI       
Mean 

accuracy 
0.93  
(0.69, 0.98) 

0.61  
(0.58, 0.75) 

0.97  
(0.96, 1.00) 

P300* 5 (63%) 0 (0%) 25 (93%) 
Sensibility 6 (75%) 2 (29%) 27 (100%) 

Motor 
attempt 

      

Mean AUC at 
group level 

0.70 (0.57, 
0.81) 

0.67 (0.60, 
0.77) 

0.70 (0.62, 
0.79) 

Sensibility  6 (75%) 5 (71%) 25 (93%) 
Active-
Passive 

      

Count effect 3 (38%) 3 (43%) 19 (70%) 
Focus versus 

Diversion 
effect 

1 (13%) 1 (14%) 18 (67%) 

Sensibility 3 (38%) 3 (43%) 22 (81%) 
1 n (%); Median (IQR); *:  
ALS: Amyotrophic Lateral Sclerosis; CLIS: Complete Locked-in 
Syndrome; CTRL: Healthy subjects 

 
CONCLUSION  
 
Our preliminary results confirm that a significant 
proportion of patients cannot control BCI. The impact of 
clinical condition is more visible for BCI based on 
evoked protocols, and strikingly strong in case of 
brainstem injury in the case of selective auditory 
attention. These results are surprising in several ways. 
First, all paradigms are supposed to be gaze independent, 
but the prevalence of non-responders is striking. Second, 
ALS, as a neurodegenerative disease in continuum with 
fronto-temporal dementia, is supposed to induce more 
cognitive impairments than an injury in brainstem 
cortico-spinal pathways. The absence of detection of 
selective attentional modulation in case of brainstem 
injury is thus surprising, and it is the first time to our 
knowledge that this specificity is uncovered, especially 
in comparison with another etiology. The principal 
limitation of these results is that we rely at this stage on 
automatic analysis pipelines, whereas patients’ brain 
signals can be very different from the one observed in 
healthy subjects [19], [20], and hence some of them 
would probably require a personalized signal processing. 
However, in a previous pilot study, we observed a strong 
correlation between BCI results and the presence or 
absence of classical electrophysiological biomarkers as 
P300 [14]. An important perspective to better explain 
these results is the analysis of the possibility of other 
clinical predictors of BCI performance, as 
neuropsychological tests results, medication. The 
functional level of autonomy could also have an impact. 
Indeed, the possibility to interact physically with the 
environment is associated to a range of action 
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preparations that arise automatically with some percepts 
[21], and the question of the preservation of this action 
preparation in paralysis [22] and their impact on BCI 
biomarkers remains open [7], [9]. 

Figure 1: Synopsis of the 3 active EEG paradigms     
 

 
 
Figure 2: Prevalence of responders for each EEG active 
paradigm 
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ABSTRACT: In this study, we developed and validated 

an online analysis framework in MATLAB Simulink for 

recording and analysis of intracranial 

electroencephalography (iEEG). This framework aims 

to detect interictal spikes in patients with epilepsy as the 

data is being recorded. An online spike detection was 

performed over 10-minute interictal iEEG data recorded 

with Brain Interchange CorTec in three human subjects.  

A pool of detected spikes is then broadcasted using User 

Datagram Protocol (UDP) to an external graphical user 

interface for further post-processing and visualization. 

The real-time spike detector demonstrated a 99% 

similarity index with the previously published offline 

detector, identifying interictal spikes. Furthermore, our 

findings indicated that channels with highest spike rates, 

captured with Brain Interchange CorTec, were in the 

epileptogenic focus. By enabling the detection of 

interictal spikes in an online fashion, this work provides 

early feedback on the probable seizure onset zone 

(SOZ) and suggests a promising direction for enhancing 

SOZ localization accuracy to clinicians, which is crucial 

for the surgical treatment of epilepsy.  

 

INTRODUCTION 

 
Epilepsy is a neurological disease marked by recurrent, 

unprovoked seizures, affecting millions of individuals 

worldwide [1]. A significant subset of these individuals 

(around 30%) suffer from medically intractable 

epilepsy, where seizures are not able to be well-

controlled by medication. The localization of the seizure 

onset zone (SOZ) — the brain area responsible for 

initiating seizures — is crucial for successful surgical 

intervention [2,3]. Intracranial electroencephalography 

(iEEG) has emerged as a fundamental tool in this 

endeavor, allowing for the precise monitoring of brain 

activity associated with epileptic discharges [4]. In 

recent years, interictal spiking activity, a brief transient 

event, has received considerable attention for SOZ 

localization. Although contradicting studies [5] were 

reported regarding the effect of interictal spikes and 

ictogenesis, these have been hypothesized by other 

studies as a potential biomarker for mapping the SOZ 

[6].  

The recent development of implantable devices capable 

of both recording and stimulating the human brain via 

iEEG contacts has offered great opportunities for 

treating neurological diseases [7-8] and has opened a 

new frontier in the development of brain-computer 

interfaces (BCIs). In this scheme, we showed the 

feasibility of recording iEEG with the Brain Interchange 

(BIC) of CorTec [9-10]. In this study, we expanded the 

framework with a new feature that can capture interictal 

spikes in an online fashion while iEEG data is being 

recorded. Despite the pioneering works [11-12], and 

advanced machine learning techniques in identifying 

spikes with high accuracy, the challenge of online 

detection of these events in a clinical setting remained 

primarily as an important step. 

This study introduces a novel MATLAB Simulink 

framework designed to automatically detect the spikes 

in an online fashion. By leveraging the robust recording 

capabilities of the BIC CorTec amplifier and online 

signal processing algorithms, our system provides a 

fully online analysis platform for iEEG data. Unlike 

previous offline frameworks [13-14] that may have 

required post-recording analysis, our framework detects 

interictal spikes as the data is being recorded. We send 

these detected spikes to an external application using 

user datagram protocol (UDP) for visualization of the 

morphology of these events, their spatio-temporal 

distributions, and further post-processing. 

To evaluate this framework, we draw comparisons with 

a previously published offline spike detector [13], 

highlighting our framework's capability to achieve a 

high similarity index in spike detection. Furthermore, 

our analysis of spike detection rates within and outside 

the clinically defined SOZ offers compelling evidence 

of the system's utility in surgical planning. 
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In summary, our work contributes to technological and 

clinical advancement in epilepsy research and treatment 

by providing an online, accurate, and reliable method. 

Moreover, we opened a new avenue for immediate 

clinical decision-making and intervention, ultimately 

aiming to improve the lives of those affected by 

medically intractable epilepsy.  

 
MATERIALS AND METHODS 

 
     Patient’s demographic: We recorded iEEG from 

three patients (two pediatric and one adult) diagnosed 

with pharmacoresistant epilepsy at Texas Children’s 

Hospital (TCH) of Baylor College of Medicine (BCM) 

and Mayo Clinic. This study was approved by the 

Institutional Review Boards (IRBs) of BCM and Mayo 

Clinic, ensuring that all experiments and methods were 

performed in accordance with relevant guidelines and 

regulations. Furthermore, informed consent was 

obtained from all participants and/or their legal 

guardians prior to incorporating their data into this 

study. 

The recordings were acquired in the epilepsy 

monitoring unit (EMU) using the BIC unit (Fig. 1A), 

which consists of 32 channels at a sampling frequency 

of 1 kHz. A subset of these channels was selected based 

on the clinically defined SOZ, while the remaining 

channels were chosen from areas outside the SOZ to 

validate the model. A random 10-minute section of 

interictal data was selected for further analysis. The 

clinical team at the affiliated institutes provided relevant 

medical annotations, including information about the 

SOZ.  

 
Figure 1: (A) The schematic representation of the BIC CorTec Evaluation Kit, illustrating the components, including 

the evaluation implant, the communication unit, and the Simulink model designed for efficient data acquisition and 

online spike detection. (B) The window-based amplitude threshold detector concept to capture interictal spikes in 

multichannel iEEG recordings. (C) The details of the Simulink model architecture, which includes the data acquisition 

model, monopolar to bipolar iEEG data conversion to preprocess the iEEG stream for enhanced spike detection 

accuracy, the spike detection algorithm, and a UDP data transfer block. This block facilitates the transmission of 

detected events to external software for further post-processing and visualization. (D) Showcases the external GUI 

developed for the post-processing and visualization of detected spikes. This interface receives the collected events, 

displays the spatial and temporal distribution of these events, and conducts additional post-processing to distinguish 

spikes with and without high-frequency oscillations (HFOs). (E) Provides examples of detected interictal spikes. 
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     Data recording and Online analysis framework: To 

duplicate a real-time rapid prototyping environment, we 

developed a Simulink model for the iEEG data 

acquisition. The previously recorded data was then fed 

back to the model at real-time speed (Fig. 1B) to 

simulate the real data acquisition. 

Furthermore, spike detection was conducted on the 

band-pass filtered data within the spike band range (10-

55 Hz), and the detected events pool was generated 

within the model (Fig. 1C). This pool was then sent to 

an external graphical user interface (GUI, Fig. 1D) for 

further post-processing and visualization using UDP. 

Additionally, spike detection was performed using an 

offline detector, and the obtained results were utilized as 

the ground truth to evaluate the performance of the 

online detection method. Examples of detected spikes 

are illustrated in Fig. 1E. 

     Wireless data transfer and missing packets recovery: 

The BIC unit facilitates wireless data transfer, which is 

a process inherently susceptible to data loss [9]. In this 

study, we addressed this challenge by employing linear 

interpolation to recover missing packets, thereby 

maintaining signal integrity. It has been demonstrated 

that this technique effectively restores iEEG data with 

minimal packet loss (<5%), particularly for spike 

detection in the frequency band below 80 Hz [9]. The 

recovered signal is then applied to subsequent analyses. 

     Threshold calculation and spike detection: 

To compute the adaptive threshold for spike detection, 

our model applied a second-order Butterworth high-pass 

filter at 1 Hz to remove the DC offset. Subsequently, the 

signal underwent band-pass filtering using a fourth-

 
Figure 2: (A) The schematic of the real-time adaptive threshold calculation within the iEEG data analysis framework. 

Initially, filtered iEEG streams within the frequency range of 10-55 Hz are directed into a buffer block, which captures 

128 ms of samples consecutively without overlap and calculates the standard deviation for each buffered segment. 

Subsequently, a second buffering stage accumulates 40 standard deviation samples without overlap, from which the 

median value is derived, serving as an estimation of background neural activity. The final step involves applying a 

multiplier to these median values, thereby generating an adaptive threshold for spike detection across each channel over 

intervals of 5.12 seconds. (B) The percentage thresholds difference between online and offline calculated across all 

channels and subjects. 
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order Butterworth filter with cut-off frequencies of 10 

Hz and 55 Hz. The filtered signal was buffered into 128 

sample-long segments and the standard deviation (std) 

was estimated for each frame. The std values were 

further buffered into 40 segment-long frames, and the 

median within each frame was calculated as the 

estimated background activity of iEEG data for each 

channel. Finally, a multiplier (×7) was selected based on 

the previous work [9] to compute the adaptive threshold 

for the stream of data (Fig. 2A).  

In this study, we observed differences in the threshold 

calculations of the filtered iEEG stream between online 

and offline analyses. These differences are due to the 

distinct filters employed in each process. Specifically, 

for offline processing, we used zero-phase filtering. 

This non-causal, bidirectional method leverages access 

to the entire dataset, leading to threshold values that 

may slightly differ from those generated by the causal 

filters employed in online processing. 

The adaptive threshold is initially computed at intervals 

of 128*40 milliseconds and then transformed into a 

continuous data stream. We utilized a rate transition 

block within our Simulink model to modify the 

sampling rate of the calculated threshold. Thus, aligning 

with the sampling rate of the iEEG data (1 millisecond). 

This adjustment ensures that the threshold applies to all 

iEEG samples and synchronizes with the temporal 

resolution of the data. 

The filtered iEEG and threshold values were then 

buffered into intervals of 640 sample-long segments 

with 512 samples of overlap for spike detection using 

the corresponding estimated threshold. In each segment, 

we found the points crossing the threshold levels and 

grouped them as a single event if their distance was 

smaller than a predefined interval. Furthermore, to 

ensure accuracy and specificity in spike detection, we 

implemented a strategy to exclude polyspike 

components, as discussed in [13]. A spike event is 

selected for further analysis only if its peak value is 

positioned at the center of the frame, specifically at 128 

samples into the 640-sample frame. An essential step in 

the detection process involves distinguishing distinct 

spike events to prevent redundancy. This criterion, 

aligned with the overlap size, helps in accurate event 

identification and isolates individual spikes.  

The channel information, timestamps, and segments 

with identified spikes are aggregated into an event pool. 

This pool is then broadcasted to a secondary computer 

via UDP for further processing. The separation of initial 

data acquisition and spike detection from subsequent 

post-processing and visualization ensures that the 

recording and primary analysis continue uninterruptedly 

with minimal computational demand. By structuring the 

methodology in this manner, we maintain a seamless 

and efficient workflow, allowing for continuous data 

acquisition and spike detection, followed by detailed 

event and pool visualization on a separate system. 

 

 

 

RESULTS 

 

In this study, we compared the adaptive real-time 

threshold with its offline counterpart over all channels 

across three subjects. This comparison is shown as a 

shaded plot illustrating the percentage difference 

between the real-time and offline thresholds for all 

channels across all subjects (Fig. 2B). Remarkably, in 

every instance, the difference between these two 

thresholds remained under 1%, with the maximum 

difference observed in the last subject (P3) being 

0.82±0.98%, indicating a negligible difference between 

real-time and offline threshold calculations. 

Further analysis was conducted by deploying the online 

spike detector on these datasets and comparing its 

performance with those spikes detected offline (Fig. 3, 

left panel). This study focused on the rate and spatial 

distribution of spikes detected in both online and offline 

methods, as well as their occurrence in clinically 

defined SOZ across subjects. Our approach to 

comparing detected spikes involved two individual 

methods. Initially, we evaluated the cosine similarity 

between the spatial distributions of spikes detected, 

discovering the alignment in spike distributions across 

all channels, with similarity indices surpassing 0.99 and 

angular differences between the spatial distribution of 

spike vectors in online and offline analysis measuring 

1.6°, 2.0°, and 1.8°, respectively (Fig. 3, middle panel). 

Additionally, we employed the Kolmogorov-Smirnov 

statistical test to compare the rate of detected spikes 

across all channels in both online and offline analyses. 

This statistical evaluation revealed no significant 

difference, with p-values of 0.93, 0.99, and 0.99 for 

subjects 1-3, respectively (Fig. 3, right panel). 

Importantly, our observations highlighted that the rate 

of detected spikes was consistently higher within the 

SOZ than outside the SOZ across all three cases. 

Notably, the initial two contacts exhibiting the highest 

rate of spikes were identified within the SOZ for all 

subjects. While this finding confirms previous works 

[9], it underscores the efficacy of employing the BIC 

CorTec system for online spike detection and 

emphasizes its potential in accurately identifying 

probable SOZ sites. This insight not only reaffirms the 

precision of our spike detection framework but also 

demonstrates its utility in enhancing the accuracy of 

SOZ localization, offering significant implications for 

the future of epilepsy treatment and management.  

 

DISCUSSION 

 

The current work introduces a fully online framework 

designed for the detection of interictal spikes, capable of 

broadcasting detected events to external applications for 

subsequent postprocessing and visualization. The 

methodology is structured around three main 

components: first, a complete data acquisition module; 

second, an online spike detection module—both 

developed as level-2 MATLAB s-functions handling 

data acquisition and initial spike identification. The 
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third component features a user-friendly GUI that 

receives and visualizes the detected events. All essential 

signal processing blocks have been implemented in 

Simulink MATLAB to better control the entire 

framework. 

The entire processing pipeline was validated by 

randomly selecting 10-minute segment of BIC CorTec 

pre-recorded interictal iEEG from three human subjects 

streamed in real-time as data playback to illustrate the 

online spike detection concept. This approach allowed 

for a comparison with a previously established offline 

spike detector, revealing that channels with the highest 

spike rate were associated with the SOZ. 

In recent years, there has been a growing interest in 

spike-guided surgical intervention, referred to as spike-

tailored surgery [5-6]. Furthermore, a real-time spike 

detection is crucial for enabling closed-loop 

neuromodulation or BCI applications, where timely and 

accurate detection of neural activity allows for 

responsive and adaptive interactions between the brain 

and external devices. In response to these interests, and 

as a tool that is essential for the analysis of iEEG 

recordings, we implemented the online spike detector 

and added it to the main data acquisition setup.  The 

developed Simulink model holds the potential for 

adapting to online spike detection from data streams 

recorded with various biomedical amplifiers, 

broadening its applicability in future research. 

 

CONCLUSION 

 

We have successfully demonstrated the feasibility of 

recording iEEG from human subjects using the BIC 

CorTec device in a basic rapid prototyping environment 

within Simulink. In addition, we have integrated a real-

time scenario for detecting interictal spikes as a new 

 
Figure 3: (Left Panel) The comparison of the spike rates across channels, contrasting the performance of online and 

offline spike detection. (Middle Panel) Illustrates the cosine similarity index between the spatial distributions of spikes 

detected in online and those identified through offline analysis. It shows the degree of alignment between the two 

detection methods were more than 99% in all cases. (Right Panel) Presents spike rates obtained from online and offline 

analyses across channels for each subject. Statistical analysis reveals no significant differences in the rate of spikes 

detected through online and offline analyses across the subjects, with p-values of 0.93, 0.99, and 0.99, respectively. 
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feature on top of this framework. Our goal is to continue 

evolving this framework by incorporating additional 

functionalities that will allow for concurrent analysis of 

iEEG data during the recording process. 

An important aspect of our approach is the concept of 

broadcasting initially detected events, i.e., interictal 

spikes, thus transforming the data acquisition computer 

into a host. The host then streams the detected events to 

various clients for further post-processing and 

visualization. This strategy, when augmented with 

enhanced functionalities in iEEG, has the potential for 

iEEG surgical planning in the future. 
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ABSTRACT: Electroencephalographic signals are repre-
sented as multidimensional datasets. We introduce an en-
hancement to the augmented covariance method (ACM),
exploiting more thoroughly its mathematical properties,
in order to improve motor imagery classification. Stan-
dard ACM emerges as a combination of phase space re-
construction of dynamical systems and of Riemannian
geometry. Indeed, it is based on the construction of a
Symmetric Positive Definite matrix to improve classifi-
cation. But this matrix also has a Block-Toeplitz struc-
ture that was previously ignored. This work treats such
matrices in the real manifold to which they belong: the
set of Block-Toeplitz SPD matrices. After some manip-
ulation, this set is can be seen as the product of an SPD
manifold and a Siegel Disk Space. The proposed method-
ology was tested using the MOABB framework with a
within-session evaluation procedure. It achieves a simi-
lar classification performance to ACM, which is typically
better than – or at worse comparable to – state-of-the-art
methods. But, it also improves consequently the compu-
tational efficiency over ACM, making it even more suit-
able for real time experiments.

INTRODUCTION

In electroencephalography (EEG) based Brain Computer
Interfaces (BCI), state-of-the-art algorithms are often
built on Riemannian distance based classification algo-
rithms [1]. The basic idea underlying these methods is to
treat the spatial covariance matrix (SCM), extracted from
the EEG signal, as an element of the Riemannian mani-
fold of Symmetric Positive Definite (SPD) matrices [2].

A recent extension of this work was obtained by using
the Augmented Covariance Method (ACM) [3]. ACM
relies on the concept of phase space reconstruction of dy-
namical systems to create an "ACM matrix" (also called
ACM) that contains not only an average spatial represen-
tation of the signal but also a representation of its evo-
lution in time. Consequently, the amount of information
contained in this ACM matrix is increased w.r.t. the stan-
dard spatial covariance. As the ACM matrix also turns
out to be an SPD matrix, it can be classified using the
same Riemannian framework that was so successful for
SCMs. However, it also possesses a structural property

of being Block-Toeplitz, that is, a block matrix with con-
stant blocks over all diagonals. Recently, an approach
has been proposed to better deal with such Block-Toeplitz
SPD matrices [4], with applications in diverse fields such
as audio processing or radar signal analysis [5].
The idea of this research is thus to endow the smooth
manifold of Block-Toeplitz SPD matrices with a Rieman-
nian metric, thus allowing the ACM matrix to be treated
within its true manifold membership. It is actually pos-
sible to treat the Block-Toeplitz SPD matrix manifold as
the product of an SPD manifold and a Siegel Disk Space,
after applying an appropriate conversion of the blocks of
the ACM matrix into the Verblusky coefficients [6].
This approach provides a new – more specific – metric
to use for BCI classification algorithms. The strength of
the approach lies in its ability to deconstruct the mani-
fold into its constituent elements: the Symmetric Posi-
tive Definite (SPD) manifold and the Siegel Disk Space.
By discerningly analyzing each component within its re-
spective geometrical domain, this method significantly
alleviates the computational demand traditionally asso-
ciated with the ACM methodology. The resulting algo-
rithm achieves performance that is, at worst, comparable
with state-of-the-art BCI algorithms, and often provides
quite better results (on par with those of ACM). However,
it distinguishes itself by achieving this at substantial re-
duction in computational costs and carbon footprint com-
pared with standard ACM.
The new – Siegel metric based – pipeline was tested and
validated against several state-of-the-art algorithms (Ma-
chine Learning (ML) and Deep Learning (DL)) on several
datasets for motor imagery (MI) classification using sev-
eral subjects and on a right versus left hand task with the
MOABB framework [7], and a within-session evaluation
procedure.

MATERIALS AND METHODS

The EEG signal is represented as a multivariate time se-
ries X ∈ Rd×T , where T represents the total number of
sampled data points, and d indicates the number of elec-
trodes used in the EEG recording. Since this paper fo-
cuses on MI task, we split the EEG signals into smaller
sections known as epochs, each representing a snapshot

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-076

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

431

http://moabb.neurotechx.com/docs/index.html


of brain activity during various tasks or mental states.
The core aim of our research is to develop a method that
can accurately identify the specific task or mental state
associated with these EEG epochs.
The space of SPD matrices is composed by square real
symmetric matrices that are positive definite, and this
space form a smooth manifold that can be equipped with
a Riemannian metric [1]. This space is defined as

SPDd = {M ∈ Rd×d | xT Mx > 0 ∀x ∈ Rd\{0}} (1)

ACM [3] extends this methodology by combining it with
the phase space reconstruction (PSR) approach that is
grounded in the Takens theorem [8]. The ACM matrix
thus obtained contains spatial and temporal information
of the signal and remains an SPD matrix that can be clas-
sified using the same Riemannian metric that was so suc-
cessful for SCMs. This enrichment with temporal fea-
tures of the information extracted from the signal allows
for an improvement of classification performance.
The idea of using Takens theorem is based on the idea
that time series obtained from experimental observations
that capture only a fraction of the complex dynamics of
the underlying system, can nonetheless be utilized to re-
construct the system’s full dynamical behavior. This is
achieved using a uniform embedding procedure: con-
sider a time series s(n) created thought a measurement
process, the PSR technique generates a point sE(n) of a
D-dimensional space constructed as

sE(n) = [s(n),s(n− τ), ...,s(n− (D−1)τ)]T (2)

where τ is a positive integer called the embedding delay
and D is the embedding dimension. sE(n) ∈ RD is an
uniform embedding of the original phase space.
The ACM matrix (see Fig. 1) is obtained by expanding
the original EEG signal using the PSR approach with an
embedding dimension p to get a new d p × T time se-
ries, parameterized by the fixed delay τ . The Augmented
Covariance Matrix Γaug is defined as the autocovariance
matrix of this new time series:

ΓAug =


Γ0 Γ−1 Γ−2 · · ·
Γ1 Γ0 Γ−1 · · ·
Γ2 Γ1 Γ0 · · ·
...

...
...

. . .
Γp−1 Γp−2 Γp−3 · · ·

 , (3)

where Γ0 is the standard spatial covariance matrix and
Γi is the lagged covariance matrix of the original signal
with a delay of iτ and Γ−i = ΓT

i . As an autocovariance
matrix, Γaug is symmetric and positive by construction. If
not definite, it can be regularized [9], so that we consider
it as SPD in the remainder of this article. But, the ACM
matrix also has a specific Block-Toeplitz structure, with
blocks of dimension d × d [5]. More formally, ΓAug be-
longs to the space Bd×p of Block-Toeplitz and SPD ma-
trices i.e., SPD matrices of size d p× d p with constant
blocks of size d × d along all diagonals. This opens up
new possibilities for enhancing the ACM formulation by

mapping the ACM matrix to the most suitable geometric
space that fully captures both its Block-Toeplitz and SPD
natures.
The blocks of the matrix ΓAug, have been demonstrated to
belong to a specific mathematical space [4]

Γi ∈ Dd Dd = {M ∈ Cd×d | I−MM̄ > 0} (4)

with M̄ = JMHJ where J denotes the anti-diagonal ma-
trix and H is the conjugate transpose operator1. This
space has no known Riemannian structure but, by im-
plementing a minor adjustment to the coefficients, it is
possible to ensure their belonging within the domain of
the Siegel disk [6, 10], defined as

Ωi ∈ SDd SDd = {M ∈ Cd×d | I−MMH > 0} . (5)

The coefficients that have undergone such modification
are also known as Verblunsky coefficients [6].
The transformation allow the following conversion,

Bd×p → SPDd ×SDp−1
d

ΓAug 7→ (Γ0,Ω1, . . . ,Ωp−1) .
(6)

Consider the initial matrix ΓAug decomposed in its con-
stituent blocks (Γ0, ...,Γp−1). The initialization of the re-
cursive transformation is set to P0 = Γ0. The subsequent
coefficients are computed with

Ωl+1 = L−1/2
l (Rl+1 −Ml)K

−1/2
l , (7)

with l = 0, ..., p−1 and

Ll = P0 − (Γ1, ...,Γl)Γ̃
−1
l−1(Γ1, ...,Γl)

H

Kl = P0 − (ΓH
1 , ...,Γ

H
l )Γ̃

−1
l−1(Γ

H
1 , ...,Γ

H
l )

H

Ml = (Γ1, ...,Γl)Γ̃
−1
l−1(Γ

H
1 , ...,Γ

H
l )

H

where Γ̃l−1 denotes the sub-matrix of ΓAug obtained by
keeping only its first l −1 rows and columns. This trans-
formation operates recursively, enabling the foundational
blocks of the ΓAug matrix to be transformed into square
matrices that are positioned within the domain of the
Siegel Disk.
The smooth manifold of Bd×p is thus identified as a Käh-
ler manifold [4], on which is possible to define a Kähler
potential Φ [11, 12], computed as:

Φ(ΓAug) =−log(det(ΓAug))− log(πe) (8)

After applying some decomposition properties of the de-
terminant of ΓAug, it is possible to compute the metric of
the manifold simply as the Hessian matrix of the Kähler
potential

ds2 =p trace
(
P−1

0 dP0P−1
0 dP0

)
+

p−1

∑
l=1

(p− l) trace
((

I−ΩlΩ
H
l
)−1

dΩl
(
I−Ω

H
l Ωl

)−1
dΩ

H
l

)
(9)

1A > B when A−B is a positive definite matrix.
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Phase Space Reconstruction

 Tangent Space Projection

ACM to Verblusky coefficients
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Tp
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Figure 1: Schematic illustration of the BT-ACM + TG + SVM methodology. The presented example uses only 3 electrodes (in red on
the top left plot). The measurement process of the original dynamic system is thus a 3-dimensional time series. The process then begins
with the extraction of epoch signal representing left and right hand tasks. We then use the phase space reconstruction process to obtain
a dynamic system equivalent to the original one (selection of hyper-parameters are made via grid search using the nested approach).
In this figure, we see an embedding corresponding to p = 3 and τ = 10). The BT-ACM matrix is computed as the autocovariance of
this high-dimensional time series. Subsequently the main blocks are converted in Verblunsky coefficients. Then, each component is
mapped to the tangent space using the appropriate Riemannian manifold computations and vectorized. The final step is the application
of an SVM-based classification algorithm.

The first term of Equation (9) is identifiable as the metric
for the SPDd space. The other term represents the met-
ric for the Siegel disk space SDd repeated p− 1 times,
i.e. the space of Block-Toeplitz SPD matrices is equipped
with a product Riemannian metric over SPDd ×SDp−1

d .
The resulting algorithm (depicted in Fig. 1) using this
new metric using SVM on the tangent space is called BT-
ACM+TS+SVM: Block-Toeplitz Augmented Covariance
Matrix (BT-ACM) with Tangent Space projection (TS)
and SVM classifier.
Using fixed hyper-parameters p and τ , the PSR approach
expands the signal (p and τ will subsequently be care-
fully chosen using a grid-search procedure). The spatial
autocovariance matrix of the expanded signal is obtained
using regularization through the Oracle Approximating
Shrinkage Estimator (OAS) [9]. After the Verblunsky
transformation, each component is mapped to the Tan-
gent space using the Logarithmic map of each specific
manifold. The final classification step is obtained with a
Support Vector Machine (SVM) algorithm.

Dataset and Evaluation procedure: To validate the
proposed methodology, we use open accessible datasets
available from MOABB [7]. We selected 3 datasets with
a total of 70 subjects. All the information regarding the
considered datasets are presented in Tab. 1.

Table 1: Dataset considered during this study.
Dataset subjects channels sampling rate trials/class Epoch (s)

BNCI2014001 [13] 9 22 250 Hz 144 [2, 6]
BNCI2014004 [14] 9 3 250 Hz 360 [3, 7.5]

Cho2017 [15] 52 64 512 Hz 100 [0, 3]

The duration of each epoch within our study is inten-
tionally aligned with the task conditions’ length, which

is subject to variation across the datasets employed. On
each dataset, we applied a standard band pass filter proce-
dure for the Motor Imagery task, in the frequency range
of 8 to 32 Hz.
We use a Within-Session (WS) evaluation procedure as
provided in MOABB. This means that our analysis works
on each session separately. The implementation is based
on a Nested Cross-Validation methodology [16], struc-
tured with an outer loop of 5-Fold Cross validation and
a inner one composed by a 3-fold Cross Validation. We
use statistical tests provided by MOABB to confront the
different pipelines, i.e., based on a t-test [17] for datasets
with less than 20 subjects, or a Wilcoxon non-parametric
signed-rank test [18] otherwise.
The state-of-the-art pipelines used in this research con-
tain both Machine Learning (ML) and Deep Learning
(DL) methods. Detail of the pipelines are listed in Tab. 2.
For DL pipelines, we used a standardization step that
normalizes every channel to have a zero mean and unit
standard deviation. Additionally, we employed a re-
sampling procedure to ensure that each architecture in-
tegrates a temporal filter aligned with the state-of-the-
art techniques’ implementations. This procedure was
added in order align to the state-of-the-art implementa-
tion and avoid the need of redoing hyper-parameter tun-
ing. The DL pipelines are using a Sparse Categorical
Cross-Entropy loss function and a standard Adam opti-
mizer using 300 epochs and a batch size of 64. To avoid
overfitting, we used an early stopping procedure with a
patience parameter of 75.

RESULTS
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Table 2: Pipelines considered in this study are organized into two distinct sections within the table: the first part is dedicated to the
traditional classical ML pipelines, while the second part focuses on DL pipelines for MI.

Pipeline Feature Extraction Classifier
CSP + LDA [19] Common Spatial Patterns (CSP) with OAS covariance estimator Optimized Shrinkage LDA
MDM [1] Spatial Covariance using OAS Mean Distance to Mean (MDM)
FgMDM [1] Spatial Covariance using OAS Minimum Distance to Mean with geodesic filtering (FgMDM)
TS + EL [20] Spatial Covariance using OAS mapped to TS Optimized Elastic Network (EL)
TS + SVM [1] Spatial Covariance using OAS mapped to TS Optimized SVM
ACM + TS + SVM [3] ACM with Sample Covariance Estimator mapped to TS Optimized SVM
BT-ACM + TS + SVM (Proposed) BT-ACM with Sample Covariance using OAS mapped to each respectively TS SVM
ShallowConvNet [21] Standardized and resample EEG signal at 250Hz Convolutional Neural Network (CNN)
DeepConvNet [21] Standardized and resample EEG signal at 250Hz CNN
EEGNet 8 2 [22] Standardized and resample EEG signal at 128Hz CNN with architecture EEGNet

In this section, we describe the results obtained for the
Right vs Left hand classification task.

Table 3: Performance (AUC) of Right hand vs Left hand classi-
fication. The table contains the results over all subjects (average
plus or minus standard deviation).

Pipeline BNCI2014001 BNCI2014004 Cho2017
CSP+LDA 0.82±0.17 0.80±0.15 0.71±0.15

MDM 0.82±0.15 0.78±0.16 0.63±0.14
FgMDM 0.87±0.12 0.79±0.15 0.73±0.13
TS+EL 0.86±0.13 0.80±0.15 0.76 ± 0.14

TS+SVM 0.87±0.14 0.79±0.15 0.75±0.14
ACM+TS+SVM 0.92 ± 0.10 0.83 ± 0.15 0.74±0.15

BT-ACM+TS+SVM 0.89±0.11 0.83 ± 0.14 0.76 ± 0.14
ShallowConvNet 0.86±0.14 0.72±0.18 0.74±0.15

DeepConvNet 0.82±0.16 0.72±0.19 0.72±0.13
EEGNet 0.77±0.19 0.70±0.20 0.67±0.16

The various approaches of this study are compared in
Tab. 3. A detailed picture of the results and the statistical
significance of these results is provided in Fig. 2.
Overall, our method scores the best in 2 datasets -
BNCI2014001 and Cho2017 - and obtains similar per-
formance with respect to ACM+TS+SVM and TS+EL
respectively for the third dataset. Across other datasets
evaluated, our approach consistently delivers results that
closely rival those of other leading algorithms, with a
marginal performance deviation of no more than 1% in
the AUC score with the only exception of BNCI2014001
dataset (where only the more costly ACM+TS+SVM
does better).
Moreover, a comprehensive analysis across multiple
datasets underscores a statistically significant perfor-
mance enhancement achieved by BT-ACM+TS+SVM
compared to all considered algorithms, with the sole ex-
ception of TS+EL, where the outcomes are remarkably
similar (Fig. 2 (a) and (d)). This evidence collectively
affirms the superiority of our method, not only in achiev-
ing high-performance benchmarks, but also in maintain-
ing competitive results across different datasets.
We further explored the carbon emission and the compu-
tational time. To perform this analysis, we have run all
the algorithms on the same hardware, a Dell C6420 dual-
Xeon Cascade Lake SP Gold 6240 @ 2.60GHz. Further-
more, in order to conduct a fair comparison, we consid-
ered ACM+TS+SVM and BT-ACM+TS+SVM with the
same number of parameter to optimize, i.e. we opti-
mize the order and the lag of the augmentation proce-
dure in the range [1 − 10] without any optimization of
the SVM parameter. Fig. 2 (b) shows the timings and

estimated carbon footprint for both the ACM+TS+SVM
and the BT-ACM+TZ+SVM pipelines over the dataset
BNCI2014001 composed by 9 subject over 2 sessions.
The carbon footprint was estimated using Code Car-
bon [23] and expressed as gCO2 equivalent emission.

DISCUSSION

Our analysis across multiple datasets demonstrates (see
Fig. 2 (a)) that the BT-ACM+TS+SVM algorithm not
only competes with but frequently surpasses the perfor-
mance of current state-of-the-art methodologies. The
only exception to this trend is when compared to the
TS+EL algorithm, where our results are statistically in-
distinguishable (Fig. 2 (d)). Despite their close relation-
ship, the BT-ACM+TS+SVM algorithm shows a signif-
icant (even if small) superior performance compared to
the ACM+TS+SVM algorithm (Fig. 2 (c)).
We also noticed an improved stability over changes of
the SVM parameter, which thus does not need to be op-
timized as we did in the TS+SVM and ACM+TS+SVM
cases (see Table 2).
In addition to its improved classification performance,
the BT-ACM+TS+SVM algorithm also exhibits signifi-
cant advancements in computational efficiency. The dif-
ference in computational time is statistically significant
as we pass from a mean time of (94.58 ± 2.62)s for
the ACM methodology to (79.71 ± 0.80)s for the BT-
ACM+TS+SVM approach. The results have the same
level of statistical significance for the carbon emission.
Note that the comparison is done using the same num-
ber of parameters. The fact that we did not optimize the
SVM regularization parameter is not the reason for this
improvement.
It is also noteworthy that the ACM methodology exhibits
a significant variability in computational times across
different sessions and subjects, indicating a fluctuation
in performance consistency. In contrast, the BT-ACM
approach demonstrates enhanced stability, showcasing a
more uniform and predictable computational time.

CONCLUSION

Throughout this research, we focused on the uses of
the Block-Toeplitz Augmented Covariance matrix (BT-
ACM) for Motor Imagery classification. This methodol-
ogy extends the current ACM by comprehensively utiliz-
ing the Block-Toeplitz properties of the BT-ACM matrix.
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Figure 2: Results for Right vs Left hand classification, using WS evaluation. Plot (a) provides a combined meta analysis (over all
datasets) of the different pipelines. It shows the significance that the algorithm on the y-axis is better than the one on the x-axis.
The color represents the significance level of the difference of accuracy, in terms of t-values. We only show significant interactions
(p < 0.05). Plots (b) summarizes the computational time and carbon footprint of ACM+TS+SVM vs BT-ACM+TS+SBM. Plots (c),
(d) and (e) show the meta analysis of BT-ACM+TS+SVM against respectively ACM+TS+SVM (Grid), TS+EN, DeepConvNet. We
show the standardized mean differences of p-values computed as one-tailed Wilcoxon signed-rank test for the hypothesis given as title
of the plot. The gray bar denotes the 95% interval. * stands for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

This approach transforms the classification challenge, en-
abling a distinct analysis within the separate domain of
SPD and Siegel Disk matrices.
This procedure achieves performance generally superior
to the state-of-the-art, or at worst comparable. But, the
improvement over the standard ACM is not only in terms
of ROC-AUC but also in terms of significant reductions
in computational costs and carbon emissions.
An interesting future exploration emerges from the fact
that we are not using directly the property of the blocks
contained in the BT-ACM matrix since the metric does
not belong to any known manifold. In order to treat the
problem, we were forced to use the Verblusky coefficient
transform that introduces possible errors and complica-
tions. This means that it might be interesting to develop
the mathematical framework for the direct treatment of
such BT matrices.
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ABSTRACT:
Generative models, specifically diffusion models, can al-
leviate data scarcity in the brain-computer interface field.
While diffusion models have previously been success-
fully applied to electroencephalogram (EEG) data, exist-
ing models lack flexibility regarding sampling or require
alternative representations of the EEG data. To overcome
these limitations, we introduce a novel approach to con-
ditional diffusion models that utilizes classifier-free guid-
ance to directly generate subject-, session-, and class-
specific EEG data. In addition to commonly used met-
rics, domain-specific metrics are employed to evaluate
the specificity of the generated samples. The results indi-
cate that the proposed model can generate EEG data that
resembles real data for each subject, session, and class.

INTRODUCTION

One of the most significant challenges of data scarcity
in the brain-computer interface (BCI) field is that the ac-
quisition of annotated data is a time-intensive endeavor.
The lack of large labeled datasets can be a bottleneck
for many machine learning algorithms [1]. Addition-
ally, class imbalances typically found in event-related po-
tential (ERP) protocols which are among the most com-
monly used EEG-BCI paradigms [2], can be detrimen-
tal to classifier performance. Moreover, multiple popula-
tions are underrepresented in the current corpus of EEG
data [1, 3].
Generative models offer a promising solution to alleviate
this data scarcity. Diffusion models, in particular, have
shown the ability to generate high-quality data in a vari-
ety of domains, including images [4] and audio [5]. Cur-
rent implementations of diffusion models for EEG data
generation are either trained directly on EEG data or use
an alternative representation, such as electrode frequency
density maps [6], spatial covariance matrices [7], time-
frequency maps, and latent representations [8–10].
Models trained on alternative representations, while po-
tentially being easier to train, require an additional pre-
and post-processing step, which can hinder their usabil-
ity. The models trained directly on EEG data are either
unconditioned [11, 12], which means that the samples are
always generated from the full data distribution, or con-

ditioned, which means that the models are trained on the
full data distribution but samples can be generated from
a selected part of the data distribution. This condition-
ing can either be achieved using a classifier [4, 13] or by
classifier-free guidance [14, 15], which achieves condi-
tioning without the need for a noisy classifier.

Despite the capability of diffusion models to generate
high-quality EEG data, there is a lack of proper metrics
to quantify the quality of the generated samples. Cur-
rently used metrics are either adopted from the image do-
main, are domain-invariant, or rely on classifier perfor-
mance [6–11, 13, 15–17]. The metrics from the image
domain, the Fréchet inception distance (FID) [4] and the
inception score (IS) [4], rely on the activations and out-
put of a standardized trained neural network called In-
ception V3 [4]. Unfortunately, there is no universally
adopted trained network for EEG data, which makes
fair and reliable comparison impossible. Additionally,
the domain-invariant metrics are incapable of discerning
which domain-relevant features are generated well by the
model. For example, if there is a low Euclidean distance
between the generated and real samples, then that is likely
due to a similarity in multiple domain-relevant features,
such as amplitude and peak latencies, this makes it un-
clear which domain-specific features are properly gener-
ated. Similarly, metrics based on classifier performance
are also unable to disentangle these features. Hence,
there is a need for a set of metrics that can capture these
domain-specific features.

Research questions and objectives: The following re-
search question is investigated: Can we generate artificial
ERP examples that are specific to a subject, session, and
class using conditional diffusion models with classifier-
free guidance?

To answer this question, we train a novel conditional dif-
fusion model to flexibly generate each combination of
conditions, i.e., subject, session, and class. An exam-
ple of generated data can be found in Figure 1. Domain-
invariant and image-domain metrics are used to evaluate
the quality of generated samples during training. How-
ever, as previously noted, these metrics are unable to cap-
ture domain-specific features, which makes it impossi-
ble to evaluate the ability of the model to generate ERP
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data that is specific to a certain condition. Therefore,
we aim to introduce domain-specific metrics, which use
ERP-related features, to verify the ability of the model to
generate ERP data that is specific to each combination of
conditions.

METHODS - DATA DESCRIPTION

The conditional diffusion model is trained on a visual
ERP dataset collected by Lee et al. [2]. Visual ERP re-
sponses are elicited using a modified oddball paradigm.
The most prominent ERP feature is expected to be a
positive deflection that occurs approximately 300 ms (re-
ferred to as a P300) after being presented with a rela-
tively infrequent target stimulus following multiple non-
target stimuli [18]. This dataset is one of three datasets
that were recorded to study BCI-inefficiency across three
major BCI paradigms: visual ERP, motor imagery, and
steady-state visually evoked potential protocols [2]. In
the study, fifty-four participants underwent two sessions
which were held on different days [2].
During data recording, each visual ERP session was di-
vided into a train and test run. During the train run, tri-
als were not decoded, while during the test run, the trials
were decoded and feedback was given to the participant
after each trial [2]. Both runs of the same session are
combined to train the diffusion model, as they employ
the same copy-spelling tasks.
The dataset has been obtained and preprocessed using the
Mother of All BCI Benchmarks [19]. It was preprocessed
with a relatively simple pipeline. First, 19 channels (Fp1,
Fp2, F7, F8, F3, F4, Fz, T7, T8, C3, C4, Cz, P7, P8,
P3, P4, Pz, O1, and O2) were selected that provide full
scalp coverage. Secondly, the data was bandpass filtered
between 1 and 40 Hz with a 4th-order Butterworth fil-
ter. Thirdly, the data was downsampled from 1000 Hz to
128 Hz. Fourthly, epochs were constructed as 1-second
windows, starting from the stimuli onsets. Lastly, peak-
to-peak epoch rejection is applied with a threshold of
150 µV. This removed 14.5 % of epochs, equivalent to
63672 epochs out of a total of 438840 epochs. Subject 17
was dropped due to excessive artifacts.

METHODS - DIFFUSION MODELS

Diffusion models are a generative modeling paradigm
where data is progressively destroyed by injecting Gaus-
sian noise, and a neural network is trained to reverse this
process [14]. Song and colleagues provide a continuous
formulation of such a process, formulated as a stochastic
differential equation (SDE), and show how a neural net-
work can be implemented to learn the reverse SDE [20].
In this work, the implementation is based on the vari-
ance persevering SDE (VP SDE), which is the continu-
ous equivalent to the noise injection used in the denoising
diffusion probabilistic model (DDPM) [20, 21]. Further-
more, “classifier-free guidance” is used to condition the
model on the subject, session, and class in parallel [14].

Implementation details: The neural network to reverse
the destruction of the data is based on the architectures
introduced by Torma et al. and Shu et al., called EEG-
Wave and diff-EEG [11, 15]. Two key differences were
introduced: 1) the timestep embedding was rewritten to
be compatible with the VP SDE, because both models use
DDPM noise injection, and 2) no normalization is applied
to the EEG data.
The model is trained for 900 k steps, with the model being
evaluated every 100 k steps. An exponential moving av-
erage of the weights is used for sampling and metric cal-
culation. This sampling is done by a predictor-corrector
sampler [20]. Preliminary results indicated that an in-
crease in the signal-to-noise ratio (SNR) of the correc-
tor increases the amplitude of the generated EEG data.
The number of generated samples matches the number
of real samples available for a given subject/session/class
combination. This includes the samples used to compute
the validation loss but excludes samples removed by the
epoch rejection.
For more information about the implementation please
refer to: https://neurotechlab.socsci.ru.nl/
resources/generative_models/

METHODS - SIMILARITY METRICS

Metrics quantifying the similarity between generated and
real data are crucial for model comparison and evalua-
tion. These similarity metrics are divided into four cate-
gories: classifier performance, domain-invariant, image-
domain, and domain-specific. This section will also dis-
cuss metric-specific baselines for interpreting the scores
obtained on the domain-invariant and domain-specific
metrics.
Domain-invariant and domain-specific metrics are com-
puted between the real and generated data within one con-
dition, i.e., a combination of subject, session, and class.
These metrics have been computed separately per condi-
tion, but their average across conditions is reported.

Classifier performance: We compare the performance
of a classifier trained on generated data with the perfor-
mance of a classifier trained on real data. Both con-
ditions use the same test sets which contain only real
data. This metric is denoted as the averaged balanced
accuracy (ABA) and the score obtained when training on
the real data is reported as the within-session baseline.
Specifically, training is subject-specific and implements
a within-session five-fold stratified cross-validation. The
classifier is a regularized least-squares Linear Discrimi-
nant Analysis (LDA) [22]. The LDA is trained on fea-
tures that represent the average amplitude across chan-
nels within non-overlapping time windows, which span
between 0.1 to 0.9 seconds and are each 0.1 seconds long.

Domain-invariant metrics, such as the sliced-
Wasserstein distance (SWD), mean squared error, and
Jenson-Shannon divergence, can be used to measure
the (dis)similarity between the generated and real
data. However, there is no consensus on which metric
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to use, with multiple articles implementing different
domain-invariant metrics [8, 9, 11, 16]. Therefore, we
arbitrarily choose to implement the SWD [23]. The
domain-specific metrics introduced later allow for a
more nuanced approach to metric selection.

Image-domain metrics require a pre-trained classi-
fier, as they are based on its latent activations. Incep-
tion V3 [4] is the one used for images but is not suit-
able for EEG data, so we have trained an EEGNet archi-
tecture [24]. EEGNet was chosen as it only has a few
hyperparameters, a relatively low number of parameters,
and achieves reasonable accuracy. This trained EEGNet
model has been made public, allowing future studies to
calculate the FID and IS using the same model1.
Although the IS is a commonly used metric from the im-
age domain, it is not included in our analysis. The IS
leverages the outputs of the classifier to extract informa-
tion about the quality and diversity of the samples. How-
ever, the diversity of samples generated by a conditional
diffusion model is, practically speaking, arbitrary. More-
over, the trained EEGNet is biased toward the majority
class. Thus, the output of the classifier is unable to ac-
curately measure the diversity of the samples. Therefore,
we have decided to exclude it from the analysis.
Fortunately, the other important metric from the image
domain, the FID, does not suffer from the same problem
as the IS. The FID is calculated by computing the Fréchet
distance between a Gaussian fitted to the mean and stan-
dard deviations of the activations in the last pooling layer
of a trained classifier in response to the real and generated
data [25]. The Fréchet distance is small when the features
that are picked up by the trained classifier are similar. Un-
fortunately, it is almost impossible to discern which fea-
tures contribute to a low FID, because it is unclear which
features would cause similar activations. This problem,
however, can be tackled by the domain-specific metrics.

Four Domain-specific metrics are introduced in the fol-
lowing section. They are designed to address the short-
comings of the previous metrics to evaluate the ability of
the model to generate domain-specific features. In par-
ticular, their design exploits the stationarity of ERP brain
responses by using averaged responses, thus increasing
the SNR [22].
The difference between generated and real P300 peaks is
measured by the peak latency delta (PLD) and peak am-
plitude delta (PAD) metrics. These metrics only consider
the channel with the most prominent P300 peak when av-
eraged over all the real target data, which is channel "O1"
in the case of the Lee 2019 ERP dataset. The PAD is com-
puted by taking the absolute difference in µV between the
highest peak in the real and generated data at the selected
channel. The PLD is the absolute difference in time off-
set between these peaks, measured in ms. Only target tri-
als are included, as a P300 peak is necessary to compute
these metrics.
One of the main downsides of using averaged data is

1EEGNet checkpoint: https://huggingface.co/guido151/
EEGNetv4

that information about the diversity of samples is lost.
Nonetheless, it is important that the model can generate a
variety of EEG data. The final metric, called the standard
deviation Manhattan distance (SD-MD), addresses this
concern by computing the absolute differences in stan-
dard deviation values for both real and generated data
for each channel and subsequently averaging these dif-
ferences over all channels.

Between-session variability is reported as a baseline
for the domain-invariant and domain-specific metrics.
This is achieved by measuring the variability of two ses-
sions of the same subject and the same class. Assuming
that the model performs better than the between-session
variability, and assuming that variability between sub-
jects is larger than the between-session variability within
the same subject and the same class, this test checks if
the model can generate data that is specific to only one
combination of subject, session, and class.

RESULTS

One diffusion model is trained and conditioned on all
combinations of subjects, sessions, and classes simulta-
neously. Ideally, this training approach should allow the
model to generate data that is specific to a subject, ses-
sion, and class.
The model’s ability to generate data for all combinations
is assessed every 100k training steps using the metrics in-
troduced in Methods - Similarity Metrics. The results are
visualized in Figure 2. The model of the training step that
achieves the highest ABA is further evaluated using the
other metrics. These outcomes are provided in Table 1.
Additionally, high-resolution plots were created for sub-
ject 52 in session 1, as this combination resulted in the
worst generated data according to the ABA metric. The
plots of this combination are shown in Figure 1.

Trends in training and model performance: In general,
the model outperforms the between-session variability in
the domain-invariant (SWD), and domain-specific (PAD,
PLD, and SD-MD) metrics. Using the ABA metric, it
performs similarly to the within-session baseline. There
seems to be a common trend in the scores obtained by
the model. Namely, all metrics show a relatively large
increase in performance between 100k and 200k training
steps and are relatively stable afterward (see Figure 2).
The ABA and PAD do show a slight decrease in perfor-
mance between the 800k and 900k training steps, but this
decrease is not large enough to conclude that the overall
performance is decreasing.

Classifier performance: The ABA is 0.818 for the
within-session real-data baseline. For generated samples,
the highest ABA is 0.817, which is achieved by samples
from the model at 600k training steps.
According to ABA, the best subject/session combination
is subject 51 in session 2, for which the generated data
outperforms the within-session baseline by 0.045. Con-
versely, the worst combination is subject 52 in session 1,
for which the classification score using generated data de-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-077

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

439

https://huggingface.co/guido151/EEGNetv4
https://huggingface.co/guido151/EEGNetv4


(a) Real and generated average temporal ERP responses of target and non-
target for three selected EEG channels. The error bands indicate the standard
deviations of the data.

(b) Covariance matrices of averaged real (left) and generated
(right) responses for both non-target (top) and target (bottom)
responses.

Figure 1: Figures (a) and (b) provide two different comparisons between real and generated data. The figures are based on the averages
of EEG data (522 target and 2875 non-target examples), which are sampled for the combination of subject and session combination
that resulted in the worst ABA metric (subject 52, session 1). The model with the highest ABA metric over all subjects and sessions
(i.e. 600k training steps) was used to generate the samples.

Table 1: Scores of every metric measured on data sampled from
the best checkpoint according to the ABA metric compared to a
baseline, provided that there is a baseline. The baseline for the
ABA is within-subject and within-session, while the baselines
for the SWD, PAD, PLD, and SD-MD are computed using the
variance between the two sessions of the same subject

Generated Baseline

target non-tgt. both target non-tgt. both

FID ↓ - - 93e−4 - - -
ABA ↑ - - 0.817 - - 0.818
PAD ↓ 0.48 - - 0.83 - -
PLD ↓ 0.016 - - 0.042 - -
SD-MD ↓ 3.44 1.33 2.39 7.38 2.94 5.16
SWD ↓ 1.20 0.83 1.02 1.69 1.22 1.46

creases by 0.043 compared to the within-session baseline.
Thus, even in the worst case, the generated data has LDA
features that are very similar to the real data.

Similar results on SWD and SD-MD: The domain-
invariant SWD of the generated data is better than its
between-session baseline. Interestingly, the domain-
specific SD-MD shows a strikingly similar pattern. Both
with target and non-target data, the offset between the
generated data and their respective baseline are almost
identical. Thus, it seems that the SWD captures some in-
formation about the standard deviation, as this is explic-
itly measured by the SD-MD. The standard deviation of
three channels for the worst subject, according to ABA,
can be seen in Figure 1.

Peak amplitude and latency: The PLD and PAD of
the generated data are also much lower compared to the
between-session real-data baseline. The average PAD at
the best model, according to ABA, is 0.48 µV. Using

the same model, the maximum PAD is 2.19 µV. This
can likely be improved upon by optimizing the SNR of
the corrector, either using a hyperparameter search or
by fine-tuning using a subject- and session-specific ap-
proach. Nonetheless, the fact that the between-session
PAD is much larger does indicate that the model can gen-
erate amplitudes that are at least in line with a particular
session and subject. Additionally, the PLD values suggest
that the peak position of the generated data is extremely
close to that of the real data, with a difference of 0.016 ms
on the same model. This is less than half of the between-
session difference. However, there are large inter-subject
differences in the PLD of the generated data as can be
seen in Figure 3. These can be attributed to the sensitivity
of the metric to slight deviations in the generated samples
when there are multiple peaks in the selected channel.
For example, subject 4 has a high PLD in session 1, how-
ever, this does not necessarily mean that the peak of the
generated samples is highly dissimilar to the peak in the
real data. Instead, the amplitude delta between the high-
est and the second-highest peak of the real data is quite
small, which means that the generated data can have the
second-highest peak as the highest peak, thereby dispro-
portionately influencing the PLD. This also influences the
PLD of the real data baseline.

FID performance: The FID is mostly useful for future
comparisons, as it requires other models that are trained
on the same dataset. Our model achieves a FID of 93e−4.
In the absence of other models, a few baselines are com-
puted to establish a frame of reference. Firstly, the av-
erage FID over 20 times computing the FID on two ran-
dom halves of the real data is 6.90e−4. Secondly, the FID
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Figure 2: Scores of every metric measured on the generated data of the model at multiple training steps. The “real: within-session”
baseline is computed by taking the ABA metric on the real data within a session of the same participant. The “real: between-session”
baseline displays the variance between two sessions of the same participant on that particular metric. The band shows the 95 %
confidence interval.
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Figure 3: The PLD between the P300 peak latency in channel
"O1" in the evoked real and generated data.

comparing sessions one and two is 125e−4. Lastly, the
FID comparing the first 26 subjects to the last 25 subjects
is 1611e−4. Thus, it seems that our model can achieve a
FID that is slightly better than the FID between sessions
one and two but is nowhere close to the FID computed on
two random halves of the real data. However, it should be
noted that EEGNet is trained on the real data for which
subsequently the FID is calculated. Moreover, it has been
established that using a conditioned model, instead of the
unconditioned model can decrease the FID [14].

DISCUSSION

In this work, we aimed to create a conditional diffusion
model using classifier-free guidance, that does not lose
specificity during sampling. The results indicate that the
model can indeed create subject-, session-, and class-
specific ERP data that is quite similar to the real data of
the Lee 2019 ERP dataset.

Amplitude, latency, and diversity are well-modeled:
The classifier performance on the real and generated data
is highly similar, even for the worst subject. Given that
the features on which the classifier is trained are based on
amplitude and latency, it is no surprise that the PAD and
PLD of the generated data are better than the between-
session variability baseline. Furthermore, the diversity,
as measured by the SD-MD, also seems to be modeled
reasonably well, as it can outperform the between-session
variability baseline.

Limitation of the PLD: The PLD should be interpreted
with caution because it is unreliable when there are mul-
tiple peaks of similar height in the data. This can be ad-

dressed by either 1) only computing the PLD when there
is only one prominent peak or 2) by computing the peaks
of multiple subsets (i.e. 80 %) of the real data and only
using the lowest PLD.

Potential applications: There are a variety of potential
applications for the model presented here. For example,
it can be used to alleviate the class imbalance by sam-
pling from the target class. In addition, it can generate
additional data to train a classifier, potentially slightly im-
proving the robustness and accuracy of the model. Fur-
thermore, the trained weights of the model can be used
for transfer learning, which would allow fine-tuning on
a different ERP dataset. Lastly, enlarging datasets with
the proposed model may be specifically valuable for the
benchmarking of novel algorithms. The diffusion model,
however, can not be expected to deliver samples from out-
side the distribution of the training data.

Dataset limitations and solutions: All in all, the ability
of the generated data to achieve comparable performance
on most metrics to real data, and the high visual simi-
larity of the covariance matrices and ERPs, are promis-
ing results for conditional diffusion models that generate
EEG data directly. Nonetheless, it should be noted that
the model was trained on a rather large dataset, so it re-
mains to be seen how well the results translate to training
on smaller datasets. However, the ability to generate data
from specific conditions during sampling, while being
trained on a full dataset, might make conditioned models
more data-efficient compared to unconditioned models.

CONCLUSION

In this work, we introduce the first diffusion model that
is conditioned on subject, session, and classes using
classifier-free guidance, that can generate high-quality
EEG data for each condition. This enables training
on complete datasets, without losing specificity during
sampling. Additionally, we introduce multiple domain-
specific metrics that can assist in model evaluation and
fine-tuning. This conditional diffusion model can now be
used to generate high-quality data for all subjects, ses-
sions, and classes present in the Lee ERP dataset.
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ABSTRACT:
Brain-Computer-Interfaces (BCIs) able to decode aes-
thetic preference could improve user experience in dig-
ital spaces by personalizing aesthetic stimuli selection
without requiring explicit user feedback that might in-
terrupt aesthetic experience. However, neuroscientific
understanding of aesthetic experience remains lacking,
while the tried and tested BCI classification algorithms
have not yet been applied to decode aesthetic prefer-
ences from EEG signals. We thus conducted an exper-
iment in which participants where exposed to visual art-
works in a virtual museum and requested to grade their
preferences for each of them, all this while their EEG
was being measured. Previous neuroaesthetic research
suggested that oscillatory modulations in different neu-
ral frequency bands could be informative of aesthetic
preference. Therefore, we tested a time-frequency fea-
ture classification method widely used in BCIs, i.e. Fil-
terbank Common Spatial Patterns feature extraction to-
gether with shrinkage Linear Discriminant Analysis, in
a 2-class aesthetic preference classification problem. We
report promising aesthetic preference decoding accura-
cies significantly and substantially above chance level.

INTRODUCTION

Passive Brain-Computer-Interfaces (BCIs) allow implicit
and real-time monitoring of cognitive, affective and cona-
tive mental and embodied states in human users [1, 2].
Aesthetic experiences are complex experiences that are
composed of such states, notably attentional, affective
and reward-related states [3]. Humans in the 21th cen-
tury are exposed to an unprecedented amount of aesthetic
stimuli, especially in digital spaces such as social me-
dia. In such spaces, presentation of aesthetic stimuli, e.g.
visual art or music, relies on recommendation systems
that require explicit user feedback. However, giving ex-
plicit feedback requires cognitive effort that might inter-
rupt aesthetic experience.
Passive aesthetic preference decoding BCIs, on the other
hand, could allow personalization of art presentation in
digital spaces without interruption, and thus, improve
user experience [4]. Furthermore, aesthetic preference
decoding BCIs could be applicable in other domains such
as neuro-marketing in order to improve personalized ad-

vertising [5], and it might even help improve positive ef-
fects of art exposure on health and well-being [6].
However, to our knowledge, only two studies have in-
vestigated single trial aesthetic preference decoding from
EEG. One using Deep Learning classifiers [7] and one
using Temporal Decision Trees [8]. Neither of them re-
ported any artefact removal procedure which renders the
interpretation of their results difficult [9].
Thus, there has been a lack of Electroencephalography
(EEG) single trial aesthetic preference decoding studies
with validated and effective EEG classification methods.
In order to alleviate this lack, this article aims to con-
tribute towards the development of aesthetic preference
decoding BCIs by applying validated BCI methods on
EEG data recorded in a virtual art museum environment.
The different components of aesthetic experience have
been shown to be related to oscillatory brain modulations
in various frequency bands [9]. Therefore, we used Filter
Bank Common Spatial Patterns (FBCSP) [10] and shrink-
age Linear Discriminant Analysis (sLDA) [11] in order
to decode aesthetic preference from oscillatory EEG fea-
tures.
In the following sections, we will describe the EEG and
subjective aesthetic preference data collection, as well as
the offline aesthetic preference decoding pipeline. Then,
we respectively report and discuss the aesthetic prefer-
ence decoding results. Finally, we offer prospects for fu-
ture research and summarize our findings.

MATERIALS AND METHODS

Participants:
14 healthy adult participants (7 women, aged 26.77 ±
8.5) completed the whole experiment. All participants
grew up in Western cultures and, thus, were most familiar
with Western art. None of them reported a history of
neurological or psychiatric disorder. Participants gave
informed consent prior to the study. The study was con-
ducted in accordance with the ethical research guidelines
in the Declaration of Helsinki and was approved by
Inria’s ethics committee, the COERLE (approval num-
ber: 2023-11). For one participant, subjective aesthetic
appreciation ratings were not save correctly, due to a bug
in the recording. Thus, the following analyses are based
on 13 participants.
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Experimental protocol:

Figure 1: A participant taking part in the aesthetic preference
decoding BCI experiment

Each participant participated in one session of 2 hours.
The session was organized as follows: (1) consent
form signature and completion of several questionnaires
(around 20 min), (2) installation of the EEG cap (around
20 min), (3) 3 test trials to familiarize themselves with the
procedure, (4) 6 runs during which participants were pre-
sented artworks (around 60 min in total, including breaks
between the runs), (5) completion of post-session ques-
tionnaires (around 5 min), and (6) uninstallation and de-
briefing (around 10 min).
During each run, participants had to perform 20 trials
in a virtual museum environment displayed on a com-
puter screen. This Virtual Exhibition Environment (VEE)
has been developed through the Unity3D software, which
contains the textured 3D models for the visualisation of
the environment, artwork and lighting. The first version
of the VEE (VEE1) is a desktop application that allows
studies in the field of neuroscience, which can be con-
figured through a settings screen (it allows selecting the
library of images, modifying the lighting, texturing the
walls, adding screens and/or fixation crosses, among oth-
ers). The application can capture real-time Eye-Tracking
data (in a format readable by the OGAMA analysis soft-
ware), and send signals (using Lab Streaming Layer -
LSL [12]) to the OpenVIBE software [13] to synchro-
nise EEG data captured with the experiment’s timeline.
Figure 1 shows the experimental setup with one partici-
pant wearing an EEG cap while gazing at a painting in
the VEE. Eye-Tracking was not used in this study.
At the start of each trial, a blank screen was displayed
for a randomly sampled duration between 0.5 and 0.8s.
After that, a fixation cross appeared for 5s, in order to
measure a stable baseline, as well as to washout potential
emotions evoked by previous artworks. Then, an artwork
stimulus was presented for 10s. Finally, the subject rated
their aesthetic appreciation (liking and interest) of the art-
work on a scale from 0-100 using a slider. After each run,
the participants could rest for a minute. The timeline of
one trial of data collection with our experimental protocol
is shown in Figure 2. Participants were instructed to gaze
naturally at the art work. Instructions were written in ad-
vance so that all the participants started with the same

standardized information.

Figure 2: The data collection included 6 blocks of 20 visual art
stimuli presentations and subsequent subjective aesthetic evalu-
ations

Questionnaires:
In addition to the participant’s general demographic in-
formation, we asked the participants to complete the fol-
lowing questionnaires:

• AREA [14] translated into French, to measure the
participant’s responsiveness to aesthetic experiences
in general. This questionnaire was filled out before
the EEG measurements.

• NeXT-Q [15] to measure the participant’s mental
states before and after the experiment.

Artworks:
The artworks displayed in the museum were 120 high
quality digital reproductions of diverse artworks orig-
inating from almost all continents and ranging from
pre-historic to contemporary time periods in the public
domain. The artworks had a minimum resolution of
450x669, with a mean of 11392920 pixels. We chose
artworks that were relatively unknown to a general
audience, in order to avoid familiarity effects. The
Artworks’ brightness levels were normalized in order to
avoid different brightness levels affecting the EEG [16].

EEG Recordings & Signal Processing:
EEG data were sampled at 256 Hz using an ActiChamp
amplifier (Brain Products, Gilching, Germany) with 31
active electrodes on a standard 10-20 montage. Elec-
trodes were placed on the following scalp locations: Fp1,
F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3,
P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8,
FT10, FC6, FC2, F4, F8, Fp2, i.e., on a broad scalp cov-
ering. The signal was grounded at Fpz and the reference
was placed on Fz during recording. During offline anal-
ysis, the data was re-referenced to common average ref-
erence. In order to decode aesthetic preference for visual
art from the EEG signal, the following signal processing
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pipeline was used and validated with a 10-fold shuffled
an stratified cross-validation:
First we manually inspected the data to reject bad chan-
nels. Then, we applied a 1-100Hz 4th order Butter-
worth bandpass filter and a notch filter at 50 Hz to re-
move line noise. Afterwards, we created fixed epochs
of 1s length and cleaned these epochs using a local Au-
toreject [17]. These cleaned epochs were then fed into
an Extended Infomax Independent Component Analysis
[18]. The resulting independent components were clas-
sified with ICLabel [19]. Then, components labeled as
artefacts were excluded from the components used to re-
construct a clean signal from the raw EEG.
Then, trial epochs were extracted from 0.1-10s (t=0s be-
ing the start of the artwork display) during stimulus pre-
sentation and baseline corrected from -4s to -0.01s before
stimulus appearance.
Balanced Like and Dislike classes (for subsequent 2-class
classification of aesthetic experience) were determined
by partitioning the epochs based on quantilization of sub-
jective ratings inspired by Strijbosch et al. [20]. We
chose to include the data from the 45% most liked and
the 45% most disliked artworks which resulted in a mar-
gin of 10% medium liked artworks that were not included
in further analyses. This partitioning procedure resulted
in balanced classes with 55-58 epochs per class. Thus,
we defined aesthetic preference decoding as a 2-class su-
pervised classification problem with an estimated chance
level (α=0.01) of 60.9% [21]. Classification accuracies
above this threshold can be considered to perform signif-
icantly better than random chance.
We extracted discriminant features of the EEG signal for
classification with FBCSP-sLDA. During the computa-
tion of the spatial filters, covariance matrices where esti-
mated using Oracle Approximating Shrinkage Estimator
[22]. A bank of 8 filters was used with 4th order Butter-
worth bandpass filters in the following frequency bands:
1-4Hz, 4-8Hz, 8-13Hz, 13-16Hz, 16-20Hz, 20-30Hz, 30-
50Hz, 50-70Hz.
Note that EEG analyses are often done with a cutoff at
30Hz in order to remove artefacts. However, higher fre-
quencies above 30Hz have been shown to contain dis-
criminative information about aesthetic experience [20].
Therefore, we decided to include higher frequency bands
in our analyses. For each of these band-pass filter, 6
CSP spatial filters were learned from the train set and ap-
plied on the test set during each global cross-validation
fold. After spatial filtering, log-transformed bandpower
features were extracted. For each cross-validation fold,
optimal features were selected using Recursive Feature
Elimination [23] with a local 5-fold shuffled and strati-
fied cross-validation (inner cross-validation) on the train-
ing set data of that fold (from the outer cross-validation).
The selected features were then fed into a sLDA classifier.
Aesthetic preference decoding performance was evalu-
ated by computing the mean test accuracy over global
cross-validation folds for each subject. In addition, we
also ran a 10-fold shuffled an stratified cross-validated

CSP-sLDA classification for each band-pass filter indi-
vidually, in order to investigate the discriminatory power
of each frequency band.

RESULTS

Figure 3: Mean aesthetic preference FBCSP-sLDA decoding
accuracy for all subjects

We analysed the aesthetic preference decoding perfor-
mance in term of mean classification accuracy, for this
2-class BCI. Mean FBCSP-sLDA classification perfor-
mance with feature selection for all subjects is shown in
Figure 3. The overall mean decoding performance was
0.798 ± 0.162 %.
Classification on individual band-pass filters performed
much worse and well below the estimated chance level
on average with a mean accuracy of 0.541 ± 0.052 and
showed a large variability across subjects. Figure 4 shows
the variability in mean classification performance across
subject for different band-pass filters.

Figure 4: Mean aesthetic preference CSP-LDA decoding accu-
racy for individual frequency bands across subjects

DISCUSSION

Overall, FBCSP-sLDA classification yielded surprisingly
good results that were better than chance for most partic-
ipants. Only for one subject, classification performance
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was below the estimated chance level of 60.9%. The
relatively high classification accuracy suggests that EEG
single trial decoding of aesthetic preference is feasible.
Furthermore, the findings that combining features from
different frequency bands performs best support the idea
that aesthetic experiences involve multiple components.
Still, it remains possible that such relatively high clas-
sification performance relies, at least partly (and despite
our artefact correction procedure), on movement artefacts
in the EEG signal, as body movements can be informa-
tive of aesthetic experience [24]. In the following para-
graph we will discuss possible correlates of those fre-
quency bands that performed above chance for at least
one subject: Oscillations in the alpha band were most
informative which could be related to visual processing,
but might also be generated by eye movements. Theta
band features also seemed to contain some discriminatory
information which might be due to the activation of the
Default Mode Network during aesthetic experience [25].
Yet, theta band modulations can also be produced by eye
blinks [26]. Low and mid beta frequencies exhibited the
next best mean performance and have been implicated in
emotional processing during art perception [27]. Finally,
features in the gamma bands also performed relatively
well for some subjects. Although, gamma bands are fre-
quently excluded from EEG analyses, they have been im-
plicated in aesthetically moving experiences [20]. How-
ever, both beta and gamma frequencies are also known to
be commonly affected by muscular activity [28].

future work:
Aesthetic preference decoding with EEG BCIs could po-
tentially be improved by using more advanced BCI clas-
sification algorithms, such as Deep Learning [29] or Rie-
mannian Geometry-based classifiers [30]. Furthermore,
the inclusion of features from other physiological modali-
ties such as electrodermal activity, heart rate or eye move-
ment might increase classification performance [31].
Although we report good performances for offline sin-
gle trial aesthetic preference decoding with passive BCI,
bridging the gap towards online classification remains
challenging. A major limitation remains the development
of the calibration phase, as we do not necessarily know
a user’s aesthetic preferences beforehand which compli-
cates the selection of optimal art stimuli in the train-
ing data during calibration. Potentially, statistical im-
age properties of the artworks that have been correlated
with subjective ratings [32] could inform stimuli selec-
tion in order to train a generalizable aesthetic preference
decoder.

CONCLUSION

We reported the first neuroaesthetic study using tested
BCI algorithms for single-trial aesthetic preference de-
coding from EEG. Our results revealed better than chance
classification accuracies for most subjects in discriminat-

ing preferred vs non-preferred artwork, using a FBCSP-
sLDA classification pipeline. Individual bands analyses
suggested that the alpha, theta, high beta and gamma
bands were the most informative.
Although further work is required to develop online aes-
thetic preference decoding BCIs, the promising classifi-
cation results above chance level suggest that decoding
of aesthetic experience is feasible with EEG-based BCIs.
Future work should focus on improving the accuracies
obtained as well as in better identifying the possible con-
tributions of cortical EEG and possibly of muscle or eye
artifacts to the obtained decoding accuracies.
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ABSTRACT
Brain-Computer Interface (BCI) performance suffer from
various variability sources, including intra-subject factors
such as mental fatigue. While frequently measured using
subjective reports, mental fatigue can also be assessed via
blink parameters extracted from electro-oculography sig-
nals. To our knowledge, no study has yet evaluated blink
parameters during motor imagery (MI) BCI use to assess
the potential development of mental fatigue. In this study,
the blinks of 23 MI-BCI participants were analyzed con-
currently with subjective reports and BCI performance.
Our results showed that blink parameters were correlated
with neither MI-BCI performance nor subjective reports.
However, they revealed a positive correlation between
time-on-task and both blinks number and mean duration.
Similarly, subjective fatigue was correlated with time-on-
task. This suggests that blinks parameters may be useful
for BCI user monitoring, although their relationship with
BCI performance and fatigue needs further studies. Alto-
gether, this study paves the way towards a better under-
standing of mental fatigue during BCI use, and in finding
solutions to mitigate it.

INTRODUCTION

Intra-user Brain-Computer Interface (BCI) performance
is known to fluctuate due to the interaction of several
potential sources of variability including context, time
and day, as well as user engagement and fatigue [1–6].
Mental fatigue1 has been long known to impact human
performance and engagement in general [7], and has
started to be studied regarding both active and passive
BCI performance in the last decade [8, 9]. The measures
that were used to evaluate user fatigue in those previous
studies were mostly focused on electroencephalography
(EEG) metrics, as well as subjective (i.e. questionnaires)
and behavioral metrics.

Yet, to the best of our knowledge, the ocular behav-
ior metrics that can be extracted from the electro-
oculography (EOG) signal – and which are widely used

1a.k.a., reduced alertness, which arises from growing time-on-task.

for mental fatigue and vigilance characterization [10, 11]
– have never been used to study fatigue during active
BCI operation. Such metrics include blink number,
blink duration, opening and closing velocity, as well as
opening and closing duration [12–14].

Given the lacks identified in the literature, in order to
better understand the development of user fatigue dur-
ing the execution of active BCI tasks, and more precisely
during Motor Imagery (MI) BCI tasks, the present study
investigates the evolution of blinks and their parameters
across MI-BCI runs based on EOG signal analysis. To do
so, a standard motor imagery BCI protocol was used, in
which participants also had to answer questionnaires to
gather subjective reports of fatigue. It was expected that
(i) blink number and duration would increase with runs.
It was also expected that (ii) blink number and parameters
would correlate with BCI performance and subjective re-
ports. The remainder of this paper presents the data used,
the analysed performed, the results obtained and their in-
terpretation.

MATERIALS AND METHODS

Participants:
Twenty-tree (23) participants completed the BCI ex-
periment (10 women/13 men), aged 28.4 ± 6.2 y.o.
Recruitment was limited to volunteer participants aged
18-60 years old, with no history of neurological or
psychiatric disorders, normal (or corrected) vision and
naive MI-BCI users, i.e. using a MI-BCI system for the
first time. Before participating in each study, participants
gave informed consent. The study has been approved
and reviewed by Inria’s ethics committee, the COERLE
(Approval number: 2020-32).

Protocol:
The experiment consisted of 3 experimental MI-BCI
sessions (completed on 3 different days) per participant.
A brief pre-session questionnaire was assessed at the
beginning of each session to measure the participant
altertness. However we did not use this questionnaire for
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this study. Participants were then asked to perform two
short working memory tasks to serve as EEG training
data for a future offline passive BCI study unrelated to
the present paper. The MI-BCI training and use then
started.

The training protocol used for this experiment follows
the standard left and right hand MI-BCI protocol from
TU Graz [15], which comprises two phases: (1) motor
imagery practice to collect data for calibrating machine
learning algorithms (runs 1–4), and (2) closed-loop user-
training with real-time classifier feedback (runs 5–12).
After each of the 12 runs, participants were instructed to
rate their mental state using a 1-10 scale of selected items
from the NASA Task Load Index (NASA-TLX) question-
naire [16] (mental demand, effort and frustration levels),
as well as their subjective mental fatigue. Note that other
items of the NASA-TLX were not used in order to keep
the number of questions to a minimum. The general ex-
periment workflow is illustrated in Figure 1.

Figure 1: Experimental protocol. The orange circles correspond
to the minutes that each part takes. In green rectangles are
the questionnaires, in pastel orange rectangles are the experi-
menter’s instructions, in pink rectangles are the technical pro-
cesses with the cap, in yellow are the EEG recordings.

Figure 2: Organisation and timing of a single MI-BCI trial.

During each run, participants performed 16 trials (8 per
MI-task, presented in a random order) each trial lasting
8s. First a green cross appeared (t = 0s) on the screen,
then an acoustic signal (t = 2s) announced the appearance
of a red arrow (t = 3s). The arrow pointed towards the
task to be performed. (e.g., towards the left for left hand
MI) and remained displayed for 1.25s. From t = 4.25s,
the visual feedback was continuously provided (a blue
bar varying in length according to the classifier output).
The feedback lasted for 3.75s and was updated at 16Hz,
using a 1s sliding window. Positive feedback only was
displayed.

Then the screen turned black again after 8 seconds until

the next trial begin, starting randomly between 1.5 to
3.5 seconds later. (see Figure 2). At the end of the ses-
sion, participants filled-in the post-experiment NeXT-Q
questionnaire [17] (around 5 min). Then, the cap was
removed and participants were debriefed (around 8 min).

EEG and EOG data acquisition:
Participants sat comfortably in a chair in front of a
computer screen. EEG data was acquired using 42 active
scalp electrodes (i.e., F3, Fz, F4, FC5, FC3, FC1, FCz,
FC2, FC4, FC6, C3, C1, Cz, C2, C4, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, P3, Pz, P4, AF3, AFZ, AF4, FC7,
FC8, C5, C6, TP9, TP7, TP8, TP10, PO7, POz, O1, Oz,
O2, PO8, 10-20 system), referenced to the left earlobe,
the ground electrode being placed in FPz position.
The electrooculography (EOG) signals of one eye was
recorded using three active electrodes. Two of them were
located below and above the eye (EOG1 and EOG3) and
one was located on the side of the left eye (EOG2). We
also recorded the electromyographic (EMG) signals of
both hands using two active electrodes located 2.5 cm
below the skinfold on each wrist. Physiological signals
were measured using two g.USBAmp amplifiers (g.tec,
Austria), sampled at 512 Hz, and processed online using
the open-source BCI platform OpenViBE [18]. The
recording room was dimly-lit. The raw signals were
recorded without any hardware filters.

Online BCI Performances:
The metric used for quantifying BCI performances is
the online Trial-wise Accuracy (TAcc), i.e. the default
performance metric provided online in the MI-BCI
scenarios of OpenViBE. TAcc measures the accuracy of
trial classifications, with each trial categorized as either
correctly or incorrectly classified. The classification
outcome for each trial is computed by summing the
signed classifier outputs over all epochs during the trial
feedback period (from t = 4.25 s to t = 8 s of the trial).
A trial is considered correctly classified if the sum sign
matches the required trial label (negative for left hand MI
and positive for right hand MI), otherwise, it is consid-
ered incorrect. For this experiment, online classification
was performed using Common Spatial Pattern (CSP) (3
filter pairs) band power features in 8-30 Hz and a Linear
Discriminant Analysis (LDA) classifier. TAcc for each
run was calculated as the percentage of trials accurately
classified using this methodology. Notably, this metric
utilizes LDA outputs instead of discrete classification
outputs for each epoch. Therefore, TAcc also reflects the
length of the feedback bar participants observed, as it is
proportional to the classifier output. Participants were in-
structed to train to achieve not only correct classifications
but also maximize the length of this feedback bar. Thus,
TAcc considers both aspects, providing a comprehensive
assessment of BCI performance.

EOG signal analysis:
EOG signals were analysed with MNE Python [19],
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a popular EEG and EOG data analysis toolbox that
provides extensive event detection and feature extraction
capabilities, and with NeuroKit2 a Python toolbox for
neurophysiological signal processing with advanced
artefact detection and removal [20].

The processing of EOG signals, to detect blinks and
extract their parameters, was the following, for each run:
(1) Bipolar channel: Creation of a bipolar EOG channel,
EOG1-EOG3, focusing on vertical EOG signals which
should capture blinks to enhance the blink peak detection
with MNE.
(2) Cleaning: Cleaning the bipolar EOG channel using
NEUROKIT eog_clean() function to prepare for eye
blink detection.
(3) Event detection: Detecting EOG events using MNE:
with the preprocessing.find_eog_events() function, to
detect EOG events in the cleaned bipolar EOG channel.
While this function typically enables precise identifi-
cation of eye movements and blinks, its performance
may be compromised by the presence of high amplitude
artifacts, especially when the signal contains significant
noise or bifurcated artifacts. Indeed, such function uses a
threshold on EOG amplitude to detect blinks, this thresh-
old being estimated according to the EOG minimum
and maximum values. To address this challenge, we
implemented a preprocessing step aimed at enhancing
the robustness of EOG event detection.
(4) Winsorization: Specifically, we applied win-
sorization to the raw EOG signal, exclusively on runs
that exhibited significant artifacts. Winsorization is a
technique that limits the influence of extreme values
(here higher than the 95 percentile of the EOG signal)
by replacing them with less extreme values (here the
95 percentile), thereby reducing the impact of outliers
on subsequent analyses. Doing so, we were able to
accurately identify and quantify the overall number
blink events within each run, as confirmed with visual
analysis.
(5) Additional epoching: In addition to the overall
number of blinks per run, we also epoched the runs to
estimate the number of blinks occurring only during
the motor imagery task. This thus provided us with the
number of blinks during MI tasks per run.
(6) Blink features: Then we extracted blink features,
describing the characteristics of the blinks, shedding
light on underlying physiological processes and potential
mechanisms contributing to fatigue. More precisely
We used Neurokit eog_features() function to extract
EOG-related features from each blink of the cleaned
bipolar EOG channel. These features included the blink
duration and the blink Velocity (of eyes closing velocity
denoted as pAVR and eyes opening velocity denoted
nAVR), i.e., the speed at which blinks occur.

Statistical analyses to study the relationship between
blinks parameters, time-on-task, MI-BCI performance
and subjective mental states:

Our goal was to study whether we could identify re-
lationships between the parameters extracted from the
blinks (number of blinks, duration and velocity) and
MI-BCI performance, time-on-task (here measured as
the run index, which increases with time-on-task) and/or
subjective mental states, notably mental fatigue.

To assess these potential relationships, we used repeated
measures correlation (rmcorr) analyses, to determine the
common within-individual association for paired mea-
sures assessed multiple times for multiple individuals.
[21]. Here the repeated measures per subject were the
measures collected across all 8 feedback runs per session
(repeated measures across runs). A total of 27 correlation
analyses were performed: 4 between the number of over-
all blinks and the 4 mental states, 4 between MI-BCI per-
formance and the 4 mental states, 4 between the number
of blinks (overall and in MI tasks only) and time-on-task
or MI-BCI performances, 6 between blinks duration and
the 4 mental states, MI-BCI performances and time-on-
task, and 8 between the mean blink velocity (pAVR and
nAVR), and the 4 mental states and 1 between subjec-
tive fatigue and time-on-task. Thus, all p-values for these
analyses are reported as corrected for multiple compar-
ison with False Discovery Rate (FDR) across these 27
tests.

RESULTS

Relationship between subjective mental fatigue and
time-on-task:
There was a positive correlation between time-on-task (as
measured by the run index) and the subjective mental fa-
tigue, showing that participants tend to report being in-
creasingly more tired as time-on-task with the BCI in-
creases (see Figure 3).

Figure 3: Repeated measure correlation between time-on-task
(measured using run index) and the mental fatigue per partici-
pant, r=0.2, p<0.00001 (one colour per participant).

Relationship between BCI performances and mental
states:
No significant correlation was observed between mental
fatigue, mental demand, and effort with online perfor-
mance measures. However, a slight negative correlation
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was detected (r = −0.138, p<0.005) between the perfor-
mance and the frustration per participant, indicating that
participants with good performance tend to be less frus-
trated (see Figure 4).

Figure 4: Negative repeated measure correlation per partici-
pants between BCI performance in % and the frustration mea-
sured by NASA-TLX, r=−0.1386, p<0.005 (one colour per
participant).

Relationships between number of blinks and BCI per-
formance or mental states:
No significant correlations were found between the
number of blinks observed during the runs and online
performance. Similarly, there were no significant cor-
relations detected between the number of blinks and
the four different subjective mental states (i.e., mental
fatigue, mental demand, effort, and frustration) assessed.

Relationships between blinks parameters and BCI per-
formance or mental states:
First, it should be noted that Neurokit was not able
to extract automatically the blink parameters from all
blinks. Out of 552 runs, Neurokit was able to extract all
the blink parameters for all the blinks of 380 of those
runs. The subsequent results are thus based on 380 runs.

Our correlation analyses revealed that there were no
significant correlations between between blink velocity
(mean pAVR and mean nAVR) per run and the various
mental states. There was no significant correlation be-
tween the mean duration of blinks and the different men-
tal state, except with frustration. There was a negative
correlation between them (r=−0.15, p<0.01), suggesting
that blink duration decreases when frustration increases
(see Figure 5). There was also no correlation between the
mean duration of blinks and MI-BCI performance.

Relationship between blinks parameters and time-on-
task:
A significant positive correlation was observed between
the overall number of blinks per run and time-on-task
(i.e., with the run index) (r = 0.178, p<0.0005), suggest-
ing that for each session, the number of blinks increased
with time-on-task, i.e., with the number of MI-BCI runs
completed (see Figure 6).

Figure 5: Repeated measure correlation between frustration and
the mean duration of blinks, r=−0.15, p<0.01 (one colour per
participant).

Figure 6: Repeated measure correlation between the overall
number of blinks per run and time-on-task (as measured by the
run index) per participant, r=0.178, p<0.0005 (one colour per
participant).

Similarly there was a positive correlation between the
number of blinks during the MI tasks per run and time-
on-task (i.e., run index) (r = 0.176, p<0.0005), suggest-
ing as well that the number of blinks during MI tasks per
run increased with time-on-task, i.e., with the number of
MI-BCI runs completed, in a given session (see Figure
7).
There was a positive correlation between the mean dura-
tion of blinks in a run and time-on-task (i.e., with the run
index) (r = 0.09, p<0.005), suggesting that blinks are be-
coming increasingly longer with time-on-task, i.e., with
the number of runs completed (see Figure 8).

DISCUSSION

Overall, contrary to our initial hypotheses, we did not find
any significant correlation between the number of blinks
or any of the blinks parameters (duration, opening and
closing velocity) and neither online MI-BCI performance
nor with subjective mental states, including fatigue.
However we could find a significant positive correlation
between the subjective fatigue and time-on-task, suggest-
ing that a BCI session is increasingly more tiring as time-
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Figure 7: Repeated measure correlation between the number
of blinks during the motor imagery task per run, and time-on-
task (as measured by the run index) per participant, r=0.176,
p<0.0005 (one colour per participant).

Figure 8: Repeated measure correlation between the duration
of blinks during the motor imagery task and time-on-task (as
measured by the run index) per participant, r=0.09, p<0.005
(one colour per participant).

on-task increases, which confirms subjective reports from
our participants.
Interestingly enough, while the number of blinks or the
mean blink duration were not correlated with subjective
fatigue, they were both significantly correlated (although
with a weak correlation) with time-on-task, as subjective
fatigue did. In other words, both the number of blinks and
the mean blink duration increased with time-on-task with
a BCI. In the literature, both parameters have been related
with mental fatigue [10, 11], although not only. However,
the fact that they were not correlated with subjective fa-
tigue nor with MI-BCI performance raises a number of
questions. It may be that the number and mean duration
of blinks are rather affected, in this context of MI-BCI,
by visual fatigue (the current BCI protocol being based
on visual cues and feedback) rather than by mental fa-
tigue. Another possible interpretation could be that MI-
BCI performance, blink numbers and duration and sub-
jective fatigue have a more complex relationship, possi-
bly non-linear, that is not captured by the linear correla-
tion analyses we performed. Along these lines, it is inter-
esting to note that subjective fatigue was also not linearly

correlated with MI-BCI performance, even though men-
tal fatigue is known to affect EEG and thus possibly BCI
performance [8]. Alternatively, maybe that subjective fa-
tigue and more objective markers of fatigue such as those
based on EOG as studied here significantly differ from
each other. This will need to be studied in more details in
the future.

An unexpected finding was that blink duration signif-
icantly decreased with increased subjective frustration
during MI-BCI use. A possible interpretation could be
that this frustration is most likely due to poor MI-BCI
performances (since frustration and MI-BCI performance
were also correlated), and that such poor performance
motivates the (frustrated) users to focus more on the task,
leading to shorter blinks.

CONCLUSION

In this paper, our aim was to study whether blink pa-
rameters, such as their number, their duration or veloc-
ity, could be used to monitor fatigue during MI-BCI use,
and to study whether they were related to subjective fa-
tigue, MI-BCI performance and time-on-task during MI-
BCI use. To do so, we analysed the data of of 23 par-
ticipants, who performed 3 sessions of 12 runs each (in-
cluding 8 runs with real-time feedback) of MI-BCI train-
ing. We studied the (linear) relationships between these
participants’ blink parameters estimated from their EOG
signals and their MI-BCI performance, subjective men-
tal states (including fatigue, measured after each run) and
time-on-task.

Altogether, our analyses did not reveal any significant
correlation between these blinks parameters and neither
MI-BCI performance nor subjective mental states. They
did reveal a positive correlation between time-on-task and
both the number of blinks and the mean blink duration.
Similarly, subjective fatigue significantly correlated with
time-on-task.

Overall, while these blink parameters did not prove as ac-
curate as expected to monitor mental fatigue during MI-
BCI use, they do reflect time-on-task and may thus still
be useful to consider for user monitoring during MI-BCI
use. Additionally, the results obtained also call for fur-
ther studies to better understand the link between MI-BCI
performance, subjective measures of fatigue and EOG-
related blink parameters.

Future works could consider additional markers of fa-
tigue, e.g., measures of saccade, which may be more re-
liable for cognitive state monitoring than blinks [14], or
non EOG markers, e.g., cardiac markers or even directly
EEG markers of fatigue [8]. In conclusion, this study
paved the way towards acquiring a better understanding
of mental fatigue in the context of MI-BCI use, and there-
fore in finding solutions to mitigate such fatigue to in-
crease user engagement and performance.
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ABSTRACT: Attempted movements have recently 

become common in invasive studies as a way to send 

commands via BCIs and have been successfully 

employed in some studies of neurorehabilitation using 

noninvasive BCIs. Nevertheless, they are still far less 

common in noninvasive BCIs than motor imagery. We 

proposed a hypothesis that attempted movements can be 

more compatible with the interaction with the external 

world than imaginary movements and therefore may 

help to use BCIs more effectively. The hypothesis was 

tested in 15 healthy participants who were asked to 

make prosaccades, which represented an external task, 

and quasi-movements (movement attempts minimized 

down to complete extinction of related muscle 

activation), which were used as a model of attempted 

movements. Preliminary results of the study were 

mostly in line with the predictions, although more 

studies are required for more definite conclusions. The 

study also may be considered as a new demonstration of 

the potential of quasi-movements, a very little explored 

phenomenon, for BCI research. 

 

MOTOR IMAGERY IN BCI 

 

Motor imagery based brain-computer interfaces (MI 

BCIs) [1] employ the sensitivity of the EEG 

sensorimotor rhythms (mu rhythm and sensorimotor 

beta rhythms) to the imagination of movements and are 

currently among the most popular noninvasive BCIs. 

Their accuracy is rather low but can be improved to 

some extent through training [2]. In addition to assistive 

technologies, application of MI BCI to 

neurorehabilitation, especially post-stroke rehabilitation, 

was addressed in many studies (for reviews, see [3, 4]).  

     The case of hybrid eye-brain control – Among other 

attempts to improve MI BCI efficiency are combining it 

with gaze-based control. Recently, the success of the 

Apple Vision Pro headset demonstrated that the 

combination of gaze-based control with hand gestures 

can be effectively used in AR/VR even by healthy 

individuals [5]. However, gaze-and-MI-BCI control so 

far was successful mostly when the use of gaze and 

EEG modalities were relatively independent [6, 7], 

while their tight integration proved difficult [8, 9].  

 

MOVEMENT ATTEMPTS IN BCI 

 

Like motor imagery, movement attempts in paralyzed 

individuals are accompanied by distinct 

desynchronization of their EEG sensorimotor rhythms, 

with spatiotemporal pattern similar to observed when a 

healthy person makes a real movement. In some early 

studies of BCI-based neurorehabilitation patients were 

asked to attempt to make movements, rather than to 

imagine them (e.g., [10]). This approach has again 

attracted certain attention recently, when several studies 

demonstrated better outcomes for attempted compared 

to imagined movement BCI (see [11, 12] for meta-

analyses). Attempts to move were also successfully 

used by patients in a number of recent high-profile 

studies of invasive BCIs developed for assistive 

purposes movement [13, 14, 15, 16] and even in 

combination with gaze-based cursor control, which was 

implemented in the first clinical trial with the 

endovascular BCI [17]. 

 

CONTROVERSY BETWEEN EXTERNAL 

ATTENTION AND IMAGERY 

 

In active BCIs, either for assistive or rehabilitation 

purposes, feedback from a BCI plays an important role, 

informing a patient about the current course of action, 

helping them to correct control strategies and enabling 

effective training. However, focusing on imagery means 

that attentional resources are directed to a mental, 

internal task, and a BCI user needs to divide their 

attention between it and feedback that comes from the 

external world. This need to divide attention remains 

when not only visual but also haptic or auditory 

feedback is used, and even though a BCI is normally 

controlled via kinesthetic imagery (visual imagery is not 

effective for modulating sensorimotor rhythms). In any 

case, with the only exception for direct brain 

stimulation, a BCI is activated by merely mental actions 

and the feedback is provided via sensory stimulation. 

Moreover, even when the feedback is mostly haptic 

(e.g., in exoskeleton-assisted post-stroke rehabilitation), 

visual attention still may be strongly involved. The 

controversy seems especially severe when a MI BCI is 

combined with gaze-based control, where gaze should 

be intentionally controlled at the same time when motor 

imagery is executed. 

Recent psychophysiological studies indicate that 

dividing attention between internal and external tasks 

and instructions for gaze during internal tasks may 

indeed hinder performance [18, 19] (see also references 
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in [19]). It was also found that an imagery task took 

longer time during instructed eye fixation than under 

free eye movement condition [20]; note that gaze 

control and external attention are strongly connected. 

 

WHY ATTEMPTED MOVEMENTS MAY BE A 

SOLUTION? 

 

As we noted above, growing evidence indicates that 

attempted movements may work better in BCI than 

motor imagery. In the view of the conflict between 

external and internal tasks, one possible reason could be 

that attempted movements are not a typical internal task. 

In an attempt to make a movement a healthy individual 

is intending an interaction with the external world. A 

paralyzed individual knows that the attempt will not 

lead to such interaction, but their intention and effort 

may not differ dramatically from a healthy person’s 

intention and effort. The ability to imagine a movement 

may be much different, as it developed in the course of 

evolution as an ability to simulate reality, not to actually 

interact with the external world. 

 

QUASI-MOVEMENTS AS A MODEL OF 

MOVEMENT ATTEMPTS FOR STUDIES IN 

HEALTHY PARTICIPANTS 

 

Studying attempted movements in healthy participants 

is not a trivial task, since normally attempts lead to 

actual movements, and related sensory activation 

changes the EEG dramatically. Constraining a limb 

(e.g., [21]) changes the pattern of this afferent stream, 

but evidently cannot exclude sensory activation during 

attempts. Temporal artificial paralysis is an effective 

solution [22], but this approach cannot be widely used.  

Fortunately, a way to teach healthy participants to make 

movement attempts without muscle activation exists. 

Such movement attempts, made by non-paralyzed 

individuals without actual movement and muscle 

activation, are called quasi-movements (QM) [23]. They 

appear when a person is asked to make smaller and 

smaller movements and to further weaken the attempts 

to a degree when the electromyogram (EMG) becomes 

indistinguishable from rest level. Importantly, the EEG 

activation pattern remains in QM similar to that in overt 

movements and in IM, and activation in QM is stronger 

than in IM [23]. QM are not an ideal model of 

attempted movements, because they model only weak 

movement attempts, and, even more importantly, 

require special attention to keep them weak. 

Nevertheless, due to the lack of good alternatives it 

might be still important to study this model. 

Recently, we showed that QM provides stronger 

activation than IM independently of residual muscle 

activation [24]. Moreover, our participants mostly 

reported that their intention in QM was to make a 

movement rather than to imagine it [25], which 

confirms the assumption by [23] that they may serve as 

a model for attempted movements. However, to our 

knowledge, no study of possible differences between 

QM (as well as other types of attempted movements) 

and IM from the point of view of internal vs. external 

orientation of cognitive resources has been undertaken 

so far. 

 

INTERNAL OR EXTERNAL TASK? AN 

EXPERIMENTAL ASSESSMENT 

 

No standard procedure was adopted so far for assessing 

whether a mental task is more internal or external. In 

[19] interference between internal, mental tasks 

(arithmetic and visuospatial) and an external task 

(prosaccades, i.e., saccades to a target, in the presence 

of a distractor) was assessed quantitatively. We decided 

to use their experimental design, with some 

modifications, to compare kinesthetic IM and QM in 

terms of their external or internal nature. More 

specifically, we asked our participants to make 

prosaccades at the same time intervals when they 

performed IM or IQ, to assess the degree of interference 

in each case (presumably related to the need to divide 

attention between the tasks).  

     Study hypotheses – We hypothesized that under QM 

condition, compared to IM condition, subjective 

difficulty will be lower, accuracy of eye movements 

will be higher. In addition, for the case if subjective 

difficulty indeed were lower or same in QM as in IM, 

we expected that EEG modulation would be more 

pronounced under QM than in IM. In other words, we 

expected that IM, as a clearly internal task, will interfere 

more with prosaccades (an external task) than QM, due 

to the more external nature of QM compared to IM. 

 

METHODS 

 

     Participants – 15 healthy volunteers (8 female; age 

18 to 38, median 23) participated in this study after 

signing an informed consent. Data from four of them 

were excluded from the analysis due to eye tracking 

issues or other technical issues. 

     Apparatus and software – Stimuli were presented at 

a 60 Hz 24” AOPEN 25XV2Q monitor with 1920х1080 

resolution in front of a participant. Gaze data were 

acquired at 1000 Hz rate with EyeLink 1000 Plus eye 

tracker (SR Research, Canada). 64-channel EEG, one-

channel electromyogram (EMG) from m. abductor 

pollicis brevis and a signal from a photo sensor on the 

screen (used to precisely synchronize with visual stimuli 

presentation) were recorded at 1000 Hz sampling rate 

with 0…300 Hz passband using the NVX136 DC EEG 

amplifier (Medical Computer Systems, Moscow, 

Russia). EMG was monitored online as a raw signal and 

after transforming with the Teager-Kaiser energy 

operator (to highlight deviations from baseline level). 

Stimuli presentation, data acquisition, synchronization, 

online processing and recording were done with 

Resonance platform [26] and additional modules written 

in Python.  

     Experiment design – Two sessions were run on 

different days. In the first session, participants were 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-080

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

455



introduced to the basic movement (right thumb 

abduction, as in [23], but made in triplets – like in [24], 

but self-paced) and trained to make IM and QM 

according to procedure by [23] with modifications 

described in [24]. The EEG was recorded under single-

task QM and IM. The single saccade task (ST) and the 

dual tasks (ST combined with OM, IM and QM) were in 

the second session, with the order of IM and QM dual 

tasks randomized over the group (contrast between 

these two dual tasks was the main part of the 

experiment, while the other conditions provided various 

additional data). In both sessions, the EEG was also 

recorded under overt movements of the same type and 

under visual task, to obtain data for CSP spatial filter 

training; the visual task also helped to regain a baseline 

sensorimotor rhythm level (see [24], for details).  

     Procedure – All participants were naive to QM. 

Following [23], we did not reveal to them that they did 

not actually make movements (their right hand was 

covered with an opaque case). QM and IM quality was 

controlled using online EMG control (if EMG increase 

was observed, participants were asked to relax in IM or 

to further reduce QM) and using offline EEG analysis. 

Trial structure is presented in Fig. 1A for single tasks 

and in Fig. 1B for dual tasks. Targets and distractors for 

the ST were presented at the same distance from the 

fixation cross at random positions, but close to each 

other, following [19]. 

 

A 

 
B 

 
 

Figure 1. Trial structure in (A) single and (B) dual tasks. 

In the beginning of each dual-task trial a fixation cross 

appeared in the center of the screen. After 2 s a sound 

signaled to start the sensorimotor task (OM, IM or QM). 

Participants were asked to fixate on the cross until (after 

a random time interval) a target and a distractor 

appeared (for half of the group, they were circle and 

square, relatively, and for another half, vice versa), 

when they had to make a saccade to the target as soon 

as possible. As in [19], they were free to continue the 

internal (here, sensorimotor) task at this time or to 

return to it after making a saccade on the target but had 

to complete it anyway. (See Fig. 1 for additional 

details). 

     EEG and EMG analysis followed [24]. As the 

baseline for ERD/ERS computation, however, here we 

used a 500 ms interval preceding the fixation cross 

presentation. We also did not use here special 

procedures for removing possible contribution of 

residual muscle activation to brain activation, because 

in the current study the EMG was stricter controlled 

during the experiment than in [24], and because we 

already shown in [24] that small residual EMG 

increases in some trials in this task are not related to any 

substantial EEG effect. We refrained from assessing 

performance of BCI classifiers on the EEG data, 

because it would very likely just mirror the effects 

observed in the averaged data and because we plan to 

assess classification performance in an online hybrid 

BCI experiment, which could serve as a much more 

relevant model. 

     Eye movement analysis – Fixations were considered 

maintained on the fixation cross in the dual-task trials if 

they did not depart from it further than 1° before the 

saccade. Saccade latency was computed as time 

between target presentation onset and saccade onset. 

Saccades were considered as landing on a 

target/distractor if they ended within 2° from them.  

 

RESULTS 

 

     Task difficulty – Participants were asked to indicate 

whether IM+saccades or QM+saccades condition was 

more difficult, using a visual analogue scale (VAS). 

With 0 corresponding to more difficult QM+saccades 

and 1 to IM+saccades, M±SD was 0.66±0.34, 

median=0.83. Only one participant found no difference 

between the conditions, and four reported QM+saccades 

as more difficult; importantly, all those four had 

difficulties in mastering the QM, and three of them 

reported that the problem for them was avoiding 

pronounced movements.  

     Gaze performance in dual-tasks with IM was only 

slightly (insignificantly, according to Wilcoxon paired 

test) lower than in dual-tasks with QM, although the 

difference was in favor of QM for all three analyzed 

indices (Figure 2). 

     EEG results – Group averaged time-frequency plots 

for strongest individual contralateral alpha band sources 

of the EEG sensorimotor rhythm are shown in Fig. 3. 

Stronger alpha band desynchronization was observed in 
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QM compared to IM dual task conditions (compare 

QMST vs. IMST in Fig. 3). 

 

 

 

 
 

Figure 2. Gaze performance in the saccade task and in 

the dual task conditions (N=11). 

 

DISCUSSION 

 

The experimental results reported above should be 

considered as preliminary, due to the limited number of 

participants and incomplete analysis. All observed 

tendencies were in favor of our hypotheses, i.e., were in 

line with the assumption that attempted movements, 

modeled here with quasi-movements, are more 

compatible with intentional gaze use than kinesthetic 

motor imagery. However, most differences did not 

reach statistical significance. We are planning to collect 

data from 10 more participants and to refine the 

analysis, to get to more definite conclusions. Still, at the 

current stage attempted movements were confirmed to 

be at least as effective as motor imagery commonly 

used in noninvasive BCIs.  

Note that quasi-movements are a most minimized form 

of attempted movements, requiring lowest “motor” 

effort (apart from additional cognitive control required 

to prevent movement). To fully understand the potential 

of attempted movements, it also may make sense to 

explore them more in paralyzed patients, amputees, and 

using the constrained movement paradigm [21], where 

effort can be much stronger. Nevertheless, studies of 

quasi-movements, featured with an unique combination 

of attempt to move and absence of any physical effect in 

people that are able to make movement [23, 25], may 

significantly enrich the whole picture. 

Interestingly, the most common complaint from our 

participants about the quasi-movements was that it was 

difficult for them not to make a pronounced movement. 

Note that in paralyzed patients this is not an issue in 

most cases, especially in neurorehabilitation, where 

making a real movement instead of just trying to make 

it is the goal of training.  

Attempted movements have certain features that are 

helpful from a practical point of view. In particular, they 

can be more easily explained to many paralyzed 

individuals than kinesthetic imagery (its training often 

starts in healthy participants from making overt 

movements!) and seem to require far less training to 

produce clear EEG patterns. However, studies are 

needed to understand if attempted movements, 

including quasi-movements, can elicit the same or 

higher EEG effects as imagery after significant time of 

practice. For quasi-movement, it is also important to 

study various movements: so far, only thumb abduction 

was explored in all studies, partly due to the assumed 

need to precisely control EMG (but this may be not 

really important, as our previous study showed no 

contribution of residual muscle activation in quasi-

movements to EEG effects [24]). 
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Figure 3. Group (N=11) median-averaged time-frequency plots per condition and differences between them. Individual 

data were computed for strongest individual CSP-derived contralateral sources for EEG alpha frequency band (see [24] 

for the details of the analysis). 

 

CONCLUSION 

 

We proposed a hypothesis that attempted movements 

can be more compatible with the interaction with the 

external world than imaginary movements, the mental 

task commonly used in noninvasive BCIs. Preliminary 

results of its testing using prosaccades as an example of 

external task and quasi-movements as a model of 

attempted movements were mostly in line with its 

predictions, suggesting that attempted movements 

should be probably considered at least as an important 

supplement of imagery in BCIs. More studies, however, 

are needed for more definite conclusions. The study also 

may be considered as a new demonstration of the 

potential of quasi-movements, a very little explored 

phenomenon, for BCI research. 
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ABSTRACT: Brain-Computer Interfaces (BCIs) have
emerged as vital tools in understanding and assisting in-
dividuals with LIS due to neurological diseases such as
ALS. This study focuses on the and feasibility of recog-
nizing spoken syllables from implanted HD-ECoG sig-
nals as a platform for Speech BCIs. We propose a hy-
brid deep learning model, which uses a modified EEG-
Net as a feature extractor coupled with an LSTM. A pri-
mary challenge in this domain is the limited quantity of
ECoG data. To address this challenge, we employ win-
dow clipping as a data augmentation technique, effec-
tively increasing the amount of training data available for
the model. Using a dataset comprising recordings from
six subjects implanted with HD-ECoG, we evaluate our
proposed method. Results indicate a notable improve-
ment in classification accuracy achieved through the de-
signed hybrid DL model. Furthermore, our findings elu-
cidate the distinctive impact of data augmentation meth-
ods in further enhancing the performance of our designed
model.

Keywords: HD-ECoG, ECoGNet, CNN, LSTM, Data
Augmentation

INTRODUCTION

The realm of Brain-Computer Interface (BCI) systems
has revolutionized human-computer interaction, enabling
direct communication pathways between the human brain
and external devices. Language BCI represent a fron-
tier in assistive technology, designed to empower indi-
viduals with communication disabilities by translating
recorded brain activity into language. Electrocorticogra-
phy (ECoG) due to its capabilities in recording a wide
range of frequency and also high density recording of
a specific areas of the brain which are responsible for
specific cognitive task has been widely used in this re-
gard. In recent years, researchers have made many ef-
forts to leverage various methods to decode language,
particularly deep learning methods as the most promis-
ing method to this aim ( [?], [?], [?]). While various
deep learning architectures have demonstrated success
in decoding of spoken phonemes, words, and sentences
with acceptable performances, the task of syllable de-
coding poses greater challenges. Unlike words, which
vary in length and possess distinct sounds, syllables typ-

ically exhibit uniform length and share acoustic features.
Consequently, decoding syllables presents a formidable
hurdle, as neural networks cannot rely solely on length
or distinctiveness for classification. Also, syllables can
involve overlapping combinations of phonemes making
them useful building blocks for language but also less
distinct. Despite the complexity, decoding syllables is
pivotal, serving as a foundational step towards decipher-
ing spoken words. Addressing this challenge necessitates
the development of robust and adaptable neural networks
capable of enhancing decoding performance, particularly
for individuals with limited data. By exploring the poten-
tial of such networks, we aim to push the boundaries of
language decoding in BCIs, fostering greater inclusively
and effectiveness in communication assistance technolo-
gies.
EEGNet efficiently extracts temporal features reflecting
short and long-term changes in brain activity. While EEG
and ECoG measure brain electrical potential differences
using electrodes, they differ in invasiveness and spatial
coverage [?]. EEG, non-invasive, captures broader spa-
tial coverage with lower density, while ECoG, invasive,
offers higher density with narrower spatial coverage. De-
spite these differences, both methods share preprocess-
ing and feature extraction techniques, often utilizing fre-
quency analysis. Thus, deep neural networks proficient
in extracting frequency information from EEG data could
enhance ECoG analysis.
Peterson et al. [?] introduced a modified version of EEG-
Net tailored for ECoG, incorporating a mapping layer
from individual ECoG electrode positions to a 1D in-
put space. While their approach yielded improved results
over traditional EEGNet in binary classification tasks, we
sought to explore an alternative mapping paradigm. Thus,
we directly adapted EEGNet to investigate this alternative
approach.
Our mapping concept involves translating the inherent 2D
structure of ECoG data into a standardized grid space,
aligning native electrode coordinates. Leveraging this
spatial input in 2D, we have tailored a modified variant
of EEGNet specifically optimized for the unique charac-
teristics of ECoG data. This adapted network, denoted as
ECoGNet, maintains a parallel block structure to EEG-
Net while accommodating the intricacies of ECoG signal
processing.
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An intriguing progression entails merging CNN and
LSTM networks to build hybrid architectures. This syn-
thesis facilitates the concurrent extraction of spatial and
temporal features, correspondingly. This novel approach
bears substantial potential for augmenting the capabilities
of Deep Learning [?, ?, ?].

Utilizing Deep Learning for ECoG signal classification
faces challenges due to limited dataset sizes, particularly
in Motor Imagery analysis. K-Fold Cross Validation (K-
Fold CV) addresses this issue by partitioning data into
’K’ subsets, enabling robust model training and evalua-
tion. Hewaidi et al. [?] leveraged K-Fold CV to enhance
their methodology, integrating variational autoencoders,
deep autoencoders (DAE), and CNNs for EEG motor im-
agery classification. Recent literature [?] introduces two
key K-Fold CV methods: inter-subject and intra-subject,
providing insights into model performance across sub-
jects and within individual subjects, respectively.
Data augmentation methods offer a potent solution to
the challenge of limited dataset sizes in Deep Learning.
By expanding the training data, these techniques bolster
classification stability and accuracy, enabling models to
generalize better to new datasets [?]. Moreover, data
augmentation addresses class imbalance issues, crucial
for classification tasks. Techniques such as geometric
transformations and noise introduction effectively diver-
sify datasets, enhancing model robustness. The utiliza-
tion of sliding windows is a prevalent data augmentation
technique across various domains. In neonatal seizure
detection, O’Shea et al. [?] employed overlapping win-
dows, with 8-second trials and 50% overlap, to augment
seizure instances within EEG signals. Kwak et al. [?] ex-
plored different shift lengths, ranging from 10 ms to 60
ms within 2-second windows, revealing superior perfor-
mance with shorter shifts.
In this paper, we present a comprehensive approach to
EEG signal classification, leveraging deep learning mod-
els and innovative data augmentation techniques. We be-
gin by introducing the analyzed data in the Data and Ma-
terials section, followed by an explanation of the used
deep learning architectures. Subsequently, we describe
our designed model and detail the methods employed to
address the inherent challenges posed by limited dataset
sizes. Moving forward, the Results section showcases
the outcomes of implementing our model, with particu-
lar emphasis on the impact of utilizing data augmenta-
tion methods. Finally, we conclude by summarizing the
project’s findings and highlighting avenues for future re-
search and development in EEG signal classification.

DATA AND MATERIALS

Data and Preprocessing: The dataset was collected at
UMC Utrecht and comprises recordings from six sub-
jects. Each subject underwent different trials, and the
electrode configurations varied among subjects. Some
subjects contributed 180 trials, while others had 90, and
due to data collection errors, certain trials were elimi-

nated from the valid dataset. Moreover, the number of
electrodes differed among subjects, with some recorded
using 128 electrodes and others with 64 electrodes. It’s
worth noting that not all electrodes provided valid sig-
nals, as some were too noisy to convey useful informa-
tion. The properties of the dataset are summarized in ta-
ble 1.
The locations of the electrode grids for all participants
are illustrated in Figure 1. Due to various restrictions
and limitations, such as individual anatomical variations
and positioning constraints during data collection, the
electrode placements vary in their standard Montreal
Neurological Institute (MNI) coordinate system locations
across subjects. Here the electrode locations are deter-
mined based on spherical components (Phi and Theta),
with the center of the component aligning with the center
of the brain.

Table 1: Summary of the data of all participants

n. actual/valid Sampling n. actual/valid
Participant trials Freq Electrodes

S01 180/177 2000 128/128
S02 180/173 512 64/52
S03 90/85 2000 128/125
S04 90/89 2000 128/120
S05 90/86 2000 128/121
S06 90/87 2000 128/109

Figure 1: Electrode Grid Placements for Participants

The task entails conducting trials where participants utter
one of nine distinct syllables: “mi”, “mu”, “ma”, “ki”,
“ku”, “ka”, “zi”, “zu”, and “za”. These syllables ex-
hibit similarities in their articulation and serve as the nine
classes we seek to classify. The trial protocol includes
randomization of these syllables interspersed with occa-
sional rest trials. Participants are prompted on the screen
to perform either 10 or 20 repetitions of each syllable.
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The subjects performed the task multiple times leading
to a range in trails from 180 trials, to 90 over subjects,
and due to data collection errors, certain trials were elimi-
nated from the valid dataset.
Two crucial time points are defined: Cue time marks
the initiation of monitoring for the intended syllable, and
Voice Onset Time (VoT) indicates when it becomes dis-
cernible that the participant starts articulating the sylla-
ble. Due to individual differences, participants initiate
pronunciation after different durations following the Cue
time. Additionally, the duration from VoT varies depend-
ing on the syllable and the participant’s capabilities.
To standardize trial durations across participants and syl-
lables, a fixed duration of 1 second is set starting from
VoT, recognized as the most informative segment of the
trial.

CNN: Convolutional Neural Networks (CNNs) have
garnered considerable acclaim for their adeptness in ex-
tracting robust spatial features from images through deep
learning. The architectural underpinnings of CNNs en-
sure spatial robustness, which revolves around three piv-
otal elements: local receptive fields, convolutional layers,
and pooling layers. By employing small receptive fields,
convolutional filters adeptly capture fundamental visual
features from distinct regions of the input image. These
extracted features undergo progressive amalgamation and
enhancement across subsequent layers to discern higher-
level features. However, the insertion of pooling layers
following convolutional layers, while essential for pre-
venting overfitting and reducing spatial dimensions, can
potentially entail a loss of precise spatial information—a
concern warranting attention.

Figure 2: EEGNET Architecture

LSTM:
The LSTM architecture revolves around three primary
states: the cell state (Ct−1,Ct), the input state (Xt and
ht−1), and the output state (ht). Additionally, LSTM in-
corporates four crucial gates: the forget gate ( ft ), the in-
put gate (it ), the new memory gate (C′t), and the output
gate (Ot ). These gates play pivotal roles in regulating in-
ternal operations within the LSTM.
The cell state serves as a memory reservoir that facili-
tates information flow across LSTM units. Each LSTM
unit features skip connections in the form of gates, which
intricately control the inflow and outflow of information
to and from the cell state. Specifically, the forget gate
discerns which information to retain or discard from the
prior cell state, while the input gate governs the integra-

tion of new information.
The new cell state is crafted by merging the previous cell
state with inputs from the input gate and the new mem-
ory gate. Finally, the output gate oversees the information
contributing to the LSTM unit’s output. Leveraging these
architectural components, including gates and memory
units, empowers the network to capture and retain per-
tinent information essential for effective learning.
The LSTM’s prowess in managing long-term dependen-
cies underscores its versatility and efficacy across a spec-
trum of deep learning applications.

MODEL ARCHITECTURES (HYBRID CNN/LSTM
APPROACH)

To effectively capture the intricate spatial and tempo-
ral characteristics inherent in ECoG signals, we pro-
pose a sophisticated hybrid neural network architec-
ture that seamlessly integrates Convolutional Neural Net-
work (CNN) and Long Short-Term Memory (LSTM) net-
works. This hybrid approach combines the robustness of
CNNs in spatial feature extraction with the proficiency of
LSTMs in modeling sequential data, thereby augmenting
the analysis and classification of ECoG signals.

In this work we have used EEGNET model as the CNN
component of the designed hybrid model. we adopt the
EEGNET model as the foundation for our CNN com-
ponent, tailored with necessary modifications to suit the
dimensions of our ECoG data (16/8,8,2000/512). This
adaptation ensures optimal utilization of the CNN’s capa-
bilities in discerning spatial intricacies within the ECoG
signals. We call this network ECoGNet.
EEGNet is a Deep Learning model structured with multi-
ple convolutional blocks, outlined in Figure 2 . The initial
block consists of a standard convolutional layer followed
by a batch normalization (BN) layer. Subsequently, a
depth-wise convolutional layer is utilized in the following
block, succeeded by a BN layer, an Exponential Linear
Unit (ELU) activation function, and an average pooling
layer. Additionally, a dropout layer is introduced at the
end of this block. The third block incorporates a separa-
ble convolution, a BN layer, an ELU activation, and an-
other average pooling layer. Notably, dropout layers are
applied both before and after flattening the data. For the
classification stage, a fully connected layer is employed,
followed by a softmax function to classify the data into
nine distinct classes.

In tandem with the CNN component, we incorporate an
LSTM network to capture the nuanced temporal depen-
dencies inherent in ECoG signals. LSTMs, renowned for
their prowess in modeling sequential data, prove instru-
mental in unraveling the temporal dynamics and long-
term dependencies embedded within the ECoG signals.
By seamlessly integrating an LSTM network, our model
gains the ability to discern intricate temporal patterns,
thereby enriching the analysis of ECoG signals.

Deep Learning Obstacle:
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Enhancing the proficiency of designed models often re-
lies on providing them with enough data to be learned.
However, in certain applications such as the analysis of
brain signals, acquiring a sufficient amount of data can
be challenging due to constraints imposed by the nature
of the data collection process. This scarcity of data poses
a significant obstacle for biomedical specialists seeking
to train effective models. In this project we have used a
couple of methods to deal with this problem, Cross Vali-
dation, and Data Augmentation.
To mitigate the data constraint, K-Fold Cross Validation
(K-Fold CV) is commonly employed. K-Fold CV di-
vides the data into ’K’ subsets, allowing the model to
train on different combinations and reducing overfitting
while providing robust evaluation of generalization abil-
ity. For instance, Hwaidi et al. [?] utilized K-Fold CV to
enhance the performance of their approach, integrating
variational autoencoders, deep autoencoders, and CNNs
for EEG signal classification. In this work, we have also
used this method to not only try to mitigate the data re-
strictions, but also prevent overfitting. Due to the amount
of the data we have, the 5-fold CV is chosen.
The second commonly used method to deal with the ob-
stacle, is the Data Augmentation method. Data augmen-
tation is a highly effective method for addressing the
challenge of limited dataset size in deep learning. By
increasing the quantity and variety of training data, it
enhances classification stability and accuracy, enabling
models to be more robust and less biased when handling
new datasets [?]. Additionally, data augmentation helps
mitigate class imbalance in classification tasks. It em-
ploys geometric transformations such as translations, ro-
tations, cropping, flipping, and scaling, along with noise
introduction, to expand the dataset and generate new in-
stances. Depending on the type of data involved, various
augmentation techniques can be applied. In the realm of
biomedical signal analysis, window clipping stands out
as a widely utilized method. In our project, we have em-
ployed window clipping to augment the available data.
Nevertheless, this approach encounters challenges, par-
ticularly in determining the optimal quantity of clipped
windows and their overlapping ranges. During our ex-
perimentation, we conducted tests using different num-
bers of windows ranging from 1 to 4, with each window
having a fixed duration of 1 second. Additionally, we ex-
plored various overlapping ranges, spanning from 5% to
50%. These parameters were inherently constrained by
the duration of the useful signal.
In our proposed hybrid architecture, the LSTM compo-
nent follows the CNN component. This architectural ar-
rangement facilitates the seamless flow of information
from spatial to temporal domains, as the output of the
CNN is meticulously fed into the LSTM network. This
cohesive integration empowers the model to discern se-
quential patterns and dependencies within the ECoG sig-
nals, thereby enabling a holistic understanding of both
spatial and temporal aspects of the data.

By harnessing the collective strengths of CNNs and

LSTMs, our hybrid architecture endeavors to exploit spa-
tial and temporal information in tandem, thereby enhanc-
ing the discriminative power and interpretability of our
proposed model. This comprehensive approach facili-
tates a nuanced analysis and classification of ECoG sig-
nals, paving the way for advancements in neuroscientific
research and clinical applications.
In this work, we will analyze the results of our designed
model from 2 aspect. First, we want to find out how
adding LSTM as a classifier to the ECoGNet model may
enhance the accuracy percentage, and then we will test
the effect of using data augmentation method to the per-
formance of the designed model, and comparing the de-
signed model’s performance when we use different num-
bers of windows in data augmentation.

Figure 3: Hybrid Architecture

Figure 4: Modified EEGNET Architecture (Imported data
shape: 2000 x 16 x 8)

To find out the performance of the designed model, we
should provide a baseline model which is strong enough
to classify the ECoG data. As a baseline model, we uti-
lized Spatial Match Filters (SMFs), a non-deep learning
method commonly employed in BCI research, particu-
larly with ECoG data. SMFs have demonstrated promis-
ing results, achieving a classification accuracy of 76%
in four phoneme classification tasks [?]. This technique
involves a trial-by-trial comparison of activity patterns
against mean activity patterns of different conditions. Ini-
tially, the signal undergoes wavelet transformation into
the time-frequency domain, followed by computation of
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mean values across defined frequency bands and time-
points for each electrode, focusing on the high frequency
band between 65 and 95 Hz. The resulting mean val-
ues represent activity patterns for each electrode. Subse-
quently, correlation analysis is performed between each
trial’s activity pattern and the mean activity patterns for
nine classes. This correlation computation, conducted in
a leave-one-out fashion to ensure unbiased estimates, as-
signs each trial to the class with the highest correlation
pattern. Notably, only electrodes with significant func-
tional responses are included in the correlation computa-
tion, further enhancing classification accuracy.

The second baseline model which is used to comparison
aims is EEGNET that has been introduced.

RESULTS

The table 2 shows the results of implementing the de-
signed model to classify the 9 syllabus of each partici-
pant. the results shows a significant improvement in accu-
racy. when a LSTM layer is added. This is highlighted by
the fact that for all subjects the accuracy is at least 9 per-
centage points above the theoretical chance level of 11%
for the Hybrid DL Model while both ECoGNet and SMF
both show 3/6 subjects below or around chance level.

Table 2: Accuracy (%)

Participant SMF EEGNet Hybrid DL Model

S01 39 60 67
S02 24.9 20 20
S03 13.3 12 29.41
S04 0 14.3 33.33
S05 12.5 14.4 21.1
S06 20.2 27.8 27.8

Mean 18.32 24.75 33.11

As it is discussed in previous sections, we have used 5-
fold CV and also window clipping method to overcome
the limitation of data quantity. During our experimenta-
tion, we conducted tests using different numbers of win-
dows and explored various overlapping ranges. These pa-
rameters were inherently constrained by the duration of
the useful signal.

The results, presented in Table 3, clearly demonstrate the
efficacy of data augmentation in improving the model’s
proficiency in classification tasks.

By leveraging data augmentation techniques, we have
successfully enhanced the model’s ability to classify
biomedical signals. This augmentation strategy not only
mitigates the limitations imposed by data scarcity but also
contributes to the overall robustness and generalization
capability of the model.

Table 3: Accuracy with Different Numbers of Windows

Windows

Participant 1w 2w 3w 4w

S01 67 81 62 67.8
S02 20 20 20 20
S03 29.41 32.35 33.3 20.59
S04 33.33 40 43 36.11
S05 21.1 30.6 44.44 47.2
S06 27.8 36.1 27.78 30.56

Mean 33.107 40.01 38.42 37.04

Analyzing the table reveals an intriguing trend: an in-
crease in the number of windows from 1 to 2 correlates
with higher accuracy. However, this pattern falters as ad-
ditional windows are added, resulting in a decline in over-
all performance by mean. This observation underscores
a crucial point: not all segments of each trial contribute
equally to classification accuracy. Indeed, the informa-
tiveness of added windows varies, with non-informative
windows potentially detracting from overall results. No-
tably, this effect can differ across subjects. For instance,
Subject S05 demonstrates an increase in accuracy but ex-
periences a slowdown in processing speed with the in-
troduction of 3 and 4 windows. Conversely, Subject S01
witnesses a decline in accuracy after the incorporation of
the third and fourth windows.

DISCUSSION

Such disparities highlight the nuanced interplay between
participant concentration levels, physical capabilities,
and data quality. Indeed, individual differences among
participants can significantly influence the duration of in-
formative data within each trial. Moreover, the expan-
sion of the number of windows necessitates more exten-
sive data processing, demanding higher computational
resources and potentially leading to longer computation
times. Consequently, a delicate balance must be struck
between model accuracy and computational efficiency.
In certain scenarios, such as those where resource con-
straints are paramount, opting for two windows may rep-
resent the more optimal choice.
Thus, a thorough consideration of the trade-offs between
performance and computational resources is imperative
in maximizing the effectiveness of the classification pro-
cess while ensuring optimal resource allocation.

CONCLUSION

During this work, we proposed a novel hybrid deep learn-
ing model that combines a modified EEGNet for feature
extraction with a LSTM network for temporal analysis.
Our approach addresses the challenge of limited ECoG
data through the innovative use of window clipping as a
data augmentation technique.
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Our experiments, conducted on a dataset comprising
recordings from six subjects, demonstrate promising re-
sults. We observed a significant enhancement in classifi-
cation accuracy compared to previous models, affirming
the effectiveness of our hybrid model in recognizing the
syllabless.
Furthermore, our analysis of data augmentation tech-
niques highlights the importance of optimizing the num-
ber of clipped windows to balance classification accuracy
and computational efficiency. While increasing the num-
ber of windows initially improves accuracy, there is a di-
minishing return beyond a certain point, emphasizing the
need for careful consideration of resource constraints and
performance trade-offs.
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ABSTRACT: Athletes practice Kinesthetic Motor Im-
agery (KMI) for its many benefits. However, lack of
feedback impairs regular practice. To optimise KMI effi-
ciency, athletes can use BCIs. Whereas current BCI pro-
tocols targeting KMI abilities reward maximum desyn-
chronisation (ERD) of sensorimotor rhythms (SMRs, 12-
15Hz), the neural efficiency hypothesis raises the ques-
tion “what neurophysiological markers should we re-
inforce?”. We hypothesised that experts’ SMR-ERDs
would differ from novices’, in particular when imagin-
ing a mastered task. To test this hypothesis, EEG activ-
ity was recorded during KMI of bio-mechanically simi-
lar tasks: one mastered by experts only and one requir-
ing no specific expertise. Self-reported measures based
on validated questionnaires were collected to assess KMI
ability and MI frequency of use and to measure their po-
tential impact on SMR-ERD. Experts (basketball play-
ers) reported higher perceived KMI abilities than novices,
but similar MI practice frequency. In addition, experts
showed a stronger SMR-ERD than novices. This ef-
fect was only weakly mediated by perceived KMI ability,
seeming mainly driven by sport expertise.

INTRODUCTION

In order to perform, athletes dedicate themselves to both
physical and mental training. The latter can take vari-
ous forms, one of them being Motor Imagery (MI), which
can be defined as a “dynamic state during which one sim-
ulates an action mentally without any body movement”
[1]. Previous research results have shown MI’s positive
impact on motor skills, allowing gains in strength [2, 3]
or even movement precision [4, 5], especially when prac-
ticed in a kinesthetic way. Indeed, by remembering the
associated sensations that can be felt during execution,
such as muscle contraction/relaxation, body heat, pain,
as well as tactile information; one can activate and rein-
force similar neural networks to when actually executing
the movement [6, 7]. Kinesthetic Motor Imagery (KMI)
is therefore a relevant complementary tool for athletes.

However, KMI’s physiological manifestations cannot di-
rectly be perceived hence providing no feedback and ob-

jectivity. Indeed, unlike physical practice where ath-
letes can adapt execution according to the output or their
body’s proprioceptive feedbacks; athletes cannot directly
detect brain activity modulations that occur when doing
KMI and adapt their strategy. This can have detrimental
consequences on athletes’ motivation to diligently prac-
tice KMI as feedback is necessary to learn [8].

Because KMI is associated with an event-related desyn-
chronisation (ERD) of sensorimotor rhythms (SMRs, 12-
15 Hz) [9] it is possible to use Brain-Computer Interfaces
(BCIs) and provide athletes with a real-time feedback on
their brain modulations during KMI. Athletes can then vi-
sualise the employed strategy’s efficiency and optimise it
if needed. Moreover, three recent reviews testify that BCI
training improves both the ability to self-regulate brain
activity and sport performance [10–12]. Many KMI-BCI
protocols reward maximum SMR-ERD [13]. This sug-
gests we consider that growing expertise will be associ-
ated with a higher desynchronisation of neurons in the
sensorimotor cortices [14]. Indeed, some related fMRI
and MEG findings show greater brain activations in high
ability imagers [1, 15] or even in expert athletes in com-
parison to novices [16]. Nonetheless, some results have
suggested the existence of a neural efficiency in experts
[17–19]. According to this hypothesis, experts happen to
have a reduced modulation of neural activity in compari-
son to novices [20–22], which can be attributed to a more
efficient resource distribution. This efficiency would take
form of reinforced temporal and spatial stability during
MI tasks [16, 20, 23]. Therefore, rewarding a maximum
SMR-ERD might not be the optimal solution.

The aim of our work was to investigate the neural corre-
lates of expertise, in sport expertise and perceived KMI
expertise, thereby providing elements to contribute to the
debate on what neurophysiological markers should be tar-
geted during KMI-BCI training procedures. Our main
hypothesis was that experts’ SMR-ERDs would differ
from those of novices, in particular when doing KMI
of a mastered task. Thus, we planned an experimen-
tal design with "Expertise" (2 modalities: basketball-
experts, novices; between groups) and "Task" (2 modal-
ities: free-throw, box-reaching; within groups) as fac-
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tors. KMI ability and MI frequency of use were assessed
with self-reported measures based on validated question-
naires, allowing us to observe potential differences be-
tween groups and if so, add them as co-variables in the
analysis of the main hypothesis.

MATERIALS AND METHODS

Participants:
17 basketball players (M age = 20.6 years old, SD = 2.4
years; 9 women and 8 men) and 16 non-basketball players
(M age = 22.7 years old, SD = 3.8 years; 8 women and
8 men) were recruited for a two-hour session. Accord-
ing to Edinburgh Handedness Inventory [24], 28 were
right handed (M = 88.68%) and 4 were left handed (M
= -77.38%). Basketball players were considered as the
expert group (Exp-Gp) as it was composed of competi-
tors from District D1 to National Ligue level whereas
non-basketball players were included in the novice group
(Nov-Gp) as they attested never to have taken proper
basketball lessons. Novices also attested that they did
not have a particular expertise in any other sport, in-
strument playing and video games. This inclusion cri-
terion was to prevent them from being experts in KMI
as these activities can require using sensory mental mod-
els as well. All volunteers were healthy, declared having
no sensory or motor deficits and had a medium to good
vision. They were also naive regarding neurofeedback.
After being informed of the research aims, conditions
and financial compensation, all participants gave their in-
formed written consent. This research was approved by
the French Protection of Persons’ Committee (national
number 2022-A00626-37).

Experimental design:
Participants were seated in front of a 27-inch computer
screen and started off with two questionnaires. A mod-
ified version of the Imagery Use Questionnaire (IUQ)
[25] was used to determine at which frequency partici-
pants used MI in their daily life. It consisted of items
such as "To what extent do you use MI in your train-
ing/activities?" that required an answer using a 7 point
Likert scale going from "Never" to "Always". The MI
frequency use score was calculated with 12 items. The
Motor Imagery Questionnaire-Third Version in French
(MIQ-3f) [26] was also completed to assess general KMI
ability. Participants were asked to execute a task (knee
flexion, bust flexion, vertical jump or horizontal arm ad-
duction), imagine it (using visual or KMI) and rate the
vividness of the representation on a 7-point Likert scale.
General KMI ability score was obtained by summing the
4 items relative to this MI method. A general explana-
tory video was then shown to give all necessary instruc-
tions regarding EEG, KMI and the protocol. The exper-
iment (See Fig. 1) consisted of 2 blocks, one for each
task to imagine, composed of a 2min resting state record-
ing, a 3D stick avatar video, 4 runs of 10 KMI trials,
where each run lasted approximately 2min30s, and a gen-
eral KMI ability assessment. A single run consisted of

a 30s resting state period, followed by 10 KMI trials of
10s, separated by 1 to 3s rest periods and 2s of base-
line. Therefore, following instructions, a 2min baseline
was recorded during which a white cross was displayed
on a black screen. Participants had to fixate its center
while "letting their thoughts wonder". A video then pre-
sented a 3D stick avatar executing the task to imagine in
the next steps. The task could either be a basketball free
throw (FreeThrow) or a box reaching action (Reaching)
depending on the randomised order of conditions. The
latter consisted in moving a cardboard box from a knee
height shelf up to a second shelf located high enough to
require from participants to be on the tip of their toes. As
a familiarisation phase, participants had to execute the
task and progressively reduce amplitude until ending up
in a sitting position while doing KMI only. Instructions
were to do KMI of the task once during the 10s trial but it
could be repeated a second time if participants still had a
few remaining seconds. Participants would let the exper-
imenter know when ready and all four runs would then
be recorded for Block 1, with short rest periods between
them. At the end of Block 1, participants could rest and
Block 2 would start as soon as participants felt ready.

EEG recordings and pre-processing:

EEG was recorded with a 32 channel (FP1, FPz, FP2,
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, A1, T7, C3,
Cz, C4, T8, A2, CP5, CP1, CP2, CP6, P7, P3, Pz,
P4, P8, POz, O1, Oz, O2, CPz, AFz, 10–20 system)
ANT Neuro eego™sports gel headset and two amplifiers,
eego™sports or eego™rt. Data was referenced to CPz,
grounded to AFz and targeted channel impedance was set
at 5kOhm. EEG signals were recorded via OpenVibe [27]
and pre-processed with Matlab/EEGLAB [28] and Field-
trip toolbox [29]. Offline pre-processing started with ap-
plying a 1 to 40 Hz band-pass filter and down sampling
the initial data to 250 Hz. Files were then merged to end
up with one file per condition per participant. At this
stage, for each file, a list of bad channels was made with
the EEGLAB Clean Rawdata plugin. A bad channel was
considered so if i) it was flat for more than 5s, ii) its high
frequency noise standard deviation was above 4 and/or
iii) it’s correlation value with nearby channels was higher
than 0.8. However, following most recent recommenda-
tions [30] bad channels were kept and removed only after
Independent Component Analysis (ICA) step. Follow-
ing bad channel listing, epochs could then be determined
as starting 2.5s before the cross on screen appeared and
ending 0.5s after it had disappeared. ICA was then ap-
plied to the data using the EEGLAB runica algorithm and
components were manually rejected according to signs of
artifacted activity, caused for instance by blinking, move-
ment or other sources of noise. Per participant, between 0
and 11 components were excluded out of 32 (M = 5.94).
Finally, we removed the channels from the previously
saved lists, interpolated them and re-referenced the data
to average. Following pre-processing, Fieldtrip toolbox
was used for time-frequency decomposition using Morlet
wavelets (8-35 Hz with 1 Hz steps). Wavelet cycles were
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Figure 1: Session’s protocol, divided in two blocs, one for each task. A bloc started with a 2min resting state EEG recording. Then, a 3D
stick avatar video showed the task to imagine (FreeThrow or Reaching). Participants were asked to execute the task and progressively
switch towards KMI. A run could then start with a 28s resting state recording immediately followed by 10 trials. One trial consisted of
2s of resting state, 10s of KMI and 1 to 3s of rest. A bloc was complete when 4 runs were recorded.

increased by 0.1 at each frequency, starting from a width
of 3 to 5.7 to ensure a balance between sufficient temporal
resolution at lower frequencies and frequency resolution
at higher frequencies. As our focus was on SMRs, data
from 12 to 15 Hz was then extracted before being nor-
malised. To do so, we measured the relative change from
the averaged 10 periods (1s pre-trial) of all trials of a run
(1.5–2.5s of the total epoch). The last step consisted in
rejecting outliers above or under Median±3*Median Av-
erage Deviation [31].

Analysis:
For the behavioural data, two t Tests were used to com-
pare groups’ IUQ MI frequency use and MIQ-3f KMI
general ability scores. In order to investigate the SMR-
ERD power evolution associated to an expertise level
and its potential link with general KMI ability, a two-
way ANCOVA for repeated measures was performed.
Group (Exp-Gp, Nov-Gp) and Task (FreeThrow, Reach-
ing) were used as independent variables, SMR-ERD
power as a dependent variable and kinesthetic MIQ-3f
score as a co-variable. Effect sizes are reported with a
partial eta squared (η2 p) for the ANCOVA and with Co-
hen’s d for t Tests. Statistical analyses were computed
using Jamovi v.2.4.11.0 [32], a software that implements
R statistical language [33].

RESULTS

Because of a technical issue, two participants had to be
excluded from the analyses. Therefore, both groups were
composed of 16 participants. We also had one Exp-Gp
participant with 10 missing trials out of 40 and another
one with 2 missing trials. Considering the low proportion,
they were included anyway.

MI frequency use:
A Shapiro-Wilk test revealed that no violation of the as-
sumption of normality was made for MI frequency use
scores (W = 0.969, p = 0.464). Thus, we performed a
parametric t-test (See Fig. 2) that showed no significant
difference between groups concerning the MI frequency
of use [(t(1,16) = 1.18, p = 0.246, d = 0.418; Exp-Gp (M
= 3.11/14); Nov-Gp (M = 2.55/14)].

General KMI ability:

For general KMI ability, Shapiro-Wilk test confirmed
data was normally distributed (W = 0.969, p = 0.476).
A t Test (See Fig. 2) showed significant difference be-
tween groups (t(1,16) = 2.09, p = 0.045, d = 0.739), with
Exp-Gp score (M = 20.9) being significantly higher than
Nov-Gp score (M = 17.7).

Figure 2: Box plots representing: A. The mean MI frequency
of use score as a function of the group (Exp-Gp vs. Nov-Gp) B.
The mean general KMI ability score as a function of the group
(Exp-Gp vs. Nov-Gp)

EEG:
Finally, ANCOVA analyses (See Fig. 3) revealed a main
effect of the group [(F(1,29) = 8.45, p = 0.007, η2 p =
0.226); Exp-Gp SMR-ERD change (M = -10.48%); Nov-
Gp SMR-ERD change (M = 8.45%)] as well as a ten-
dency towards a main effect of KMI ability [(F(1,29) =
3.03, p = 0.092, η2 p = 0.095)]. However they revealed
no main effect of the task [(F(1,29) = 2.076, p = 0.160,
η2 p = 0.067); FreeThrow (M = -0.215); Reaching (M =
-1.816)] nor any interaction for Group x Task [(F(1,29) =
0.002, p = 0.964, η2 p = 0.000); Exp-Gp Task difference
(M = 1.44); Nov-Gp Task difference (M = 1.75)] or Task
x KMI ability (F(1,29) = 1.857, p = 0.183, η2 p = 0.060).

DISCUSSION

The aim of this work was to contribute to the neural ef-
ficiency debate by investigating the neurophysiological
correlates of expertise during KMI. Our interest was ori-
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Figure 3: Box plot representing the mean SMR-ERD power as a
function of the group (Exp-Gp vs Nov-Gp) and task (FreeThrow
vs Reaching)

ented towards knowing if SMR-ERDs evolved with ex-
pertise and if this evolution was specific to KMI of mas-
tered tasks. To do so, we compared experts and novices’
EEG activities during a task mastered by experts only and
a task that both groups mastered. For our experimental
design, we chose to observe EEG activities of basketball
players experts and basketball novices. The task mastered
only by experts was a free throw and the non-specific task
was a box reaching action.
Questionnaire results showed that while expert group did
not report practicing MI more often than novice group,
they self-evaluated their MI abilities higher than novices.
In addition, expert group showed significantly stronger
SMR-ERDs than novices during KMI whatever the task.
As a matter of fact, on average, novices showed an in-
crease of SMR power during KMI as compared to pre-
trial baseline although a decrease was expected. Analyses
revealed a weak effect of self-reported KMI abilities on
that group effect, thus suggesting that the different neuro-
physiological correlates of KMI are mainly explained by
expertise.
Observations of MI frequency use go against well-
established findings that suggest MI use is positively
linked to athletes’ expertise level [25, 34]. The lack of MI
use in experts could be due to the fact that half of the par-
ticipants were competitors at a departmental or regional
level. Although their training experience was consequent,
these basketball players might not be used to engage in
MI as much as higher level amateur or professional play-
ers. Indeed, Cumming and Hall, 2002 [34], showed that
national athletes perceived imagery to be more relevant to
improving their performance and competing effectively
than recreational athletes. Therefore, a future inclusion
of a third group of high expertise basketball players will
allow us to see if MI practice increases with the competi-
tive level. Moreover, to answer IUQ items, novices were
asked to evaluate use of MI for all types of motor actions
encountered in everyday life and activities (creative activ-
ities, skill learning...). On the other hand, basketball play-
ers were only asked about their practice of MI to enhance
their basketball performance. This potentially could have
induced a bias and could have artificially diminished the

discrepancy between groups. Finally, the obtained score
covers visual and KMI practice. Future analysis will con-
sider items separately as the other assessed factors of this
study focus on KMI only. Indeed, experts could be more
familiar with KMI in general, but also in particular during
mastered tasks.

Although MI frequency of use was not significantly dif-
ferent between groups, experts happened to have a sig-
nificantly higher general KMI ability than novices. We
can conclude that although practice makes perfect, a high
general KMI ability does not seem to be exclusively
achieved by having a quantitative MI practice. Hence,
basketball expertise seems to allow athletes to develop
their general KMI ability through other processes than
repetition. Experts could have better MI abilities because
of higher sensory mental models, either because they are
used to allocating important levels of attention to kines-
thetic components during execution and/or have a better
ability to memorise and restore them during MI. An im-
portant limitation however persists as subjective ease of
KMI use may not correlate with quality of KMI.

EEG analyses revealed that experts reached stronger
SMR-ERDs than novices, whatever the task. As a mat-
ter of fact, it seems that novices increased their SMR
power during KMI as compared to baseline on average,
while experts decreased it. These results are aligned
with many MI-BCI protocols choices to reward a greater
ERD. The choice of the baseline, being the second be-
fore an MI trial, allowed to counterbalance the signal’s
non-stationarity. However, we suspect that this portion
of recording reflects a pre-KMI state rather than a proper
resting state [35]. Kornhuber and Deecke, 1965 [36], re-
fer to this phase as the "readiness potential" and suggest
that a surface negative cortical potential happens around
1s prior to movement. Additionally, it is possible that
novices initiated KMI to early, which could be explained
by a difficulty to voluntarily start and stop MI in an im-
posed timing. In which case, maximum power decrease
would have happened during baseline and would have
then be followed by the expected SMR-Event-Related
Synchronisation (ERS) [9] during the trial, explaining the
positive SMR-ERD power change in novices. It is im-
portant to have in mind that SMR-ERD precise modula-
tion patterns during MI are still unknown. Indeed, obser-
vations of EEG signal during MI have shown very high
variability between individuals [37] but also according to
the number of task repetitions [38]. In a previous pa-
per [38], authors suggested that doing MI of a short task
once does not result in the same EEG patterns than con-
tinuously repeating the MI task during 4 sec. Results
showed ERD and ERS components overlap in time when
performing MI continuously, meaning ERD could be less
detectable and more varied. Our current analysis uses the
mean power values of the 10s trials. However, if trial dy-
namics were to be different than one single ERD per trial,
this should be considered. Furthermore, experts could be
able to maintain their SMR-ERD through a longer pe-
riod of time than novices. Like performing MI continu-
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ously, ERD and ERS would overlap in novices and ex-
plain the SMR power increase compared to baseline. In a
near future, we plan on using time-frequency analysis to
observe modulations through time within and throughout
trials to investigate those dynamics and their relationship
with expertise. ANCOVA also provided non-significant
results for the Task effect. Our initial choice was to com-
pare two bio-mechanically close tasks. Indeed, choosing
two tasks that would have had a different level of com-
plexity as well would not have allowed us to conclude
on the basketball specificity’s role. Moreover, choos-
ing tasks that mostly implied upper body segments but
still involved lower body was a way of assuring us that
SMR-ERD wouldn’t differ strictly because of the spa-
tially different motor and sensory representations in the
Primary Motor and Sensorimotor Cortices [39]. Again,
carrying time-frequency analysis throughout trials will
be interesting to see if final trials reveal a more impor-
tant difference between tasks. Furthermore, we found a
lack of significant interaction for Task x Group indicat-
ing that SMR-ERD difference between tasks was propor-
tionally similar for both groups. This result rejects our
hypothesis that SMR-ERD is different between groups,
particularly in a mastered task (FreeThrow task for ex-
perts). A possible explanation would be that experts ben-
efit from a transfer of competences. The existence of this
process has been greatly documented [40] and could be
applied to KMI. Indeed, experts could have a facility to
do KMI in FreeThrow task that would transfer to Reach-
ing task, illustrated by a negative SMR-ERD change.
Whereas novice group would have difficulty to produce
lower SMR-ERD whatever the task. Such an interpreta-
tion was verified with KMI ability, our ANCOVA’s co-
variable. Although this factor was not significant, it did
not cancel the group effect. We can therefore conclude
that there is an influence on SMR-ERD but that globally,
this difference is mainly explained by expertise level.

CONCLUSION

For decades, we have associated an SMR-ERD closely
followed by an ERS to MI [41], reflecting the activity of
the sensorimotor cortex. We questioned ourselves on the
evolution that SMR-ERD could have with expertise and
what patterns we should be rewarding when using KMI-
BCI to get users to enhance their performance. Currently,
different theories exist. The first hypothesis, historically
based, stipulates that with expertise, ability to process in-
formation increases. This translates into a sensorimotor
region activation and an increased recruitment as well as
an excitability of cortical neurons [9]. The second one,
the neural efficiency hypothesis, goes against it as it sug-
gests that expertise comes with a better cortical and en-
ergetic efficiency [19, 21, 22]. This would translate in a
decreased activation of pertinent regions. Finally a third
hypothesis, suggests that a combination of both these the-
ories could exist [42]. Indeed, in the first stages of learn-
ing, we should reward a maximum SMR-ERD and once

expertise level increases, other neurophysiological mark-
ers should be identified to reflect the optimisation of re-
sources. Our results suggest that experts have a lower
decrease of SMR-ERD compared to novices during KMI
of a free throw and reaching action. Future inclusion of a
higher expertise group will however be needed to provide
more material concerning the mixed hypothesis.
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ABSTRACT: The cognitive mechanisms underlying 

subjects' self-regulation in Brain-Computer Interface 

(BCI) and neurofeedback (NF) training remain poorly 

understood. Yet, a mechanistic computational model of 

each individual learning trajectory is required to improve 

the reliability of BCI applications. The few existing 

attempts mostly rely on model-free (reinforcement 

learning) approaches. Hence, they cannot capture the 

strategy developed by each subject and neither finely 

predict their learning curve. In this study, we propose an 

alternative, model-based approach rooted in cognitive 

skill learning within the Active Inference framework. We 

show how BCI training may be framed as an inference 

problem under high uncertainties. We illustrate the 

proposed approach on a previously published synthetic 

Motor Imagery ERD laterality training. We show how 

simple changes in model parameters allow us to 

qualitatively match experimental results and account for 

various subject. In the near future, this approach may 

provide a powerful computational to model individual 

skill learning and thus optimize and finely characterize 

BCI training. 

 

INTRODUCTION 

 

Motor Imagery is one of the most employed non-invasive 

BCI paradigm due to its potential in stroke rehabilitation 

and motor control. Event-related desynchronization 

(ERD) in motor cortices is associated with motor task 

execution, observation or mental imagery. It is a key 

biomarker to pick up to interface the brain with an 

assistive (e.g. neuroprosthetics) or a rehabilitation (e.g. 

neurofeedback) device. Studies focusing on MI training 

have demonstrated notable positive outcomes, including 

enhanced hand dexterity [1] and post-stroke 

improvements [2], [3]. These interventions capitalize on 

the overlapping neural pathways between mental 

imagery and motor execution.  Particularly in the context 

of hemispheric ischemic stroke, some studies have 

attempted to address motor control deficits [4] by using 

neurofeedback training to strengthen MI laterality, with 

some success [5]. 

Despite those results, the core neuropsychological 

mechanisms behind subject self-regulation are still 

poorly understood. Some theoretical approaches [6], [7] 

have proposed unifying frameworks to describe such 

processes during BCI or NF training. Among those 

processes, the nature of subject learning  has been the 

main focus of academic debate [8]. Two views mostly 

prevail and are in relative opposition. Proponents of 

operant conditioning reflect a model-free (reinforcement 

learning) view on how subjects learn during BCI training 

[9]. A different view that also assume that subjects learn 

from trial and error, supporters of cognitive skill learning 

[10], [11], [12] suggest that subject actively build an 

interaction model of the BCI system in order to reliably 

interact with it. According to this second view, users 

learn a skill (“interacting with the BCI”) in order to 

control the interface despite the high levels of uncertainty 

of the paradigm. This form of learning, more akin to 

“model-based” reinforcement learning (RL), provides 

more satisfactory explanations for phenomena such as 

transfer learning and the effect of metacognition on 

regulation [7]. The true nature of subject experience 

during BCI training probably stands between these two 

views on adaptation, with initial interactions generally 

driven by RL and progressively building a more 

complete model-based representation of the system.  

The general lack of understanding of the self-regulation 

mechanisms at play during successful and failed training 

procedures has prompted the scientific community 

towards the development of models of subject learning in 

order to explain and hopefully predict the outcome of 

BCI training given a particular subject, experimental 

design, etc. These models have built on the above-

described R.L. perspective to leverage difficult credit 

assignment problems as when learning individual neuron 

activations under high uncertainty [13], [14]. We argue 

that in order to model the cognitive dynamics of training 

and account for its metacognitive and transfer learning 

dimensions, an explicit modelling of the subject’s 

representations is needed. To our knowledge, such an 

approach to BCI has barely been tackled. In this work, 

we show how the Active Inference framework [15] may 

be leveraged to provide an adequate theoretical and 

computational ground for developing this modelling 

strategy. To illustrate our modelling approach, we 

consider a rich and original study that has implemented a 
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multimodal right-hand Motor Imagery neurofeedback 

training [16], [17]. 

 
MATERIALS AND METHODS 

 

     Active Inference and BCI training: Active Inference 

is a process theory that provides a description of agent 

perception, action and representational learning as a 

single joint process based on minimization of 

(variational) Free Energy [18], [19]. Active Inference is 

closely related to the predictive coding account of brain 

function, which posits that the brain entertains and 

constantly updates a generative model 𝑚 of the 

environment in order to formulate accurate predictions 

about its dynamics and guide its actions. To minimize the 

prediction errors, agents continuously maintain beliefs 

about the hidden states of their environment and update 

them with regard to new observations (perceptual 

inference). This Bayesian process can be further 

formalized as follows: assuming a set of beliefs 𝑠 about 

hidden (causal) states 𝑠̂ of the environment and given 

new observations 𝑜, updated beliefs about those states 

write: 

𝑝(𝑠|𝑜, 𝑚) =
𝑝(𝑜|𝑠, 𝑚)𝑝(𝑠|𝑚)

𝑝(𝑜|𝑚)
 

Eq. 1 

Variational (Bayesian) inference provides both the model 

evidence or marginal likelihood 𝑝(𝑜|𝑚) and the posterior 

distribution 𝑝(𝑠|𝑜, 𝑚). Precisely, the former is 

maximized and amounts to minimize an approximate 

energy function, which is a lower bound to the model 

evidence (ELBO). Importantly, Active Inference makes 

use of two additional mathematical constructs to 

implement full representational learning and action. 

First, it frames this belief updating process as a Hidden 

Markov process or model (HMM) thus accounting for the 

temporal evolution of subject’s beliefs. Second, it 

includes action as part of the energy minimization 

process, turning this HMM graph into a POMDP 

(Partially Observable Markov Decision Process) (see 

Figure 1). In other words, free energy, surprise or 

prediction is not only minimized through belief updating 

but also by acting upon the environment to make it fit 

with predictions. 

 
Figure 1: Active Inference (POMDP) canonical model of 

subject’s representation and interaction with a changing 

environment. This model makes explicit that the agent 

must infer and navigate the hidden, noisy and partially 

observable environment based on noisy and sparse 

information. Importantly, BCI training can be nicely 

framed with such an POMDP. 

Table 1 provides the description of the above model 

component and parameters in the context of BCI training. 

Given this formulation, the subject’s Free Energy can be 

minimized in three ways: through perception (inference 

on hidden states), action (transition between hidden 

states) and learning (updating model parameters). Under 

this premise, agent s may pick actions in order to reduce 

their (expected) free energy on the basis of anticipated 

future observations, in a way that optimize a trade-off 

between information seeking (exploration) and reward 

maximization (exploitation). In this paper, agents plan 

their future actions by comparing all the plausible action 

trajectories within a specific temporal horizon [20]. 

Finally, learning occurs at a slower pace at which 

subjects update their model parameters. In the discrete 

state space leveraged by Active Inference, these model 

parameters are categorical distributions equipped with 

conjugate Dirichlet priors. Learning occurs through 

counting co-occurrences between state posteriors and 

observations (likelihood 𝐚), or transitions between states 

following a given action (transition 𝐛), akin an evidence 

accumulation process [15]. In essence, Active Inference 

describes the evolution of subject’s beliefs (𝑥, 𝜋) and 

representations (𝐚, 𝐛, 𝐜, 𝐝, 𝐞) depending on 

environmental parameters (𝐀, 𝐁, 𝐃). This translates 

directly to BCI training where we may cast the feedback 

provided to the subject as the observations, and the 

mental states targeted by the training procedure 

(attention, hand motor imagery level, …) as the true 

hidden states. The subject tries to reach high levels of 

positive feedback by learning an accurate representation 

of the BCI system (𝐚, 𝐛, 𝐝). 

 

Table 1: Correspondence between Active Inference 

graph parameters and BCI training elements 

Active Inference  

parameter 

BCI training element 

𝐀 Emission rule: relation between 

feedback and subject’s true mental state 

𝐁, 𝐃 Transition rule: effect of mental action 

onto mental states 

𝐚 Subject’s belief about the feedback 

(affected by instructions, experience…) 

𝐛, 𝐝 Subject’s belief about its mental 

strategies and the effect of its mental 

actions (idem) 

𝐜, 𝐞 Subject preferences (towards positive 

feedback) and habits 

𝐬̂, 𝐬 True and belief about mental states, 

respectively 

𝐨 Observations (feedback) 

𝛑, 𝐮 Subject’s mental policy and possible 

actions  

 

     A Motor Imagery Neurofeedback training task: To 

illustrate our modeling approach, we consider a 

simplified version of the task implemented by Perronet, 

Lioi et al. [16], [17].  In their first experiment, (N=10) 
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subjects were instructed to perform kinesthetic right hand 

motor imagery and to “find their own strategy” in order 

to control a feedback gauge across 3 x 10 blocks. Each 

block comprised a 20s rest and a 20s task block. The task 

was multimodal as both fMRI and EEG data were 

recorded and the feedback was based on either EEG 

alone, fMRI alone or both signals (two feedback gauges 

simultaneously). Importantly, the gauge levels were 

always based on a measure of lateral asymmetry between 

left and right motor cortex activities (For EEG: an 

asymmetry index computed on the normalized difference 

in 𝜇 (8-12 Hz) band power between C3 and C4, updated 

every 250 ms; for fMRI: a laterality index as described in 

[21] , updated every 2 s). 

This study is quite unusual, namely because of the two 

neuroimaging modalities employed. However, it offers 

an appealing example to model, for at least two reasons. 

First, the well-defined laterality biomarker permits fairly 

simple assumptions regarding the subject's self-

regulatory process. Second, data availability [17] allows 

for broad model calibration. In what follows, we propose 

a computational model of this protocol and provide 

general predictions regarding long-term training 

outcomes. 

     Modeling Motor Imagery laterality training: The 

Motor Imagery neurofeedback loop is formalized as a 

high uncertainty self-regulation task. The agent trains 

over 𝑁𝑡𝑟𝑖𝑎𝑙𝑠, each trial being composed of an arbitrary 40 

rest and 40 MI timesteps (each timestep corresponding to 

2 EEG feedback update for the experimental task). 

During MI, the agent is given a feedback based on its 

hidden states and attempts to reach highly rewarding 

outcomes. No feedback is provided during rest. During 

the whole training, the agent activity was defined by two 

hidden states based on electrophysiology : the left and 

right ERD levels. 

{
𝐸𝑅𝐷𝐿̂(𝑡) = 𝑖̂(𝑡) cos(𝛼̂(𝑡)) + 𝜖

𝐸𝑅𝐷𝑅̂(𝑡) = 𝑖̂(𝑡) sin(𝛼̂(𝑡)) + 𝜖
 

 

Eq.2 

Where the radius 𝑖̂(𝑡) ∈ [0; 1] captures the global ERD 

strength and the angle 𝛼̂(𝑡) ∈ [0;
𝜋

2
] its lateralization or 

orientation. 𝜖 is a baseline level accounting for 

spontaneous desynchronizations outside of MI, which we 

set to 0.01 (weak baseline level).  

Agents have no direct observation of these two 

physiological states that reflect cortical motor 

excitability and could be associated with mental states 

such as motor preparation and sensorimotor expectation. 

In this framework, agents entertain a belief or prior over 

these states (𝑖; 𝛼) and use the feedback provided (see 

Emissions) to update this belief.  

We further adopt a discretized, POMDP compatible 

formulation of our model, considering that 𝑖̂, 𝛼̂ (process 

states) and 𝑖, 𝛼 (model states) can each span a finite set of 

𝑁𝑠 possible states. For the sake of simplicity, the 

simulations were conducted with 𝑁𝑠(𝑖̂) = 𝑁𝑠(𝑖) = 4 {0: 

null, 1: low, 2: medium, 3: high ERD strength}  and  

𝑁𝑠(𝛼̂) = 𝑁𝑠(𝛼) = 5 {L: left (0) , CL: center-left (
𝜋

8
), C: 

center (
𝜋

4
), CR: center-right (

3𝜋

8
),  R: right (

𝜋

2
) ERD 

orientation}. Note that discrepancies between the model 

and the process in terms of state space dimensions could 

be accounted for and their effect on training simulated 

within this framework.  

     Emissions: Agents receive outcomes 𝑜𝑡 based on their 

true state 𝑠𝑡̂ = (𝑖̂(𝑡), 𝛼̂(𝑡)). This feedback modality 

(denoted as AsI) is based on the laterality of the ERD. It 

is computed using an asymmetry index between the left 

and right ERDs, for 𝑖̂(𝑡) > 0 : (Eq.3) 

𝑜̂𝑡 = 𝐴𝑠𝐼(𝛼̂) =
𝐸𝑅𝐷𝐿̂(𝑡) − 𝐸𝑅𝐷𝑅̂(𝑡)

𝐸𝑅𝐷𝐿̂(𝑡) + 𝐸𝑅𝐷𝑅̂(𝑡)
∈ [−1,1] 

To account for the noise in the biomarker and feature 

extraction process, the categorical emission matrix 𝐀 

encodes the emission rule of the BCI pipeline as a 

discretized gaussian distribution 𝐶𝑎𝑡(𝑁(𝑜̂𝑡; 𝜎𝑝𝑟𝑜𝑐)) with 

N𝐴𝑠𝐼 =  5  possible feedback values.  

During the experimental task [16], the strength of left 

ERD was continuously monitored but was not provided 

as a feedback signal. We mimic this observation channel 

with a second emission modality (referred to as L-ERD) 

based on the simulated left ERD level. Similarly, these 

outcomes are not observed by the synthetic subject 

during training. They are used to compare physiological 

measurements to model predictions and broadly estimate 

which parameter values best matched the study results 

(see Results). Just like with the AsI modality, the L-ERD 

observations are noisy (same noise parameter 𝜎𝑝𝑟𝑜𝑐) and 

discretized so as to take one out of  5  possible values. 

 
Figure 2: The modeled Motor Imagery intensity / 

orientation training. The agent internal representation 

drives the brain activity based on the feedback provided. 

 

     Transitions: At each timestep t, the subject’s true 

states evolve depending on previous state value 𝑠̂𝑡−1 and 

mental actions 𝑢𝑡−1. During the actual task, agents could 

potentially explore and use a large number of mental 

strategies (attentional / sensorial exercises, relaxation 

efforts, etc.), among which only a limited amount would 

prove “effective” and allow the subject to control their 

mental state with a probability 𝑝𝑒𝑓𝑓𝑒𝑐𝑡 = 0.99. Since 
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mental actions are poorly understood, we assumed a 

synthetic topological state space that statisfies the three 

as following constraints: 

- Continuity: for a specific state factor (𝑖 / 𝛼), the 

mental states could only move from value k to 

adjacent (or same) values {k-1, k , k+1}. 

- Invariability: for a specific state factor, the effect of 

“effective” actions was independent from the 

occupied state. 

- Resting states: to reflect the natural tendency of 

Motor imagery intensity to return to a resting state, 

non “effective” actions pulled the mental state of the 

subject towards this resting state with probability  

𝑝𝑑𝑒𝑐𝑎𝑦 = 0.1. The resting states were 𝑖̂ = 0 for MI 

intensity and 𝛼̂ = 𝐶 (center) for MI orientation. 

For each state factor (𝑖 / 𝛼), 𝑁𝑢𝑝 = 𝑁𝑑𝑜𝑤𝑛 = 1 action 

were “effective” and allowed the subject to control their 

mental states. 𝑁𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 10 actions were non 

“effective” and resulted in spontaneous drift towards the 

resting state. 

Subject priors: the agents entertained 

representational priors about the BCI loop before starting 

the training. This included belief about the feedback 

modality (also called the ‘likelihood model’ 𝐚) and 

beliefs about the effect of their mental actions (𝐛).  

We assumed biased agents. We model them as having the 

expectation that high levels of motor imagery intensity 

would lead to higher feedback levels. This is in fact 

misleading but fits with the initial instructions they 

actually received in this experiment: “to perform Motor 

Imagery”. This assumption is supported with further 

arguments in the discussion. The agents’ model of the 

feedback was initiated using the Dirichlet conjugate prior 

for the categorical likelihood 𝐚: 

𝐚𝟎 = 𝑐𝑎𝟏 + 𝑠𝑎𝐶𝑎𝑡(𝑁(𝑖. 𝐴𝑠𝐼(𝛼); 𝜎𝑚𝑜𝑑𝑒𝑙)) Eq.4 

Where 𝑐𝑎 and 𝑠𝑎 are the initial concentration and 

confidence parameters, which we set to 1 and 100, 

respectively. This means that subjects were very 

confident that the feedback actually reflects (albeit with 

some noise) their mental imagery level. 𝐴𝑠𝐼 is the 

asymmetry index previously formulated and 𝜎𝑚𝑜𝑑𝑒𝑙  is a 

noise term encoding subject’s prior confidence in the 

feedback modality. It was set to 0.5. 

Finally, subject prior beliefs about their mental 

actions were set as the combination of three terms: a prior 

concentration parameter 𝑐𝑏 indicating how much new 

evidence is needed for the subjects to change their prior 

beliefs, a ‘stickiness’ parameter 𝑠𝑏 that encodes subject’s 

belief about actions not affecting their mental state, and 

an initial mental action confidence vector 𝑏𝑝𝑟𝑒 that 

encodes previous knowledge about the effect of their 

mental actions. Importantly, 𝑏𝑝𝑟𝑒 is a vector with one 

value for each state factor (𝑖 / 𝛼). The initial mental action 

model of the agents was thus, for each state factor: 

𝐛𝟎 = 𝑐𝑏𝟏 + 𝑠𝑏𝐈𝐝 + 𝑏𝑝𝑟𝑒𝐁  Eq.5 

With 𝐈𝐝 the identity matrix. Simulations were conducted 

with 𝑐𝑏 = 1.0 and 𝑠𝑏 = 1.0 (i.e. subjects were opened to 

new evidence regarding their mental strategies). Of 

course, subjects started the training with relatively low 

values of 𝑏𝑝𝑟𝑒, as high values of the parameter would 

render the training useless (this would mean the subject 

was already knowing how to perform the task optimally).  

     Goals & simulations: Using this simple model of self-

regulation, our goal was to predict training outcome 

depending on the individual priors of each subject. 

Therefore, several families of agents were instantiated 

with various initial mental imagery familiarity levels. We 

demonstrate how these priors affect the way subjects 

learn how to perform the task and the evolution of the 

overall quality of their mental imagery models. To that 

end, we conducted simulations of agents performing 

Active Inference using the parametrized graph 

parameters 𝐚𝟎, 𝐛𝟎, 𝐀, 𝐁. The process parameters used in 

these simulations are 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑏𝑝𝑟𝑒(𝑖) and 𝑏𝑝𝑟𝑒(𝛼). 

All simulations in this paper were conducted 

using active_pynference, a freely available Python 

package for running sophisticated inference schemes. 

The code used in these simulations is freely available at: 

https://github.com/Erresthor/ActivPynference_Public/bl

ob/main/paper_scripts/paper_grazBCI/simulations.ipyn

b .  

 

RESULTS 

 

     Agents already familiar with MI: Figure 3 illustrates 

the outcome of 10 simulated agents performing 10 trials 

each, starting with informed action priors 𝑏𝑝𝑟𝑒(𝑖) = 1 

and 𝑏𝑝𝑟𝑒(𝛼) = 1. These subjects thus started the training 

with high mental imagery control skills, rendering the 

training unnecessary. The feedback provided was noisy, 

but informative (𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 1.5). The average simulated 

mental states (true ERD intensity and orientation) are 

shown as well as the provided feedback (green). These 

can be compared to the corresponding performances of 

neurofeedback subjects from [16] shown below for a few 

subjects (Figure 3.A). The quite large mismatch between 

the empirical and simulated time series suggest that 

subjects entertained less precise action priors. 

Interestingly, the agents quickly learned to maintain a 

weak ERD strength while correctly lateralizing their 

ERDs, leading to less effortful, more optimal behavior. 

 
Figure 3: First empirical trials from [16] (A.) compared 

with the simulated laterality feedback and left ERD (B.) 

and motor imagery states (C.) from 10 simulated agents 

with high initial motor imagery control. 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-083

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

475

https://github.com/Erresthor/ActivPynference_Public/blob/main/paper_scripts/paper_grazBCI/simulations.ipynb
https://github.com/Erresthor/ActivPynference_Public/blob/main/paper_scripts/paper_grazBCI/simulations.ipynb
https://github.com/Erresthor/ActivPynference_Public/blob/main/paper_scripts/paper_grazBCI/simulations.ipynb


 

     Agents initially unable to perform MI lateralization: 

Another class of agents was instantiated who were 

initially unable to produce lateralized motor imagery. 

They had no priors on how to control the orientation of 

their ERD (𝑏𝑝𝑟𝑒(𝛼) = 0.0), but had some poor priors on 

how to control their intensity (𝑏𝑝𝑟𝑒(𝑖) = 0.1). They thus 

had to fully rely on the feedback to learn these transitions. 

To facilitate their training, a fairly reliable biomarker was 

assumed (𝜎𝑝𝑟𝑜𝑐 = 0.5). The training results are show in 

Figure 4. Overall, agents managed to reliably produce a 

lateralized ERD, although after quite a long training. 

 
Figure 4: Agents with no prior knowledge of ERD 

lateralization performed 100 simulated neurofeedback 

trials. We show their average ERD strength (red) and 

orientation (blue) across the training (A) and at specific 

points of the training (B, C) The similarity between the 

simulated initial MI levels and the empirical 

observations (B) suggests that this set of parameters 

better matches the data than the over-optimistic 

previous simulations. 

 

     Agents with mixed prior abilities: Finally, 21 x 21 

group of 10 agents with intermediate MI lateralization 

priors were simulated. Each group had a different pair of 

parameter values {𝒃𝒑𝒓𝒆(𝒊), 𝒃𝒑𝒓𝒆(𝜶)}, set between 0 and 

2. This reflected individual differences in subjects 

starting BCI training with different Motor Imagery prior 

experience. The feedback provided was very noisy 

(𝝈𝒑𝒓𝒐𝒄 = 𝟏. 𝟓). Figure 5 shows the evolution of average 

Motor Imagery performance in each group of subjects, at 

the start of training and at the end. Our simulations reveal 

counter-intuitive training effects, such as poor training 

results from subjects initially well versed in their ability 

to lateralize their ERDs but lacking the ability to reliably 

perform an ERD (e.g. subjects who misinterpret Motor 

Imagery by performing right hand visual instead of 

kinesthetic motor imagery). Conversely, subjects who 

were very good at performing mental imagery but lacked 

control over their MI laterality tended to benefit from 

training and managed to learn how to direct their 

attention, despite the noisy feedback. 

 
Figure 5: Simulated motor imagery performance before 

(top) and after (bottom) neurofeedback depending on 

initial experience 𝒃𝒑𝒓𝒆(𝒊) (y-axis) and 𝒃𝒑𝒓𝒆(𝜶) (x-

axis). 
 

DISCUSSION 

 

The reported simulations provided an account of Motor 

Imagery training using Neurofeedback for various 

groups of subjects parametrized mostly by their past 

experience with Motor Imagery: (i) subjects familiar with 

motor imagery and who had good initial priors, (ii) 

subjects with poor initial ability to lateralize their ERD 

and had to learn from scratch, and (iii) intermediate 

subjects who started with mixed priors about MI 

laterality and strength, but had to finetune them in order 

to perform the task efficiently. 

Simulations showcased very different training curves and 

general subject classes that would more or less benefit 

from the training depending on their initial situation. 

They illustrated the crucial role of subject’s prior skills 

(i.e. previous experience), expectations about the 

feedback, training and beliefs following task instructions. 

Subjects starting training with uninformed priors 

performed poorly. This was in part due to the sparse 

feedback modality (low temporal resolution / low 

dimensionality) which made learning from scratch a very 

tricky task. This suggests that reducing the amount of 

targeted mental dimensions may be instrumental to 

guarantee successful training [6]. The lackluster ability 

of the subjects when they had to build a model of 

interaction from scratch also suggests that more basic 
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learning mechanisms such as classical (model free) 

Reinforcement Learning may play a significant role in 

the initial  phase of the training, with a more complex 

representational learning taking over later on [13]. 

The proposed framework is very general and flexible 

enough to capture a large variety of experimental 

paradigms. For instance, the multidimensional feedback 

based learning implemented in [16] may be modelled by 

agents learning simultaneously several sensory mappings 

of the same internal dynamical state.  

 

CONCLUSION 

 

This paper presents a computational account of 

neurofeedback/BCI Motor Imagery training using the 

Active Inference framework. Preliminary simulations 

reveal that the Active Inference framework has great 

potential to provide an account of individual self-

regulation dynamics. Future work will consist in fitting 

alternative instantiations of such models to actual data in 

order to demonstrate the validity of this approach to 

disentangle between learning profiles and identify 

individual traits for BCI learning curves and empirically 

observed neurophysiological dynamics. 
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ABSTRACT: Speech Neuroprostheses have the poten-
tial to enable users to communicate without the need
for overt muscle movement. Several recent approaches
have demonstrated the feasibility of decoding textual and
acoustic representations of speech from invasively mea-
sured neural activity. However, most approaches decode
or synthesize speech after several seconds or complete
utterances. While this provides tremendous communica-
tive ability to patients, it lacks the full expressive power
of natural conversations. Ideally, a speech neuroprosthe-
sis would synthesize speech without a noticeable delay.
Here, we present a real-time speech decoding pipeline
that generates speech output in a streaming fashion, i.e.,
with delays of less than 40 ms. Intracranial EEG data is
measured, processed, decoded, and synthesized into an
audio waveform using our fast and modular framework.
Notably, we employ a Transformer architecture for the
decoding step from neural features to a spectral represen-
tation of speech.

INTRODUCTION

Speech plays an important role in human interaction,
serving as a primary means of conveying thoughts and
emotions. It is integral to the fabric of our social existence
and personal identity. However, various conditions, such
as Amyotrophic Lateral Sclerosis (ALS) and locked-in
syndrome, can impair one’s ability to speak, significantly
impacting the quality of life. These diseases may leave
cognitive functions intact, while debilitating the muscu-
lar activity required for speech production.
Speech Brain-Computer Interfaces (BCIs), also called
speech neuroprostheses, are a groundbreaking technol-
ogy designed to help people in need. By harnessing
neural signals through invasive or noninvasive methods,
these BCIs decode speech-associated brain activity. This
process involves extracting and translating neural pat-
terns related to speech formation into actionable outputs,
thereby enabling communication or device control.
The ultimate goal of a speech BCI is to facilitate seam-
less, naturalistic conversation, akin to normal speech.
Achieving this requires real-time processing of neural

signals, a technical challenge that remains at the fore-
front of current research. Despite ongoing advancements,
many existing speech BCI systems rely on offline evalu-
ations, where signal analysis and method validation oc-
cur after data collection [1–5]. While recent studies have
made strides toward closed-loop systems capable of gen-
erating textual representations [6–8] or synthesized sen-
tences [9], these technologies typically operate with de-
lays, processing complete sentences or phrases [10] be-
fore producing output. For completely natural communi-
cation, the patient needs to produce speech output imme-
diately to ensure natural flow, e.g. to interrupt the conver-
sational partner or to modulate their own speech.
This paper introduces a novel real-time streaming syn-
thesis pipeline for speech BCIs, distinguished by its low
latency and modular framework. Developed in Python
and based on the framework Timeflux [11], our pipeline
processes and decodes neural data into a speech wave-
form with less than 40 ms of delay. Longer delays have
been found to severely impair speech production [12].
Notably, our system employs a transformer encoder to
translate sequences of neural data into speech spectral se-
quences. The attention mechanism [13] in transformers
is particularly well suited for learning the temporal dy-
namics in the neural and speech data and has successfully
been used on offline data before [14].
To validate our streaming speech BCI, we conducted sim-
ulated online studies using a previously recorded dataset
of intracranial EEG during speech production [15].

MATERIALS AND METHODS

Participants:
Our closed-loop experiments are conducted with vol-
untary participants implanted with sEEG electrodes as
part of the clinical therapy for their pharmaco-resistant
epilepsy. All participants gave written informed consent
before joining the study, and the electrode locations were
purely determined based on clinical necessity. All partici-
pants were Dutch native speakers and had normal speech,
hearing, and language functions.
For this simulated online evaluation, we employ our pre-
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viously published open-access Single Word Production
Dutch-iBIDS (SWPD) dataset [15], consisting of 10 par-
ticipants speaking 100 words each.

Data recording:
Patients were implanted with platinum-iridium sEEG
electrode shafts (Microdeep intracerebral electrodes;
Dixi Medical, Beçanson, France) with a diameter of
0.8 mm, a contact length of 2 mm and an inter-contact
distance of 1.5 mm with each shaft containing between 5
and 18 contacts. Neural data was recorded using two or
more Micromed SD LTM amplifier(s) (Micromed S.p.A.,
Treviso, Italy) with 64 channels each. Electrode contacts
were referenced to a common white matter contact. Data
was recorded at either 1024 Hz or 2048 Hz.

Simulated Online Experiment:
To assess the real-time capabilities of our closed-loop
speech decoding pipeline, we conducted simulated on-
line experiments using the SWPD dataset [15]. The
dataset’s recording environment mirrors the anticipated
operational scenario for our pipeline, making it an ideal
choice for our evaluation process. As part of the as-
sessment, we divided the data from each participant into
training and testing sets, allocating 75% for model train-
ing and the remaining 25% for testing. After training the
pipeline with the designated data, we streamed the test-
ing dataset through LabStreamingLayer (LSL), emulat-
ing the amplifier characteristics used in our real setup.
This approach was designed to closely replicate the dy-
namics of real neural signal acquisition and processing,
thereby providing a realistic approximation of how the
pipeline would perform in live application scenarios.

Closed-loop pipeline:
Pipeline Design and Requirements
In the initial phase of constructing our speech Brain-
Computer Interface (BCI) pipeline, we focused on iden-
tifying key requirements to ensure its effectiveness for
real-time communication. Among our primary objectives
were ensuring real-time decoding, rapid model train-
ing, and a high degree of modularity and configurabil-
ity. Real-time decoding is crucial as the pipeline must
process neural signal samples swiftly to minimize la-
tency, thereby enabling near-instantaneous speech syn-
thesis. Given the constraints of on-site training, it was
imperative that the machine learning models employed
could be trained quickly to avoid reducing valuable data
collection time with participants. Additionally, to facil-
itate rapid experimentation and adaptation of new ap-
proaches, the system architecture needed to be both mod-
ular and easily configurable.
Framework and Technology Selection
We used Python and the framework Timeflux [11] for
building the pipeline. Timeflux facilitates the creation of
applications as directed acyclic graphs (DAGs), where
processing nodes are interconnected through YAML
syntax, enabling efficient data flow and simultaneous
processing. For communication between graphs we used
ZeroMQ, an asynchronous messaging library, ensuring
robust data exchange without interrupting the execution.

Pipeline Architecture
The pipeline involves two main stages: Initialization and
Real-time decoding. Each stage consists of a series of
graphs and nodes executed concurrently, optimizing data
processing speed.
Initialization Stage: This stage prepares the system for
the online decoding. It uses the open-loop recorded ex-
periment data, which includes synchronized neural sig-
nals, audio, and markers, to extract the relevant parame-
ters and train the machine learning models.
First, we segregate the data into distinct datasets labeled
“neural” and “audio” and adjust their format, length, and
type.
Irrelevant channels, such as clinical markers and heart-
rate, are eliminated from the “neural” dataset, and the
power line noise and its first harmonic are filtered out,
using causal IIR bandstop-filters. Afterwards, the sig-
nal is extracted in a broadband high-frequency range
(70−170 Hz) and windowed, subsequently calculating
the log power for each window. At the same time, another
graph extracts the “audio” features by decimating the au-
dio signal to lower its sampling rate, then using a sliding
window with the same window size and frameshift as the
neural data to extract a mel-scaled spectrogram, aligned
to the neural features.
The size of the window used for the audio and neural data
can be different. However, the shift needs to always be
the same, allowing seamless alignment between the fea-
tures.
Both feature sets are aligned and scaled before being used
to train the Machine Learning model. When the training
is completed, we save the model parameters and addi-
tional helpful metadata for the decoding stage.
Real-Time Decoding Stage: This stage, presented in
Fig. 1, is responsible for the on-the-fly decoding of neural
signals into audible speech. It encompasses system ini-
tialization, data intake, feature extraction, neural decod-
ing, audio reconstruction, and finally, data management
and preservation.
Initially, all nodes remain inactive and await the initializa-
tion parameters saved during the first stage. After read-
ing the parameters, they are broadcast to all the pipeline’s
nodes while the LSL flow of incoming “neural” data is
paused. The pause lasts 10 s and ensures that all the nodes
are ready to promptly process the data once the flow re-
sumes.
After the flow of LSL-streamed “neural” data is resumed,
the features are extracted. The process is similar to the
one described in the Initialization Stage where the data is
filtered, windowed, and log power is extracted.
The features are scaled and fed into the Transformer
model to obtain audible acoustic representations. We use
1.3 s of features to produce a representation of that same
size, however, only the last 34.69 ms are passed to the
following synthesis stage.
Subsequently, the Griffin-Lim algorithm transforms these
spectral representations into an audio waveform that is
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Figure 1: Illustration of the process of converting neural signals into audible speech. The system initializes by setting up nodes and
pausing data intake. Neural data is then resumed and processed—filtered, feature-extracted, and transformed into a 1.3-second audio
representation by a Transformer model, with only the last 34.7 ms used for sound synthesis via the Griffin-Lim algorithm. The generated
waveform is sent to a sound card for playback. Concurrently, a data management system ensures the integrity and continuity of the
operation without data loss.

send to the sound card for immediate auditory feedback.
We include an efficient data management paradigm that
prevents data loss and does not disrupt the pipeline op-
eration or hinder its speed. The paradigm includes a
resource-friendly data-saving routine executed concur-
rently to maintain operational speed and integrity.

Transformer Architecture:
As mentioned, the pipeline can be easily configured to
extract different neural and audio features and use differ-
ent Machine Learning models. Here, we present initial
results with a real-time-ready transformer architecture.
A Transformer model is an advanced neural network ar-
chitecture that excels in processing data sequences us-
ing self-attention mechanisms [13]. These mechanisms
permit the efficient extraction of hidden context and rela-
tionships within data. Transformers are highly efficient,
scalable, and flexible, making them superior for tasks re-
quiring a deep understanding of complex relationships.
This is why they have become the foundation for many
state-of-the-art solutions in natural language processing
and beyond. Transformers have also been used in decod-
ing speech from offline data successfully [14].
In our context of having a small amount of time-series
data with limited time to train the model, it is challeng-
ing to use a Transformer because they typically require
large amounts of data and significant computational re-
sources to effectively learn the complex patterns and re-
lationships in time-series. Their architecture, designed

for capturing long-range dependencies, struggles to gen-
eralize from small datasets without overfitting and may
not achieve optimal performance within a short training
time-frame.

Despite these hurdles, we used a Transformer model to
reconstruct auditory data from neural signals. Using only
the self-attention mechanism and the encoder block, the
model focuses on efficiently extracting and analyzing
temporal features [16]. This approach reduces compu-
tational demands and training time, while still capturing
complex patterns with less risk of overfitting. Focusing
on prediction rather than sequence generation aligns the
model’s strengths directly with the requirements of time-
series analysis, making it better suited for our tasks.

A challenge in real-time decoding with a sequential
model lies in balancing the need to analyze significant
temporal contexts to accurately decode complex patterns
against the constraints of immediate processing. Recently
published BCI works address this challenge by recording
a large enough sequence of neural data and then produc-
ing the mapping to reproducible audio or text [10, 17].

Processing extensive historical data introduces latency
for real-time applications like audio synthesis from neural
signals, which conflicts with our real-time requirements.
Our proposed solution, which exploits an idea presented
by Shigemi et al. [18] involves using a predefined large-
enough context size for analysis but synthesizing only the
latest segment of the sequence. This approach allows the
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Transformer to leverage enough historical data for accu-
rate predictions, while maintaining the ability to produce
outputs in real-time. It effectively addresses the challenge
of adapting sequence-to-sequence mapping for real-time
decoding, ensuring accuracy and immediacy in applica-
tions such as closed-loop neural interfaces.
Fig. 2 presents our conceived model architecture with the
most relevant parameters. Our model first maps all the F
channels of the input sequence into a 125-dimensional
space through a linear transformation. Then, we use six
standard encoder layers [13], each containing two main
components: a Multi-Head Attention and a Feed For-
ward neural network, followed by an Add & Norm step
to facilitate layer normalization. The Multi-Head Atten-
tion mechanism has five attention heads, and the Feed
Forward neural network has a dimensionality of 2048 on
the inner layer. The output of the last encoder layer un-
dergoes another linear transformation to match the de-
sired output dimension. A dropout rate of 0.25 is applied
throughout the network to prevent overfitting. We use
Mean Squared Error (MSE) as the loss criterion, and the
learning rate is set to a modest 5e-4, which balances the
speed of convergence with the stability of the learning
process.

RESULTS

Given the constrained interaction duration with partici-
pants, it was critical to minimize model training times.
The pipeline averaged approximately 133.11 s for model
training, with a standard deviation of 12.00 s. This du-
ration aligns well with our experimental requirements,
offering a balanced compromise between training effi-
ciency and subsequent decoding performance.
Processing latency per sample was another critical met-
ric. Notably, each decoding operation by the transformer
yields a 1.27-second audio window, from which only the
latest 34.69 ms are utilized for audio reconstruction. To
ensure near-real-time functionality, processing for each
sample must therefore be completed in under 34.69 ms.
Our performance results indicate an average processing
time of approximately 17.62 ms per sample (standard de-
viation 1.01 ms), significantly below the 34.69 ms thresh-
old. This efficiency meets our near-real-time criteria and
provides flexibility for exploring other, more complex de-
coding approaches or even switching to higher-quality
vocoders, such as HIFIGan [19] or VocGAN [20].
The qualitative aspect of our results involves the recon-
struction of speech from neural signals. Fig. 3 aggregates
the correlation outcomes across all participants, with data
points indicating the correlation coefficient between the
spectrograms of the original recorded and the synthesized
audio for each individual, providing a visual represen-
tation of the decoding accuracy and variability among
participants. Correlation are stable across the entire fre-
quency spectrum of the mel-scale (Fig. 3 b), but vary
dramatically between participants. Best results exceed
average correlation coefficients of 0.66 (sub-06, Fig. 3

Figure 2: Transformer Model Architecture and Parameters. The
model inputs are linearly transformed from F channels to a 125-
dimensional space, followed by six encoder layers. Each layer
consists of a Multi-Head Attention with five heads and a Feed
Forward network with an inner-layer dimension of 2048, fol-
lowed by an Add & Norm step. The final encoder output is
linearly transformed to the desired output size. The model em-
ploys a dropout of 0.25, uses MSE as the loss function, and has
a learning rate of 5e-4.

a).

DISCUSSION

The presented results, particularly concerning processing
speeds and model training efficiency, precisely align with
our pipeline’s rapid training and real-time decoding ob-
jectives. This achievement highlights our pipeline’s ef-
fectiveness in enabling real-time communication for in-
dividuals with speech impairments and its proficiency in
decoding speech from new, unseen words. This latter ca-
pability underscores the system’s robust generalization,
a critical feature for practical Brain-Computer Interface
(BCI) applications where pre-defining a comprehensive
vocabulary is impractical.
Variations in decoding results across participants likely
mirror the differential placement of sEEG electrodes.
This suggests that proximity to speech-related brain areas
might significantly influence both neural signal decod-
ing quality and model training success. Notably, these
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Figure 3: Correlation between original and reconstructed spectrograms. a) Mean correlation coefficients across all spectral bins for
each participant, with error bars indicating the standard deviation. b) Mean correlation coefficients for each spectral bin.

achievements come from training on relatively limited
data, approximately 225 s per participant. This is in stark
contrast to the vast datasets employed in training the cur-
rent state-of-the-art speech BCIs, which often utilize data
ranging from dozens of minutes to several hours [6, 7,
10, 21], highlighting the efficiency and potential of our
approach even with constrained datasets.
Currently, real-time reconstructed speech results are not
intelligible, leaving room for further improvements in de-
coding approach and vocoder.
While the current results stem from simulations using the
SWPD dataset, delineating the pipeline’s capability for
real-time speech decoding from neural signals, present-
ing online results falls outside this paper’s scope. Nev-
ertheless, addressing this gap is a priority in our ongoing
research.
The promising outcomes achieved with the Transformer
model open exciting future research directions, such as
refining model architectures and devising new strategies
to minimize further decoding latency. The 17.62 ms ex-
tra in processing time also permits using a more complex
synthesizer that better reconstructs the audible speech
from the spectrogram.

CONCLUSION

This paper introduced a closed-loop speech decoding
pipeline designed for real-time operation. Our system is
distinctively characterized by its low latency and modu-
lar framework, facilitating seamless, near-instantaneous
communication. Utilizing Python and the Timeflux
framework, we developed a modular pipeline that allows
for swift prototyping and testing, catering to the dynamic
needs of BCI research.

We demonstrated the feasibility of real-time stream-
ing speech synthesis from neural signals through rig-
orous offline validations using aligned neural and au-
dio recordings from the SWPD dataset. Our pipeline
employs a Transformer model optimized for time-series
data, achieving fast decoding speed and reasonable re-
sults. Despite the challenges associated with limited data
availability and the constraints of working within clin-
ical settings, our system managed to train models effi-
ciently, with an average model training time of approxi-
mately 133.11 s and a decoding processing time of about
17.62 ms per sample, well below the threshold required
for real-time functionality [12]. Notably, our streaming
approach could allow for natural conversation, as sound
is produced almost immediately, as opposed to other ap-
proaches which produce chunks of audio corresponding
to whole sentences.

The qualitative results further underscore the efficacy of
our pipeline in reconstructing audible speech. The re-
constructed spectrograms and the correlation coefficients
across participants highlight the potential of our technol-
ogy to provide a voice for those who have lost their natu-
ral ability to speak due to neurological conditions.

Our work showcases an improvement in speech BCIs
and opens new avenues for research and development to-
ward more intuitive and accessible communication solu-
tions. Future work will focus on enhancing the decod-
ing results, reducing latency further, and expanding the
system’s adaptability. By continuing to refine and vali-
date our pipeline, we aim to bring this technology closer
to widespread clinical application, offering hope for im-
proved quality of life for individuals with severe speech
impairments.
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ABSTRACT: The extensively studied P300 component 

of the human event-related potential in cognitive 

neuroscience has significant applications, including 

constructing BCI systems for individuals with motor 

disabilities. However, accurately and efficiently 

identifying the P300 component in EEG data poses 

challenges due to the low signal-to-noise ratio and 

biological diversity among subjects. To address this, 

cutting-edge deep learning architectures were developed 

and employed. Initially, digital signal processing 

techniques were applied, followed by training and 

evaluation of DL models like Chrononet, EEGNet, 

DCRNN, CNNs, and RNNs. Results revealed that our 

lightweight CNN model, combined with K-fold cross-

validation and weighted class, achieved the highest 

average classification accuracy of 98% surpassing other 

models for subject-dependent P300 classification. This 

high-performing CNN model facilitated the creation of 

NeuroPhone, a communication application grounded in 

the core principles of BCI systems. 

 

INTRODUCTION 

 
Electroencephalography (EEG) has opened a window 

into the human brain, allowing us to visualize its 

electrical activity and delve into the hidden language of 

its neurons. From its widespread medical applications to 

its growing presence in research and consumer domains, 

EEG offers a powerful tool for understanding and 

interacting with the mind. At the heart of this interaction 

lies the fascinating world of brainwaves, different 

patterns reflecting different states of consciousness. 

From the high-frequency beta waves associated with 

focused attention to the slow delta waves accompanying 

deep sleep, each frequency serves as a neural biomarker 

for specific cognitive states [1]. 

Among these brainwaves, the P300 event-related 

potential (ERP) holds a special position. This distinctive 

positive spike, peaking roughly 300 milliseconds after a 

specific stimulus, reveals much about our cognitive 

processes. Researchers have extensively studied the 

P300, recognizing its crucial role in attention, memory, 

decision-making, and information processing [2]. Its 

potential, however, extends beyond research labs, paving 

the way for revolutionary technology called Brain-

Computer Interfaces (BCIs). 

BCIs offer a direct communication channel between the 

brain and external devices, bypassing traditional input 

methods. By harnessing the power of P300 and other 

EEG signals, BCIs empower individuals to control 

computers, prosthetic limbs, and even communicate 

through their thoughts [3]. Yet, despite the immense 

promise of BCIs, their path to widespread adoption is met 

with two key challenges: achieving robust and accurate 

P300 detection and overcoming the computational 

limitations of existing BCI systems. Current models 

often struggle to extract the subtle P300 signal from the 

inherent noise of EEG data, and their demanding 

computational requirements prevent seamless integration 

with mobile devices, a crucial step towards accessibility 

for a wider population. 

In this study, we present the development of 

NeuroPhone, an efficient BCI in the form of a 

communication application designed to break down these 

barriers. NeuroPhone leverages the P300 peak, enabling 

individuals with motor disabilities to control their 

smartphones and engage in digital communication solely 

through their visual attention. By employing cutting-edge 

deep learning techniques tailored for mobile device 

processing power, NeuroPhone aims to overcome the 

previous limitations of accuracy and accessibility. This 

paper delves into the development of NeuroPhone 

including the implemented digital signal processing 

(DSP) techniques, deep learning architectures used, and 

specifics of the development process of NeuroPhone's 

application software. 

 
METHODS 

 

We aimed to develop a comprehensive and 

computationally efficient classification model based on 

the detection of P300 event-related potential (ERP). We 

first went on exploring and evaluating different 

architectures, such as ChronoNet, EEGNet, DCRNN, 

and others, to determine their effectiveness and 

performance in a subject-dependent task. Then, we 

introduced a lightweight convolutional neural network 

(CNN) architecture that excels in capturing unique ERP 

features, leading to superior classification accuracy 

compared to existing state-of-the-art architectures. 

In the subsequent sections, we first present details about 

the datasets we utilized in our work, including the online 

EPFL BCI Group dataset [4] and the data we collected 

offline using Emotiv EPOC headset. After that, we 
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provide a comprehensive overview of the models we 

investigated. Then we present the architecture of our 

CNN model. Additionally, we outline the training 

methodology we employed, highlighting the steps and 

techniques utilized to optimize and fine-tune the models 

for optimal performance. And finally, we explain the 

details of NeuroPhone’s application software, and the 

technology used. 

     Datasets: The EPFL BCI group dataset, which was 

employed in our research, played a crucial role in 

evaluating the performance of various models. This 

dataset was specifically curated by the Brain-Computer 

Interface (BCI) group at École Polytechnique Fédérale de 

Lausanne (EPFL) and is widely recognized in the field. 

The dataset consists of meticulously recorded 

electroencephalogram (EEG) signals, making it a 

valuable resource for investigating brain-computer 

interfaces. The dataset has a population of five disabled 

and four able-bodied subjects. Subjects were facing a 

laptop screen on which six images were displayed. The 

images were selected according to an application 

scenario in which users can control electrical appliances 

via a BCI system. The EEG was recorded at 2048 Hz 

sampling rate from 32 electrodes placed at the standard 

positions of the 10–20 international system. Each subject 

recorded 4 sessions and each session had 6 runs. For a 

single run, the images were flashed in random sequences, 

one image at a time. Each flash of an image lasted for 100 

ms and during the following 300 ms none of the images 

was flashed, i.e. the interstimulus interval was 400 ms, 

see (Fig. 1).  

For our collected dataset, we followed the same 

recording paradigm as EFPL dataset. We used the 

famous Emotiv EPOC headset with 14 channels placed 

at the standard positions of the 10–20. We recorded the 

EEG signal from a single male subject. The subject was 

faced by NeuroPhone’s application screen which 

displayed 6 images (icons), each represented a certain 

functionality that allows the user to communicate with 

others, see (Fig. 2). More details are provided at the 

application subsection. The subject recorded 6 sessions; 

each session had a duration of 90 seconds with a 

sampling rate of 256 Hz. 

     Preprocessing: The data underwent several 

preprocessing steps to ensure optimal analysis. The re-

referencing step involved utilizing the average signal 

from the two mastoid electrodes for re-referencing 

purposes. To obtain a desired signal range of 1 to 12 Hz, 

a band-pass Butterworth filter of order 3 was applied to 

filter the signal [5]. Subsequently, the signal was down 

sampled by 64 Hz to reduce computational load. Then, 

data was segmented such that each segment was 

corresponding to an event. A duration of 1 second was 

taken after each stimulus event and given that the 

duration of the flashing event was 400 ms, there was a 

600 ms overlap. On a single segment, z-score 

normalization was implemented to normalize the signal. 

To handle extreme values, the signal underwent a 

Winsorizing process, where the 10th and 90th percentiles 

were calculated for samples from each electrode. Any 

amplitude values falling below the 10th percentile or 

above the 90th percentile was substituted with the 

respective 10th or 90th percentile value [4].  These 

preprocessing steps collectively aimed to optimize the 

data for deep learning models’ training. The input signal 

shape for the models was (32 × 32) where the first 

dimension is the number of time samples, and the second 

dimension is the number of channels. And in our 

collected data input shape was (32 × 14) because 

EMOTIV dataset contained only 14 channels. 

     Deep Learning architectures: In our quest for the 

optimal deep learning architecture for subject-dependent 

P300 classification, we explored a diverse range of 

models, each offering its own set of advantages and 

limitations. Chrononet and EEGNet, specifically 

designed for EEG analysis, leverage convolutional layers 

to efficiently capture the temporal characteristics of the 

P300 component, making them well-suited for this task 

[6][7]. However, their deep architectures can be 

computationally expensive to train and might require a 

substantial amount of data for optimal performance. 

DCRNNs, combining the strengths of CNNs and RNNs, 

excel at capturing both the spatial and temporal 

information crucial for P300 detection [8]. Despite their 

effectiveness, DCRNNs can be more complex to design 

and train effectively, requiring careful hyperparameter 

tuning to unlock their full potential. Finally, standard 

RNNs, while adept at learning sequential data like EEG 

signals, can suffer from vanishing gradients, hindering 

their ability to learn from long sequences. 

     Our CNN model architecture: The proposed CNN 

architecture is designed to extract salient features from 

2D EEG signals for robust P300 component 

classification. The model comprises two convolutional 

layers with 32 and 64 filters (3x3 kernel size), applying 

learned filters to extract spatial patterns relevant to P300 

detection. ReLU activation introduces non-linearity. A 

max-pooling layer (2x2 pool size) down-samples feature 

maps, reducing dimensionality and promoting spatial 

invariance. A flatten layer prepares the extracted features 

for classification by two fully connected layers (128 

neurons with ReLU activation, and 1 neuron with 

sigmoid activation), see (Fig. 3). 

 

    
Figure 1: The interstimulus interval of each flashing 

event. 

 

     Training Methodology: To ensure robust model 

performance and mitigate the effects of overfitting, a K-

fold cross-validation strategy was employed during 

training.  Specifically, a 5-fold cross-validation approach 

was implemented (K=5). This technique divides the 

dataset into five partitions (folds) while preserving the 

proportion of P300 and non-P300 examples in each fold. 

Iteratively, one fold is designated as the testing set while 
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the remaining folds are used for training. Model 

evaluation metrics are computed on the held-out testing 

set after each training iteration. 

Figure 2: NeuroPhone’s Mobile Application interface 

which contains 6 flashing images (icons). 

 

To address potential class imbalance within the EEG 

dataset, where the number of P300 events (positive class) 

is significantly lower compared to non-P300 events 

(negative class), class weights were computed and 

incorporated into the training process. This approach 

assigns higher weights to the minority class (P300 

events) during training. The specific weights are 

calculated based on the class frequencies within the 

training data. By assigning higher weights, the model is 

effectively forced to pay closer attention to the less 

frequent P300 examples, leading to a more balanced 

learning process and improved classification 

performance for the minority class. 

 

 
Figure 3: Architectural configuration of our CNN model. 

The deep learning models were compiled with the Adam 

optimizer, a common choice for its adaptive learning rate 

capabilities, and binary cross-entropy loss, suitable for 

binary classification. Accuracy served as the primary 

evaluation metric.  

Finally, average loss and accuracy scores across all folds 

were calculated to provide a comprehensive assessment 

of model performance under the K-fold cross-validation 

procedure. 

     Application: The purpose of our application is to help 

disabled people use their mobile phones and perform 

some important functions through it using only their 

visual attention. Our application is designed in a way that 

visually stimulates the user to choose the icon they desire. 

Each icon represents a functionality that enables them to 

control their smartphone. They are: Gallery, Contacts, 

Police, Favorite Contacts, Ambulance, and Fireman. The 

whole set of icons would flash in random order. The user 

would focus their attention on any icon they want to 

choose, and after some repetitions of flashing the whole 

set of icons, the DL model would detect the P300 peak 

that synchronized with the timing of the desired icon’s 

flash, and thus, would fire the start of the execution of 

that icon’s functionality. 

We used Emotiv EPOC X 14 which consists of 14 EEG 

channels and 2 reference channels. The electrodes are 

located at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 

FC6, F4, F8, AF4 according to the International 10-20 

system, see (Fig. 4). The headset was connected to its 

software EMOTIV-PRO on the laptop then we start 

streaming data from Lab Streaming Layer (LSL) option 

in the application. The LSL feature allows efficient, two-

way communication between EmotivPRO and other 

third-party software and devices. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The location of EMOTIV electrodes. 

 

We have created an API with Flask Library in Python 

language. The main functionality of this API is to 

synchronize between the EEG signal coming from 

EMOTIV and the flash timing coming from 

Neurophone’s mobile application.  

The flask API receives raw EEG signal samples from 

EMOTIV in addition to timestamp of each sample, so the 

first step it performs is to segment the raw EEG signal 

and preprocess it. Each segment is 1000 ms long which 

corresponds to 256 signal samples because EMOTIV’s 

sampling rate is 256 HZ. After preprocessing, the 

segment’s length would be 32 samples because of the 
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down sampling step in preprocessing. We also perform 

bandpass Butterworth filter between 1 and 12 HZ and Z-

score normalization. After preprocessing, each segment 

is passed to the DL model to determine whether it 

contains P300 or not. The DL model we utilized in the 

API was our CNN model that we presented its 

architecture earlier in (Fig. 3). We chose CNN because it 

outperformed the others in the offline evaluation. Along 

with the received EEG signal samples and timestamp of 

each sample, Flask API receives each icon’s flash timing 

from Neurophone’s flutter mobile application.  

We used Flutter to create the mobile application. The 

application was running on a Galaxy M31 Phone with an 

Octa-core Exynos 9611 (10nm) Processor and Android 

12 operating system. The Application would 

continuously send each icon’s flash time and icon’s index 

to Flask API. The second step performed by the API is 

synchronization. If the EEG segment that was 

synchronized with an icon flash time contained a P300 

peak, the API would send a firing response back to the 

flutter application to start the execution of that icon’s 

functionality, see (Fig. 5). 

 

RESULTS 

 

In this section, we present the experimental results of our 

study focusing on the classification of P300 in EEG 

signals in subject-dependent task. To achieve this 

objective, we trained a variety of models, including 

Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Dynamic Convolutional 

Recurrent Neural Networks (DCRNN), EEGNet, and 

ChronoNet. Those models are evaluated on the EPFL 

BCI group dataset and our collected dataset. In Tab. 1, 

we demonstrate the results on the EPFL dataset. We 

provide the average k-fold accuracy and F1-score (across 

the 5 folds). 

Among accuracy results, CNN achieved the highest 

average classification accuracy on EPFL data. We also 

explored their performance on our collected dataset. In 

Tab. 2, we demonstrate the results of our single male 

subject data. The demonstrated results on our collected 

are offline results, meaning that the collection and 

evaluation were performed offline and then the best 

performing model in the offline evaluation was utilized 

in the real-time scenario (it was the CNN model in this 

case). 

 

Table 2: Results on our collected data 

Model Accuracy F1-score 

EEGNET 0.94 0.86 

DRCNN 0.92 0.81 

RNN 0.97 0.89 

CNN 0.98 0.95 

 

The results on our in-house data also demonstrated that 

CNN model outperforms the others by achieving a 98% 

average classification accuracy, highlighting the 

eligibility of CNN to be utilized in real-time. 

 

DISCUSSION 

 

We could notice from results in Tab. 1 that subject 8 

achieved the highest average classification accuracy 

across most of the DL models. It may be attributed to the 

fact that the subject was highly motivated during the 

experiments as stated by the authors who collected the 

data [4]. Even though EPFL contained 9 subjects, they 

excluded the data of the fifth subject due to the difficulty 

of communication with him. We could also notice that 

CNN achieved the highest average classification 

accuracy and F1 score across all the subjects compared 

to the other models.  

We acknowledge that the in-house data were small, and 

a larger dataset is required for the results to be 

generalizable. The use of parameters such as information 

transfer rate (ITR) is an essential metric to be utilized for 

an improved evaluation of the BCI system. 

To compare our results with other studies implementing 

P300-based BCI systems, we find that Eric Sellers and 

Emanuel Donchin [9] achieved an average classification 

accuracy of 72% for ALS patients and 85% for abled 

subjects. We could see that Hubert Cecotti and Axel 

Gräser [10] achieved a classification accuracy of 95.5% 

using a CNN model. To compare our results to other 

studies that utilized the same dataset we used (EPFL 

dataset), we find that the authors in [11] achieved an 

average classification accuracy of 95.68% for the healthy 

subjects and 94.69% for disabled patients through their 

CNN model that uses 2-D EEG scalogram images. We 

also see Shojaedini et al. [12] reached a classification 

accuracy of 95.34% using a CNN model with a new 

adaptation method for hyperparameters. Our methods 

achieved a higher classification accuracy for P300 

detection among the studies that used the same dataset. 

While NeuroPhone provides a robust BCI system to 

detect P300 and control the mobile application, there are 

some limitations of the system. The first one is the 

inevitable time delay between the mobile application and 

the API. This delay is attributed to the quality of the 

connection between the phone and the API. We haven't 

accurately measured the delay time, but it was believed 

to be around a few seconds. The second limitation is the 

number of repetitions, in real-time, the user requires 

around 3 to 4 repetitions to select the desired icon. A 

single repetition is the flashing of all the icons, and it lasts 

for 2.4 seconds, so 3 repetitions would be around 8 

seconds. 

  

CONCLUSION 

 

This research demonstrates the power of deep learning 

for EEG analysis and brain-computer interface 

development. Our lightweight CNN model, combined 

with K-fold cross-validation and class weighting, 

achieved superior P300 classification accuracy compared 

to other architectures. This enabled the successful 

creation of the NeuroPhone application. Future research 

will explore transfer learning for improved model 

generalization across subjects and investigate hybrid 
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Table 1: Results on EPFL BCI group dataset 

 

deep learning and signal processing approaches for 

further enhancements.  
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Figure 5: Using NeuroPhones’ Flutter application 

interface, the user gets visually stimulated by the 

flashing, and at the same time, the EEG signal is 

transmitted to Flask API, the API synchronizes between 

the EEG signal and the flash timing and sends back a 

response to Flutter App to execute the desired icon’s 

functionality. 
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 Sub 1 Sub 2 Sub 3 Sub 4 Sub 6 Sub 7 Sub 8 Sub 9 

Model Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

EEGNET 0.89 0.70 0.84 0.64 0.93 0.80 0.90 0.74 0.89 0.71 0.90 0.77 0.95 0.87 0.86 0.68 

ChronoNet 0.93 0.83 0.90 0.75 0.94 0.84 0.89 0.79 0.93 0.83 0.93 0.85 0.92 0.82 0.91 0.79 

DRCNN 0.86 0.65 0.84 0.61 0.89 0.73 0.90 0.72 0.91 0.75 0.90 0.75 0.93 0.81 0.86 0.64 

RNN 0.94 0.83 0.94 0.83 0.96 0.88 0.94 0.83 0.95 0.86 0.96 0.88 0.97 0.92 0.95 0.84 

CNN 0.99 0.96 0.98 0.96 0.99 0.98 0.98 0.96 0.98 0.96 0.99 0.97 0.99 0.97 0.99 0.97 
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ABSTRACT: In this paper, we explore the innovative 

combination of magneto-electric nanoparticles (MENPs) 

and graphene solution-gated field-effect transistors 

(gSGFETs) to advance brain-computer interfaces (BCIs). 

ME materials, known for their wireless and minimally 

invasive brain stimulation capabilities, are combined 

with gSGFETs, known for their high-resolution neural 

recording. Our research explores the potential benefits of 

this hybrid approach, including reduced artifacts, 

enhanced spatial resolution, and improved detection of 

subthreshold phenomena and DC potentials. A hardware 

and software setup is proposed and possible data analysis 

methods that will assist in the further development of the 

system are reviewed.  This combined technology offers a 

promising direction for advanced BCIs and represents a 

significant advance in neural engineering. 

 

INTRODUCTION 

 
In the rapidly evolving field of neural engineering, 

significant advances have been made to improve brain-

computer interfaces (BCIs) through innovative materials 

and technologies. One notable development is 

magnetoelectric (ME) materials, which are known for 

their unique ability to convert magnetic fields into 

electric fields and vice versa through mechanical 

coupling between magnetostrictive and piezoelectric 

components [1]. The application of ME materials in brain 

stimulation is a promising option for low magnetic field 

stimulation in the range of a few mT. They can be 

fabricated in various sizes, from milliliters to 

nanometers, thus facilitating minimally invasive 

procedures. At the nanoscale, MENPs can even be 

administered intravenously, providing a wireless, less 

invasive approach to stimulating deep brain regions [2-

6]. While previous in vitro and in vivo research on 

MENPs for brain stimulation has shown promising 

results for their modulatory effects on brain activity, 

these studies have primarily used calcium imaging to 

measure neuronal activation [3-5]. This technique has the 

advantage of simultaneously visualizing the activity of 

large populations of neurons while not requiring the use 

of implants, thus reducing invasiveness. Another key 

advantage, particularly relevant in magnetic field 

stimulation, is the absence of interference from induced 

voltages in the measurements. Calcium imaging, 

however, has significant limitations. It detects changes in 

calcium ion concentrations within neurons, which 

indicate neuronal activity. When neurons fire, these 

calcium ions flow into the cells and are detected by 

fluorescent calcium indicators. However, the kinetics of 

these indicators and related physiological processes limit 

the temporal resolution of the method. In addition, 

calcium imaging cannot detect subthreshold changes in 

activity  [7]. 

Therefore, this method is not suitable for a complete 

study of stimulation-related phenomena that require good 

temporal resolution, such as evoked potentials or 

entrainment at a specific stimulation frequency.  

Electrophysiological methods, on the other hand, can 

directly record electrical potentials with high temporal 

resolution, making them well suited for use with neural 

stimulation techniques. However, they offer limited 

spatial resolution, and induced voltages become a 

significant issue when stimulation involves magnetic 

fields [8]. 

To address these challenges and fully exploit the 

capabilities of MENPs stimulation, we propose the 

combination with a graphene microtransistor array 

recording system. The graphene-based active sensors, 

specifically graphene solution-gated field-effect 

transistors (gSGFETs) are notable for their flexibility, 

biocompatibility, high carrier mobility, chemical 

stability, and mechanical conformability [9]. Recent 

advancements in gSGFETs have demonstrated their 

effectiveness for broadband recordings and their 

potential for spatially resolved mapping, making them 

ideal for exploring various neural activities, including 

Infra-slow oscillations [10-12].  

The combination of these two systems promises to 

provide the high spatial resolution and minimal 

interference typical of imaging methods, along with the 

high temporal resolution and subthreshold phenomenon 
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detection capabilities of full-band electrophysiology 

methods. We also propose a detailed hardware and 

software setup and suggest the exploration of specific 

data analysis methods that will further the development 

of the system. By combining the wireless, minimally 

invasive stimulation capabilities of ME materials with 

the high-resolution recording capabilities of gSGFETs, 

this research aims to create a more comprehensive and 

effective approach to studying and modulating brain 

activity, making a significant contribution to 

neurological research and potential treatments for 

neurological disorders. 

 
MAGNETOELECTRIC MATERIALS FOR NEURAL 

STIMULATION 

 
The ability of ME materials to convert magnetic fields 

into electric fields with significant high performance has 

led to increasing research on the application of ME 

materials in neural stimulation. ME materials consist of 

a magnetostrictive component that deforms under a 

magnetic field and a piezoelectric component that 

converts this deformation into voltage. These 

components can be configured in several forms: two 

bonded linear thin films are common at the submillimeter 

scale, while a magnetostrictive core with a piezoelectric 

shell is typical for MENPs. Depending on their size, ME 

materials can be either implanted or injected—

submillimeter devices are usually implanted, whereas 

nanoscale devices like MENPs are injected. Injection can 

be performed stereotactically in the targeted brain region 

or even intravenously, depending on the MENPs' 

nanodiameter, which influences their ability to cross the 

blood-brain barrier. In this work, we focus on MENPs 

(Figure 1) due to their minimal invasiveness, which is 

significant for biomedical applications. However, the 

proposed hardware and software system can also be 

integrated with submillimeter ME devices, which offer a 

comparatively lower level of invasiveness than other 

solutions. 

 

Stimulation using low-intensity magnetic fields and 

MENPs in deep brain regions could provide a wireless 

and less invasive alternative to traditional deep brain 

stimulation (DBS) [2]. Furthermore, MENPs could 

enhance precision and depth in targeting neural activity 

compared to techniques like transcranial magnetic 

stimulation (TMS), transcranial alternating current 

stimulation (tACS), and transcranial direct current 

stimulation (tDCS) [2-6] 

 

Significant experiments with ME materials have shown 

their ability to modulate brain activity, using 

nanoparticles for targeted stimulation in in vitro studies 

and demonstrating neuromodulation feasibility in vivo. 

These studies suggest ME materials could offer new 

treatments for neurological disorders [3-5]. However, 

they often rely on indirect methods like calcium imaging 

to assess neural responses, highlighting a gap in direct 

neural activity measurement through electrophysiology. 

This gap suggests a need for integrating ME materials 

with advanced systems like graphene electrode arrays for 

a deeper, more accurate understanding of neural 

dynamics and stimulation effects. 

 

 

Figure 1: Magneto-electric nanoparticles deform when a 

magnetic field is applied, creating electrical dipoles that 

can potentially modulate neuronal activity. 

 

SOLUTION-GATED GRAPHENE FIELD-EFFECT 

TRANSISTORS FOR NEURAL RECORDINGS 

 

Electrolyte-gated transistors have emerged as a 

promising technology in the field of active sensors. The 

unique properties of graphene, such as its high electrical 

conductivity, flexibility, and biocompatibility, make 

gSGFETs especially suitable for interfacing with 

biological systems. GSGFETs offer several advantages 

over traditional neural recording systems. Their high 

carrier mobility allows for rapid response to neural 

signals, enhancing the temporal resolution of recordings. 

Additionally, the thin and flexible nature of graphene 

enables gSGFETs to conform to neural tissues, reducing 

mechanical mismatches and improving signal fidelity. 

Compared to conventional metal-oxide-semiconductor 

field-effect transistors (MOSFETs), gSGFETs exhibit 

lower noise levels, which is crucial for detecting subtle 

neural activities. [9-10]. 

 

Several studies have demonstrated the efficacy of 

gSGFETs in neural recording applications. For instance, 

a landmark study [9] illustrated how gSGFETs could be 

used to record electrophysiological signals from cardiac 

cells with higher clarity than traditional methods. 

Another study [11] successfully employed gSGFETs in 

recording complex neural networks, showcasing their 

potential in understanding neural dynamics and 

disorders. Furthermore, experiments have shown that 

gSGFETs are capable of operating in harsh biochemical 

environments, maintaining their stability and 

functionality over extended periods, a crucial factor for 

long-term neural monitoring [12]. gSGFETs have been 

successful in capturing a wide range of frequencies, 

including those below 0.1Hz, known as infra-slow 

oscillations, with performance similar to glass 

micropipettes. They also provide the capability for 

detailed spatial imaging. [10]. 
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Figure 2: gSGFET visualization with applied gate-

source and drain-source polarizations. Drain-source 

current Ids is measured at drain B. Multielectrode array 

structure visualization with positions for multiple 

gSGFETs. 

 

ADVANTAGES OF THE COMBINATION OF THE 

TECNOLOGIES 

 

The use of gSGFETs to record the outcomes of magnetic 

stimulation with MENPs offers several benefits, 

demonstrating a promising match between these two 

technologies and marking a significant advancement in 

neurotechnology. 

 

A. Reduced Induced Artifacts from Magnetic Fields 

and Less Interactions 

 

A significant advantage of using MENPs for stimulation 

is their reliance on low-intensity magnetic fields [18], 

which opens up possibilities for employing various 

waveform types beyond those used in traditional 

transcranial magnetic stimulation (TMS). In TMS, short 

pulses of high intensity, up to 1.5 T, typically saturate 

recording systems, which are only able to record when 

stimulation is not occurring. This causes manageable 

problems in recordings since the duration of the pulse is 

only in the range of microseconds. In contrast in the case 

of MENPs, using lower magnetic fields of some mT 

allows for the exploration of alternative waveforms, such 

as sinusoidal signals. However, even at these reduced 

intensities, saturation issues in recording systems can 

occur, necessitating measures to mitigate these artifacts. 

  

Graphene material exhibits low magnetic susceptibility, 

making gSGFETs an effective solution for recording in 

environments with magnetic interference. The stability of 

graphene's electrical properties in magnetic fields, as 

demonstrated by Harrysson Rodrigues et al. [19], further 

underscores the suitability of gSGFETs for such uses. 

Additionally, a study by Zhao et al. [20] showed that 

graphene fiber electrodes used for deep brain stimulation 

in conjunction with fMRI effectively mapped activation 

patterns without being disrupted by the MRI scanner's 

magnetic field. This confirms that graphene electrodes 

can function reliably in magnetic environments, making 

them ideal for simultaneous stimulation and recording 

applications. 

Therefore, combining MENPs and gSGFETs has several 

beneficial effects, such as reducing artifacts in 

electrophysiological recordings and enabling the 

examination of more waveforms and frequencies of 

stimulation. Additionally, the minimal magnetic force 

interaction between the MENPs and gSGFETs prevents 

the alteration of MENP distribution that could occur with 

metallic electrodes. 

 

B. Enhanced Spatial Resolution 

 

High resolution in neural recording and stimulation is 

essential to precisely target and record from specific 

neuronal populations or individual neurons. This level of 

precision is critical for unraveling the complex 

mechanisms of neural communication, synaptic 

dynamics, and network functionality. The integration of 

MENPs with gSGFETs, could greatly enhance this 

capability, allowing researchers to probe neural circuits 

with the necessary spatial fidelity. MENPs offer targeted 

brain stimulation with high spatial precision [18], while 

graphene electrodes provide the flexibility and high-

resolution recording critical for capturing neural activity 

[13-16]. Furthermore, the inherent non-uniformity of the 

magnetic field in magnetic stimulation applications, 

coupled with the potentially non-uniform distribution of 

the applied nanoparticles, underscores the need for high 

spatial resolution in recordings. This is critical for 

accurate interpretation of neural responses to magnetic 

stimulation and for precise delivery of therapeutic 

interventions. Together, MENPs and gSGFETs promise 

to advance our understanding of brain function by 

facilitating precise modulation and detailed observation 

of neuronal activity. 

 

C. Recording DC potentials and Infra-slow 

oscillations 

 

The incorporation of graphene electrodes, known for 

their sensitivity in recording direct current (DC) 

potentials and Infra-slow oscillations [13-16], in 

conjunction with a stimulation device is critical. Recent 

literature suggests that such neural activity may occur 

during or after transcranial direct current stimulation 

(tDCS) [16]. Given the shared principles between 

magnetic and electrical stimulation, it is plausible to 

expect similar results in experiments involving 

stimulation with magnetoelectric nanoparticle systems 

(MENPS). 

Exploring the relationship between subthreshold 

stimulation and potential changes in direct current (DC) 

potentials or infra-slow neural activity presents an 

intriguing research opportunity. Stimulation with 

magnetoelectric (ME) materials often involves magnetic 

fields in the range of tens of milliteslas for brain 

stimulation [2-6]. This intensity is generally considered 

to be below the threshold required to produce noticeable 

effects. Therefore, a study investigating whether such 

subthreshold stimulation levels can lead to changes in 

DC potentials or infra-slow activity could significantly 

enhance our understanding of neural responses to ME 

materials. 
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This investigation is feasible, especially in experiments 

with MENPS. Typically, only magnetic field is used as a 

negative control in these studies. Using a plain magnetic 

field as a baseline allows for a clearer distinction between 

the unique effects of magnetoelectric materials and the 

inherent activity of the brain. This methodological 

approach may provide valuable insights into the 

subtleties of brain responses to subthreshold magnetic 

stimulation. 

 

D. Minimal invasiveness, broadband recordings and 

biocompatibility 

 

MENPs enable miniature, wireless neural stimulation 

devices combined with the flexibility of graphene 

electrodes could lead to minimally invasive neural 

interfaces. The wide frequency response range of 

graphene complements the ability of ME materials to 

operate over various frequencies, allowing versatile 

neural modulation and recording. Finally, gSGFETs and 

MENPs are both known for their biocompatibility, 

making them well-suited for use in neural interfaces, with 

minimal risk of biological rejection or adverse reactions.  

 

In conclusion combining magnetoelectric stimulators 

with graphene electrode recording systems unlocks 

several benefits. This innovative approach holds great 

promise for future developments in neural technology, 

including advanced brain-computer interfaces and 

sophisticated neurological research tools. 

  
A PROPOSED SETUP FOR ELECTROPHYSIOLOGY 

ESPERIMENTS 

 

A. HARDWARE DESCRIPTION 

 

The proposed setup consists of a ME stimulator and a 

gSGFET multichannel recording system. The ME 

stimulator is similar with the one presented in [21], it is 

designed for in vitro and in vivo experiments, features a 

two-channel power capability using a Class-D audio 

amplifier, each channel delivering up to 100W. This 

design enables the operation of two experimental setups 

simultaneously. The stimulator can generate magnetic 

fields up to 20 mT RMS, adjustable based on selected 

protocols and frequencies. A microcontroller collects 

temperature, current and other important measurements. 

A capacitance board allows the capacitance to be 

adjusted to meet specific frequency requirements. 

The system includes a specially designed circular coil, 

ensuring effective magnetic field generation across 

various experimental conditions, including those in 

electrophysiology chambers. 

 

The recording system is an innovative 64/128-channel 

amplification system for neural signal processing, 

incorporating graphene-based transistors and has been 

tested in several experiments [16-17], [22]. The system 

includes key components such as gSGFETs, a breakout 

board, a preprocessing device, an amplifier, and a 

software interface. 

 

A critical element, the preprocessing device, is 

responsible for converting and preamplifying analog 

signals and setting bias voltages for the gSGFETs. Its 

architecture includes a mainboard, several analog 

modules, a digital board, and an accumulator board. The 

mainboard's primary role is to process signals from 

electrodes through analog modules, converting them 

from current to voltage, and segregating them into DC 

and AC components, as detailed in the circuitry described 

by C. Hébert et al [8]. This design allows versatility in 

using different electrode arrays and includes 

functionalities for electrode characterization. 

 

Each analog module on the mainboard can process eight 

channels, with the capability to adjust to various 

electrode configurations. Furthermore, these modules are 

equipped with bypass switches to facilitate electrode 

characterization. The digital board features a Bluetooth 

module-microcontroller for wireless adjustments of 

voltage settings and managing bypass switches. 

 

Post-preprocessing, the signal gets divided into 64 AC 

and 64 DC channels. The amplification stage employs the 

g.RAPHENE device, an advanced version of the 

g.Hiamp with 128 input channels, 64 for AC and 64 for 

DC amplification. The g.Hiamp [23], a high-performance 

biosignal amplifier developed by g.tec medical 

engineering, is noted for its excellent signal resolution 

and sensitivity. Its application in ultra-high-density 

electroencephalography has been pivotal, as indicated by 

recent data from g.Hiamp recordings. 

 

 
Figure 3 Hardware diagram of the proposed system 

 

B. SOFTWARE DESCRIPTION 

 

A common software interface controls the two systems 

developed in MATLAB/Simulink. 

 

 The user interface of the ME stimulator communicates 

seamlessly with the amplifier via Bluetooth, facilitating 

easy control even through mobile apps. The software 

supports various waveform options, enhancing the 

adaptability of the system to diverse research 

requirements. Its ability to simulate the magnetic/electric 

field effects and estimate coil temperature rise based on 
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selected protocols is crucial for evaluating stimulation 

parameters and ensuring safety. 

 

For the part of the graphene device the interface supports 

intricate tasks like electrode characterization and 

recording execution. It includes features for configuring 

Bluetooth communication, setting amplifier parameters, 

and specifying voltage sweeps. The system provides real-

time visualizations of both AC and DC signal 

components, allowing for detailed analysis of neural 

activities 

 

 
Figure 4 Software diagram of the proposed system. 

In summary, the combined magnetoelectric stimulator 

and graphene electrode recording systems present a 

sophisticated, highly adaptable, and user-friendly 

platform. This integrated approach enhances the 

capability for precise neural stimulation and recording, 

opening new avenues for advanced neuroscience 

research and potential therapeutic applications. 

 

DATA ANALYSIS METHODS  

 

In the direction of further development and evolution of 

a system integrating gSGFETs with MENP-based 

magnetic stimulation, especially in local field potential 

(LFP) recordings, a thorough research approach could 

focus on some data analysis methods. 

 

Time-frequency analysis is a technique in which LFP 

signals are decomposed into their component frequencies 

over time using methods such as wavelet transforms or 

short-time Fourier transforms. It's useful for identifying 

changes in power over different frequency bands, 

including Infra-slow oscillations. Research such as that 

of Unakafova and Gail [24] provides a practical guide for 

neuroscientists in selecting open-source toolboxes for 

spike and LFP data analysis, including those with time-

frequency analysis functionality. Spike-field coherence 

analysis examines the relationship between neuronal 

spiking activity (UP states) and LFPs. It can show how 

changes in UP and DOWN states correlate with 

fluctuations in slower frequency bands, including DC 

shifts. Henningson and Illes [25] proposed a model to 

study subthreshold fluctuations. 

 

Phase-amplitude coupling (PAC) analysis examines the 

interaction between the phase of lower frequency 

oscillations, such as infraslow or theta bands, and the 

amplitude of higher frequency activity. This approach is 

particularly relevant for studying the interplay between 

Infra-slow oscillations and fast neuronal dynamics. An 

important application of PAC analysis is demonstrated in 

the study by Hiroaki Hashimoto et al [26], who found that 

PAC between infra-slow and high-frequency activity can 

effectively discriminate between preictal and interictal 

states in epilepsy, underscoring its potential as a useful 

biomarker. Cross-frequency coupling (CFC) examines 

the relationship between different frequency ranges in 

neural signals [27]. It can be used to study how infraslow 

oscillations influence, or are influenced by, other 

frequency bands in LFP data. Finally, machine learning 

approaches [28], such as neural networks or support 

vector machines, can be trained to classify and predict 

patterns in LFP data, taking into account both fast neural 

fluctuations and slower DC shifts.  infra-slow activity or 

DC potentials following stimulation. 

 

DISCUSSION 

 

The current work explores the combination of neural 

stimulation with MENPs and recording with gSGFETs as 

a novel technique for future brain-computer interfaces.  

Significant benefits such as reduced artifacts, enhanced 

spatial resolution, and detection of subthreshold 

phenomena are highlighted. The proposed hardware and 

software setup is designed to accommodate a range of 

experimental conditions with ease of use, while 

comprehensive data analysis methods, including time-

frequency analysis and machine learning approaches, 

enable detailed interpretation of the intricate neural 

signals recorded. 

 

Overall, this integrated approach represents a significant 

step forward in neural engineering, promising advances 

in neurological research and potential therapeutic 

applications. 
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ABSTRACT: Severe impairment of the central motor net-
work can result in loss of motor function, clinically rec-
ognized as Locked-in Syndrome. Advances in Brain-
Computer Interfaces offer a promising avenue for par-
tially restoring compromised communicative abilities by
decoding different types of hand movements from the
sensorimotor cortex. In this study, we collected ECoG
recordings from 8 epilepsy patients and compared the de-
codability of individual finger flexion and hand gestures
with the resting state, as a proxy for a one-dimensional
brain-click. The results show that all individual finger
flexion and hand gestures are equally decodable across
multiple models and subjects (>98.0%). In particular,
hand movements, involving index finger flexion, emerged
as promising candidates for brain-clicks. When decoding
among multiple hand movements, finger flexion appears
to outperform hand gestures (96.2% and 92.5% respec-
tively) and exhibit greater robustness against misclassi-
fication errors when all hand movements are included.
These findings highlight that optimized classical machine
learning models with feature engineering are viable de-
coder designs for communication-assistive systems.

INTRODUCTION

Dysfunction of the neuromotor system may precipitate
transient or, in severe cases, enduring global loss of mo-
tor control. Global dysfunction may be referred to as
Locked-In Syndrome (LIS) [1], often characterized by
quadriplegia and aphonia. In recent decades, efforts to
replace dysfunctional motor control have seen pioneer-
ing developments in Brain-Computer Interfaces (BCIs)
[2]. BCIs extract information directly from cortical ac-
tivity to control mechanical or digital effectors without
relying on neuromuscular activation, essentially bypass-
ing the muscular output. Restoration of effector control
can serve several purposes, ranging from object manip-
ulation [3–5], locomotion and mobility [6] and speech
production [7–9]. However, for individuals with severe
impairment, the restoration of the communicative agency
has been identified as one of the most urgent needs [10].
A simple approach towards communication BCI is au-
tomatic letter selection on a digital keyboard [11]. An
attractive signal recording modality for communication
BCIs is electrocorticography (ECoG) due to its high spa-

tiotemporal precision, good signal-to-noise ratio, and re-
liable signal stability over extended periods [11, 12].
Several studies have demonstrated that hand movement
recognition from ECoG recordings can be performed
with high accuracy. Consequently, a variety of hand
movements have been explored for this purpose, includ-
ing but not limited to finger flexion [13–17], reaching
and grasping [3–5, 18, 19], and wrist flexion and ex-
tension [15], more complex hand gestures [15, 20–22]
and handwriting [23]. To identify a reliable motor signa-
ture for a unidimensional BCI control signal (i.e., ’brain-
click’) many studies have examined different types of
hand movements in isolation [13, 14, 20–22], but few
have compared different hand movements against each
other within a unified framework.

Figure 1: The four gestures executed by subject S1 - S5.

The goal of this work is to contribute to a deeper under-
standing of the decodability of individual finger flexion
and hand gestures against the resting state. Specifically,
we explored which hand strategy is the most promising
for a reliable brain-click and which is more transferable
across subjects. In addition, we aim to extend our analy-
sis to the prospect of multidimensional control with four
and eight degrees of freedom (DoF) to investigate which
type of hand movement intrinsically yields a better within
and across-category discriminability. To overcome the
notorious data sparsity in this domain, we employed an
optimized feature selection decoder with different clas-
sification models and assessed which (offline) machine
learning approach yields the best performance on indi-
vidual hand movements (2-DoF), within hand movement
types (4-DoF), and within all hand movements (8-DoF).
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MATERIALS AND METHODS

Data description: This study is based on two ECoG
data sets, consisting of finger flexion, including the index
finger, little finger, and thumb, and hand gestures asso-
ciated with the American Sign Language letters D, F, V,
and Y [21, 24] (see Figure 1).
The data were collected from 8 subjects (NG = 5, NF =
6) in an epilepsy monitoring unit of the University Med-
ical Center Utrecht (see Table 1). These subjects had 32,
64 or 128 high-density subdural ECoG electrodes with an
inter-electrode distance of 3 or 4mm and an exposed di-
ameter of 1 to 1.3mm (AdTech, Racine, USA; or PMT
Corporation, Chanhassen, MN, USA) implemented over
the hand-knob region of the sensorimotor cortex. The
ECoG data were recorded using a 128-channel Micromed
LTM system (subjects 1 - 5; Treviso, Italy; 22 bits, hard-
ware bandpass filter 0.15–134.4Hz; sampling frequency
512Hz) and a Blackrock system (subjects 6 - 8; Microsys-
tems LLC, Salt Lake City, USA, digital bandpass filter
0.3 - 500Hz; sampling frequency 2000Hz). Data were
converted to the BIDS standard format [25].

Table 1: Subject Details

Sub- Task Trials Age Sex Hand Hand- Hemi- Grid
ject (C / T) edness sphere (incl.)

S1 G 37 / 74 19 F Right Right Left 4x8 (32)F 90 / 181

S2 G 68 / 138 45 F Left Left Right 8x8 (59)

S3 G 34 / 69 29 M Right Right Left 4x8 (29)

S4 G 32 / 67 19 M Right Right Left 4x8 (31)F 90 / 181

S5 G 34 / 69 42 M Right Right Left 4x8 (32)F 88 / 177

S6 F 89 / 179 30 F Left Right Right 16x8 (123)

S7 F 85 / 171 20 F Right Right Left 8x8 (64)

S8 F 84 / 169 36 F Right Right Left 16x8 (128)

Note. Trials are presented as the ratio of hand movement trials per condition (C)
out of all trials (T; including the rest trials). In Grid, (incl.) indicates the number
of channels included. Abbreviations: Gesture, G; Finger, F, Male, M; Female, F.

Experimental Design: Subjects were instructed to ini-
tiate movements based on visual cues that were presented
in a randomized, event-driven design. For the gestures,
the subjects imitated the depicted gesture after stimulus
onset and maintained the posture until the end of the trial
before returning to a resting position. Each subject per-
formed 10 trials with an intertrial interval of 4.4s and
a run duration of 6.7m. Rest trials were implicitly cal-
culated from a small time interval before the onset of
the next movement. For finger flexion, the subjects per-
formed two finger flexions immediately after cue onset
and then returned to a resting position afterward. In con-
trast to the gestures, each movement was interleaved with
an explicit resting trial. The design consisted of 30 tri-
als with an intertrial interval of 7s and a run duration of
8.2m. In both experiments, each subject performed the
tasks with the hand contralateral to the grid location, and
subject 2 performed the task twice. In addition, a data

glove (5DT, Irvine CA, USA, 20 ms sampling time) was
used during both experiments to record motor activity.

Preprocessing: Data preprocessing included the re-
moval of bad trials and channels (identified by [21, 24]
based on data glove data and raw signal inspection), fol-
lowed by common average referencing, notch, and band-
pass filtering (56 Hz - 130 Hz) to remove artifacts. Finger
flexion data, sampled at 2000 Hz, were downsampled to
512 Hz for consistency across subjects. The data were
then subsequently aligned with movement onset markers
obtained from data glove recordings and segmented ac-
cordingly. For decoding individual hand movements and
within hand movement types a segmentation window of
WF = [-0.5, 1.5s] and WG = [-0.5s, 2.5s] was used. For
decoding all hand movements, the two 4-DoF settings for
subject 5 were combined with a common segmentation
window of WFG = [-0.5s, 2s]. In all three settings t = 0
represents the motion-aligned stimulus presentation.
Features were extracted using a continuous Morlet
wavelet transformation, which produced spectral power
features for the high-frequency band (60 Hz - 126 Hz)
in 2 Hz frequency bins. To reduce the feature space the
power was averaged and the time dimension was deci-
mated to TG = 154 and TF = 102 time points per channel
for the fingers and gestures, respectively. The resulting
feature vectors were used for subsequent model training.
Preprocessing was conducted in Python (v3.9) using the
MNE library (v1.16).

Decoder: The architecture of the decoder, depicted in
Figure 2, revolves around an optimized data-driven fea-
ture engineering approach for conventional classical ma-
chine learning classifiers. The decoder encompasses four
modules: Normalization, Incremental Feature Selection
(IFS), Feature Reduction (FR), and Classification.
The initial step of the decoder normalises the spectral
power of the spatio-temporal feature vector (N) via a
Box-Cox transformation [26], followed by mean cen-
tering and unit variance scaling to ensure data normal-
ity and variance stabilisation. Feature selection employs
Variance Thresholding (VT), Mutual Information Crite-
rion (MIC) [27, 28], and Recursive Feature Elimination
(RFE). RFE iteratively removes a set of features (S = 1e-
3 * N) corresponding to the least important coefficients,
and akin to MIC, retains a subset of the best K tempo-
ral features across all channels. Each selection method
generates a binary mask indicating the retained features.
The individual modules are applied incrementally, with
the specific combination and its parameter configuration
being delegated to a Bayesian optimization algorithm,
which avoids manual tuning and efficiently navigates
through the high-dimensional parameter space. In partic-
ular, this approach aims to balance the advantages of filter
and wrapper methods [29] to remove noisy and redundant
features while prioritising discriminative ones. The Fea-
ture Reduction (FR) method can be applied in isolation
or in conjunction with IFS processing. In the classifica-
tion phase, four algorithms were selected to compete with
each other: Logistic Regression (LR), Linear Discrim-
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Figure 2: General decoder architecture. The pipeline is composed of four modules: Normalization, Incremental Feature Selection
(IFS), Feature Reduction (FR), and a Classification Model. A Box-Cox (BC) transformation and a Standard Scalar normalize the signal.
The incremental selection procedure can recruit different combinations of Variance Thresholding (VT), Mutual Information Criterion
(MIC), and Recursive Feature Elimination (RFE) to select the relevant features from the spatio-temporal representation. RFE iteratively
removes the set of S least important features from the pool N until it reaches KRFE features. After feature selection, the feature space
can be further compressed with various Feature Reduction (FR) methods. The resulting vector is forwarded to one of four classifiers. A
Bayesian optimization algorithm orchestrates the order and method of feature selection (OIFS, MIFS), other pipeline configuration (λ BC,
TrVT, KMIC, KRFE, CRFE, CFR), and various model-specific hyperparameters. Dotted lines represent meta-routing processes; single
and double-lined boxes represent dynamic and predefined processes, respectively. Abbreviations: LBC, Lower Confidence Bound; EL,
Negative Expected Improvement; PI Negative Probability Improvement

inant Analysis (LDA), Boosted Decision Trees (BDT),
and Support Vector Machines (SVM). A Majority Class
Predictor, which predicts the most frequent hand move-
ment, was evaluated on the data to establish a ’chance’
baseline. Performance is assessed using the F1 scoring
metric, adjusted for label imbalance with the inversely
weighted class distribution.
For this ’black-box’ optimization problem, the Bayesian
algorithm [30] approximates an expensive non-smooth
objective function by inference, essentially guiding the
search process based on prior results. To find an op-
timal decoder candidate in the large parameter space,
a Gaussian Process model [31] with a hedging portfo-
lio strategy [32]is used, where hedging probabilistically
choose the best acquisition function from three candi-
dates: Lower Confidence Bound, Negative Expected Im-
provement or Negative Probability Improvement. The
search is restricted to a maximum of 256 candidates, ex-
ploring a hyperparameter space, ranging from 9 (LDA)
to 20 (BDT) configurations for different algorithms, of
which up to 60% are conditional hyperparameters; the
number-of-components hyperperameter for the FR step
was shared among all three methods. Model performance
is evaluated using stratified 10-fold crossvalidation, with
the best candidate further assessed through leave-one-
out crossvalidation. The decoder pipeline adheres to the
scikit-learn architecture, ensuring compatibility with the
scikit-learn library and its derivatives. The implementa-
tion is in Python 3.9, using scikit-learn (v1.4.0) and xg-
boost (v2.0.3).

Statistical Analysis: The analysis relies on a Fried-
man ANOVA to identify a general effect and Dunn’s test
with Benjamini-Hochberg’s false discoveries rate correc-
tion the post hoc analysis and pairwise comparison. The
statistical analysis was performed in Python 3.9, using
scipy (v1.13.0) and scikit-posthocs (v0.9.0).

RESULTS

Individual Hand Movements: In the context of individ-
ual hand movements, all classification models exhibited
a high F1 performance (averaged across subjects), ex-
ceeding 98.0% for each finger flexion and gesture (details
summarised in Table 2 and Figure 3 A). Notably, the In-
dex finger (99.59%), Gesture V (99.11%), and Gesture F
(98.09%) were the most promising candidates for brain-
click BCI control. Interestingly, they share a commonal-
ity in index finger flexion. Within the hand gestures, no
gesture significantly outperformed the others (Friedman
ANOVA and Dunn’s test; ns). Similarly, within the finger
flexions, the overall effect was significant, χ2(3) = 15.32,
p = 4.71e−4), but no finger flexion was significantly dif-
ferent from the others (Dunn’s test). Moreover, decoding
performance remained remarkably stable for each subject
across all hand movements and models, with consistent
trends in variability observed for each subject (i.e., sub-
ject 1 consistently had the lowest and highest scores for
the fingers and the gestures, respectively).

Hand Movements Types: For the hand movement
types, a different trend emerged. For 4-DoF classifica-
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Table 2: Mean performance across all subjects of the Optimize Feature Selection Decoder for Individual Movements (2-DoF),
Within Types (4 DoF) and Within all Hand Movements (8-DoF).

Models Fingers (vs. rest) Gestures (vs. rest) Multi-DoF (incl. rest)

Index Little Thumb Gesture D Gesture F Gesture V Gesture Y 4-Finger 4-Gesture* 8-Hand**

A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1

Chance 75.3 64.6 75.5 64.9 74.9 64.2 83.3 75.7 79.8 70.8 79.4 70.3 79.8 70.9 50.3 33.7 56.6 40.9 50.4 33.8

LR 98.2 98.3 98.3 98.4 95.9 96.0 97.4 97.5 98.2 98.2 98.7 98.7 96.6 96.8 95.7 95.7 91.3 91.5 87.4 87.7
BDT 99.6 99.6 98.1 98.1 98.1 98.0 97.6 97.7 98.7 98.7 98.4 98.5 98.2 98.2 95.8 95.8 92.0 92.0 88.6 88.7
LDA 99.3 99.3 98.7 98.8 97.5 97.6 98.1 98.1 98.7 98.7 98.0 98.0 96.4 96.6 96.1 96.1 91.1 91.1 93.1 92.9
SVM 99.5 99.4 98.8 98.8 97.7 97.6 97.9 98.0 98.8 98.89 99.1 99.1 98.4 98.4 96.7 96.6 92.5 92.5 92.7 92.6

Note. Values are in %. *The 4-DoF gesture decoding includes Gesture F, Y, and V. ** The 8-DoF decoding of all hand movements was only obtained from subject 5.
Abbreviations: Accuracy, A; Versus, vs; Inclusive, incl.

Figure 3: Box plots for different machine learning models of the decoder for (A) all individual fingers and (B) the three multi-DoF
comparisons. Each point represents one subject, with the upper and lower error bars representing an interquartile range of 25 and 75,
respectively, and where omitted when performance for one or more subjects exceeded this range. The 4-DoF gesture decoding includes
Gesture F, Y, and V. The red line represents the highest chance level among all subjects.

tion, finger flexion (95.7% - 96.6%) outperformed the
hand gestures (91.1% - 92.5%; average across subjects),
which could be statistically verified (Dunn’s test), p =
0.031; we excluded the worst decodable gesture (Gesture
D) to ensure a similar task complexity. An extension to
8-DoF classification preserves a high F1 score for Subject
5 (88.7% - 92.9%), with remarkably minimal confusion
between gestures and fingers. On visual inspection, fin-
gers exhibit more confusion with the resting state, while
gestures are more often confused among themselves (as
depicted in Figure 4).

Classification Models: When training classification
models within an optimised feature engineering frame-
work, no model emerges as significantly superior to the
others (Friedman ANOVA;), χ2(4) = 60.48, p = 2.3e−12,
(Dunn’s test; ns), although, all perform significantly
above chance level (Dunn’s Test), p < 1.28e−8. In gen-
eral, Boosted Decision Trees (BDT) and Support Vector
Machines (SVM) demonstrate the highest classification
performance across all conditions, except for Little Fin-
ger and Gesture D.

DISCUSSION

The current work demonstrates that optimised spatio-
temporal feature engineering of finger flexion and hand
gestures, recorded from high-density ECoG, enables reli-
able decoding for one-dimensional brain-click, 4- and 8-
DoF decoding tasks, even with very small data volumes.
Notably, within each category, no single hand movement
emerged as superior decodable. However, upon qualita-
tive inspection, the index finger and Gestures V and F, all
sharing index finger flexion, appeared as the most promis-
ing candidates. Moreover, the fingers exhibited a better
performance in more complex 4- and 8-DoF decoding;
finger flexion may possess more discriminative properties
for multi-DoF tasks. Finally, no classical machine learn-
ing model outperformed the others, but BDT and SVM
may have a small advantage.

Hand gestures entail a more complex interplay of motor
components than simple finger flexion, including wrist
and finger flexion, and lateral extension, among others.
However, our results revealed that individual finger flex-
ion alone yields a near perfect neuroelectrical signature.
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Figure 4: Confusion matrices of the LR model for subjects 1, 4, and 5. In each confusion matrix, the horizontal axis represents the
predicted hand movement (or rest), and the vertical axis represents the ground truth hand movement (or rest). Henceforth, the diagonal
elements represent the total correct values predicted per hand movement. The colour coding represents the proportion of absolute
counts for each hand movement ranging from black (0%) to white (100%).

Consequently, the addition of supplementary motor com-
ponents may not increase decodability but rather confront
the decoder with a motor signature that inherently has a
higher variability in its signal. As we evaluated the de-
coder on small data volumes, an effect of additional com-
ponents on decoder performance may emerge with larger
sample sizes. Extending this rationale, gestures might
possess a more intricate spatial and temporal pattern, re-
cruiting various neuronal populations from a larger ef-
fector field in the sensorimotor cortex. The absence of
advanced feature transformation techniques in our classi-
cal machine learning approach might hinder the decoder
from exploiting the full potential of the gesture’s electri-
cal signature. In addition, differences in sample size, with
fewer than 30 trials for fingers and only 10 trials for ges-
tures, may impact the comparison, while the overall small
sample size may not provide sufficient power to detect a
potential statistical difference.

In line with the evident discernible difference between
the 4-DoF types, misclassification errors were more pro-
nounced for gestures, with frequent confusion among dif-
ferent fingers and the resting state. Notably, substan-
tial confusion between hand movements and the resting
state suggests a potential contamination of the rest peri-
ods with unintended movement. This may be attributed
to the design of the experimental design of the gestures,
which lacked separate explicit rest trials. Incorporating a
threshold based on data glove recordings could be bene-
ficial. However, defining true rest may not be practically
feasible for real BCI applications, as it necessitates exten-
sive subject training to suppress such activity [11, 12, 19],
and a more naturalistic approach would be to build a de-
coder that can successfully discriminate between mean-
ingful and non-task-related sporadic motor activity. Fur-
thermore, some features along the temporal dimension
may not reflect actual motor activity, but ’resting’ activ-
ity, especially before the movement onset and towards the
end of the segmentation window.

The proposed decoder design surpassed prior approaches
evaluated on gesture data for four out of five subjects
[20, 21], albeit a direct comparison is difficult due to
differences in task complexity. For communication as-
sistance systems, the proposed decoder design can offer
a viable alternative to deep learning approaches for one-
dimensional brain-click tasks [19] and even larger DoF
applications [14, 17], where data acquisition is challeng-
ing. Although trained offline, the decoder can process
individual segments of preprocessed data in as little as
2 - 10ms. Consequently, although theoretically deploy-
able in an online setting, regular offline retraining on new
data is necessary to address concept drifts for ensuring
long-term stability, in particular for individuals with neu-
rodegenerative diseases. Importantly, the experiments in-
volved movement execution by epileptic individuals, fur-
ther validation in attempted movement is imperative to
extend applicability to online BCI settings for individu-
als with LIS.

CONCLUSION

Electrocorticography data provides a high-resolution spa-
tiotemporal feature representation, forming a suitable
foundation to tailor an optimised classical machine learn-
ing decoder with automatic feature engineering to the
large feature space. We demonstrate that within this
framework, both finger flexion and hand gestures enable
reliable decoding across multiple subjects, and when ex-
tended to a multiple degrees of freedom, maintain high
discriminability between hand movements. For click-
based letter selection in communication-assistive BCI
systems, the index finger flexion emerges as an optimal
candidate. Moreover, all tested models consistently ex-
hibit high classification performance across multiple sub-
jects - a comparable performance to deep learning ap-
proaches.
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ABSTRACT: Choosing a referencing scheme for stere-
oelectroencephalography (SEEG) is complicated by the
varying depth of contact locations and, consequently, the
different tissue that is being recorded from. In order to
better understand how changes in electrophysiology re-
lated to movement are affected by the choice of refer-
ence, we examined how 16 different referencing schemes
effected alpha (8 - 13 Hz) and beta (13 - 30 Hz) oscil-
lations and high-frequency broadband (HFB) power (65
- 115 Hz). We found the choice of referencing scheme
has more complicated effects than previously described
and recommend using different referencing schemes as a
methodological tool to optimize brain-computer interface
(BCI) performace.

INTRODUCTION

Stereoelectroencephalography (SEEG) measures electric
potential as a differential between two voltage measure-
ments, a reference and a recording, like all methods of
measuring electric potential. SEEG recording contacts
are implanted so that each contact is typically in a differ-
ent layer of gray matter, in white matter or in a subcorti-
cal structure whereas electrocorticography (ECoG) con-
tacts are placed above the dura usually mostly covering
a small number of gyri. This causes SEEG to have rel-
atively large variations in the statistical properties of the
signals because of different brain-to-electrode impedance
from the relative lipid contact in the tissue, compartmen-
talization of intracellular & extracellular solutes and for-
mation of a fluid sheath around the SEEG shaft as well as
sampling brain areas with more diverse cytoarchitecture
and functional specialization.
In order to study the effects of referencing on SEEG
recordings, we focused on well-replicated results; spa-
tially focal high-frequency broadband (HFB) power in-
creases in primary motor cortex, beta (13 - 30 Hz) power
decreases across much of primary motor cortex and al-
pha (8 - 13 Hz) power changes (increases and decreases)
during movement [1] [2] [3]. HFB changes are theorized

to facilitate action selection and gate action selection re-
spectively [4]. HFB has been shown to be closely corre-
lated with increases in firing rates in single units [5] and
beta oscillations have been shown to be modeled accu-
rately as traveling waves [6]. Alpha power changes re-
lated to movement-related in primary motor cortex are
not as well understood but likely relate to the mirror neu-
ron system [7]. Although the function of this rhythm is
not as well described, it is observed reliably. Thus, the
electrophysiological characteristics of these signals are
relatively well understood, so we chose them to com-
pare the effect of different referencing schemes. Pre-
vious work has explored how a subselection of these
referencing schemes effect HFB and alpha (8 - 12 Hz)
movement-related signal and found that more local reref-
erencing methods, like bipolar and Laplacian rereferenc-
ing, increased decodability of oscillations whereas more
global rereferencing, like common average referencing,
increased decodability of HFB [8]. In this study, we ex-
plored why this tradeoff occurs and how including other
rereferencing strategies can give us a fuller picture in or-
der to inform reference selection for brain-computer in-
terface (BCI) applications.

MATERIALS AND METHODS

Ethics Statement: This study was conducted according
to the guidelines of the Declaration of Helsinki and ap-
proved by the Institutional Review Board (IRB) of Mayo
Clinic under IRB number 15-006530, which also autho-
rized sharing of the data. Each patient/representative vol-
untarily provided independent written informed consent
to participate in this study as specifically described in
the IRB review (with the consent form independently ap-
proved by the IRB).

Patients: Thirteen patients (6 females, 11 - 20 years of
age) from Mayo Clinic were included in this study. These
data are publicly available from a previous publication
[9]. These patients underwent placement of 10 - 20 sEEG
electrode leads to characterize epileptogenic brain areas
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Figure 1: Native referencing options during SEEG recordings. Generally, the aim is for the reference to have the same environmental
electrical noise so that it is removed by the differential amplifier. If the reference contains signal, such as from the brain or muscles,
this signal will be present in all recording channels, so an electrically inactive location is ideal.

for treatment of drug-resistant partial epilepsy.
Task: Patients were visually cued to move their hand,

tongue or foot for three seconds alternated with the same
period of rest as in [9]. The task was administered using
BCI-2000 [10].

SEEG Recording: The data was recorded with a
g.HiAmp amplifier (gTec, Schiedlberg, Austria). Record-
ings were sampled at 1,200 Hz including electromyogra-
phy (EMG) measured from the forearm flexors/extensors
(hand), base of chin (tongue) and anterior tibialis (foot).

Referencing: SEEG data was recorded with a native
reference as close to the recordings as possible to elim-
inate common noise. Of the common choices for refer-
encing online recordings shown in Fig. 1, we chose a
low-amplitude white matter contact since it has the same
electrical environment as the other recording contacts,
does not have signal from muscle activation and has low-
amplitude neural signal. After the signal was recorded, a
new reference signal was generated in 16 different ways:

1. Native: the original white-matter reference

2. Average: an average of all the channels (Fig. 2a)

3. Lead average: an average of all channels on a single
lead (Fig. 2a)

4. Headbox average: an average of all contacts being
amplified by the same headbox (Fig. 2a)

5. Bipolar: the next neighboring contact (Fig. 2a)

6. White matter: the average of all contacts predomi-
nantly located in white matter (Fig. 2b)

7. Laplacian: the average of two neighboring contacts
or the single neighbor for the ends of the electrode

8. Position: the weighted average of two contacts on
either side or as many as there are (Fig. 2c)

9. Distance: the average of all the contacts weighted
by the distance to the recording contact (Fig. 2d)

10. Low PSD: an average of the 50% of contacts with
power spectral density (PSD) below 45 Hz most fre-
quency below the mean PSD (Fig. 2e)

11. Low RMS: an average of the 50% of contacts with
the lowest root mean square (RMS) amplitude (Fig.
2f)

12. Low PSD per lead: same as low PSD but per lead

13. Low RMS per lead: same as low RMS but per lead

14. Low PSD per headbox: same as low PSD but per
headbox

15. Low RMS per headbox: same as low RMS but per
headbox

16. PCA: the first (largest) principal component using
all channels as observations and samples over time
as features (Fig. 2g)

Locality analysis: In order to determine how much
each re-referencing scheme caused correlation between
channels, or spread the signal, Pearson’s r was computed
on the time-series data. We report the median Pearson’s r
correlation across samples aggregated by epoch, includ-
ing both movement and rest periods, from -500 ms to
1500 ms relative to the start of the period.

Movement-rest analysis: The time-series data was con-
verted into power spectral density using Welch’s method
with 1024 points per segment and a 75% window over-
lap between segments using Hann windowing. An activa-
tion r2 metric was computed as in [9] using the following
equation:

r2 =
(m− r)3

|m− r|σ2
m∪r

NmNr

N2
m∪r

where m is the mean PSD for movement, r is the mean
PSD for rest, σm∪r is the variance of both movement and
rest PSDs and Nm, Nr and Nm∪r are the number of move-
ment epochs, rest epochs and the combined sum, respec-
tively. This signed metric to quantifies the difference be-
tween the mean of the movement PSDs across epochs
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Figure 2: Many of the re-referencing options for after the
recording has been digitized. Average and bipolar referencing
tend to be used more commonly but there are many other op-
tions.

compared to mean rest PSDs across epochs relative to
the variances of PSDs across epochs of movement and
rest seperately. Power spectral density was averaged in 5
Hs bins. The best r2 in the alpha, beta and HFB ranges for
were then found separately for each patient and effector
(hand, tongue and foot). Time-series data were also fil-
tered with a fourth order Butterworth 2 Hz on either side
of the peak oscillation frequency for beta and from 65 to
115 Hz in bandwidths of 10 Hz for HFB to visualize the
time-course of changes observed in the PSDs.

RESULTS

SEEG contacts that were modulated with movement gen-
erally had the pattern of an increase or decrease in al-
pha power, decreased beta power and increased HFB dur-
ing movement, as shown in Fig. 3. Power decreased
in some recording contacts in every patient in the beta
range (Fig. 3, gray box), where blue indicates a decrease
in power during movement relative to rest. Similarly,
power increased in the HFB range (Fig. 3, black box)
for some recording contacts in every patient, where the
yellow color indicates an increase in power during move-
ment relative to rest. The number of contacts with beta
power decreases was more than the number of contacts
with HFB increases. Alpha power changed for at least
one contact in every patient as well (Fig. 3, white box)

but was less consistent in direction. The patterns of spec-
tral differences were similar between average and bipo-
lar references, and this was generally the case for all re-
reference schemes.

Figure 3: r2 activation maps of the signed ratio of the differ-
ence between the mean PSD across epochs of movement and
rest relative to the variance unique to movement and rest for av-
erage (a) and bipolar (b) references. In both references, there
are contacts with beta power decreases during movement and
high-frequency broadband power increases during movement
but only at electrode contacts positioned at brain areas that are
modulated with hand movement. The all the recording contacts
for all patients are shown on the y-axis with each electrode shaft
striped using alternating dark-light colors. The frequency of the
PSD is shown on the x-axis, with boxes around alpha in white,
beta in gray and HFB in black.

We found that more local re-referencing methods, such
as bipolar and Laplician, had lower correlations between
channels while more global re-referencing methods, such
as using an average reference, had greater correlations.
Here, we are referring to referencing schemes that in-
clude more recording contacts in the signal used as a ref-
erence for a given contact as more global and referencing
schemes that include fewer contacts as more local. The
greater amount of yellow off the diagonal in each of the
plots in Fig. 4a is summarized as an average in Fig. 4b.
Laplacian and bipolar referencing schemes had the least
correlation between recording contacts and that correla-
tion was near the diagonal suggesting that neighboring
contacts on the same electrode shaft contributed most to
that correlation. Average referencing had an intermedi-
ate amount of correlation between channels which was
spread out less near the diagnonal than Laplacian and
bipolar correlations, suggesting that the signal spread was
less local to an electrode shaft. Native referencing had by
far the most correlation between recording contacts, in-
cluding relatively large correlations between contacts on
different electrode shafts, suggesting that signal from the
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chosen white matter reference contact was largely present
in all of the recording contacts.

Figure 4: a. Correlation plots between channels computed pair-
wise are shown for each referencing scheme. The autocorrela-
tion on the diagonal is always one. Off the diagonal, correlation
implies that recording contacts are detecting the same source so
minimizing this increases the specificity of the location of the
source of the signal when interpretating the data. b. The aver-
age off-diagonal correlation across patients.

Next, we quantified how referencing schemes effected r2

values in the alpha, beta and HFB ranges across the pa-
tients and for the three different effectors (hand, tongue
and foot) as shown in Fig. 5. The recording contact
with the most movement-related modulation was deter-
mined using the maximal absolute value r2 in the fre-
quency range of each spectral feature. The mean of all
these values across references was then subtracted from
each r2 to get δ r2. We found movement related changes
in the oscillatory frequencies, alpha and beta, were better
detected by more local referencing schemes (Fig. 5a and
b). More global referencing schemes, on the other hand,
better differentiated movement-related changes in HFB
(Fig. 5c). However, was considerable variation across
patients and effectors; bipolar or Laplacian referencing
was not the best choice for detecting oscillations in many
cases (different patients and effector combinations) and
average referencing was not the best choice for detecting
HFB in many cases.
We looked into the effect of the referencing scheme on
beta and HFB power using data from an example patient
(Fig. 6). As shown in Fig. 6a, the HFB increase that

peaked immediately after movement onset was maximal
at the fourth most superficial contact. The neighboring
contacts also had a peak in HFB, causing the bipolar ref-
erence to diminish this HFB increase after movement.
In Fig. 6b, beta oscillations were observed to construc-
tively interfere at the contact with the greatest movement-
related changes before the movement onset and descruc-
tively interfere during the movement. The result was that
bipolar referencing caused the difference between beta
power before movement (during the rest period) to have a
larger difference compared to beta during the movement.
In Fig. 6c, the amount of time shown is reduced to show
few enough cycles that the phase can be seen. The op-
posite phase in the recording contact most modulated by
movement compared to the neighboring contact, shows
the constructive interference increasing beta power dur-
ing rest for bipolar referencing.

DISCUSSION

For each patient and effector, there was a relatively local
source of HFB activity during movement and a relatively
diffuse distribution of alpha and beta oscillations during
rest as previously described [2]. This was generally best
captured using bipolar or Laplacian referencing for os-
cillations and average referencing for HFB. This was be-
cause, when the recording contact was positioned in line
with the source of the activity, oscillations constructively
interfered, increasing the signal-to-noise ratio. HFB, on
the other hand, does not interfere like oscillations do and
so was better captured by an average reference scheme.
There was considerable variability depending on position
of the recording contact and the tissue types of each con-
tact and its neighbors. These differences cause different
referencing schemes to be preferred and dispreferred in a
pattern that is unique to each case, suggesting that refer-
encing is a tool that can be used to optimize the detection
of signal in the data by compensating for some of these
effects, especially in applications such as BCI where in-
terpretation of the signal is secondary to performance.
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Figure 5: The change in r2 metric for different referencing schemes are shown for alpha (a), beta (b) and HFB (c). More local
referencing strategies such as bipolar and Laplacian cause larger differences between the rest and movement conditions, as measured
by r2 for oscillations (alpha and beta). More global referencing schemes, such average referencing, cause larger differences for HFB.
However, there is such great variability between patients and effectors such that this approach is not optimal in many cases.

CONCLUSION

There is considerable variability in the r2 activation met-
ric between patients and effectors compared to the vari-
ability between referencing strategies. We interpret this
to be due to effects of the position and orientation of the
electrode recording contacts relative to neural sources of
activity which depend on the trajectory of the electrode
shaft and the micro-organization of the brain. In general,
using Laplacian or bipolar referencing to study oscilla-
tions and average referencing to study HFB yields better
signal-to-noise, however, this is not the case much of the
time so referencing strategy should be used as a tool to
optimize data interpretation.
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Figure 6: a. HFB activity around movement onset (green vertical line) for an example recording. Activity using an average reference is
shown to the right of the recording contacts (red spheres). HFB with a bipolar reference is shown to the right of that, interleaved between
the two contacts being referenced. The HFB signal decreases as distance increases from the spatial location with maximal modulation
during movement. Since the HFB modulation in the movement-related contacts that are shown only contributes a small amount to the
average reference, the reference signal has low HFB. The difference between a maximally active contact and the reference is greater
than the difference between that maximally active contact and its neighbor which is also has HFB activation. b. Time-series data filtered
in the beta range is shown for average reference to the right of contacts and bipolar reference to the right of that. When oscillations
are aligned in phase, they constructively interfere as in the pre-movement period for the 5th and 6th most superficial contacts. Whereas,
when the phases are opposite, as in the next most superficial bipolar pair, they destructively interfere. This is shown with fewer points
in time in (c) in order to see this effect.
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ABSTRACT
Implantable brain-computer interface (BCI) systems,
promising for neurological disorder treatment, often en-
counter high technical barriers. Our fully-implanted
CorTec BrainInterchange-BCI2000 ecosystem, aimed for
widespread open-source adoption, demonstrates func-
tionality through a year-post-implant canine study, us-
ing a brain surface electrocorticography (ECoG) con-
struct. Broadband power-spectrum increases have been
shown to track neural population activity in humans, and
we find that they reveal distinct functional representa-
tion for processing of visual, somatosensory, and audi-
tory reinforcement stimuli in the canine (captured at 65-
150Hz). Canine visual and somatosensory rhythms re-
semble human alpha and beta rhythms but at different fre-
quencies: a ∼15Hz visual rhythm in the occipital analog
(marginal gyrus) suppresses with light exposure, and a
∼24Hz somatosensory rhythm diminishes upon petting.
These findings indicate a unique canine neurophysiology
and confirm the BCI2000-BrainInterchange ecosystem’s
robustness a year after the implantation. This ecosystem
holds promise for developing open-source BCI devices to
assist patients with neurological conditions.

INTRODUCTION

The technology behind practical brain computer interfac-
ing has an exclusivity problem arising from a number of
factors. Hardware that can record sufficient channels for
the coding brain activity requires a large infrastructure to
build, maintain, and troubleshoot. Engineers with the rare
expertise needed to manage these devices typically pro-
fessionally reside far from the clinical setting that patients
with neurological disorders present to for therapy. The
software skills and signal processing know-how needed

to translate signals measured from the brain into closed-
loop commands for external applications or internal re-
cursive stimulation of the brain are similarly exclusive.
For this and other clinical reasons, we have been develop-
ing a combined hardware-software open source ecosys-
tem with the CorTec BrainInterchange (BIC) device [2]
and the BCI2000 software environment [3] that will serve
as a general purpose platform that can be easily applied
for clinicians focused on a specific patient need.
Our development of this ecosystem has begun with ca-
nine (canis familiaris) implants. For chronic studies, dogs
offer a viable model for cognitive and neurodegenerative
studies, attributable to their trainability, cooperative na-
ture, and neurophysiological similarities to humans [4,
5]. We are able to test the device on a daily basis with-
out any restrain of the dog and upon the completion of
the study the dogs can be adopted into homes. In this
demonstration, a series of basic sensory input tasks are
performed approximately a year after the time of implant.
While the implanted neurophysiology of the canine brain
is relatively unexplored, we expect that many aspects of
well-described phenomena in the human brain will gen-
eralize.
Broadband changes in the brain surface electrical poten-
tial have been shown to be a robust correlate of local neu-
ral activity and an effective control signal in brain com-
puter interfaces [6, 7]. However, these changes are often
obscured at low frequencies by coincident oscillations,
and so broadband changes must often be captured at fre-
quencies above ∼50-60Hz, setting a performance thresh-
old that BCI devices must rise to. In this manuscript, we
demonstrate that the BrainInterchange-BCI2000 ecosys-
tem has this capability and, in the process, uncover func-
tional representation of somatosensory, visual, and social
reinforcement in the canine brain.
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Figure 1: Right hemisphere implant and anatomic segmentation (A) Electrode grid and ground electrode. (B) Schematic with
dimensions of grid (in mm). (C) Planned incision and craniotomy on scalp (left) with opening and craniotomy, showing epidural space
(right). White arrows correspond to same location on left and right. (D) Insertion and anchoring of electrodes. (E) Rendering of skull
and craniotomy with electrodes in situ, ground electrode in yellow. (F) Brain rendering showing three grids in situ, extracted from
pre-implant MRI and post-implant CT. (G) Top view of the canine cortex. (H) Color-map representation of canine right hemisphere
gyral anatomy [1]. (I) Sagittal view of canine right hemisphere and color-map representation of its gyral anatomy. (J) Schematic
placement of electrode grids over the canine cortex.

MATERIALS AND METHODS

Surgical implant: A 2-year-old female beagle, “Belka”,
was implanted with the 32-channel sensing-and-
stimulation Cortec BrainInterchange device as previously
described [2], according to a public operative protocol
[8]. Three arrays (32 ECoG channels) were implanted
epidurally over the right hemispheric convexity with the
FDA-approved AirRay electrodes [9] (Fig. 1).

Anatomic co-registration: A pre-implantation 3T MRI
and a post-implantation CT were obtained. The brain was
manually segmented from the MRI using 3D Slicer [10],
and the CT was co-registered with electrodes aligned to
the anatomy using the CTMR package as previously de-
scribed [11], which was also used for subsequent plot-
ting. Anatomic segmentation of the brain surface was
determined manually with reference to the Stereotactic
Cortical Atlas of the Domestic Canine Brain [1] (Fig. 1).
The 3 grids were localized to the 1) frontal, precruciate
and postcruciate gyrus; 2) ectosylvian gyrus extending to
the border of the suprasylvian & ectomarginal gyrus and
the rostral composite; and 3) flanking the marginal and
ectomarginal gyri.

Canine tasks: Three types of tasks were performed -
somatosensory, visual, and reinforcement (auditory input
with face touching). For each task, the four best runs

(as determined by behavior, prior to data analysis) were
selected for further analysis. Each run consisted of 15
repetitions of active & inactive task blocks.
Somatosensory - The dog was positioned unrestrained
within the examination room with the room lights on,
next to the examiner. 3-second blocks of tactile stimula-
tion (petting along the left side of the dog, encompassing
the whiskers, front and hind limbs, and torso) were inter-
leaved with 5s blocks of rest (Fig.2A).
Visual - Examination took place in a closed room with all
external sources of light blocked. The dog was placed on
a leash in the middle of the room, allowing her to move
within the reach of the leash. 5-second “lights OFF”
blocks with the room lights turned off were interleaved
with 5s “lights ON” blocks, where the rooms lights were
turned on. A laptop was in the room, with monitor light
exposed, cuing the examiner to turn the room lights on
and off.
Reinforcement with auditory encouragement and &
face touching - The dog was positioned unrestrained in
the examination room next to the examiner with the room
lights on and calming classical music playing at a low
volume. 5-second reinforcement blocks where the exam-
iner provided verbal reinforcement (“Good girl Belka!”)
& gently touched the left side of the face were interleaved
with rest periods.
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Figure 2: Somatosensory activation (A) Cartoon representation of the somatosensory stimulation task, where 3s blocks of tactile
stimulation (petting left whiskers, front and hind limbs, and torso) were interleaved with 5s blocks of rest. (B) Power spectral densities
(PSDs) of petting and rest blocks. Gray shaded regions highlight 4-6Hz, 20-26Hz and 65-150Hz frequency ranges. (C) For analysis,
PSDs for each task block were normalized by the average PSD over the whole experiment, and averaged normalized power was
quantified for each frequency range. Task-associated changes were quantified using a signed r2 metric (which can range from -1 to 1).
(D) Scaled activation maps (by signed r2) shows domains of change for the low frequency brain rhythms. Black circle outline indicates
task-induced significant change at p<0.05 (after Bonferroni correction, unpaired t-test in mean normalized power in band for each trial).
(E) Maps of local brain activity, reflected by broadband spectral change, is captured at (65-150Hz), showing engagement of the pre-
and post-cruciate, ectosylvian, and rostral composite gyri.

Electrophysiological measurements: Data were mea-
sured using BCI2000 general-purpose software [12],
which provides a graphical user interface for data ac-
quisition, online processing for closed-loop application
(though not used in this study), and stimulus presentation.
Data were sampled at 1000 Hz, with an amplification gain
of 57.5 dB / 1 µV, and initially referenced to the channel
1 (Fig. 3). Missing samples due to the packet loss were
replaced with the first valid sample preceding the packet
loss. This is a default setting for handling missing data
packages in Cortec’s BIC device (see the work of Ayy-
oubi et al. [13] for further packet loss discussion).

Signal processing: Data were examined by raw trace
as well as relative signal power to identify bad chan-
nels, which were discarded prior to common-average
re-referencing of the data. Power spectral densities

(PSDs) up to 150Hz were calculated for each task block
using Welch’s averaged periodogram method [14] with
1s Hann windowing [15] and 50% window overlap.
Several data blocks were rejected (across all channels)
due to significant transient artifact (4/6/0 blocks for
somatosensory/visual/reinforcement). Individual block
PSDs were normalized by the mean power at each
frequency (mean calculated over each full task). Signed
r2 cross-correlations comparing task conditions (Fig.
2C) were calculated across all the channels at each
frequency, and plotted on featuremaps (Fig. 3) to
characterize the spatial and frequency-specific structure
of neurophysiological changes associated with each task.
Based on the visual examination of the raw PSDs and the
featuremaps, three low-frequency narrow-band ranges
(4-6Hz, 14-16Hz [visual only], & 20-26 Hz) were cho-
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Figure 3: Task featuremaps (A) Segmentation of the canine right hemisphere gyral anatomy and electrode placement locations, with channel num-
bering that is referenced in (B-D). (B-D) r2 feature-maps for the somatosensory, visual, and reinforcement tasks.

sen for statistical analysis. Separately, a high-frequency
broadband range was chosen a priori at 65-150Hz to
capture the 1/f structure that has been shown in humans
to be a correlate of local population activity [6, 16].
Averaged power (after normalizing by the mean PSD)
was calculated across each frequency range for each
block. Blocks of each type within each task were then
compared with one another using a signed r2 metric
and an unpaired (2-sample) t-test (mean normalized
power in band for trials of petting vs. rest, lights on
vs. lights off, and reinforcement vs. rest). Maps of r2

values were projected onto the rendered brain to show
task-associated brain activity (Figs. 2,4), with chan-
nels that reached threshold significance (p<0.05 after
Bonferroni correction), were marked with a black outline.

Ethics statement: This research is conducted under
Mayo Clinic IACUC protocol A00001713-16-R19. We
maintain our canines in an IACUC-approved environ-
ment. In addition, according to State of Minnesota statute
135A.191, the canines will be made available for adop-
tion at the conclusion of research. In the event of seri-
ous illness or decline, the animals may be humanely eu-
thanized by the veterinary team according to an IACUC
mandated protocol. The canine subject, Belka, is a 3 year
old female (implanted at 2 years old). She is housed in a
communal environment, and receives daily social interac-
tions with veterinary staff as well as open time with other
canines. The intent of this animal research is to test and
develop a platform for novel human therapeutics.

RESULTS

Somatosensory - Somatosensory petting stimulation
contralateral to the side of implantation showed robust
activation (as revealed by broadband spectral power in-
crease) over the pre- and post-cruciate gyri, as well as the
ectosylvian / rostral composite gyri (Figs.2–4). A nar-
rowband rhythm (oscillation) that was observed with a
peak of ∼24Hz (20-26Hz) decreased in power over these
same regions during petting.
Visual - Visual task stimulation showed a significant ac-
tivation (as revealed by broadband spectral power in-
crease) over the marginal and ectomarginal gyri (Fig. 3C,
4A). There was a very prominent oscillation, peaked at

∼15Hz, that emerged over most of the sampled sites dur-
ing the lights off period, and diminished when the room
lights were turned on (Fig. 3C, 4B).
Reinforcement with auditory encouragement and &
face touching - During reinforcement with coincident
verbal praising and stroking of the left cheek, we found
robust activation (broadband spectral increase) of the an-
terior measurement sites of the ectosylvian gyrus. Ad-
ditionally, there was an increase in the rhythm centered
around ∼24Hz, present over the pre- and post-cruciate,
marginal, and ectomarginal gyri (Fig. 3D, 4).
Comparison across tasks Comparison of local repre-
sentation, as reflected by 65-150Hz broadband spectral
change, shows clear functional representation in the ca-
nine brain, with visual representation in the marginal
gyrus, somatosensory representation in the pre- and post-
cruciate gyri, and reinforcement (both tactile and audi-
tory) in the ectosylvian gyrus. Notably, there was also:
1) An oscillation/rhythm peaked at ∼5Hz (4-6Hz) that
increased in power at all measured sites when lights were
turned on in the visual task (with r2

max=0.43), and selec-
tively increased in the ectosylvian sites during the so-
matosensory (r2

max=0.44) and reinforcement (r2
max=0.28)

tasks. 2) A ∼15Hz rhythm was only seen with the lights
off blocks of the visual task and was not seen during any
other tasks. 3) Although not modulated in the visual task,
an oscillation peaked at ∼24Hz was present over much of
the brain surface - it was selectively depressed during so-
matosensory input and augmented during reinforcement
input (Figs. 3A&C, 4C).

DISCUSSION

These simple sensory tasks demonstrate for the first time
that, as in humans [6, 16], local neural activity can be
captured by broadband spectral change from the surface
of the canine brain (here captured at 65-150Hz, Fig. 4).
In agreement with emerging canine fMRI studies [17],
clear functional representation for somatosensory pro-
cessing was found most robustly surrounding the cruciate
sulcus, which is the canine homolog of the human cen-
tral sulcus, and also the ectosylvian & rostral composite
gyri. The ectosylvian gyrus has previously been impli-
cated in canine somatosensory function using peripheral-
stimulation evoked brain potentials (SSEPs) [18]. Com-
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Figure 4: Graphical summary of the obtained results. (A) The functional representation of the canine brain, revealed by broadband
increase in the power spectrum (65-150 Hz), shows distinct representation for each modality. (B) A clear ∼15Hz brain rhythm emerges
in the dark that is suppressed when the lights are turned on (r2

max=0.36), and is not seen in either of the other 2 tasks. (C) Interestingly,
there is an oscillation with peak at ∼24Hz was present over much of the brain surface that is selectively depressed during somatosensory
input and augmented during reinforcement input. Note that rest condition PSDs are approximately equal at this frequency range for
both tasks (solid and dashed black lines in middle gray square), but that petting/reinforcement selectively suppresses/augments it. White
arrows in (B)&(C) show sites where PSDs are from.

parison of lights-on to lights-off brain activity localized
visual processing to the marginal gyrus, which agrees
with fMRI localization [19], and the removal of which
has been shown to blind dogs [20]. Combined light tac-
tile and auditory reinforcement selectively activated only
at sites in the ectosylvian gyrus and nowhere else, loosely
agreeing with fMRI measurement [21].
Alongside broadband power spectral changes, we also
observed a number of prominent oscillatory rhythms be-
low 50Hz (Figs. 2-4). For example, a canine analog of the
human occipital “alpha” rhythm emerged when the dog
was in the dark, with a peak at ∼15Hz that is most promi-
nent in the marginal gyrus, and is slightly higher in fre-
quency than the 8-13Hz range reported by Lopes da Silva,
et. al. [22]. Oddly, there was an increase in power at an
∼5Hz oscillation where Kujala et al. found a visually-
induced decrease from the scalp [23]. The ∼24Hz rhythm
that is selectively suppressed with somatosensory stimu-
lus and augmented during reinforcement (Fig. 4C) ap-
pears to be a novel observation.
Importantly, human ECoG studies have shown that
behaviorally-induced oscillatory brain rhythms are gen-
erally not functionally specific in the same way that
the broadband changes are [6, 7, 24]. For this rea-
son, it is important that chronically implanted hard-
ware can be able to capture the broadband spectral
changes. However, two factors make this technically non-
trivial: 1) large power changes in oscillations/rhythms
obscure smaller amplitude broadband power changes be-
low ∼50Hz; 2) the broadband phenomena falls off in
power at higher frequencies as P ∼ 1/ f 4 [16]. Implanted

hardware must therefore have a sufficiently low noise
floor such that behaviorally-associated broadband power
increases can be resolved at higher frequencies. These
canine behavioral results demonstrate, empirically, that
the BrainInterchange-BCI2000 ecosystem accomplishes
this, even after the device has been implanted for a year.
The BrainInterchange-BCI2000 ecosystem is undergoing
continuous development and optimization [2]. All soft-
ware, data, resources, & protocols for this initiative are
fully open-source, with a vast documentation to teach the
community how to use it without having extensive techni-
cal expertise. When fully developed, this ecosystem may
enable clinical teams to create personalized BCI therapies
tailored specifically to the needs of their patient popula-
tion.

CONCLUSION

Our work demonstrates the utility of the
BrainInterchange-BCI2000 platform in the setting
of ECoG recordings during three sensory experiments
almost a year after implantation. Captured local neural
activity, revealed by broadband spectral changes, show
robust sensorimotor, visual, and reinforcement functional
organization in the brain of a canine. This represents
an important step towards the development of an open
source platform for clinical use, capable of closed-loop
stimulation and applicable in personalized BCI therapies
for patients suffering from neurological disorders.
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ABSTRACT 
 
Signals within the subcortical brain regions may be 
useful as control signals for brain computer interfaces 
(BCI).  In this study we show, using a simple hand 
movement task, that focal increases in broadband 
spectral power, which are commonly used to control 
cortically-based BCI interfaces, may also be observed in 
the ventralis intermedius (VIM) thalamic nucleus, a key 
relay for the cerebellar outputs to the motor cortex that 
help to regulate voluntary movement. 
 

 
INTRODUCTION 
 
The cerebral cortex has been the predominant source for 
control signals in brain-computer interface (BCI) 
technologies to date, largely due to its direct involvement 
in motor control and sensory processing activities[1]. 
While this approach has yielded functional BCIs, tapping 
into the rich potential of subcortical structures such as the 
thalamus and other deep brain nuclei may confer distinct 
advantages. These regions, which play crucial roles in the 
modulation and relay of motor and sensory information, 

offer a different set of neural signals that could enhance 
the practicality, fidelity, and functionality of BCIs.  
 
Among these deep nuclei, the motor thalamus is an 
intricate structure with functional topography parcellated 
by the motor homunculus and overlapping 
representations from basal ganglia and cerebellar nuclei. 
Such a configuration suggests its potential as a robust 
source of control signals for brain-computer interfaces. 
Within the thalamus, the motor homunculus 
representation of the entire body can be accessed within 
a spatial span of mere millimeters.  Like cortical activity, 
thalamic movement related oscillatory activity in the beta 
frequency range (13-30 Hz) is suppressed during 
movement[2].  However, the broad spatial distribution of 
this desynchronization within the motor thalamus 
suggests it may be too diffuse to resolve somatotopic 
movement, constraining the scope of a BCI driven by this 
activity.  Increases in broadband spectral power during 
movement are observed in motor cortex, with a 
distribution much more focal than for low frequency 
desynchronization[3].  Whether focal increases in 

Figure 1:  Experimental setup.  (A) Recordings were obtained using a clinical DBS electrode both (B) with a high-impedance tip and with a low-
impedance ring having surface area of 0.56 mm2.  The electrode was passed through a cannula (C) that had been inserted into the dorsal thalamus, as 
shown on a sagittal MRI slice (D), aligned along a trajectory targeting the VIM thalamic nucleus (E).  (F) Local field potentials were recorded from 
the ring electrode and single unit activity was recorded from the microelectrode tip; the shaft of the cannula was referenced in all cases.  (G) This 
study analyzes the field potentials at multiple evenly spaced sites along the trajectory recorded serially as the electrode was passed to target. 
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broadband spectral power can be observed in this region 
has not been well studied. 
 
The posterior region of motor thalamus, the ventral 
intermedius (VIM) nucleus, relays motor signals between 
cerebellum and motor cortex and is a key therapeutic 
target for deep brain stimulation treating tremor and other 
movement disorders[3].  This provides an opportunity to 
study the electrophysiology of motor thalamus during 
movement.  In the present study, we recorded from the 
VIM nucleus in awake patients undergoing deep brain 
stimulation surgery for tremor and hypothesized that 
movement associated increases in broadband power 
would be observed. 
 
 
MATERIALS AND METHODS 
 
  Subjects:  Fourteen subjects undergoing deep brain 
stimulation electrode placement into the bilateral 
ventralis intermedius (Vim) nucleus of the thalamus for 
treatment of disabling tremor consented to participate in 
a research protocol during the awake surgery.  The study 
and consent procedures were approved by Mayo Clinic’s 
internal review board (IRB no. 19-009878). 
 
   Recordings:  Serial thalamic recordings during task 
performance were obtained at multiple evenly-spaced 
recording sites (2 or 3 mm apart) as a 
microelectrode/macroelectrode (AlphaOmega Sonus 
STR-009080-00) was advanced towards the inferior 
border of the thalamus (Fig. 1).  In 4 subjects, 
simultaneous recordings were obtained from two 
electrodes arranged parallel to each other along the 
anterior-posterior plane.  Data were recorded to an 

AlphaOmega Neuromega system, 
referenced to the shaft of the electrode 
cannula and using a sampling rate of 44 kHz.  
Surface EMG was recorded using pairs of 
bipolar-referenced Ag/AgCl electrodes 
placed 2 cm apart overlying the forearm 
muscles for finger flexion/extension. 
 
   Motor Task:  At each recording site, 
subjects were verbally and visually cued for 
two alternating conditions: 1) rest, 2) 
continuous opening/closing movements of 
the dominant hand.  Individual task epochs 
were 5 seconds in duration.  The sequence 
was repeated 20 times per site.  Compliance 
with the task was assessed in real-time by 

monitoring of EMG activity. 
 
 
   Power Spectral Density and Cross 
Correlations:  All analyses were 
performed in Matlab.  Epochs of rest 
versus movement were manually 
segmented via visual inspection of the 
rectified EMG; ambiguous epochs were 

rejected. 
 
Averaged power spectral densities (PSD) for individual 
movement or rest epochs were calculated from 1 to 300 
Hz, with 1 Hz frequency resolution, using Welch’s 
method of overlapping periodograms with a 1 second 
Hann window and 0.5 second overlap to attenuate edge 
effects.  Averaged PSDs were then normalized to the 
global mean across all trials. 
 
At each recording site, we calculated signed r2 cross-
correlation values (r2) by comparing the mean PSD 
between movement and rest trials (Fig. 2).  As a proxy 
for broadband activity, r2 was calculated for the 65-115 
Hz band (avoiding line noise at 60 and 120 Hz).  Because 
the center frequency for movement-related oscillations in 
the lower (<30 Hz) frequency bands varied between 
subjects, we systematically determined for each subject 
which 5 consecutive frequency bins, within the range of 
8-30 Hz, was able to maximally discriminate between 
movement and rest as follows: 1) r2 values for each 1 Hz 
bin within the 8-30 Hz range were averaged across all 
recording sites in a subject and 2) the 5 contiguous bins 
with the highest sum of r2 values was selected.  
 
   Plotting Power Changes on Subject-Specific MRI:  The 
site of each recording relative to the final lead position 
was known, allowing for MRI coordinates for each 
recording site to be computed using offsets to the lead 
artifact as seen on a postoperative CT scan co-registered 
to a preoperative T1-weighted MRI using mutual 
information in SPM12.  The MRI was resliced in plane 
with recording sites and served as the background on 
which data was plotted[5]. 
 

Figure 2:  Movement associated spectral shifts.  At each recording site, subjects 
performed a simple motor task alternating between (A) opening/closing of the hand and 
rest.   (B) Averaged power spectral densities (PSD) from one recording site for Subject 1 
are shown for movement and rest epochs.  In this case, power within low frequency (<30 
Hz) oscillations decreased during movement while broadband spectral power (65-115 Hz) 
increased.  PSD for a subject were normalized to the global mean across all trials, and a 
signed r2 cross-correlation value was calculated from the mean PSD for movement versus 
rest trials, as shown in equation (C). The r2 for both broadband change and change in a 
subject-specific 5 Hz wide low frequency band were computed. 
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Separate plots were prepared for movement associated 
power changes in the low frequency band and in 
broadband.  We set significance at 0.95, uncorrected.  
Recording sites with a significant r2 were plotted in red 
(movement associated increase) or blue (movement 
associated decrease), with the sizes scaled to the 
maximum r2 value for that subject.  Sites without 
significant power change were plotted with a white circle 
of fixed diameter. 
 
  
RESULTS 
 
   Broadband Spectral Changes:  Example power 
spectral densities (PSD) for movement and rest epochs 
from one recording site for Subject 1 are shown in figure 
2B.  Figure 3 shows the spectra at each recording site for 
this single subject (A) and r2 maps for the low frequency 
band (B) and broadband (C).  A significant increase in 
broadband power during movement was observed in at 
least one recording site for 8 of the 14 subjects (r2max 
range = 0.11-0.44) (Fig 4C).  Sites showing significant 
broadband power increase were most often found at the 
inferior recording sites, in the dorsal thalamus near the 

predicted region of the VIM nucleus. 
 
   Low Frequency Oscillations: We found that the low 
frequency band showing the greatest power change with 
movement varied between subjects, from as low as 8-12 
Hz, up to 20-24 Hz.  Significant decreases in power 
within the subject-specific low frequency bands were 
present in at least one recording site for 11 of 14 total 
subject (data not shown), and for 5 of the 8 subjects with 
increase in broadband (Fig. 4c).  In two cases (subjects 6 
and 7) there was increased power within the band, and in 
one (case 8) there was no significant change with 
movement.  Sites showing significant a power decrease 
in the low frequency band were widely distributed 
through the sampled region of dorsal and ventral 
thalamus. 
 
 
DISCUSSION 
 
We show that a focal movement associated increase in 
broadband spectral power may be observed in the VIM 
thalamus during voluntary movement.  In our subjects, 
increases in broadband power tended to be more spatially 

Figure 3:  Spectra and r2 plots for a single subject.  (A) Average power spectral densities during movement (red) and rest (black) shown for each 
of 14 recording sites sampled in subject 1.  The low (19-23 Hz) and broadband (65-115) frequency ranges are highlighted with gray boxes. The r2 
values at each site are shown for (B) the 19-23 Hz band and (C) the 65-115 Hz band as dots plotted on sagittal T1 MRI slice.  A red dot indicates an 
increase in power with movement, and a blue dot indicates a decrease.  The size of each dot represents the absolute value of r2 scaled to the 
maximum r2 value for the frequency band (as shown in upper right-hand corner of each plot).  In this subject, the sites were arranged along two 
parallel tracts 2mm apart in the anterior/posterior plane with serial recordings taken every 2 mm during electrode decent to the planned target 
(green asterisk). 
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discrete than were the desynchronizations of low 
frequency oscillations, as has been seen previously in 
motor cortex. 
 
However, we did not observe broadband power increases 
in nearly half of the subjects.  This may be because the 
frequency range of interest approaches the noise floor of 
our recording paradigm.  Also, the operating room has 
many idiosyncratic sources of electrical noise which vary 
from case-to-case and even through the course of a single 
surgical case. 
 
In most patients, a diffuse desynchronization of low 
frequency oscillations was seen during movement.  
Qualitative review of the spectra shows that there is often 
more than one oscillation in this range, and that in some 
cases the center frequency of the most prominent 
oscillation shifted with movement.  Therefore, our 
limiting analysis to the 5 Hz band yielding the highest r2 
value was an overly simplistic approach. 
 
It is possible that the serial nature of recordings allowed 
subtle changes in behavioral state of the patient 
(attention, etc.) to confound results.  This may be one 
explanation for the patchy spatial distribution of 
responses in a few subjects. Future studies will focus on 
simultaneous recordings at multiple sites during simple 
hand movements to allow for a more consistent 
behavioral state under which power differences across 
the recording sites can be more directly compared.   
 
Upcoming work will include simple hand/tongue/foot 

movement tasks and radially segmented recording 
electrodes to attempt to resolve somatopic representation 
using the broadband power shifts we report in this study. 
 
 
CONCLUSION 
 
We find that focal increases in thalamic broadband 
spectral power are detected in a majority of subjects 
during a simple hand movement task.  Further studies are 
needed to determine if this may be a signal robust enough 
to serve as an alternative control for BCI applications. 
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Figure 4:   Subjects with significant increase in broadband spectral power during movement.  (A) A sagittal T1 MRI slice from subject 1, 
showing the thalamus (yellow outline) and the cropped/enlarged region used for r2 plots (red box).  (B) Cartoon thalamus showing the ventral 
sensorimotor nuclei including the VIM target.  Approximate recording locations are shown relative to these nuclei for the case of two parallel tracts 
(anterior/posterior) and for seven recording sites spaced 2mm apart.  (C) All subjects with significant movement associated broadband increase.  The 
r2 at each recording site is plotted on a sagittal T1 MRI for both the subject specific low frequency band and broadband.  Red dots indicate and 
increase in spectral power with movement, blue a decrease.  The size of each dot represents the absolute value of r2, scaled to the maximum r2 value 
for that band. 
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ABSTRACT:  
 

This study investigates the neural dynamics of motor 
imagery and brain-computer interface (BCI) feedback 
through electrocorticography (ECoG). It focuses on how 
12-20Hz rhythm entrainment with broadband power 
indicates cortical synchronization and suppression. The 
research examines 12-20Hz rhythm entrainment across 
rest and active phases in a motor task and BCI imagery 
feedback task. Using speech-associated broadband 
power increases in a speech motor area, a patient 
controlled a BCI system with word repetition imagery. 
The study examined broadband power shifts between 
rest and active task conditions, revealing increased 
power shifts in the speech motor area during the BCI 
imagery task as well as a unique activation in the dorsal 
motor area. Notably, it found increased broadband 
power to 12-20Hz rhythm coupling, indicating 
suppression of cortical activity, in the dorsal motor 
cortex during the BCI imagery feedback task's rest 
phase compared to the motor task rest phase, which may 
be suggestive of "cognitive control" over cortical 
suppression. 
 
INTRODUCTION: 
 

Recent advancements in brain-computer interface 
(BCI) technology have underscored the potential of 
motor imagery in enhancing motor skill acquisition and 
rehabilitation, particularly in individuals afflicted with 
neurological conditions [1-6]. The intricate neural 
mechanisms underlying these processes, including the 
activation of neocortical areas similar to those engaged 
during actual motor movements, have been illuminated 
through a variety of neuroimaging techniques, albeit 
with ongoing debates regarding the role of primary 
motor cortex in motor imagery [6-15]. Notwithstanding, 
the precision of electrocorticography (ECoG) in 
mapping somatotopic functions and capturing high-
frequency cortical dynamics [16-22] has significantly 
advanced our understanding of these neural phenomena. 

 
In parallel, the exploration of the beta rhythm in 

somatomotor regions has elucidated its inverse 
relationship with sensory processing and motor 

production, alongside its modulation in response to 
movement and motor imagery [18, 23-32]. These 
dynamics are often assessed using Phase Locking Value 
(PLV), a method well-documented by Lachaux et al. 
[47] for measuring the synchrony in brain signals, 
particularly in cortical-subcortical circuits which play a 
potential role in organizing somatomotor functions. This 
rhythm's involvement in cortical-subcortical circuits, 
particularly in relation to local neuronal activity and its 
potential role in organizing somatomotor function, has 
begun to be quantified, revealing a complex interplay of 
rhythm phase and broadband signal amplitude [33-39]. 
Miller [40] used ECoG electrodes in humans to study 
the phase-coupling of neuronal activity with the beta 
rhythm during finger movements. This study uncovered 
that broadband neuronal activity is phase-coupled with 
the beta rhythm, with this phase-coupling decreasing in 
amplitude during movement. The ECoG recording 
channels of greatest phase-coupling change with 
movement however, were not the same as those with the 
greatest beta activity change with movement. This study 
suggested that assessment of rhythm phase and 
broadband amplitude coupling may offer insights into 
the interplay of distinct brain rhythms and broadband 
amplitude during different activities. Building on these 
insights, our study leverages data from a participant 
engaged in motor and BCI feedback during motor 
imagery conditions collected previously by the 
Ojemann [41] group. We aim to dissect the nuanced 
shifts at specific electrode sites, with comparison 
between the motor vocalization and BCI imagery 
feedback conditions in i) broadband amplitude in 
response to action, ii) amplitude shifts of various 
rhythm frequencies in response to action, and iii) to 
delineate the changes with action and rest in the 
coupling between 12-20Hz rhythm phase and 
broadband amplitude. By examining these dynamics our 
work seeks to illuminate the underlying neural 
mechanisms of motor control and a BCI imagery 
feedback task, offering novel insights into their 
application in rehabilitative and BCI technologies. 
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MATERIALS AND METHODS 
 
Participant: The study included an epilepsy patient 

undergoing craniotomy for seizure localization, with 
informed consent under U.Washington IRB (#12193) 
approval. Data was downloaded from the ECoG Library 
database [42]. 

 
Stimulation: Electro-cortical mapping identified 

motor/speech cortices using 5–10 mA pulses.  
Recordings: Signals from subdural platinum ECoG 

electrode arrays, with a total of 48 electrodes (Fig. 1.), 
were recorded at 1000Hz and processed for analysis.  
Tasks: The patient performed the motor task of saying 
the word „move“, with multiple trials interspersed with 
rest periods. The patient then performed a BCI feedback 
task, where motor imagery of saying the word „move“ 
was utilized to move a cursor to a target, via ECoG 
recording detecting broadband power increase at an 

electrode chosen by the greatest broadband power 
increase in the motor task. The patient then is instructed 
to move the cursor away from the target (Fig. 1), which 
is actuated by reduction of this broadband increase at 
the specified electrode. It should be noted that the „rest“ 
condition in the feedback task was an „active rest“ task 
as the patient was deliberately attempting to move the 
cursor away from the „active vocalization imagery“ 
task. 
 

Electrode Localization and Brain Mapping: 
Locations were estimated from x-rays and mapped to 
visualize activity distribution. 

Data Analysis: A high-frequency broadband (HFB) 
ranging from 76–100 Hz was selected for the analysis. 
In brief this particular interval was chosen because it 
lies within this broad increase, avoids 60 Hz 
contamination, and matches the 25 Hz width of the low-
frequency band (LFB), with further discussion on this 

 
Figure 1: BCI Imagery Feedback Task and Relation to Broadband Shift. (A) Map of ECoG grid showing electrode 
positions. (B) Visual feedback of this broadband power change which causes moving of a dot on a screen in one direction. 
Reduction this broadband power increase will cause movement of the dot in the other direction. In the BCI imagery 
feedback experiement the patient is visually cued to try to move the dot in one direction or the other. (C) Dots represent 
significant (p<0.05 FDR corrected) broadband 76-100Hz power increase during BCI imagery feedback task active 
condition (motor imagery of saying „move“) compared to a rest condition. The smaller brain image shows the distribution 
of the same for the motor vocalization experiment. (D) The power spectra demonstrating the broadband increase with BCI 
imagery feedback compared to rest. 
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HFB frequency range selection outlined in prior studies 
[18]. In the patient's tests, which included verbalizing 
the word “move” and actual leg movement, only the 
verbal command was used for the feedback task. 
Therefore, comparisons were made between the periods 
of saying “move” and the rest periods immediately 
after, to account for the task-specific beta rebound 
following movement as noted by Pfurtscheller [31]. 
Cursor speed in the feedback task was updated every 40 
ms, based on the power calculated from 79-95Hz and 

electrode numbers 13 and 22 over the preceding 280 
ms. 

1. Power Spectral Analysis: Power spectral 
density (PSD) of the signal was calculated for each 
epoch surrounding movement or imagery events. 

  (𝑃(𝑓, 𝑞) = !
"
(∑ 𝑉+𝑡# + 𝑡.

"/%
&'("/% ⋅ 𝐻(𝑡) ⋅ 𝑒)%*+&(

%
)  

Figure 
2: Relation between broadband power and phase of ECoG rhythms. (A) ECoG potential is measured from the cortex 
(green dot). (B) Example low frequency rhythm obtained by convolving ECoG with a simple Morlet wavelet.  (C) 
Fluctuations in broadband power are also extracted from ECoG potential. (D) Log values of the time-dependent 
broadband have a normal distribution, so the z-scored log broadband timeseries is obtained. (E) The rhythm timeseries 
from B is shown color coded for instantaneous phase (relative to positivity peak of the potential).  (F) The timeseries of 
the z-scored log of the broadband, color coded by the coincident phase of the low frequency rhythm.  (G) The log-
broadband signal is aligned with the phase of the low frequency rhythm (as color-coded).  The average of the log-
broadband amplitude is obtained for phase bins. Error bars denote 3 times the standard error of the mean (3*SEM) for 
each phase bin. This can be appreciated in one dimension as a row in the phase coupling palette (in H). (H) The full  
“Phase coupling palette” obtained by repeating the process detailed in E-G at each frequency from 1-50 Hz., showing 
modulation of broadband power with the full range of frequencies. 
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Here (𝑇) is the epoch duration, (𝑡) is event duration, 
(𝑓) is frequency, (𝑞) is the event, (𝑉(𝑡)) is the electrode 
potential, (𝑡#) are event markers and (𝐻(𝑡)) is the Hann 
window function used to transform the time-domain 
data into frequency-domain representations, 
encompassing all frequencies during both rest and 
action phases. 

2. High-Frequency Band Extraction (76-100 Hz): 
The averaged PSD for each movement or rest trial was 
normalized to the global mean across all trials. The 
power in the 76-100 Hz frequency range was extracted 
from the normalized PSD for each channel to focus on 
the high-frequency band (HFB) activity (Fig. 3A). 

3. Phase-Amplitude Coupling (PAC) Analysis: 
Utilizing the Hilbert transform, the phase of the 12-
20Hz rhythm and the amplitude of the HFB were used 
to generate phase-amplitude coupling metrics (Fig. 2):  

(𝑉3(𝐹, 𝑡) = 𝑟(𝐹, 𝑡)𝑒)∅(.,&)) 

Where (𝑉3(𝐹, 𝑡)) is the complex PAC vector, for 
frequency range (𝐹) = 12-20Hz at time (𝑡).  The 
‘‘analytic amplitude’’ of the range (𝐹) at time (𝑡) is 
(𝑟(𝐹, 𝑡)) and the ‘‘phase’’ is (∅(𝐹, 𝑡)). Generation of 
metrics included constructing 'palettes' (Fig. 3) for each 
channel for each task to examine the relationship 
between phase and amplitude across frequencies. The 

coupling vector magnitude (𝑍123) and its preferred 
phase (𝑤4) are calculated as:  
																							(𝑍123𝑒)5! =

!
%6
∑ 𝑥7𝑒)5")7   

where (𝑥7) represents the average log-broadband 
amplitude in the k-th phase bin, (𝑤7)is the central phase 
of the k-th bin, and (𝐾) is the total number of bins.  

For assessing the distribution of phase-amplitude 
coupling values across trials (Fig. 4), the projected 
distribution is used: 

(𝑍123,#(𝑛) = 𝑍123(𝑛) ⋅ cos+𝑤(𝑛) − 𝑤#.) 

 

where (𝑛) is the trial number, (𝑤(𝑛)) is the preferred 
phase for the nth trial, and (𝑤#) is the preferred phase of 
the mean coupling vector for trials of type 𝑞, and (𝑁) is 
this number of trials. The mean coupling vector is 
computed as: 

(𝑍123,#𝑒)5# =
1
𝑁C𝑍123(𝑛)𝑒)5(8))

8

	

This method allows for the evaluation of the 
significance of phase-amplitude coupling by assessing 
the distribution of (𝑍123,#(𝑛)) values. 

4. Broadband and Rhythmic Amplitude Analysis: 
For each channel during rest and action phases, the 
broadband amplitude, the phase-amplitude coupling 
amplitude, and the amplitudes for rhythmic activities in 
the specified frequency band (12-20Hz) were 
calculated. 

5. Statistical testing: Phase and amplitude of 
coupling vectors were calculated per trial for rest and 
active conditions for both BCI imagery feedback and 
motor tasks. For all conditions, each trial’s coupling 
vector was then projected to the mean phase angle 
across all trials.  

Signed r2 cross-correlation values at each channel 
were produced for each experimental condition (active 
vs rest) for each of broadband amplitude, phase-
amplitude coupling amplitude and rhythmic amplitude.  

A two-sample t-test was performed for each of 
broadband amplitude, phase-amplitude coupling 
amplitude and rhythmic amplitude and a significance p 
value calculated.  

Channels with significant (p<0.05) r2 values are 
demonstrated by colored circles on a 3D rendering of 
the patient’s brain with the diameter scaled to the  
magnitude of these r2 values.  

Power spectra of action vs rest conditions were 
plotted for motor vocalization and imagery feedback 
tasks.  

Phase-amplitude coupling amplitudes (Zmod) for 
motor and feedback rest conditions were highlighted on 
a 3D rendering of the patient’s own brain with again 
only channels with Zmod with significant p values < 
0.05 with FDR correction highlighted with channel dot 
size proportional to Zmod values. Dot color was related 
to the phase coupling angle ∅4.   

 

Figure 3: Broadband and Phase Amplitude Coupling 
Palette at One Electrode. (A) Demonstration of 
Channel 35 power spectra with regards to the broadband 
power change during BCI imagery feedback task active 
condition (motor imagery of saying „move“) compared 
to a rest condition. (B) Phase amplitude coupling palette 
at Channel 35 with the 12-20Hz frequency range 
circled. (C & D) Phase of rhythm depicted by color and 
angle on the complex plane.      
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RESULTS  
 

     Comparison of broadband 76-100Hz power increase 
between the motor vocalization task vs. rest and the BCI 
imagery feedback task vs. rest (significant R values, 
p<0.05 after FDR correction) revealed a similar area of 
broadband increase, although the area with broadband 
increase extended over more channels in the speech area 
in the imagery feedback task (Fig. 3A). There was also 
a distinctly separate increase in one channel (37) in the 
dorsal motor area, only in the imagery feedback task 
(Fig. 3A). 

There was significant 12-20Hz rhythm decrease 
(significant R values, p<0.05 after FDR correction) 
around the face area of the primary motor and premotor 
cortex in the motor vocalization task, however there was 
no significant 12-20Hz shift in the imagery feedback 
task.  

There was no significant increase or decrease in 12-
20Hz to broadband coupling vector amplitude for task 
vs. rest for either the motor vocalization or imagery 
feedback task.  

Examination of the amplitude and phase of the 12-
20Hz to broadband coupling vectors for the rest 
condition revealed significantly increased coupling 
(p<0.001 Bonferroni adjusted for p<0.05) in channels 
35 and 36 in the imagery feedback task at rest when 
compared to the motor vocalization task at rest. 
Channels 35 and 36 (Fig. 4) are in the dorsal motor area, 
distinctly separate from the speech area, and from the 
motor face area that demonstrated the 12-20Hz decrease 
with motor vocalization.  
 
 
 
DISCUSSION 
 

The finding of greater broadband 76-100Hz power 
increase over the speech area for task vs rest in the 
imagery feedback task compared to the motor 
vocalization task vs rest (Fig. 3A) is consistent with the 
results in the Ojemann group 2010 [41] study and other 
scientific investigations [43]. The heightened broadband 
power during BCI imagery feedback, relative to motor 
action, might stem from the initial selection of channel 
(13) for imagery feedback, based on its significant 
broadband power change during motor action. 
However, in our study, channel (13) was not the 
primary site of increased broadband power in the 
imagery feedback condition; instead, adjacent channels 
exhibited more substantial broadband increases 
compared to the motor vocalization task. This broader 
increase in broadband power during the BCI imagery 
feedback task, versus a motor task, suggests that the 
feedback mechanism itself might induce larger 
broadband shifts, a concept supported by Ushiba [44] 
and Neuper[45].  

The single channel (37) of broadband power increase 
in the dorsal motor area (Fig. 3A) is difficult to explain 
during the motor vocalization imagery task and could be 
related to a motor association area activation [46].  

The Ojemann group [41] found higher R values for 
low frequency (8-32Hz) power decrease in their 
imagery feedback task than their motor task. The 
current study found significant R values for 12-20Hz 
decrease with task only in the motor vocalization task 
and not the imagery feedback task. The reason for this 
difference in findings may be the different range of low-
range frequencies tested. It may be that 20-32Hz is an 
important rhythm range for task related modulation in a 
vocalization imagery feedback task in the face motor 
area. In light of variations observed in correlation 

Figure 4: Phase and Amplitude of the Coupling 
Vectors in the Rest Conditions. (A) Shows the 
significant (p < 0.05 FDR corrected) values for the 
amplitude of the coupling vector (Zmod) of 12-20Hz to 
broadband power in the rest condition of the motor 
vocalization task. The size of the dot indicates the Zmod 
value, scaled to Zmod = 0.2. The color of the dot 
indicates the degree of phase. (B) The same as for A 
except for depicting the rest condition of the BCI 
imagery feedback task. (C) The phase (angle from 
center) and amplitude (distance from center) of coupling 
vectors for each trial (each dot) of the rest condition in 
the motor task and BCI feedback task at Channel 35. The 
black line parallel to the bar indicates the mean phase 
angle across trials. (D) The significant difference from a 
two-sample t-test (Bonferroni corrected p<0.001) 
between the mean Zmod (coupling amplitude) over trials 
between the BCI imagery feedback task and the 
vocalization motor task at Channel 35. (E) The same as 
(C) except for Channel 36. (F) the same as (D) except for 
Channel 36.  
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between low-frequency power and task performance 
across studies, it is crucial to consider how different 
approaches to power estimation and normalization 
might influence findings. The methods employed in this 
study, detailed in the Methods section, follow 
established protocols but could still yield results that 
differ from those obtained using alternative analytical 
techniques. These differences might stem from how 
power spectra are normalized or from the spectral 
components that are emphasized or attenuated through 
different processing steps. 

Miller in 2012 [40] demonstrated a broadband 
amplitude entrainment with 12-20Hz rhythm during rest 
periods (fixation) in the peri-central cortex. During 
finger movement this phase-entrainment was 
diminished or eliminated, suggesting the beta rhythm in 
the peri-central cortex to be a gating mechanism of 
motor function. The results of the present study did not 
demonstrate diminished entrainment of the broadband 
amplitude with 12-20Hz rhythm during motor 
vocalization or the active imagery phase of the feedback 
task. This may be related to the primary sites of motor 
activation in this study being outside of the dorsal peri-
central cortex, as the task was motor vocalization and 
imaginary vocalization. There was however 
significantly higher broadband amplitude entrainment 
with a 12-20Hz rhythm in dorsal motor area channels 
(35 & 36) in the imagery feedback rest condition, when 
compared to the motor vocalization condition (Fig. 4). 
This relative dorsal motor cortex suppression during the 
“active relaxation” phase of the imagery feedback task 
may be evidence of unconscious suppression of motor 
cortex when attempting to moving a cursor in the 
opposite direction to that of the active imagery 
vocalization task. This suggests a degree of “cognitive 
control” over suppression of the cortex during the 
reinforced “rest” state of the BCI imager feedback 
experiment.  

These results suggest a promising direction for future 
research in the BCI field, particularly in the use of 
phase-amplitude coupling (PAC) to assess deliberate 
cortical suppression during 'active rest' states. This 
approach may offer a novel method to 
electrophysiologically identify cognitive intentions, 
enhancing the responsiveness and adaptability of BCI 
systems. Further exploration into how variations in PAC 
correlate with specific cognitive tasks could lead to 
more intuitive interfaces that better align with user 
intent, potentially improving outcomes in therapeutic 
and rehabilitative applications.    
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ABSTRACT: Speech Imagery (SI) is considered an in-
tuitive paradigm for Brain-Computer Interface designs
in particular for communication applications. In this
work, we use Electroencephalography (EEG) for offline
SI decoding. We recorded covert speech from 17 par-
ticipants. We tested two types of wavelet decomposition
techniques. Specifically, we considered coefficients from
6 decomposition levels with Discrete Wavelet Transform
(DWT) and multiple 2 Hz spaced packets with Wavelet
Packet Decomposition (WPD), we computed different
statistical features from such coefficients to form vec-
tor inputs for our binary-class classification approach.
We approached the issue of feature/sample gap by us-
ing the Maximum Relevance and Minimum Redundancy
(MRMR) feature selector algorithm to select the most
informative features. We achieved a mean accuracy of
76.6%± 16 and demonstrated the potential of WPD to
extract narrow-band features, and how its refined repre-
sentation outperforms DWT in SI decoding.

INTRODUCTION

Speech Imagery (SI) has become an attractive paradigm
due to its intuitiveness [1, 2]. The Brain-Computer In-
terface (BCI) user is prompted to covertly say or repeat
a speech unit (e.g., a letter, word, or phrase). With accu-
rate classification of such tasks, a user can convey differ-
ent messages or commands, e.g., to change an application
state. One potential application of SI-based BCIs is as an
assistive technology to restore communication for peo-
ple who have lost the ability to speak. Researchers have
approached SI-based BCI designs using different speech
units as vowels [3, 4], syllables [5, 6] or words [7, 8] and
were able to achieve higher than chance decoding accu-
racies suggesting the potential use of this paradigm.
To classify the speech unit from recorded EEG signal, in-
formative features need to be extracted, EEG dynamics
are known for their non-stationarity therefore a need for
techniques that capture time and frequency domain infor-
mation[9].
The widely known Fast Fourier Transform (FFT) has
been applied to extract SI frequency information, Bajes-
tani et.al (2022) [10] used FFT coefficients to classify be-
tween tasks with higher than-chance accuracy. Modified
forms of FFT have also shown promising results when

extracting SI features, the Discrete Gabor transform was
applied by Jahangiri et.al (2018) [6] where the coeffi-
cients helped identify the relevance of the gamma band
(> 60 Hz). Mel Frequency Cepstral Coefficients initially
used for audio decomposition were used as EEG features,
and showed classifiable properties between SI tasks [11,
12]. These FFT-based methods represent well-frequency
information but omit time domain features which may
also be important for SI decoding.

Wavelet Decomposition is a method proven useful in ex-
tracting both, time and frequency domain features [13,
14], in particular, Discrete Wavelet Transform (DWT)
has been used as a feature extraction technique in SI ap-
proaches [15, 16]. DWT decomposes the signal with a
transformation analogous to high and low-pass filtering.
However, it may not be optimal for accessing specific fre-
quency ranges as the obtained decomposition levels are
derived from the low-pass filtered version of the scaled
signal [17]. Additionally, Wavelet Packet Decomposition
(WPD) performs a more detailed representation as the de-
composition levels derive from the low and high-pass fil-
tered versions of the signal resulting in a representation
with more frequency ranges to access [18].

The issue of participant-dependent frequency variability
is known in the area of EEG decoding, as the prominent
frequencies elicited from imagery tasks tend to change
for individuals, the appropriate selection of frequency in-
formation would lead to better classification results [19],
thus we investigated the use of WPD to find participant-
specific frequency ranges and compare its performance
with features from fixed frequency ranges from DWT.

Due to the relatively small number of SI samples in com-
parison with the large number of features obtained from
the wavelet decomposition levels, a dimensionality re-
duction step is needed to select a reduced number of fea-
tures for optimal performance of a machine learning clas-
sifier. We investigated the capabilities of the Maximum
Relevance Minimum Redundancy (MRMR) feature se-
lection algorithm as it has proven useful for selecting in-
formative features from large feature sets [20].

We have chosen the two phonetically distinct monosyl-
labic words ‘left’ and ‘right’ for our SI experiments and
emphasized the participants to focus on the inner pronun-
ciation rather than its meaning.
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Figure 1: Timeline of the experimental protocol.

MATERIALS AND METHODS

Participants: Seventeen right-handed able-bodied par-
ticipants (9 female) between the ages of 20 and 35 (µ =
25.65,σ = 8.3) were recruited from the student popula-
tion of the University of Essex. Participants received a
compensation voucher worth £10 (GBP) for their time.
All volunteers read, understood and signed the consent
form based on the recommendations of the Ethical Com-
mittee of the University of Essex in January 2023 (Refer-
ence Number ETH2223-0220).

EEG Instrumentation: EEG was recorded using a 64-
channel Biosemi Active-Two system. Electrode place-
ment was done via the international 10-20 system, plus
one electrode close to the pterion after each eyebrow for
electrooculography (EOG) and one electrode behind each
ear on the mastoids for electromyography (EMG) record-
ing. Data was recorded at a sampling rate of 2048 Hz
unaffected by hardware cut-off.

Experimental Protocol: Participants were seated in a
comfortable chair facing a 52-inch screen. A graphical
user interface developed with PsychToolbox 9.0 [21] in
Matlab R2022 was used to display the prompts over a
plain grey screen. We used a stimulus masking approach
where we first showed the imagery prompt and then had a
visual cue presented as a circle in the middle of the screen
that remained for 300 ms, having a flash-like effect. See
Figure 1 for the timeline of the experiment.
Participants were asked to perform the speech imagery of
the words ‘left’ and ‘right’ as soon as they saw the cue
stimulus.
We first presented a fixation cross for 2 seconds followed
by the imagery prompt for 6 seconds and a time-variant
(1.5–2 s) fixation cross before the cue. We cued our par-
ticipants with the described flash stimulus and proceded
to leave a plain screen for 5 seconds until the ‘relax’
prompt was shown.

Signal Analysis: Raw EEG data were first downsam-
pled to 1024 Hz from the original 2048 Hz, we then ap-
plied a notch filter (zero-phase, Hamming window FIR)
at a cutoff frequency of 50 Hz and its harmonics at 100 Hz
and 150 Hz to reduce the power line noise. We divided
the data into regularly spaced epochs from t1 = −2 s to
t2 = 8 s with respect to stimulus onset (t = 0), 25 tri-
als per class were initially recorded. Channels were vi-
sually inspected and rejected when they looked overly
noisy with respect to their neighbours. Epochs were vi-
sually inspected to reject those with bad movement ar-
tifacts. Between 4 to 7 epochs and 6 to 10 channels
were dropped for each participant. Common Average
Referencing (CAR) was then applied after to improve the

signal-to-noise ratio.
In order to remove EOG and EMG artifacts, the signal
components were estimated using Independent Compo-
nent Analysis (ICA) with the Picard algorithm [22] to se-
lect and discard components encompassing evident eye
blinks, lateral ocular movements or muscular artifacts
based on their spatial or temporal locations and frequency
distributions. Between one and four components were re-
moved for each participant. The remaining components
were used to reconstruct the data.

Feature Extraction: We used a 1.2-second-long post-
stimulus window and tested the signal decomposition al-
gorithms WPD, and DWT. We used Daubechies wavelet
(db4) as the mother wavelet as it has been widely used
for EEG approaches [8, 23].
DWT is known for its ability to represent time and fre-
quency information [14, 24], it assumes that a signal is
a linear combination of a particular set of wavelet func-
tions, and these functions are scaled and shifted versions
of a mother wavelet [17] WPD is a more refined version
of wavelet decomposition which solves the scaling lim-
itation of DWT as the decomposition happens on both
detail and approximation coefficients at each level gen-
erating a larger frequency space, thus for the 6th WPD
decomposition level, 64 packets of coefficients would be
obtained[18].
To decompose the signal we first applied a low-pass filter
(zero-phase, Hamming window FIR) at 128 Hz cut-off.
For DWT we considered 6 levels of detail coefficients,
D1(64–128 Hz), D2(32–64 Hz), D3(16–32 Hz), D4 (8–
16 Hz), D5 (4–8 Hz), D6 (2–4 Hz) and one of approx-
imation coefficients A6 (0–2 Hz). For WPD, we con-
sidered the 2 Hz step packets at the 6th decomposition
level. These packets encompassed frequencies from 4–
30 Hz and 70–128 Hz. We selected Alpha and Beta as
previous approaches found informative features in such
bands [10, 11, 25, 26] and also accounted for frequencies
higher than 70 to explore the gamma band, also known to
be relevant in SI-related activity [6, 27]. We did not con-
sider frequencies between 30–70 Hz for WPD to narrow
the number of options to select from therefore reducing
computation cost.
We computed the next statistical and wavelet features
from each level/packet: mean value, standard deviation,
root mean square, slope, kurtosis, energy, entropy, mean
absolute difference, negative turnings, positive turnings
and wave centroid.
To find the most informative features we tested the classi-
fication performance of each statistical feature from each
level/packet on a one-to-one basis, then combined the
features with the top 3 classification accuracies to check
for performance improvement.

Feature Selection: Each feature-level/packet combina-
tion formed a feature vector of shape channelsx1, as the
average number of epochs per class was 21 ±4, we aimed
for an ideal features vector shape of 10x1. To reduce
the vector dimensionality we used the Minimum Redun-
dancy Maximum Relevance (MRMR) method on every
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run of our cross-validation procedure. MRMR aims to
maximize the relevance of features to the target variable
while minimizing the redundancy among selected fea-
tures [20], it uses a relevance score based on mutual in-
formation and a redundancy score based on Pearson cor-
relation.

Classification: For each participant, we had an aver-
age of 21 trials ±4 per class. We evaluated the 2-class
classification performance of our model with the median
accuracy from a 6-fold cross-validation. We repeated
the cross-validation 15 times, with a different seed at the
time, and used the median score of each repetition to bet-
ter estimate the model’s performance.
Linear discriminant analysis has been widely used in
BCIs. As large dimensionalities and overfitting are com-
mon problems in BCI, regularized LDA has been found to
be useful for small training sample settings, we used the
shrunken version of LDA [28], which adds a penalty term
to the loss function, using the scikit-learn library [29] and
the ‘auto’ shrinkage parameter that finds an optimal value
based on the lowest error.

RESULTS

To get the most informative frequency ranges from the
SI-EEG data, we recursively tested 11 statistical features
computed from WPD packet and DWT level coefficients,
we found the best-performing setting for each decompo-
sition modality and participant based on the classifica-
tion accuracy. We then reported the obtained accuracies
and compared the results as seen in Figure 2. The use of
features from multiple narrowed frequency intervals with
WPD achieved 13% higher accuracy than the limited lev-
els of decomposition from DWT, with (p < 0.01) from a
two-sample test. WPD scores are above the 99% confi-
dence interval, computed based on the trial number per
class [30], marked for the black horizontal lines, while
most of DWT results lay below this interval.
The MRMR algorithm for feature selection was shown to
be useful in reducing dimensionality while retaining in-
formative features. We have counted the occurrence of
selection of each WPD packet over cross-validation folds
and present them as a channel-feature heatmap in Figure
3. We observe that some relevant channels involve lo-
cations that may be reflecting speech processing-related
areas as left-central channels C1, C5, frontal-temporal
channel FT7 or temporal channel T7 one of the most se-
lected by our feature selection process. However, infor-
mative features spread across different regions, as with
Fp2 chosen along different frequencies or P8 highly rel-
evant on the frequency band (26–28 Hz). Even if neu-
ral dynamics are considered to be produced by left hemi-
sphere dominant processes [31–33], SI-relevant features
from EEG appeared to spread around different regions
depending on individuals.
Similar to frequency domain features, relevant informa-
tion seems to be spread along all the tested bands above
10 Hz with particular highlights on bands at 26–28 Hz,

Figure 2: Comparison of obtained accuracies between the DWT
and WPD decomposition methods across repeated 6-fold cross-
validation, black horizontal lines represent the 99% confidence
interval.

Figure 3: Heatmap of occurrences of channels vs features from
the MRMR algorithm on WPD features.

78–80 Hz and 122–124 Hz.
During our analysis, we checked for the statistical
features with discriminative properties between the SI
classes on DWT and WPD coefficients, we counted the
number of times that each feature gave a higher-than-
chance result, Figure 4 shows the occurrence of signifi-
cant results from each feature, where the slope of the co-
efficients, appeared as the most discriminative property
from these wavelet representations.

DISCUSSION

Research into the Speech Imagery paradigm is gaining
traction, different experiments and designs prove that SI
can be classified from EEG signals [3, 6, 7].
The Motor Imagery (MI) paradigm, whose event-related
desynchronization (synchronization) is well known to
have a predominant range of frequencies (Alpha and
Beta) and location in the central Motor Cortex [34, 35].
In contrast, the SI-related potentials are not fully under-
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Figure 4: Occurrences of statistical features obtained from both
DWT and WPD.

stood [36].
Speech Imagery involves more complex processing for
the brain than MI [37], as a Language process, the brain
regions known to be active during speech processing may
be active during SI, the literature suggests that SI activ-
ity has a left hemisphere dominant processing, that in-
volves different brain regions. Some commonly men-
tioned regions are the temporal-parietal junction that has
been related to a memory and semantic decoding step, the
frontal-temporal regions possibly handling syllabification
and premotor and motor regions for the activity related to
the somatosensory SI experiences [33, 38, 39].
Out of the most relevant features by the MRMR selector,
we find channels located on regions that may be influ-
enced by areas known to be active during language pro-
duction, FT7 around Broca’s area, C1 in the Motor cor-
tex, T7 and C5 around the superior temporal region, P5
and P3 in the temporal parietal junction [33, 40]. How-
ever, the encountered relevant features are not restricted
to these areas and are spread around different regions, as
features from channels P8, TP8 or Fp2.
Studies of SI with Electrocorticography (ECOG) and
EEG have found that this imagery paradigm involves
broad-frequency dynamics and highlights the important
contribution from the gamma band (> 60 Hz) [6, 38, 41].
Our results suggest that many informative features come
from the narrow frequency ranges between 26–28 Hz,
78–80 Hz, or 122–124 Hz. It can also be noticed that rel-
evant features appeared to be chosen nearly continuously
in the Gamma range between 76–108 Hz but no features
were significantly chosen between 96–106 Hz. We have
tested WPD frequencies laying on Alpha, Beta and high
Gamma bands and found relevant information is spread
along different frequencies. Therefore we suggest that
future SI analysis should consider a broad spectrum of
the frequency domain.
The issue of participant-dependant frequency variability
in SI from EEG data was demonstrated in our compar-
ison between the two wavelet decomposition strategies.
The general decomposition levels extracted with DWT in
most of the cases did not lead to significant classification
performance, however selecting participant-specific nar-
row frequency bands with the use of WPD significantly
improved the classification accuracy, as shown in Figure

2. To test a decoding pipeline with multiple WPD con-
figurations can be computationally expensive due to the
total amount of available packets. In this work, we have
pointed out some frequency ranges which combinations
could be the starting testing point for future SI-related
work.
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ABSTRACT: It has been repeatedly shown that process-
ing of perceived errors in the human brain may elicit
some type of evoked response in electroencephalogra-
phy (EEG) collectively termed as Error-Related Poten-
tial (ErrP). The study of ErrP signatures offers a poten-
tial back door to better understanding how the brain en-
codes and reacts to errors and a useful tool for poking
adaptation and learning, but also has several practical ap-
plications in Brain-Computer Interface (BCI) and general
Human-Computer Interaction (HCI). The bulk of this lit-
erature has focused on so-called “interaction” ErrP, re-
flecting the response to discrete events occurring during
self-paced, casual interaction of a subject with their en-
vironment. Here we present a two-case study investigat-
ing the existence and characteristics of ErrP EEG corre-
lates in an eye-hand coordination task consisting in “bal-
listic” computer mouse movements, where the action and
reaction time constraints imposed on the subject are ex-
tremely tight. We show that clear EEG substrates of er-
ror processing can be retrieved for both subjects and bare
strong similarities with the interaction ErrP waveforms.
The findings of this work suggest the possibility of detect-
ing, in real-time, errors committed during fast-paced in-
teraction, thus potentially enabling automatic ErrP-based
error correction in real-world BCI and HCI scenarios.

INTRODUCTION

Error-Related Potentials (ErrPs) are Event-Related Po-
tential (ERP) waveforms in EEG time-locked to the re-
alization of committed errors [1]. Mainly owing to its
utility as an automatic, subconscious means of error cor-
rection during BCI [2] or general HCI, the topic of ErrP
signatures in various contexts has been extensively stud-
ied in the last 20 years [3]. ErrP correlates are relatively
slow signals characterized by a negative fronto-central
peak around 100 ms after the error onset, and followed
by a larger, positive, centro-parietal peak with latency
about 500 ms, which has been associated with the sub-
ject’s awareness of the error [1, 4]. Based on source imag-
ing and localization studies, ErrP correlates are believed

to originate in the anterior cingulate cortex [1, 4].

Besides the inherent interest of cognitive neuroscience in
ErrPs as a means to elucidate the brain’s error process-
ing mechanisms [1, 5], ErrP detection has attracted a lot
of attention due to a wide spectrum of promising appli-
cations in BCI and HCI. First and foremost, ErrP recog-
nition offers a seamless avenue for automatic error cor-
rection in human-machine interfaces [6, 7] that requires
no direct manual intervention by the user [3]. In partic-
ular, this is convenient for BCI applications where EEG
or other brain signal monitoring is already available to
support the main interface control modality [8–14], so
that ErrP detection yields no additional burden for the
system’s apparatus. As ErrPs are a natural physiological
“reward”/punishment signal, they have also been used in
the context of BCI human-machine co-adaptation [15],
especially with respect to reinforcement learning ap-
proaches [16–18]. Interestingly, under the same frame-
work ErrPs may also play the role of the main BCI modal-
ity [19, 20]. In order to optimize such applications, a lot
of studies have been dedicated to the design of machine
learning and other techniques for enabling high-accuracy
single-trial classification of ErrP correlates, overcoming
various engineering challenges [4, 12, 21–23].

The aforementioned prototypical error-related pattern is
commonly observed in experimental protocols involving
“discrete” errors of the interface that clearly constitute
single events: there is an abrupt, profound error onset to
which the ErrP signal is time-locked, and the duration of
the erroneous action or feedback are relatively short [4,
11, 23, 24], even when such errors are embedded in con-
tinuous interaction and unpredictable feedback tasks [6,
12, 14, 25, 26]. Very few investigations have been car-
ried out with regard to gradually unfolding errors [27].
However, despite the similarities of extracted ErrP wave-
forms in this regular discrete ErrP category, important
differences or even complete absence of ErrPs have been
denoted depending on the particular task (e.g., interac-
tion, response, or observation [3]) and contextual circum-
stances [24] of the experimental design.

As previously argued [1], a critical factor in the elicita-
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tion and shape of ErrPs may be the time constraints im-
posed on a human subject when requested to detect er-
rors. Notwithstanding the fact that many of the studies in
this literature yielded high mental workload for the user
during the error recognition task induced by concurrent
observation or interaction tasks, typically, the amount of
time available to consolidate the occurrence of an error is
ample. Here, we aimed to investigate whether ErrP sig-
natures can be elicited and captured in EEG activity when
errors happen while human individuals are engaged in an
extremely fast-paced eye-hand coordination activity.
The elegance and efficiency of human movements owes
much to our ability to compensate for inaccuracies and
environmental perturbations. Performing online correc-
tions relies on real-time monitoring of the hand/body tra-
jectory from the onset of the movement [28]. We devised
an experimental protocol with two related but distinct
goals: (i) to assess the facilitatory effects of excitatory
neuromodulation, specifically, anodal high-density tran-
scranial Direct Current Stimulation (tDCS) [29] of the
intraparietal sulcus on visuo-motor coordination, and (ii)
to determine the existence and features of ErrP with si-
multaneous EEG monitoring, while subjects are asked to
perform a “double-step” reaching task. Here, we provide
preliminary analysis on the second goal of describing po-
tential EEG correlates of error perception in this protocol.
Online eye-hand coordination has often been investigated
via double-step reaching tasks, in which the target of a
reaching movement suddenly moves to a new location af-
ter the movement onset and subjects are asked to adjust
the movement trajectory to compensate for the perturba-
tion. In the present study, subjects were required to put
the computer mouse pointer into a narrow circular target
at the top of the screen starting from a base location at
the bottom with “ballistic” movements, as accurately and,
very importantly, as fast as possible, with maximum pos-
sible velocity and acceleration. We hypothesized that tar-
get displacement during ballistic movements may evoke
ErrP waveforms and seek to describe them. Our prelimi-
nary results with two subjects confirm this hypothesis and
suggest that, despite the task’s extreme timing demands,
the elicited error-related responses resemble the interac-
tion ErrPs identified in the literature. We further show
that trials with target displacement can be identified with
a shallow classifier, opening the road for enriching natu-
ralistic interaction with elaborate error detection and cor-
rection capabilities even for hurried tasks.

MATERIALS AND METHODS

Participants:
We report on two subjects, S1 and S2, randomly picked
for initial analysis from a larger dataset of 28 healthy
right-handed volunteers (11 female; mean age 24.9 ±
5.8 years). All participants were naïve with respect to
the experimental procedures and the hypothesis of the
study. Participants had normal or corrected-to-normal vi-
sual acuity and reported no history of neuropsychiatric

Figure 1: Experimental protocol. Trial timeline and illustration
of the protocol’s events and visual elements.

disorders. Prior to their inclusion in the study, partici-
pants signed written informed consent. The study was
performed according to the declaration of Helsinki and
was approved by the local Ethics Committee. All partic-
ipants were screened for HD-tDCS tolerance [29]. The
Edinburgh handedness inventory was administered to as-
sess handedness.

Experimental setup and protocol:
Participants were seated in front of a table positioned 45-
50 cm below their eyes. Visual stimuli (see below) were
generated using Python v3.6 running on Windows 10 in
an Intel Core i7-7700 3.6 GHz computer and displayed
on a 24” HP E232 monitor with a refresh rate of 60 Hz
and a resolution of 1920x1080 pixels. A high-speed Log-
itech G G203 prodigy cable mouse, sampling at 250 Hz,
was used to track the hand’s 2D spatial position during
reaching movements.
EEG data were recorded at 500 Hz sampling rate with
a Starstim 8 hybrid EEG/tDCS 8-channel, active, wet,
Ag/AgCl electrode system (Neuroelectrics, Barcelona,
Spain). We measured positions FCz, FC1, Cz, CP1, CP5,
P3, PO3 and PO7 of the 10-20 EEG localization sys-
tem. This channel montage was designed to satisfy and
compromise the needs of both the goals set during the
study’s design, including the possibility to focally excite
the intraparietal sulcus through tDCS. Enough, strategi-
cally placed electrodes covering fronto-central and pari-
etal cortical areas were included to capture ErrP activity.
Each subject executed 3 experimental sessions, which
consisted of 5 runs each. Each run lasted approximately 6
minutes, and included 100 trials performed with the sub-
ject’s dominant hand, for a total of 1500 trials per subject.
Subject S1 of this study exectuted an additional 3 sessions
of 3 runs each, for a total of 2400 trials. The experimental
task consisted in performing a fast goal-directed reaching
movement towards a visual target located in the center of
the screen (Fig. 1). Prior to the initiation of the trial, par-
ticipants were required to move the mouse to the starting
position in the bottom center of the screen. After 1000ms
with the mouse placed at this starting point, a small white
fixation cross was automatically shown as a warning sig-
nal in the centre of the screen. The fixation cross pre-
ceded the target onset by a variable period (300 or 800ms)
to avoid participants from predicting the timing of that
onset. Trials with (34%) and without (66%) target dis-
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placement were presented in pseudo-random order. In
non-displaced trials, the target remained static in the cen-
ter of the screen. In displaced trials, however, the target
showed an unexpected 10.5cm (400 pixels) lateral dis-
placement–disappeared and instantly re-appeared to the
left or to the right with a 50-50% chance-, after the initia-
tion of the reaching movement. The movement onset was
detected by a 50 mm/s velocity threshold of the mouse
movement. The target displacement was timed exactly at
the movement onset (maximum 6 ms delay due to tech-
nical limitations of the experimental protocol) to assure
that participants did not have relevant visual cues about
the final position of the target during the initial movement
planning.
The total longitudinal distance between the starting point
and the target was 30 cm (1200 pixels) in the screen. The
ratio between the distance travelled by the mouse in the
real world and the cursor in the screen was 2:3, that is,
when the mouse moved for example by 20 cm, the cursor
advanced by 30 cm in the screen. To discard trials with
long reaction times, a warning sound was provided when
the velocity threshold required to start the movement was
not reached during the 500 ms that followed the target
onset. Participants were instructed to hit the target as fast
and as accurate as possible performing a ballistic move-
ment, exhibiting maximum velocities and accelerations
over a very short period of time. When the target was
displaced, participants had to adjust their hand trajectory
to succeed in hitting the target in its final location. The
target was presented for 1000 ms. At the end of the reach-
ing movement, participants brought their hand back to the
starting point, and prepared to start the next trial. Partici-
pants were instructed not to move their trunk with respect
to the chair and avoid head movements.

Data Analysis and Evaluation:

EEG data were band-passed with a 3rd-order Butterworth
filter within [1-20] Hz to remove signal drifts and iso-
late the spectral range within which ErrP components
are known to be found [7]. The final epochs considered
for analysis corresponded to the trial segment [-1, 1] s
where t = 0 s the movement onset. Subsequently, auto-
matic artifact removal with FORCe [30] and DC removal
baselining were applied to each epoch. Finally, we re-
moved all epochs whose maximum filtered amplitude ex-
ceeded 100 µV. We assessed the statistical significance of
the difference in amplitude among trials of a subject with
(Error) and without (Correct) displacement through two-
sided, unpaired t-tests with a = 0.05 and Bonferroni cor-
rection for multiple (N = 8000, 8 channels × 1000 time
points) comparisons. Two-class (Correct vs Error) classi-
fication accuracy is derived with 10-fold cross-validation
employing a binary Decision Tree (DT) classifier. DT is
selected for a first attempt to classify these novel ErrPs
as less vulnerable to overfitting and class-bias than other
shallow models (including linear or quadratic discrimi-
nant analysis with regularization/shrinkage), taking into
account the fact that there are double Correct than Error
trials in the dataset. The 100-best, in terms of r2 fea-

ture fitness, spatio-temporal (i.e., chanel/time-point com-
binations) amplitude features are selected using the fold’s
training data. Average and standard deviation (across
folds) of the total and class-wise classification accuracy
are reported per subject.

RESULTS

We present results on 2306 trials of S1 and 1494 trials of
S2 that survived the trial rejection. Fig. 2 and 3 estab-
lish beyond doubt both the elicitation of evoked poten-
tials during the performance of this protocol’s task, and
the fact that pronounced and statistically significant dif-
ferences exist between Correct (with no target displace-
ment) and Error (with target displacement) trials. The
grand average waveforms are consistent across subjects.
Correct trials (blue) exhibit a large positive peak around
t = 500 ms from movement/displacement onset (t =
0 ms), followed by a very small “refractory” negative
peak at t = 680 ms for S1; this is completely absent for
S2. Early negative peaks can be also identified around
t = 260 ms, especially for S2 and for Error trials. On
the other hand, Error trials (red) show a similar shape,
which is however delayed: the large positive peak is lo-
cated around t = 600 ms and the refractory negative peak
around t = 750 ms for S1 and slightly before t = 1.0 s
for S2. As a result, the average difference Error-Correct
(black) demonstrates a first negative peak at t = 500 ms
(very consistently for both subjects) ahead of a larger pos-
itive peak in the interval t = [650,720]ms. The differ-
ences Correct versus Error are statistically significant in
the period [400−800]ms that includes both the negative
and the positive peak, for both subjects; there are no sig-
nificant differences outside this interval (apart from few
very short, spurious ones), which further points to the ob-
served effects corresponding to ErrPs.
The grand average difference between Correct and Er-
ror trials is very similar to that reported in the litera-
ture for interaction ErrP in different contexts [1, 4, 7, 11,
12]. Along the same lines, Fig. 4 shows that the derived
waveform, despite being fairly spread for both subjects,
is stronger in fronto-central (channels FCz, Cz) and to a
lesser extent parietal (PO3) regions, and is not particu-
larly lateralized (i.e., the phenomena fade out for periph-
eral channels), which also aligns well with the findings of
previous studies on ErrPs.
Fig. 5 shows that above-chance classification accuracy
can be obtained for S1 and S2 with a DT classifier dis-
criminating Error from Correct trials. However, the clas-
sification is biased towards the dominant Correct class,
and only half of the ErrPs can be identified correctly.

DISCUSSION

The results confirm both the generation of evident ErrP
EEG correlates in the framework of this protocol, and
that these are similar to interaction ErrPs. However, sig-
nificant differences are also noted. In particular, while
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Figure 2: Grand averages of S1 trials. Correct trial average in blue, Error in red. The black line illustrates the difference Error-Correct.
Vertical, dashed lines indicate salient time points: magenta for t = 0 ms (basllistic movement onset) and green for t = 500 ms. Yellow
circles illustrate statistically significant difference between Error and Correct amplitudes for this time point.
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Figure 3: Grand averages of S2 trials. See Fig. 2 caption for details.

the difference Error-Correct (black curve in Fig. 2 and 3)
exhibits an anticipated “large positive, then small nega-
tive peak” pattern on grand averages [1, 4, 7, 11, 12],
compared to the literature, both peaks seem to be de-
layed by approximately 100-200 ms (Fig. 4). Another,

maybe more peculiar, discrepancy concerns the manifes-
tation of profound, strong peaks also in Correct trials. In
relevant works, the Error-Correct curve’s average wave-
form seems to result from the corresponding modulation
in Error trials alone, with Correct trials remaining flat [1,
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Figure 4: Topographic distribution of the average EEG ampli-
tude difference Error-Correct within the narrow 8-channel lay-
out used, for the maximum statistically significant positive dif-
ference peak (left) and the minimum, statistically significant
negative difference peak (right) for subjects S1 (top) and S2
(bottom). Text on top of the plots specifies the exact time point
where the corresponding peaks shown are located. Bright yel-
low indicates large positive average difference, deep blue large
negative average difference, and green no average difference.

Figure 5: Average and standard deviation (across cross-
validation folds) of the Total and class-wise (Correct, Error)
classification accuracy for subjects S1 (blue) and S2 (red). The
horizontal, dashed, light blue line marks the 58% random clas-
sification threshold [31].

12], or only reaching modest peak amplitudes [11], nor-
mally distinctly smaller than that of Error trials, an effect
referred to as Correct-Response Negativity [32]. On the
contrary, here we denote for both subjects a similar sig-
nature for both displaced and non-displaced target trials,
whose peaks are of comparable amplitude; consequently,
the Error-Correct grand average resembles that of regu-
lar interaction ErrPs solely due to the fact that ErrPs are
delayed with respect to Correct potentials.
One possible explanation is that both Correct and Error
patterns may receive contributions by Visually Evoked
Potentials generated by the target stimulus appearances,
resulting (through some complex and currently unclear

process) in the observed waveform shapes. The delayed
Error signature seems to somewhat align with this theory.
Of note, the original target stimulus happens at a random,
subject-dependent time in the interval [-0.5,0] ms before
the movement onset (t = 0) (the trial was discarded if no
movement occurred within 0.5 s after the target projec-
tion). The displaced target appearance (only for Error tri-
als) happens at most 6 ms after t = 0. Hence, the derived
signatures cannot be explained on the basis of Visually
Evoked Potential (VEP) contributions alone. The high
mental workload exerted here could also be implicated
with the delayed responses.
Whatever the rationale behind the features of the ErrPs
emerging in this protocol, strong peaks in Correct trials
render their single-trial detection a particularly difficult
task, as shown by the compromised classification accu-
racy obtained (yet, significantly above the random classi-
fication level overall [31]).

CONCLUSION

Our two-case study corroborates the elicitation of ErrP
EEG signals in an extremely hurried eye-hand coordina-
tion task comprising “ballistic” computer mouse move-
ments, and substantiates that the corresponding signa-
tures are similar to the interaction ErrPs described in the
relevant literature for various protocols involving EEG-
monitored error processing. We show that these ErrPs
can be recognized in single-trial by means of a shallow
classifier, albeit accurate classification seems to be chal-
lenging. These preliminary results suggest that it may be
possible to detect errors from EEG even under extremely
tight time constraints of the underlying task, thus poten-
tially enabling automatic ErrP-based error correction in
rushed, real-world BCI and HCI scenarios. Future work
entails confirming these results using data from all partic-
ipants, delving into the mechanisms leading to this kind
of novel ErrPs and improving the classification outcome
leveraging the large number of subjects and trials avail-
able to apply deep and transfer learning techniques.
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ABSTRACT: The utilization of a visual cue plays a
significant role in enhancing the operational efficiency
of brain-computer interface (BCI) systems for
individuals with Locked-In Syndrome (LIS). This
significance arises from the absence of a reliable
method to discern the actual initiation of attempted
movements in these patients. First, the decoders for
identifying or classifying self-initiated movements need
to be trained on cue-based paradigms. However, these
cues can elicit neural activity (e.g., visual/auditory
evoked potentials, cognitive processing, etc.) that
obscures the neural dynamics of movement, thus
negatively influencing the performance of the decoder.
Therefore, we implemented four novel visual cues with
the intention to reduce these effects to a minimum. Our
research findings indicate that the effectiveness of
classification performance in self-paced EEG recordings
when the decoder is trained on cue-based data for
movement tasks, is significantly impacted by the design
of the cue.

INTRODUCTION

A brain-computer interface (BCI) is a sophisticated
system designed to facilitate communication between
the human brain and external devices. This is achieved
by capturing and interpreting bioelectrical signals,
which are indicative of the user's intentions. These
signals can be obtained through non-invasive methods
such as electroencephalography (EEG) or invasive
techniques like electrocorticography (ECoG). The BCI
serves as a bridge, translating the user's cognitive
intentions into actionable commands for seamless
interaction with external technologies [1],[2]. We aim to
make use of four different gestures and
movement-related cortical potentials (MRCPs) elicited
by these gestures to decode the user's intention. The
rationale for incorporating different gestures in this
study was to anticipate their potential use in the
INTRECOM Project (https://intrecom.eu/) where we
aim to use them for a four directional control of a
speller [3]. The MRCP, a crucial EEG signal tied to
voluntary movement preparation and execution, has
been extensively studied for its insights into neural
processes governing motor planning and control [4], [5].
Comprising components such as the readiness potential
(RP) and the movement-related potential, MRCPs offer

a window into the mechanisms of movement-related
neural events. In case of paralyzed participants, the
movement itself cannot be measured to retrieve the time
point of movement onset. In such cases cues seem
unavoidable. The challenge arises when the cues
essential for the precise timing of a paradigm elicit
visual or auditory evoked potentials (V/AEPs) after
their stimulus. Such V/AEPscan can inadvertently
interfere with the analysis of MRCPs, especially in
experimental paradigms involving self-initiated neural
patterns such as voluntary movements or attempted
movements [6], [7], [8] in an asynchronous BCI
application in a later stage. Meaning, in the realm of
BCIs, asynchronous configurations pose challenges to
decoding performance because the classifier is trained
on MRCPs influenced by cue-related potentials, which
are absent in asynchronous usage.This underscores the
need to refine and optimize the visual cue to produce
MRCPs minimally influenced for training a classifier
that can detect self-paced movement.
Therefore, the primary motivation for this study is to
address a fundamental question: can visual cues be
designed to exert minimal impact on MRCPs during
movement attempts? While past research has compared
cue-based and self-paced MRCPs and explored the
influence of visual, auditory and vibrotactile cues [9],
[10], [11], [12], [13] limited attention has been given to
strategies mitigating the impact of visual cues on
MRCPs. To fill this gap, we draw inspiration from
previous work by Ofner et al. [7], who introduced a
gradually appearing visual cue gradually appearing to
minimize abrupt changes. Consequently, this gradual
adaptation aims to mitigate the interference of cues on
EEG signals. Building on this foundation, we propose
three new cues designed with the principle of exerting
minimal influence on signals associated with movement
execution. By rejecting or minimizing cue-induced
effects, our goal is to ensure that signals recorded during
cue-based activities closely mirror those generated
during self-initiated movement attempts.

MATERIALS AND METHODS

A. EEG recordings: cue-based and self-paced data

In this research, 22 individuals in good health,
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averaging 26.2 ± 4.2 years of age, participated in EEG
activity recording. Each participant willingly gave
written consent after receiving detailed information
from the researchers regarding the study's goals,
content, and procedures. Participants were assured the
autonomy to cease their involvement at any point
without obligation to provide a reason. The
experimental protocol obtained approval from the ethics
committee at TU Graz before initiation. Additionally,
the recorded data for each participant underwent
anonymization. Participants engaged in the recording of
EEG activity as they executed four distinct hand
movements (gestures) using their right hand while
seated in front of a computer screen. The EEG signals
were recorded using a 64-channel actiCAP system
(Brain Products GmbH, Gilching, Germany) at a
sampling rate of 500 Hz. EEG signals were collected
from all cortical areas through 60 electrodes positioned
based on the 10-10 electrode system, while the
remaining four electrodes served as electrooculography
(EOG) electrodes. EOG electrodes were strategically
placed at the outer canthi of both eyes and above and
below the left eye to monitor saccades and blinks. The
ground electrode was situated at the right mastoid, and
the reference electrode was positioned at FCz.To
identify actual movement onsets in both cue-based and
self-paced sessions, we utilized a motion capture system
developed in the institute with a sampling frequency of
30 Hz. A marker was positioned at the nail of the
participant's pointer finger. The data output provided
spatial information along the x, y, and z axes.
The gestures (Fist, Pincer, Y, Pistol) were chosen based
on classification results of previously performed studies
[7], [14], [15] in light of the assumption that gestures
can differ significantly due to variations in involved
joints and rotation thus producing variations in the EEG
movement-related dynamics. The experiment consisted
of two parts: (i) cue-based data collection applying
different cues and gestures. (ii) a self-paced phase
where participants were instructed to freely execute
corresponding gestures at any time. Data recorded
during this phase were used to evaluate the performance
of an offline asynchronous decoder, trained on the data
of (i).
For the cue-based part participants were instructed to
execute four specific hand movements precisely at
predetermined start times, signaled by various visual
cues. Six successive movements of all four gestures
were performed resulting in 5-minute runs, followed by
a 30-second rest period. The cue was constant
throughout this period, while the presentation order of
the gestures was randomized for each trial. This process
was repeated over 32 separate runs, each with a
randomly shuffled cue, resulting in a cumulative total of
192 trials for each individual gesture (48 trials per cue
and per gesture). The core concept underlying these
cues is their gradual appearance; they do not appear
abruptly but transition smoothly to their initial positions
through methods like shrinking, rotating, or fading. A
single trial, exemplified on the reference cue [7], has the

following sequence (Fig. 1): the gesture was displayed
for 1s, followed by a fixation cross positioned in front
of a filled green circle ('ready cue'). After a variable
period (2-3s), the green circle would gradually shrink.
This phase was designed to function as a preparatory
period for participants, serving as a smooth visual
transition between cues and minimizing visual cue
effects on EEG. The preparation phase was succeeded
by the 'go cue,' signaling the initiation of movement
execution (3s of execution and holding the end position
of the gesture). After that a rest phase with a blank
screen was presented for 1.5s. In this study, alongside
the reference cue, three novel visual cues were
introduced which are based on the same principle (see
Fig. 2) the fading cue, the rotation cue, and the star cue.

Figure 1: Timings of the different phases during one
gesture trial. Starting with the gesture presentation,
followed by the ready cue, thereafter the preparation
phase, then the goe cue and at last the blank (rest)
phase.

Figure 2: Four cues. A. Initial position/shape of the
different cues . B. End position/shape.

In the self-paced part, participants were instructed to
execute the same gesture and hold it for 3s (same
procedure as in the cue based part) at approximately
10-second intervals over the course of a 5-minute run.
The timing of one run can be seen in Fig. 3. This
protocol was repeated across a total of 8 runs, leading to
60 trials for each distinct gesture. It is worth mentioning
that the amount of movement trials for each subject
differ slightly, since the self-paced paradigm instructs
the participants to do the movements approximately
every 10s, leading to some variation between subjects.

Figure 3: Timing of the self-paced paradigm and
different steps during one 5-minute run.
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B. Processing of recordings

The recorded signals underwent offline processing and
analysis using MATLAB R2019a and the EEGLAB
toolbox ([16]). For the offline analysis, the EEG signals
from 60 channels in a standard 10-10 setup underwent
preprocessing steps. Initially, a zero-phase band-pass
filter, implemented as a third-order Butterworth filter
was applied to the signals within the frequency range of
0.3 to 70 Hz. To eliminate power line interference at 50
Hz, a notch filter was employed. Independent
component analysis (ICA) was utilized to remove
artifacts related to eye and muscle activity. A common
average reference (CAR) was then applied. As we
concentrate specifically on MRCPs for this study, we
bandpass filtered the data in the low-frequency range of
(0.5 - 5 Hz) by using a 3th order IIR filter and thereafter
we resampled the whole signal at 10 Hz to decrease
computational workload. Temporal alignment of all
trials occurred with respect to the cue onset, within a
window spanning from -2 s to 2 s. After a thorough
visual inspection, epochs exceeding the threshold of ±50
μV were excluded. Kinematic data related to gestures
were used to calculate the velocity of participants' hand
movements. Movement onset was determined when the
hand's velocity surpassed a predefined threshold (which
was set to the same velocity value for all participants)
between the "go" cue and the cue for the break, ensuring
accurate detection while minimizing false positives (FP)
for small movements during rest. We had to exclude one
participant's dataset due to exceptionally poor signal
quality and kinematic tracking.

C. Training a classifier on the different cues and
applying it on self-paced data

In this study, our main goal was to develop an
MRCP-based classifier capable of predicting when a
gesture occurs regardless of the specific gesture itself.
We therefore combined, for each participant, trials from
all four gestures into a single class, labeled as
‘movement’ (4 gestures x 48 trials = 192 trials). Data
from the rest condition (independently of the cue type)
were utilized as a 'rest' class (4 cues x 4 trials = 192
trials).
To identify the point of maximum discrimination
between the two classes around the cue onset, we
employed a 2-class shrinkage linear discriminant
analysis (sLDA) [17], [18], using overlapping
1.2-second window segments of current and past EEG
lags within each participant. We experimented with
various window lengths and selected the one that
yielded the highest accuracy. The input of the classifier
included EEG data (band-pass filtered between 0.5 - 5
Hz, as described in section B.) from both gesture (i.e.,
‘movement’) and resting (i.e., ‘rest’) trials, which were
aligned around one of the four previously mentioned
visual cues. To evaluate the performance of the
classifier within each window, we applied a trial-based
10x1 fold cross-validation approach. Subsequently, we

selected the window with the highest cross-validated
accuracy to train the final classifier, utilizing data from
all trials. This classifier was then used to predict offline
movement instances during the self-paced paradigm.
To prevent multiple detections during a movement
period and to reduce the number of FP during the
self-paced paradigm, we adjusted the threshold for the
movement class probability and we additionally
introduced a dwell time and a refractory period [13],
[19]. The dwell time verifies whether there are
consecutive detections within a specified timeframe,
and only when this condition is met a movement is
finally predicted. Once a movement has been predicted,
the refractory period skips any further check for
movement until a specified amount of samples have
passed. For the classification of the asynchronous data
the class probability, the dwell time and the refractory
period were optimized individually for each subject and
varied between 0.6 to 0.99, 0.5 to 2s and 2.5 to 4s,
respectively. By adjusting these parameters, we ensured
that multiple detections did not occur within a detection
window (defined as [-0.5 1] seconds around an actual
movement), while maintaining an overall FP count to 2
FP/min. Furthermore, considering that the gesture was
performed for approximately 3s, an additional MRCP
was produced when the participant returned to the
resting state. Therefore, the refractory period was
crucial to avoid detecting these movements upon
returning to the resting state.

RESULTS

When assessing the effectiveness of visual cues, the
discrepancy between the actual onset of movement and
the onset signaled by the cue is of essential importance.
Therefore, we defined 'temporal variability' as the
difference between the movement onset and the cue
onset for each movement performed by every subject. A
negative time value indicates that the movement
occurred before the cue onset, whereas a positive value
indicates that the movement occurred after the cue
onset. We investigated this variability for the four
different cue types. The temporal variability is shown in
the violin plots of Fig. 4. To evaluate statistically the
differences between cues, we conducted for each pair of
cues a Wilcoxon ranksum test and corrected for
multiple comparisons using the Benjamini-Hochberg
method. It is evident that the rotation and reference cues
exhibit a narrower distribution, whereas the results for
the fade and star cue are much more widely dispersed.
In Fig.5 the grand average MRCPs produced by the
different cues can be seen. The rotation and reference
cues display significantly more distinct grand average
MRCP patterns, whereas the fade and star cues yield
notably more blurred results.
The cross-validated accuracy (%), averaged across all
participants, for the 2-class classification task (i.e.,
‘Movement’ vs ‘rest’) during the cue-based part of the
experiment is depicted in Fig. 6. Fig. 6 essentially
illustrates the temporal evolution of the accuracy around
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the cue onset. The rotation cue achieves its highest
accuracy of 68.1% at 0.97 second, matching the
accuracy of the reference cue, which also peaks at
68.1% and occurs at 0.77 seconds. In comparison, the
Star and Fade cues both demonstrate their peak
accuracy at 0.56 seconds, achieving 65.2% and 64.85%,
respectively.
The results of the classification comparison of the
different classifiers trained on the specific cue and
applied on the self-paced data to predict the self-paced
movement can be seen in Fig. 7. We show the different
true positive rates (TPRs) within the specified detection
window (i.e., [-0.5 1] seconds) around the true
movement onset for the four cue types. The highest
median TPR was achieved with the reference cue and
the rotation cue with a value of 60%, while the fade and
star cue had a significantly lower TPR of 55%. The
highest subject wise accuracy was achieved by the
rotation cue with a value of 67%, while the lowest
accuracy occurred for the star cue with a TPR of 48%.
The accuracy of both rotation and reference cue shows a
similar variation , ranging approximately from 67% to
55%. Similarly, the fade and star cue demonstrate
accuracy levels ranging from 63.5% to 48% and 65% to
48%, respectively. We performed a Wilcoxon ranksum
test and corrected for multiple comparisons using the
Benjamini-Hochberg method to examine potential
variations in results among the different cues. There
were no significant differences between the fade and
star cue, as well as between the rotation and reference
cue. However, there was a significant difference (p <
0.01) between the fade cue and both the rotation and
reference cue, as well as between the star cue and these
two cues.
The rotation and reference cues exhibit similar ranges of
accuracy, both in terms of lower and upper limits.
Similarly, the fade and star cues also demonstrate
comparable levels of accuracy across their respective
lower and upper bounds. Notably, the rotation and
reference cues generally show similar performance, as
do the fade and star cue. Note that the overall FP count
was maintained at 2 per minute for all participants. The
median temporal disparity was for all cues the same and
the difference between the predicted movement onset
and the actual movement onset was 0.3s, indicating that,
on median, the movement was forecasted 300 ms after
the commencement of the actual movement.

Figure 4: Violin plots depicting the time difference
between movement onset and cue onset from all gesture

trials for each of the four cue types. Statistically
significant differences between cues are indicated with
stars (*p<0.05, **p<0.01, ***p<0.001). p-values were
corrected for multiple comparisons using the
Benjamini-Hochberg method.

Figure 5: Grand average of MRCPs during different
cues. MRCPs are aligned to the cue onset (t=0s).

Figure 6: Grand-average cross-validated accuracy (%)
for the 2-class classification task (i.e., ‘Movement’ vs
‘rest’) and for the different cue types within the duration
of a trial (t=0s corresponds to the cue onset).

Figure 7: Boxplot showing the subject-specific TPRs in
% for the different cue types. Statistically significant
differences between cues are indicated with stars
(**p<0.01). p-values were corrected for multiple
comparisons using the Benjamini-Hochberg method.

DISCUSSION

In this work we focused on movement onset prediction
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during self-paced executed movement using classifiers
trained on MRCPs triggered by four different visual
cues.
In this context we observed that there is a significant
difference in the decoding performance among the cues.
Specifically the rotation and reference cue yielded the
highest TPR in the self-paced data - a result that was
expected since the shape of the grand average MRCPs
was in general more pronounced for these cues.
Additionally, the design of the cue considerably
impacted the exact initiation time of participants'
movement execution. As a result, we observed a higher
temporal variability for the fade and star cue in the
movement onsets, which led to blurring in the grand
average potentials. These findings indicate the
importance of the cue design, meaning that the starting
period for the movement needs to be as precise as
possible while the graduating period from the start to
the ‘go’ position of the cue minimizes visual evoked
potentials influencing the MRCPs.
Overall a TPR for the reference and rotation cue of 61%
was obtained, while the fade and star cue achieved a
significantly lower TPR of 56%. The total
corresponding FP count amounted to 2 FP/min. These
findings can be compared to the work done by [7][20],
however, it's important to note that their investigations
are based on attempted arm movement and motor
imagery, respectively.
One reason for the low TPR and quite high FP count
could be that the training of the classifier was based on
MRCPs triggered on the cue onset, where the presence
of temporal variability have adversely affected the
MRCP patterns and thus the prediction performance.
Additionally, the high imbalance of the dataset between
the amount of movement and no movement instances
poses a significant challenge.
In terms of movement onset detection we report a
median temporal time delay of 0.3s for the movement
onset prediction. This is expected since we use a
non-causal filter, whereas in an online scenario the need
of a causal filter would further increase this delay.
For the decoding performance, the correct settings of
the hyperparameters class probability threshold, dwell
time and refractory period proved as crucial for
achieving the optimal balance between an overall low
FP count and the highest TPR. In detail, we tuned the
values of the movement class probability threshold
between 0.5 to 0.99, the dwell time between 0.5s and 2s
and for the refractory period between 2.5s to 4s for each
subject. It is worth noting that the refractory period
could be set up to 4s because we knew in advance how
much time there would be between each movement. For
a real world use the refractory period needs to be
adjusted to a much lower time to allow a higher
communication rate.
Although the study delivered interesting insights into
the improvement of cue design in relation to
synchronous and asynchronous BCI, there are some
aspects to be considered for future work. First, in terms
of the study design it would maybe be better to allow

participants to perform the gestures during the
self-paced part at their own pace, meaning there is no
condition like to hold the gesture for a certain amount of
time. This could lead to a more consistent outcome in
ignoring the movement offset MRCPs, since now it
could be that the participants have a high variance in the
time of hold when returning from the end position of the
gesture to the rest position which is maybe not always
covered by the refractory period. Second, upon analysis,
both the rotation and reference cues consistently
outperformed the fade and star cue across the evaluated
metrics. However, further refinement of their design
principles is necessary to enhance the precision of
indicating the start of movement execution.
Additionally the instructions and test runs for the
participants could be improved to explain to them the
importance of the exact starting time when they are
indicated to do so. This would lead to more pronounced
MRCPs on average when triggered on the cue onset.
When analyzing the differences between cue onset and
actual movement onset, the fade and star cue exhibited
high temporal variability inflicted by the nature of their
design. This suggests that these cues synchronize
movement timing less effectively, which warrants
consideration in future studies.

CONCLUSION

We demonstrated that the variations in MRCP shapes
influenced by visual cue types play a crucial role in
decoding performance when applying a cue-based
decoder on self-paced data. Significantly, the rotation
and reference cue yielded the most favorable results in
terms of the true positive rate, whereas the fade and star
cue exhibited comparatively poorer performance. This
discovery aligns with the hypothesis that the rotation
and reference cue, with their precise onset timing and
more pronounced grand average MRCP patterns, are
better suited for training classifiers in online scenarios.
Future cue designs may be able to further improve the
exact indication timing of the go cue for the movement
to enhance the decoding performance even more. For
the detection of executed movement in an asynchronous
BCI there is a need for further improvements to lower
the FP count and increase the TPR when the classifier is
trained on MRCPs triggered on a cue onset. The tuning
of the three hyperparameters is crucial but future
considerations should also involve enhancing the
methodological aspects of this work,
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Abstract—A Brain-Computer Interface (BCI) translates a per-
son’s intent, derived from brain signals, into control commands
for various applications. This work focuses on Motor Imagery-
based BCI (MI-BCI), specifically emphasizing sensorimotor-
rhythm (SMR) and MI as the relevant task. While improve-
ments have been made in classification algorithms and signal
acquisition, human factors influencing user-BCI compatibility
remain underexplored. User performance in MI-BCI systems
is impacted by personal, psychological, and neurophysiological
factors, leading to a phenomenon termed “BCI illiteracy”. In
this work, we aim to address BCI illiteracy through a systematic,
standardized study, incorporating various human factors to
enhance user performance by developing a neural network model
predicting a trainability score and a training regime. To achieve
this, the MI-BCI systems use population-specific indicators and
task-based modulators, integrating anatomical, psychological,
and neurophysiological information (EEG, biosignals). The pro-
posed model-based personalization approach offers reproducible,
innovative, and open-source training protocols to boost BCI
performance avoiding prolonged and ineffective training sessions.
The ultimate goal is to eliminate BCI illiteracy as a barrier to
compatibility between users and BCI systems.

Index Terms—BCI-Illitaracy, Deep learning, individualization

I. INTRODUCTION

Past research has identified predictors of performance in
Motor Imagery (MI)-based Brain-Computer Interface (BCI)
systems, primarily focusing on neurophysiological and psy-
chological factors. Noteworthy neurophysiological predictors
were extensively reviewed by [1], with studies like [2] high-
lighting the predictive value of resting sensorimotor-rhythm
(SMR) amplitudes. Psychological factors, such as mood, mo-
tivation, focus of control, and fear, have also been linked
to MI-BCI performance [3][4]. Additional studies established
correlations between attention span, personality, motivation,
spatial abilities, and MI-BCI performance [5]. Recent work by
[6] associated Event-Related Desynchronization (ERD) with
age, education level, management impression, and anxiety,
emphasizing the need to consider such factors in designing
ERD-based MI-BCIs. A comprehensive review by [7] pro-
posed strategic approaches to address performance variations
and enhance BCI reliability. In a distinct effort,[8] investigated
the impact of the Most Discriminant Frequency Band (MDFB)
selected during MI-BCI calibration. Their findings suggested a

correlation between user-specific frequency band characteris-
tics and classification accuracy, emphasizing the importance of
understanding the learning characteristics of both human users
and machines. Despite these individual efforts, a systematic
approach integrating all identified factors is currently lacking
in the pursuit of improving overall user performance in BCI
systems.

Extensive research has already concentrated on identifying
specific factors that impact the accuracy of performance in
Motor Imagery (MI)-based Brain-Computer Interface (BCI)
systems. While some investigators have explored potential
reasons for suboptimal BCI performance from the user’s
perspective, others have dedicated their efforts to enhancing
machine learning algorithms or diversifying hardware types.
Nevertheless, the question regarding the underlying causes of
user incompatibility with BCI systems remains unresolved.
Therefore, it is imperative to undertake a systematic, stan-
dardized, and well-operationalized research project to address
inquiries pertaining to the influence of specific human factors
on BCI performance. The primary objective of the proposed
framework is to embark on this research endeavor, ultimately
aiming to establish a person-specific trainability score that can
be employed in subsequent studies to enhance BCI perfor-
mance from its inception. Specifically, our focus is on the
development of a neural network model capable of predicting
a trainability score for MI-based BCI systems. This prediction
will be based on population-specific indicators and task-based
modulators. The significant advantage lies in the potential
to create an individualized BCI paradigm for each person,
leveraging their unique features to ensure optimal outcomes
with minimal training time. Essentially, the proposed model
represents a groundbreaking step toward innovative activation
protocols, introducing a model-based personalization approach
for driving a BCI.

II. GAPS IN MI-BCI RESEARCH

Researchers identified some critical aspects affecting MI-
BCIs correct operation in general[9]. These aspects (referred
to as components of MI-BCI) include signal measurement (ac-
quisition hardware), classification and recognition algorithms,
and user-BCI compatibility. A holistic approach is used to
compute the performance in a MI-BCI system, which captures
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the resultant of performances of each of its components.
Thus, the failure or inefficiency in any individual component
could significantly affect the efficiency of the MI-BCI system.
Researchers have attempted to identify the problems associated
with each of these components and, further, worked towards
addressing them to improve the efficiency of a MI-BCI system.
Specifically, a great deal of research has been directed towards
(1) improving the EEG acquisition system by developing cost-
effective, portable, wireless, and easy mounting EEG devices
to operate in low power setting, and (2) developing state-of-
the-art methods for processing and decoding information from
EEG signal. However, the efforts made towards understanding
and improving user-BCI compatibility are still very sparse.
The pictorial representation of these components are given in
Figure.1.

A. Poor understanding of BCI-Illiteracy and its influencers

The BCI illiteracy could come under the umbrella of ”user-
BCI compatibility” and is defined as a condition where users
of BCI technology fail to reach proficiency in using a BCI
with in a standard training period. According to the literature,
nearly 15–30% of BCI users could be labeled as BCI illiterate
[10][11]. The cause behind the incompatibility due to BCI-
illiteracy may not be always because of the deficit innate to
the user, rather could also be driven by the incapability of
the system to tailor its functionality according to the user. For
example, the poor performance of the user can be a result
of (1) user being unable to receive input from the system
(stimulus, feedback, or information about the state of the BCI)
or being potentially scared by the stimulus, (2) user being
unable to focus on the required mental task because of a high
mental workload or an increase in fatigue, (3) variability in
user-centric factors such as mood, stress, engagement, and
level of attention etc. Thus, it is imperative to include these fast
performance predictors, based on anatomical, psychological,
and neurophysiological information of the user, to estimate
likelihood of incompatibility. Then a user-specific training
protocol could be proposed to alleviate incompatibility situ-
ation in case of MI-BCI. As suggested by recent literature
[12][13][14][15][16], a BCI paradigm that is compatible with
all participants does not exist. Moreover, it must be adapted
to the users’ needs by following a user-centered design and
individual features (e.g., personality, age, mood, motivation,
etc.) which should be taken into account.

Fig. 1. Components of MI-BCI

B. Adherence to a single training protocol for all the partic-
ipants

Conventionally, the MI-BCI training paradigm adapts a
fixed training protocol that is administered uniformly to all
subjects. However, considering the significant individual dif-
ferences in the ability of skill training, necessary for MI-
BCI adaptation, it is expected that performance outcomes may
vary among individuals when subjected to a fixed training
regimen. Thus, an individualized approach in defining training
regime could be a viable solution to avoid poor performance
in using MI-BCI systems. According to literature, the skill
training is often linked to the demographics (e.g., age, gender),
cognitive ability and prior experience [7][17]. Thus, it is
important to take these factors into consideration for defining
an individualized BCI-trainig approach.

The main goal of this work is to design a framework (1)
to predict the likelihood of user incompatibility for a MI-
BCI paradigm (referred as trainability score) and (2) to define
the intensity of MI-BCI-training in a user-specific manner for
maximizing the user performance (and avoiding incompati-
bility). (3) By collecting data of more than 100 participants,
establishing a publicly open database.

III. PROPOSED METHOD

This work proposes a personalized framework for address-
ing MI-based BCI training problems by predicting the pos-
sibility of incompatibility and then pre-deciding the intensity
of training paradigm for the user while considering its de-
mographics and physiological factors into consideration for
optimizing his/her MI-BCI performance. The framework, a
neural network architecture, takes demographics, neurophysi-
ological, psychological factors as input, and gives trainability
score and the personalized training paradigm for user. The
pictorial representation of the framework is given in Figure.2.

Here, we will consider a participant pool of 80-100 healthy
individuals in the age group of 18-60 years, including all gen-
ders. These participants will be exposed to multiple trials over
a period of 4 weeks during with their neurophysiological data
(EEG, EMG, HR), demographics and psychological informa-
tion will be collected. Their performance in all the trials will be
recorded. All the data collected during the trials will be used to
train the neural network model that can take the demographic
information, psychological states, physiological measurements
and performance in a trial to predict the performance of a
subsequent trial. This data collection protocol, given in Fig.3,
will be performed over different sessions divided into runs of
approximately 7 minutes each [18][19]. To record enough data
samples for the DL model one session will include 8 runs, and
each run itself is divided into trials, with 30 per class (i.e., per
MI-task). One trial typically lasts 8s. Figure 3 illustrates the
timings and parts of one trial. The MI task will include 3
classes namely, imagination of foot, right hand and left hand.
The study will be conducted with a prior approval from local
ethics committee of the University of Technology Graz. The
participants will give their written and informed consent prior
to their enrollment in the study.
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Fig. 2. Data collection paradigm

A. Modulators influencing MI-BCI performance

As evident from the literature, several modulators act simul-
taneously to influence the MI-BCI performance of the user. In
this study, we categorize these modulators into three classes,
(1) demographic factors, (2) psychological factors and, (3)
neurophysiological factors (Figure 3). In demographic factors,

Fig. 3. Modulators of User-BCI compatibility in MI-BCI

age and gender have already been identified to have an impact
on driving BCIs or even on the ability to perform a motor
imagery task. In a recent study [20], we investigated how hand-
edness impacts brain activity in motor-related areas and found
significant differences in brain activity between left- and right-
handed participants during MI. In psychological factors, atten-
tion, memory load, fatigue, and competing cognitive processes
[21][22] [23][24]]influence instantaneous brain dynamics. In
addition, states like empathy might influence BCI performance
as shown by [15]. Motivation is also related to P300-BCI
performance [3]. Hammer et al. [25] for example found that
abilities in visuo-motor coordination and the ability to concen-
trate on a task were correlated with BCI performance. Others
[26] reported on the correlation between motor imagery ability
(measured by questionnaires) and following BCI performance.
Psychological information will be collected through different
questionnaires. For example, to evaluate the imagery ability

of persons the “Vividness of Movement Imagery Question-
naire (VMIQ-2)” will be used. Personality factors will be
retrieved by “B5T Big Five personality test” and with the
“STADI”, anxiety and depression can be recorded both as
a state and as a trait. Furthermore, the “Intrinsic Motiva-
tion Inventory (IMI)” assesses participants’ interest/enjoyment,
perceived competence, effort, value/usefulness, felt pressure
and tension, and perceived choice while performing a given
activity, thus yielding six subscale scores. The Perceived Stress
Scale (PSS) will be used for measuring the perception of
stress. It is a measure of the degree to which situations in one’s
life are appraised as stressful. In neurophysiological factors,
physiological predictors such as spectral entropy and power
spectral density, derived from resting state EEG recordings are
correlated with BCI performance [27][28][29][30]. In addition,
the baselines of resting state networks (RSNs) are dynamic and
modify any cortical signature instantaneously [31]. An effi-
cient BCI system must be robust to such inherent physiological
fluctuations over time to enable more generalized systems
[32]. Ahn et al. [13] for example reported that high theta
and low alpha is the pattern for BCI-illiteracy and that frontal
gamma correlated with BCI performance. Another important
neurophysiological predictor for a participant’s performance
in operating an MI-based BCI was developed by [10]. They
found that the alpha rhythm shows a positive correlation
with online BCI performance. This so-called Blankertz SMR-
predictor is currently one of the most replicated and reliable
neurophysiological predictors of MI-BCI performance. Fur-
thermore, Halder et al. [33] observed a correlation between
structural integrity and myelination quality of deep white
matter structures and BCI performance. We will integrate the
execution task to compare related ERDS patterns with those
of MI as a further possible predictor from neurophysiology
based on EEG.

B. Model and training objective

A data-driven exploration of individual information and
physiological data will be carried out with the help of se-
quential processing deep learning methods. We will use neural
network model which are designed to process sequential data
such as time series, natural language etc. Different variants
of the deep neural network will be considered in the study.
These architectures can learn from input data and predict
values for the future steps. We will train these models to
predict performance scores of a participant of MI tasks from
the modulators and performance scores of previous tasks.
The effects of motor imagery training can be maximized
by personalized experimental designs based on the outcome
of the NN model. For example, designing individual sched-
ules, choosing adequate task complexity, instructions, and,
in clinical populations, adapting the models for individual
impairment.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel theoretical framework
for addressing MI based BCI user training problems by pre-
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Fig. 4. Flowchart of personalized model for MI-BCI training

dicting the possibility of incompatibility and then pre-deciding
the intensity of training paradigm for users. The framework
will be a neural network-based architecture and considers
demographics, neurophysiological, psychological factors of
the user as input to decide a personalized training regime for
the user. In the course of execution of this work, we will cover
a large sample size with varying age, gender, cognitive ability,
handedness and physiological activation. The data collected
during the implementation phase will be made available in
an open-source platform. Moreover, in future, this endeavor
might lay the groundwork for crafting a personalized training
paradigm that is both efficient in time utilization and does not
compromise user performance.
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