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Abstract

We formulate and analyze space-time finite element methods for the numerical simu-
lation of the eddy current approximation in Bochner spaces, derived from Maxwell’s
equations in the low-frequency regime. First, we examine the resulting elliptic-
parabolic interface problem posed on electrically conducting and non-conducting
stationary regions, providing the analysis of the unique solvability based on the
Babuška-Nečas theory for the linear case and on Zarantonello’s theorem as well as
the principle of maximal monotone mappings for the nonlinear case. Furthermore,
we address hysteresis effects in ferromagnetic materials by proposing a space-time fi-
nite element method tailored to a specific hysteretic material law. The investigation
extends to moving bodies, analyzing the corresponding elliptic-parabolic interface
problem for both the linear and nonlinear case based on the previously established
theoretical frameworks.

The Petrov-Galerkin space-time finite element discretization is formulated on com-
pletely unstructured decompositions of the space-time cylinder into simplicial ele-
ments, which allows for an adaptive resolution of the solution both in space and
time. However, it requires the solution of the overall system of algebraic equations.
While the use of parallel solution algorithms seems to be mandatory, this method
also allows for a parallelization in space and time simultaneously. The numerical ex-
periments confirm related a priori error estimates and demonstrate the applicability
and accuracy of the proposed approach applied to realistic problems, including the
simulation of electric motors.



Zusammenfassung

Wir formulieren und analysieren Raum-Zeit Finite Elemente Methoden in Bochner-
Räumen zur numerischen Simulation des Wirbelstromproblems, das sich von den
Maxwell-Gleichungen im Niederfrequenzbereich ableiten lässt. Zunächst untersuchen
wir das resultierende elliptisch-parabolische Transmissionsproblem, das auf elektrisch
leitenden und nichtleitenden stationären Geometrien definiert wird. Für den linearen
Fall beruht die Analyse der eindeutigen Lösbarkeit auf der Babuška-Nečas-Theorie,
während wir für den nichtlinearen Fall den Satz von Zarantonello sowie das Prin-
zip maximal monotoner Abbildungen heranziehen. Darüber hinaus behandeln wir
Hystereseeffekte in ferromagnetischen Materialien, wofür wir eine Raum-Zeit Fini-
te Elemente Methode für ein bestimmtes hysteretisches Materialgesetz betrachten.
Die Untersuchung wird auf bewegte Körper ausgeweitet, indem das entsprechende
elliptisch-parabolische Transmissionsproblem, sowohl für den linearen als auch den
nichtlinearen Fall, im Rahmen der zuvor betrachteten Theorie analysiert wird.

Die Petrov-Galerkin Raum-Zeit Finite Elemente Diskretisierung wird auf vollständig
unstrukturierten Gittern des Raum-Zeit-Zylinders formuliert. Dies ermöglicht eine
adaptive Auflösung der Lösung sowohl im Raum als auch in der Zeit. Allerdings
erfordert diese Methode die Lösung eines Gesamtsystems von algebraischen Glei-
chungen. Während der Einsatz paralleler Lösungsalgorithmen als unausweichlich
erscheint, erlaubt diese Methode auch eine Parallelisierung gleichzeitig in Raum und
Zeit. Numerische Experimente bestätigen die zugehörigen a-priori Fehlerabschät-
zungen und zeigen die Anwendbarkeit sowie die Genauigkeit der Raum-Zeit Finite
Elemente Methode, insbesondere an realistischen Problemen wie der Simulation von
Elektromotoren.



Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. Olaf Steinbach,
for the guidance, support, and encouragement throughout this journey. His expertise
and constructive feedback have been instrumental in shaping this work.

I am profoundly thankful to my family for their unwavering support and belief in
me. Their encouragement has been a source of strength during the most challenging
moments of this journey. Without them, I would not have come so far.

A special thank goes to my wife, Magdalena, whose patience, understanding, and
sacrifices have been extraordinary. Her resilience and support, especially during the
times I had to travel weekly to another town for university, made this achievement
possible. Words cannot fully capture my appreciation for her love and unwavering
belief in me.

This thesis would not have been possible without the contributions, and encourage-
ment of those around me, especially my colleagues Christian, Günther, Michael and
Richard. I deeply appreciated the fruitful and lengthy discussions we shared, which
enriched my understanding.

I would also like to express my sincere gratitude to Uwe Iben and Markus Kraft for
giving me the opportunity visiting the Bosch GmbH Research Campus in Renningen
and for facilitating me a five-month stay there. The highly productive collaboration
with Daniel, Iryna and Stefan greatly enriched my research experience.





Contents

1 Introduction 1

2 Physical essentials and model problem 5
2.1 Introduction to electric motors . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 The eddy current problem . . . . . . . . . . . . . . . . . . . . 10
2.2.3 The 2D eddy current problem . . . . . . . . . . . . . . . . . . 13

2.3 Physical properties of the B-H-curve and related quantities . . . . . . 17

3 Preliminaries 23
3.1 Description of moving domains . . . . . . . . . . . . . . . . . . . . . 24
3.2 Domains with moving and non-moving regions . . . . . . . . . . . . . 26
3.3 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Lebesgue- and Sobolev spaces . . . . . . . . . . . . . . . . . . 30
3.3.2 Bochner spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Space-time approximation spaces by simplicial finite elements . . . . 37
3.5 Space-time variational methods in Bochner spaces . . . . . . . . . . . 42

3.5.1 Solvability analysis . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Space-time finite element discretization . . . . . . . . . . . . . 46

3.6 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.1 Software libraries . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Hardware specification . . . . . . . . . . . . . . . . . . . . . . 51

4 Space-time eddy current problem 53
4.1 Eddy current problem for conducting and non-conducting regions . . 54

4.1.1 Linear eddy current problem . . . . . . . . . . . . . . . . . . . 54
4.1.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Nonlinear eddy current problem . . . . . . . . . . . . . . . . . 65
4.1.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Eddy current problem including hysteresis . . . . . . . . . . . . . . . 83
4.2.1 Hysteresis model . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Eddy current problem in moving domains . . . . . . . . . . . . . . . 94
4.3.1 Linear eddy current problem in moving domains . . . . . . . . 97

i



4.3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.3 Nonlinear eddy current problem in moving domains . . . . . . 110
4.3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 117

5 Conclusion and outlook 127

References 131

ii



1 Introduction

Almost every natural phenomena inside or even outside our planet can be described
by mathematical models in form of differential equations. Their physical processes ex-
hibit dependency across spatial and/or temporal dimensions, which can be expressed
by ordinary (ODEs) or partial differential equations (PDEs). Our main focus is on
solving time-dependent PDEs. Usually, such problems cannot be solved analytically,
therefore we need appropriate discretization methods in order to accurately approxi-
mate the analytical solutions. The most common strategies to solve time-dependent
PDEs numerically are the method of lines [136] and Rothe’s method [128, 94]. The
former first applies discretization in space, e.g. by the popular finite element method
(FEM), see for instance [22, 24, 31, 44], and then solves the resulting semi-discretized
system using time-stepping methods [38, 149]. Rothe’s method applies those semi-
discretization steps the other way round, i.e. first a time-stepping method in time,
then the discretization in space. In any case, both strategies result in a series of
linear systems that need to be solved efficiently. The question about efficient solvers
gained a lot of interest over the last decades, for which parallel solution methods
have been developed in order to solve huge linear systems divided on multiple pro-
cessors, see e.g. [141, 13]. Since classical time-stepping methods suffer from the curse
of sequentiality, different possibilities to employ parallelization also in time direction,
so-called parallel-in-time (PinT) methods, have been investigated. We refer to the
work of Gander [55] for a detailed overview of PinT methods.

However, in this thesis we will employ the idea of treating the time variable t like an
additional space variable, i.e. xd+1 = t, and to construct a single (d+ 1)-dimensional
space-time mesh when the spatial domain is in Rd. This idea dates back to the late
1960s initiated by Argyris and Scharf [8], who treated the time in a variational sense.
Since then, the development of space-time methods has made great progress. We
refer to the paper of Steinbach and Yang [147], that gives a detailed overview of the
state-of-the-art. The application of space-time methods involves many advantages,
among others the parallelization [56, 134] and local adaptivity [96, 145] not only
in space or time, but in the full space-time domain simultaneously. Furthermore,
since time is just another variable, any uniform motion can be captured in the space-
time cylinder, allowing the treatment of moving domains or moving interfaces, see
e.g. [59, 60, 116]. Moreover, in the context of optimization problems with partial
differential equations as constraints and involving an adjoint state, which is directed
backward in time, space-time methods allow for an additional level of parallelism by

1



2 1 Introduction

solving the coupled system for the state and the adjoint in parallel [97, 98, 101]. At
first glance, the method comes with the challenge to deal with higher-dimensional
linear systems, and hence an increased memory demand, as the spatial and temporal
degrees of freedom (dofs) need to be solved at the same time. Nevertheless, the
constantly evolving performance of processors and computer systems leads to the
advancing development of parallel and efficient solvers, see e.g. [117, 134] and the
references therein, which can deal with such huge systems.

In this thesis we will focus on linear and nonlinear elliptic-parabolic interface prob-
lems. While there is an extensive collection of publications for linear space-time
methods of parabolic PDEs, see e.g. [6, 96, 109, 138, 144, 147], there are not so
many for nonlinear parabolic problems. We mention the work of Česenek and Feis-
tauer [27], Toulopoulos [152] and recently [26] in context of space-time methods.
Elliptic-parabolic interface problems arise, when, for instance, the computational do-
main consists of several materials, cf. e.g. [11, 53, 87]. A widely used method to
solve such types of problems is the extended finite element method (XFEM) [108]
using modified or cut-off versions of the finite element basis functions. An overview
of other methods are given in [57, Section 1.3]. However, since our considered space-
time approach captures the deformation of the domain over time within the mesh,
even if the domain is fixed, the finite elements do not overlap with the interface and
standard FEM can be used. We note that Galerkin-type finite element methods on
unstructured space-time meshes for the solution of linear parabolic equations in mov-
ing domains have been considered in the work of Jamet [81]. Our goal is to make use
of Petrov-Galerkin finite element methods of first order for elliptic-parabolic interface
problems on completely unstructured space-time meshes. Pioneered by the work of
Steinbach [144], the remainder of this thesis is organized as follows.

In Chapter 2, we introduce the investigating spatially two-dimensional eddy current
problem, also known as the magnetoquasistatic problem, which can be derived from
the well-known Maxwell’s equations and is used for low-frequency applications. Since
our work also includes the study of moving bodies like rotating electric motors, the
motion of the body must be incorporated into the underlying equations. Classical
references, such as the book of Jackson [80] or Van Bladel [154, 155], provide the
analysis of Maxwell’s equations for moving bodies.

Chapter 3 is dedicated to the description of movement by means of the Eulerian coor-
dinates and the introduction of the basic concepts about Hilbert and Sobolev spaces,
as well as the Bochner and Bochner-Sobolev spaces that are used throughout this
thesis. Moreover, we discuss the suitable finite-dimensional approximation spaces
for the numerical treatment of the eddy current problem, for which simplicial finite
elements are used. In Section 3.5, we recall the main results from the work of Stein-
bach [144] analyzing a Petrov-Galerkin variational formulation in Bochner spaces,
which motivates the subsequent chapter. We conclude Chapter 3 with a summary of
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the basic concepts of parallelization and the specification of the system and solvers
that are used for the numerical experiments presented in this thesis.

The core contribution of this work appears in Chapter 4, in which we first consider the
elliptic-parabolic interface problem stemming from the eddy current approximation
formulated on conducting and non-conducting non-moving regions. The numerical
analysis of the linear space-time variational formulation in Bochner spaces is based
on the Babuška-Nečas theory [10, 114], which requires a proof of an inf-sup stability
condition to ensure uniqueness, and of a surjectivity condition to ensure the exis-
tence of a solution. In context of space-time finite element methods this was done
in [6, 138, 144, 153]. In Section 4.1 we extend our investigation to the nonlinear
eddy current problem of elliptic-parabolic type, whose analysis is based on Zaran-
tonello’s theorem [167] for the elliptic part, and on the principle of maximal monotone
mappings [167] for the parabolic part. The numerical experiments reveal linear con-
vergence for the discretization error as well as the accuracy of the method applied to
realistic applications such as the electric motor. In Section 4.2 we introduce the eddy
current problem considering the rather complex behavior of hysteresis, that occurs
e.g. in ferromagnetic materials. We present a space-time finite element method for
a specific and widely used hysteretic material law [163]. This leads to a system of
saddle point structure, for which the space-time method can be applied to solve the
full system at once. Finally, we turn our focus on moving bodies in Section 4.3,
and similarly analyze the derived elliptic-parabolic interface problem by means of
the Babuška-Nečas theory for the linear case and by Zarantonello’s theorem and the
principle of maximal monotone mappings for the nonlinear case. The results of the
final section are published in [59, 60], see also [26] for a further application.

Finally, in Chapter 5 we summarize and comment on ongoing and future work.





2 Physical essentials and model problem

2.1 Introduction to electric motors

Electric motors are devices that convert electrical energy into mechanical energy
through the interaction of magnetic fields. They are ubiquitous in modern society,
powering everything from household appliances to industrial machinery and electric
vehicles. The importance and huge varieties of the different types of electric motors
are justified for the countless various applications in the modern world. The flexibility
of electric motors and the possibility of transferring electric power over long distances
made the usage of electric motors very attractive and increasingly popular over the
last decades.

In general, electric motors operate through the interaction of magnetic flux and
electric current, or flow of charge. Conventionally, an electric motor consists of two
primary components: the stationary part, called the stator, and the rotating part,
called the rotor. Electric current is induced in the coils, which are usually contained
in the stator and wounded with wire around cores, resulting in the generation of a
magnetic field. Force is developed, when a conductor that carries current is placed
in a magnetic field, also called the Lorentz force [20, 78, 159]. This force happens to
be orthogonal to the motion of the charge and to the magnetic field. For a simple
electric motor, for instance the synchronous reluctance motor, this force is already
enough in order to set the rotor in motion. The direction of the rotation is given by
the tendency of magnetic materials of the rotor to align themselves in a way that
minimizes reluctance, i.e. the magnetic resistance [48, 78]. It quickly became clear
that the mechanism for exploiting this force is of tremendous importance for the
efficiency of electric motors. Strong magnetic fields are needed, that are obtained
from many current driven coils, which additionally may interact with the magnetic
field generated by the rotor, e.g. with permanent magnets contained in the rotor.

Electric motor technology has undergone extensive investigation and manufacturing
over the past two centuries, resulting in the development of various types tailored to
specific applications. In general, electric motors can be classified in two categories:
DC and AC motors. DC motors operate with direct current and are commonly used
in the automotive industry. AC motors on the contrary are designed to operate with
alternating current power sources. They can be classified into two more types: in-
duction motors and synchronous motors. The rotor of a synchronous electric motor

5



6 2 Physical essentials and model problem

Figure 2.1: An interior permanent magnet synchronous motor1.

rotates at a constant speed, whose magnetic field aligns with the rotating magnetic
field generated by the alternating current operated in the coils. Larger industrial ap-
plications make use of this kind of motors, e.g. the permanent magnet synchronous
motors (PMSM) as shown in Figure 2.1, which are used in Chapter 4 for electromag-
netic simulations. Induction motors use the principle of electromagnetic induction, cf.
[159, 85], where the rotating magnetic field in the stator induces current flow in the
rotor causing it to rotate. They are robust, low-maintenance, widely used in indus-
trial applications and household appliances. For an extended and detailed overview
of the numerous types of electric motors and their organization and applications we
refer the reader to the contributions of [16, 20, 48, 78, 159].

High performance requirements for electric machines are undoubtedly important in-
cluding high torque capability, low iron losses or other losses and optimal motor

1OpenAI, "AI-generated image using DALL·E illustrating a design of an interior permanent magnet
synchronous motor," created on December 7, 2024, with ChatGPT.
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designs. Multiple methods describing the numerical computation of the torque, for
instance [42, 74, 132], and the numerical realization of iron losses, see [25, 65, 92]
have been developed and are still a huge topic of research. New motor designs with
respect to shape optimization [61, 63, 106], or topology optimization [58, 62, 124],
strive to maximize the torque, minimize the losses and lower the cost productions.
Consequently, efficient and accurate numerical simulations are obligatory in order to
analyze such quantities precisely. In this thesis, we will deeply investigate a space-
time finite element method that will be applied to simulate electromagnetic behavior
of electric motors. Our proposed method is even capable to consider hysteresis ef-
fects occurring in ferromagnetic materials, cf. Section 4.2, and to take the rotational
motion of the rotor into account, see Section 4.3.

2.2 Physical model

We start this section with the introduction of the mathematical equations for electro-
magnetic phenomena described by Maxwell’s equations. The first publication about
the interaction between electric and magnetic fields was released by James Clerk
Maxwell in 1862, see [104]. Albert Einstein extended Maxwell’s work in his famous
publication "Zur Elektrodynamik bewegter Körper" [43] in 1905, postulating that
Maxwell’s equation must hold in all inertial systems of moving bodies. This led to
the investigation of transforming Maxwell’s equation from one inertial frame to an-
other, like for instance the Lorentz transformation, see [150, 154]. Furthermore, we
derive the eddy current approximation, which is typically used as a model for the
simulation of electric motors. The end of this section describes the physical properties
of the occurring quantities that are relevant for the eddy current problem.

2.2.1 Maxwell’s equations

Maxwell’s equations in classical differential form are derived from their integral equa-
tions describing the physical background of electromagnetism. For a detailed deriva-
tion and relation to physics, we refer the reader to the work of Jackson [80], Ida and
Bastos [79], Landau and Lifschitz [93] and Zaglmayr [164]. The well known set of
Maxwell’s equation reads as, cf. [83, 3],

Faraday’s law of induction: curl E = −∂B
∂t
, (2.1a)

Ampere’s law: curl H = J + ∂D
∂t

, (2.1b)

Gauss’s law: div D = ρ, (2.1c)
Gauss’s law for magnetism: div B = 0. (2.1d)
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Electromagnetic quantities

Notation Unit Description

H
[

A
m

]
Magnetic field intensity

M
[

A
m

]
Permanent magnetization

B [T ] =
[

kg
A·s2

]
Magnetic induction field (magnetic flux density)

E
[

V
m

]
=
[

kg·m
A·s3

]
Electric field intensity

D
[

C
m2

]
=
[

A·s
m2

]
Electric displacement field (electric flux density)

P
[

C
m2

]
=
[

A·s
m2

]
Electric polarization

J
[

A
m2

]
Current density

ρ
[

C
m3

]
=
[

A·s
m3

]
Charge density

µ
[

H
m

]
=
[

V ·s
A·m

]
=
[

kg·m
A2·s2

]
Magnetic permeability

ν
[

m
H

]
=
[

A·m
V ·s

]
=
[

A2·s2

kg·m

]
Magnetic reluctivity

σ
[

S
m

]
=
[

A2·s3

kg·m3

]
Electric conductivity

ϵ
[

F
m

]
=
[

A·s
V ·m

]
=
[

A2·s4

kg·m3

]
Electric permittivity

A
[

W b
m

]
= [T ·m] =

[
kg·m
A·s2

]
Magnetic vector potential

Table 2.1: The SI units of the electromagnetic quantities as given in [30, 85]. The
last unit entry describes the unit of the quantities in the SI base units
ampere [A], second [s], meter [m] and kilogram [kg]. The other SI units
are tesla [T ], volt [V ], coulomb [C], henry [H], siemens [S], farad [F ] and
weber [Wb], see [28].

The unknown quantities occurring in the equations (2.1a) - (2.1d) are the electric
field intensity E, the magnetic field intensity H, the magnetic induction field (mag-
netic flux density) B and the electric displacement field (electric flux density) D.
The sources of electromagnetic fields may be electric charges described by the charge
density ρ and currents described by the current density function J. Table 2.1 de-
scribes the respective units of these quantities. Note that E,H,B,D,J are vector
valued functions mapping from R3 × R → R3, and ρ is a scalar function mapping
from R3 × R → R, which means that all quantities depend on space and time.

Maxwell’s equations for a body in uniform and much slower motion compared to the
speed of light in vacuum c0, may be described by the electromagnetic quantities in
the current configuration of the moving body using the Lorentz transformation as
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described in [70, 155],

E′ = E + v × B,

B′ = B − v × E
c2

0
,

D′ = D + v × H
c2

0
,

H′ = H − v × D,
J′ = J − ρv,

(2.2)

where v[m/s] describes the uniform velocity of the moving body. In terms of these
transformed fields, Maxwell’s equations take the form, see [70, 155],

Faraday’s law of induction: curl E′ = −DB
Dt , (2.3a)

Ampere’s law: curl H′ = J′ + DD
Dt , (2.3b)

Gauss’s law: div D = ρ, (2.3c)
Gauss’s law for magnetism: div B = 0, (2.3d)

where the operator D/Dt indicates the flux derivative defined as

DF
D

:= ∂F
∂t

+ v div F − curl (v × F) .

Simple calculations show, that inserting the quantities E′,H′ and J′ into (2.3a)
and (2.3b) and using the definition of the flux derivative, yield the equations (2.1a)
and (2.1b) in the current state of the moving body. Hence, Einstein’s postulate [43]
is satisfied, and we may consider (2.1a) - (2.1d) in the current configuration of
the moving body. For a detailed description and derivation of the transforma-
tions (2.2) and the respective equations (2.3a) - (2.3d) we refer the reader to the
work of [70, 71, 80, 154, 155, 158].

Remark 2.1. We want to emphasize, that the transformations (2.2) of the electro-
magnetic quantities are valid only for the case when the body is in uniform and
slow motion. The motion v of the body is much smaller than the speed of light c0
in vacuum, as in the case of electric motors. It is even possible, to consider such
transformations for accelerated bodies, which are described in [155, 158].

For the sake of completeness, constitutive laws are still needed. In the case of an
electric motor, where certain parts are made of conducting materials and current
density is driven through the coils, it is necessary to consider the generalized Ohm’s
law J = Jc + Ji. In conducting materials the electric field E induces a conduction
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current with density Jc = σ(E + v × B) as a direct consequence of the Lorentz force,
cf. [70, 85],

F = ρe (E + v × B) ,

saying that an electric volume charge ρe moving with a velocity v in an electric field E
and a magnetic field B experiences a force. The impressed current density Ji in the
coils need to satisfy div Ji = 0 in any nonconducting material, see [3, 164]. The
latter part σv × B of the conduction current density Jc is commonly known as the
motional electromotive force (emf) term, cf. [21, 85]. Together, with the relations of
the electric and magnetic fields to their corresponding flux densities, the constitutive
laws are

D = ϵE + P, (2.4a)
B = µ(H + M), (2.4b)
J = σ(E + v × B) + Ji, (2.4c)

where the electric permittivity ϵ, the magnetic permeability µ and the electric con-
ductivity σ depend on the material and P denotes an electric polarization. The
permanent magnetization M denotes the magnetic field intensity of permanent mag-
nets, which may occur for instance within the rotor of an electric motor, [83, 90]. Note
that the material law (2.4b) can be written in terms of the magnetic reluctivity ν,
which is the inverse of the magnetic permeability µ,

H = νB − M. (2.5)

Usually, the material parameters ϵ, µ, σ, ν describe complex material behavior, such
as anisotropy, in terms of space and time dependent tensors [23, 85]. In the context of
this thesis, we only consider isotropic materials. Therefore, the material parameters
become scalar fields [79]. The magnetic reluctivity ν, and hence the magnetic per-
meability µ, may be nonlinear, as for ferromagnetic materials, where the reluctivity
depends on the magnitude of the magnetic flux density, i.e. ν = ν(|B|). Finally, in
terms of the transformed quantities (2.2), the constitutive laws for a body at rest in
the current configuration may be written as

D′ = ϵE′, B′ = µH′, J′ = σE′,

cf. [154]. For various applications of Maxwell’s equation, we refer to the classical
books on electromagnetism like [79, 80, 85, 111].

2.2.2 The eddy current problem

In the sequel, we derive the eddy current approximation from Maxwell’s equations,
which is commonly used for the simulation of the magnetic flux density B for electric
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motors. Low frequency applications allow the electric displacement field D to be
neglected in Ampere’s law (2.1b), see [3]. As a consequence, (2.1c) decouples from the
other equations, which leads to the magnetoquasistatic problem, also called the eddy
current problem. Due to Gauss’s law for magnetism (2.1d), the magnetic induction
field B is a solenoidal vector field, i.e. B is a divergence free vector field. Hence, in a
bounded and simply connected domain Ω ⊂ R3 and for T > 0, there exists a vector
potential A, such that

B = curl A. (2.6)

Using this relation and substituting into Faraday’s law (2.1a) gives

curl
(

E + ∂A
∂t

)
= 0,

which implies, due to the fact that for any scalar field ϕ, curl (∇ϕ) = 0, that

E = −∇ϕ− ∂A
∂t

.

The scalar field ϕ is not unique, however with so-called gauging techniques, e.g.
the well known Coulomb gauge [164] div A = 0, uniqueness of a solution can be
enforced. We refer to [69, 85, 89] for detailed descriptions about gauging and deal
with the vector potential A, satisfying div A = 0 and

E = −∂A
∂t

. (2.7)

Finally, we make use of the constitutive laws (2.4c) and (2.5), substitute them into
Ampere’s law (2.1b) and use the vector potential relation for the magnetic flux den-
sity (2.6) and for the electric field intensity (2.7), to obtain the well-known formula-
tion of the eddy current problem [85, 103],

σ

(
∂A
∂t

− v × curl (A)
)

+ curl (ν curl (A)) = Ji + curl (M) . (2.8)

In engineering and industrial research, the so called magnetostatic problem is of-
ten considered in order to simulate the magnetic flux density B, for example on an
electric motor with a constant rotor speed. For this purpose, the electromagnetic
quantities are assumed to be time independent, therefore all occurring time deriva-
tives vanish [83],

curl (ν curl (A)) = Ji + curl (M) . (2.9)

In addition to the eddy current problem (2.8) and the magnetostatic problem (2.9),
many other electromagnetic regimes may be derived from Maxwell’s equations (2.1a)-
(2.1d), possibly without dealing with the entire system. For a short overview, we refer
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the reader to [164], whereas a detailed overview of common problem classes can be
found in [80, 156].

We complete the problem formulation by imposing initial and boundary conditions,
but also interface conditions between the different materials where the material pa-
rameters jump. As before, let Ω ⊂ R3 be bounded and simply connected with outer
boundary Γ := ∂Ω and n being the normal outward vector on Γ. In general, there
are many types of boundary conditions depending on the specific application, like
e.g. perfect electric conductors (PEC) or perfect magnetic conductors (PMC) [164].
Thinking about electric motors, the magnetic flux density B should not leave the
computational domain Ω × (0, T ), hence we impose the so-called induction boundary
condition, see [85],

B · n = 0 on Γ × (0, T ). (2.10)

At the material interfaces where the material parameters jump, the continuity con-
ditions need to be satisfied. Denoting the material interfaces by ΓI , the continuity
conditions read as, cf. [57, 85],

JB · nΓI
K =

(
B+|ΓI

− B−|ΓI

)
· nΓI

= 0 on ΓI × (0, T ), (2.11)

JH × nΓI
K =

(
H+|ΓI

− H−|ΓI

)
× nΓI

= 0 on ΓI × (0, T ), (2.12)

JJc · nΓI
K =

(
Jc

+|ΓI
− Jc

−|ΓI

)
· nΓI

= 0 on ΓI × (0, T ), (2.13)

which describe the jump across the interfaces ΓI along the corresponding unit nor-
mal vector nΓI

. In fact, (2.11) and (2.13) mean that the normal components of the
magnetic flux density B and the conduction current density Jc have to be continuous
across the interfaces, respectively, whereas (2.12) enforces the continuity of the tan-
gential components of the magnetic field intensity H across the interfaces. For the
eddy current problem (2.8), the boundary condition (2.10) changes to, see [119],

n× A = 0 on Γ × (0, T ), (2.14)

and the continuity conditions (2.11) - (2.13) change to, see [85],

JA × nΓI
K = 0 on ΓI × (0, T ), (2.15)

Jν nΓI
× curl (A)K = 0 on ΓI × (0, T ), (2.16)

Jσ nΓI
·
(
∂A
∂t

− v × curl (A)
)
K = 0 on ΓI × (0, T ). (2.17)

Remark 2.2. When we consider the magnetostatic problem (2.9), the last interface
continuity condition (2.13) or rather (2.17) vanishes, cf. [90].
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Figure 2.2: The two-dimensional cross-section of an interior permanent magnet syn-
chronous motor [77] (property of Robert Bosch GmbH). The rotor in-
cludes 16 magnets (in yellow) with small air pockets on the magnet poles.
A thin air gap separates the rotor and the stator, which contains 48 wound
coils (in brown). In the middle of the electric motor there is an air hole,
in which a shaft is used to be attached.

The initial condition is simply given by a known function A0 at time t = 0, i.e.

A(x, 0) = A0 for x ∈ Ω,

where we most often consider homogeneous initial conditions in the remainder of this
thesis.

2.2.3 The 2D eddy current problem

The numerical simulation of the eddy current problem for electric motors is a widely
investigated research topic, for which various of methods has been developed to
solve this problem. One particular simplification is the reduction to a 2D model
assuming that one dimension of the computational domain is much larger than the
others and that the geometry is invariant in this direction, see [57, 119]. In the
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case of an electric motor the problem is posed on the cross-section of the device
as visualized in Figure 2.2. Many comparisons for different motor types have been
done between the 2D and 3D model, analyzing relevant quantities like the torque,
the magnetic flux density and energy losses as eddy current or iron losses, see for
instance [47, 110, 113, 118]. The coinciding results show that the reduction to the
2D model is a good approximation to the 3D model and deliver the same universally
good results. Hence, we want to formulate the eddy current problem (2.8) in the
two-dimensional plane. For this purpose, we assume that the given data Ji, M and
v as well as the magnetic field intensity H are constant with respect to the third
spatial coordinate x3, see [57], and of the form

Ji(x, t) =

 0
0

J3(x1, x2, t)

 , M(x, t) =

M1(x1, x2, t)
M2(x1, x2, t)

0

 , v(x, t) =

v1(x1, x2, t)
v2(x1, x2, t)

0

 ,
and

H(x, t) =

H1(x1, x2, t)
H2(x1, x2, t)

0

 .
It immediately follows that Ji is divergence free and the magnetic flux density B has
the same form as the magnetic field intensity H due to the constitutive relation (2.4b).
Since relation (2.6) holds for the magnetic flux density B, the third component
reads

0 = B3(x1, x2, t) = ∂A1

∂x2
− ∂A2

∂x1
,

which can be achieved when choosing

A(x, t) =

 0
0

u(x1, x2, t)

 . (2.18)

Note that this approach yields, that the Coulomb gauge div A = 0 is always satisfied,
hence the uniqueness of this vector potential is always given, cf. [85]. Inserting the
form (2.18) into (2.6) gives

B(x, t) = curl A(x, t) =


∂

∂x2
u(x1, x2, t)

− ∂
∂x1
u(x1, x2, t)

0

 =


B1(x1, x2, t)
B2(x1, x2, t)

0

 .
Hence, it follows that |B| = |∇xu|, where ∇x denotes the gradient with respect to
the first two spatial coordinates and | · | the Euclidean norm. A simple calculation
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shows that

v × curl(A) =

 0
0

−v1(x1, x2, t) ∂
∂x1
u(x1, x2, t) − v2(x1, x2, t) ∂

∂x2
u(x1, x2, t)



=

 0
0

−ṽ · ∇xu

 ,
when using (2.18) for A, where ṽ(x1, x2, t) =

(
v1(x1, x2, t)
v2(x1, x2, t)

)
. Furthermore, we obtain

with (2.18) that

curl (ν curl (A)) = curl

ν curl


 0

0
u(x1, x2, t)



 = −divx(ν∇xu(x1, x2, t)),

and

curl (M) = curl


M1(x1, x2, t)
M2(x1, x2, t)

0


 = −div


−M2(x1, x2, t)
M1(x1, x2, t)

0


 = −divx

(
M⊥

)
,

where M⊥ = (−M2,M1)⊤ and divx denotes the divergence with respect to the first
two spatial coordinates. Finally, considering all assumptions above, the 2D eddy
current problem reads as

σ

(
∂u

∂t
+ ṽ · ∇xu

)
− divx(ν∇xu) = J3 − divx(M⊥) in Ω × (0, T ), (2.19)

where Ω denotes a two-dimensional, bounded and simply connected domain, for
instance the cross-section of the electric motor, and (0, T ) the considered time span
for a terminal time T > 0. The occurring time derivative in equation (2.19) is referred
as the material or total time derivative [41, 140], denoted by

d

dt
u(x1, x2, t) := ∂

∂t
u(x1, x2, t) + ṽ(x1, x2, t) · ∇xu(x1, x2, t). (2.20)

Hence, the eddy current equation (2.19) may be additionally read as

σ
d

dt
u− divx(ν∇xu) = J3 − divx(M⊥) in Ω × (0, T ). (2.21)

The eddy current equation (2.19) or rather (2.21) is complemented with the homo-
geneous Dirichlet boundary condition

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ), x = (x1, x2),
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and the interface conditions

JuK = 0 on ΓI × (0, T ),
Jν∇xu · nΓI

K = 0 on ΓI × (0, T ),

inherited from the induction boundary condition (2.14) and the interface condi-
tions (2.15) - (2.16), respectively, where now ΓI denotes the interface of the two-
dimensional domain Ω with its corresponding outer unit normal vector nΓI

. Note
that, the interface condition (2.17) is always satisfied for the two-dimensional case,
since

σ nΓI
·
(
∂A
∂t

− v × curl (A)
)

= σ

n1
n2
0

 ·


 0

0
∂tu

−

v1
v2
0

×

 ∂x2

−∂x1

0


 = 0.

The homogeneous initial condition is

u(x, 0) = 0 for x = (x1, x2) ∈ Ω.

Remark 2.3. As mentioned in Section 2.2.1, in the context of electric motors the
reluctivity ν for ferromagnetic materials is nonlinear and depends on the magnitude
of the magnetic flux density, i.e. ν = ν(|B|). As previously derived, it holds that
|B| = |∇xu|, therefore the nonlinear reluctivity for the 2D eddy current problem reads
as ν = ν(|∇xu|), which will be further investigated in Section 2.3.

The 2D magnetostatic problem is introduced as in the three-dimensional case (2.9)
by omitting the total time derivative in the eddy current equation (2.21) giving

−divx(ν∇xu) = J3 − divx(M⊥) in Ω × (0, T ), (2.22)

with the homogeneous Dirichlet boundary condition u(x, t) = 0 for x = (x1, x2) ∈ ∂Ω,
t ∈ (0, T ), the interface conditions

JuK = 0 on ΓI × (0, T ),
Jν∇xu · nΓI

K = 0 on ΓI × (0, T ),

and the homogeneous initial condition u(x, 0) = 0 for x = (x1, x2) ∈ Ω, see [57].

Remark 2.4. The eddy current approximations, i.e. equation (2.8) for the three-
dimensional case and equation (2.21) for the two-dimensional case, respectively, con-
sider the movement of the domain, therefore the velocity field representing the defor-
mation of the body has been taken into account. However, in terms of the electric
motor, non-moving parts like the stator need to be modeled without any movement.
In this case, Ohm’s law (2.4c) changes to,

J = σE + Ji,
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hence, in the same manner of Section 2.2.2, the eddy current equation can be derived
as, see [142],

σ
∂A
∂t

+ curl (ν curl (A)) = Ji + curl (M) . (2.23)

With the same assumptions as in Section 2.2.3, the reduction of (2.23) to the two-
dimensional case leads to the equation, cf. [142],

σ
∂u

∂t
− divx(ν∇xu) = J3 − divx(M⊥). (2.24)

2.3 Physical properties of the B-H-curve and related
quantities

For the derivation of the eddy current equations (2.8) and (2.21), or rather the
magnetostatic approximations (2.9) and (2.22), the constitutive law (2.5) is essential.
It describes the material dependent relation between the magnetic field intensity H
and the magnetic flux density B via the magnetic reluctivity ν. The inverse relation
of (2.5) is the constitutive law (2.4b) describing the relation between H and B via
the magnetic permeability µ. In general, the magnetic permeability µ, and hence the
magnetic reluctivity ν, are rank two tensors (3×3 matrices) and describe the magnetic
property of a material that differs in each axial direction, see [88]. Such materials
are called anisotropic materials. However, in our applications we deal with so-called
isotropic materials, which means that a material has the same magnetic property in
every axial direction, cf. [72]. Consequently, the magnetic field intensity H and the
magnetic flux density B are parallel and the coefficients µ and ν reduce to scalar
values, cf. [80, 85, 120],

µ = µ0µr, ν = 1
µ
, (2.25)

where µ0 = 4π ·10−7[V ·s ·A−1 ·m−1] is the permeability in vacuum and µr the dimen-
sionless relative permeability characterizing the magnetic material. In general, the
magnitudeB := |B| of the magnetic flux density depends on the magnitudeH := |H|
of the magnetic field intensity and on the material properties, cf. [120].

Basically, there are two types of magnetic materials, namely soft magnetic materials
and hard magnetic materials, see [15, 85]. Soft magnetic materials can be classified
into diamagnetic, paramagnetic and ferromagnetic materials, while hard magnetic
materials are typically permanent magnets. In the context of electric motors, copper,
of which coils may be fabricated, belongs to the group of diamagnetic materials, whose
relative permeability µr is slightly smaller than 1, meaning that such a material is
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repelled by an external magnetic field. In practice, the relative permeability µr of
those materials is chosen to be equal to 1. This means, that the relation in (2.4b) is
linear, from which we conclude that B = µ0H. Conversely, the stator and the rotor
are usually made of iron, which is associated to the group of ferromagnetic materials.
Such materials possess a relative permeability µr much larger than 1, meaning that
they respond strongly to an external magnetic field, and the relation between the
magnitudes B and H is nonlinear, characterized by its corresponding B-H-curve,
cf. [84],

f : R+
0 → R+

0 : H 7→ B = f(H),

where R+
0 represents the non-negative real numbers. Based on this notation, the

magnetic permeability µ and the magnetic reluctivity ν for ferromagnetic materials,
respectively, are defined as

µ(s) := f(s)/s, and ν(s) := f−1(s)/s,

for s ∈ R+
0 , relating the two parallel fields in the following way,

B = µ(|H|)H, and H = ν(|B|)B.

Last but not least, permanent magnets correspond to hard magnetic materials, that
create their own persistent magnetic field and retain a significant remanent flux
density Br after removing the external magnetic field. The relative permeability µr

of permanent magnets is usually constant, which leads to a linear behavior of (2.4b)
or rather (2.5), see [73]. For a more detailed description about the different material
properties we refer the reader to [15, 85].

Remark 2.5. Usually, ferromagnetic materials are subject to realistic physical B-
H-curve models that take the phenomenon of hysteresis into account. Hysteresis
models are relatively complex, since the magnetic behavior of the material depends
on its magnetic past. In Section 4.2 we consider a specific hysteresis model and refer
to [157] for other different models. However, in this section we neglect the effect of
hysteresis for the investigated B-H-curves.

Ferromagnetic materials have commonly a typical shaped B-H-curve, as visualized in
Figure 2.3a. Small magnitudes of the electric field intensity H strongly amplify the
magnitude of the magnetic flux density B, whereas increasing values of H reduce the
amplification of B until so-called saturation occurs. This behavior is reflected in the
permeability µ and reluctivity ν, whose curves saturate to their respective values in
vacuum µ0 = 4π ·10−7[V ·s ·A−1 ·m−1] and ν0 = 107/(4π)[A ·m ·V −1 ·s−1], as depicted
in Figure 2.3c and Figure 2.3b. These physical properties can be summarized in the
following assumptions on the B-H-curve f , that does not consider any hysteresis
effects, cf. [120].
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Assumption 2.6. The B-H-curve f : R+
0 → R+

0 fulfills the following assumptions.

(A1) f is continuously differentiable in R+
0 ,

(A2) f(0) = 0,

(A3) f ′(s) ≥ µ0 for s ∈ R+
0 ,

(A4) lim
s→∞

f ′(s) = µ0.

From the statements in Assumption 2.6 it immediately follows that the B-H-curve f
is strongly monotone, continuously differentiable, Lipschitz continuous and bounded,
and that the reluctivity function ν satisfies important properties, as summed up in
the next lemma.

Lemma 2.7. Let Assumption 2.6 hold. Then, the following statements for the B-H-
curve f : R+

0 → R+
0 and the reluctivity function ν : R+

0 → R+
0 are valid.

(i) f is strongly monotone with monotonicity constant µ0, i.e.

(f(s) − f(t)) (s− t) ≥ µ0(s− t)2 for all s, t ∈ R+
0 .

(ii) f is continuously differentiable on R+
0 satisfying

0 < µ0 ≤ f ′(s) ≤ L := sup
s∈R+

0

f ′(s) < ∞ for all s ∈ R+
0 .

(iii) f is Lipschitz continuous with Lipschitz constant L > 0, i.e.

|f(s) − f(t)| ≤ L|s− t| for all s, t ∈ R+
0 .

(iv) The image of f is Im(f) = R+
0 and the inverse function f−1 : R+

0 → R+
0 exists.

(v) f−1 is continuously differentiable on R+
0 satisfying

0 < 1
L

≤ (f−1)′(s) ≤ ν0 = 1
µ0

< ∞ for all s ∈ R+
0 .

(vi) ν is well-defined, continuous on R+
0 , bounded with constants

1
L

≤ ν(s) ≤ ν0 for all s ∈ R+
0 ,

lim
s→∞

ν(s) = ν0 and ν(0) = (f−1)′(0).
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Figure 2.3: a): The B-H-curve approximated by a quadratic B-spline, which is gen-
erated from measured values given in Table 5.1 and linearly continued
based on the last two entries.
b): The magnetic reluctivity ν with logarithmic scale on the ν(|B|)-axis.
c): The magnetic permeability µ.

(vii) ν(·)· = f−1 is strongly monotone with monotonicity constant 1
L

and Lipschitz
continuous with Lipschitz constant ν0, i.e.

(ν(s)s− ν(t)t) (s− t) ≥ 1
L

(s− t)2

|ν(s)s− ν(t)t| ≤ ν0|s− t|
for all s, t ∈ R+

0 , (2.26)

(viii) ν is continuously differentiable on (0,∞) and lim
s→∞

ν ′(s) = 0.

Proof. The proof is given in [119, Chapter 2].

Obviously, the properties in (2.26) also hold, when the magnetic reluctivity ν = ν0
is constant. Therefore, the global reluctivity function ν(x, |B|) defined on a body
with multiple materials like an electric motor, fulfills (2.26) as well, i.e. the map-
ping s 7→ ν(x, s)s is strongly monotone and Lipschitz continuous with the same
constants 1/L and ν0, independent of the spatial position x ∈ Ω, see [57]. In Sec-
tion 4.1.3 and Section 4.3.3 we will see that the properties in (2.26) are essential
in order to make statements about the existence of a solution for the variational
formulation of the boundary value problem (2.21).

Lastly, we would like to point out that the B-H-curve for ferromagnetic materials
is not known analytically in advance. In practice, the values of the B-H-curve are
obtained from experimental measurements, e.g. [68] or [168], and need to be ap-
proximated with suitable methods. Particularly, all these methods must ensure that
the properties in (2.26) remain fulfilled, even if the values have inaccuracies due to
the measurements. Different approaches for monotonicity preserving interpolation of
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discrete data are given for instance in [7, 52, 102, 120]. In the scope of this thesis, we
use a quadratic B-spline as given in [121] or [133], that is provided by the free finite
element software Netgen/NGSolve [137] in order to create a monotone, Lipschitz
continuous and differentiable B-H-curve, as visualized in Figure 2.3a. A B-spline
curve b(s) of order p+ 1 is an affine combination of some control points (bi),

b(s) =
∑

i

biB
p
i (s),

where every Bp
i (s) is a piecewise polynomial function of degree p defined by a sequence

of given knots (ai) with ai < ai+1, minimal support and certain continuity conditions,
i.e.

B0
i (s) =

1 if s ∈ [ai, ai+1),
0 otherwise,

and

Bn
i (s) = s− ai

ai+n − ai

Bn−1
i (s) + ai+n+1 − s

ai+n+1 − ai+1
Bn−1

i+1 (s).

Thus, quadratic B-splines are of order 3 (degree 2) and continuously differentiable,
cf. [121]. In this sense, the B-H-curve can be approximated by a quadratic B-spline
curve, whose control points are the measured values for magnetic flux density B and
the list of knots is the list of the measured values of the magnetic field intensity H.
In Table 5.1 a list of measured values for B and H is given, that was kindly provided
by Robert Bosch GmbH and used in Section 4.3.4 for the electromagnetic simulation
of a permanent magnet synchronous motor. This applies not only for the B-H-curve,
but also for the magnetic permeability µ and magnetic reluctivity ν, whose control
points are given by the values B/H and H/B and the knots are given by the list
of H and B, respectively.

Remark 2.8. In general, a B-spline curve does not pass through its control points.
However, repeating knot values at the beginning or end of the knot list, will cause the
B-spline curve to pass through some of its control points, see [121].





3 Preliminaries

In this chapter, we briefly introduce the notations, the function spaces and the fi-
nite element method (FEM), that are used throughout this thesis. Furthermore,
we recall the theory for the unique solvability of a parabolic initial boundary value
problem (IBVP) in so-called Bochner spaces, and conclude this chapter with the de-
scription of parallel computation methods, which are used to solve the linear systems
of the presented numerical experiments in this work.

We start with the introduction of some important notations, that accompany us
throughout the entire work. For a function u : Rd ×R → R, we introduce the spatial
gradient

∇yu(y, t) = (∂y1u(y, t), . . . , ∂yd
u(y, t))⊤ =

(
∂

∂y1
u(y, t), . . . , ∂

∂yd

u(y, t)
)⊤

,

and the spatial Laplacian

∆yu(y, t) = divy∇yu(y, t) =
d∑

i=1

∂2

∂y2
i

u(y, t),

where the spatial divergence of vector-valued functions v : Rd × R → Rd is given
by

divyv(y, t) =
d∑

i=1

∂

∂yi

vi(y, t).

Since in all our applications, the time is just an additional spatial component, i.e.
yd+1 = t, we bear in mind that

∂tu(y, t) = ∂

∂t
u(y, t) = ∂

∂yd+1
u(y, yd+1),

hence the space-time gradient is given as

∇u(y, t) = ∇(y,t)u(y, t) =
(

∇yu(y, t)
∂tu(y, t)

)
.

23
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3.1 Description of moving domains

In what follows next, Ω ⊂ Rd, d = 1, 2, 3, is an open, non-empty and connected set,
i.e. a domain, that is bounded and Lipschitz, see [39]. For a non-moving domain, the
(open) space-time cylinder is defined as Q := Ω × (0, T ) ⊂ Rd+1, where T > 0
denotes the terminal time. The boundary ∂Q of the space-time cylinder Q is divided
into the lateral boundary Σ := ∂Ω × (0, T ), the bottom Σ0 := Ω × {0} and the
top ΣT := Ω × {T}. However, when the body undergoes a motion, or deformation,
φ : Rd × [0, T ] → Rd that is known a priori, we can describe the position of a material
point x ∈ Ω0 ⊂ Rd in an initial domain Ω0 at time t ∈ (0, T ) as

y = φ(x, t) or yi = φi(x, t) for i = 1, ..., d. (3.1)

The coordinates yi are referred as Eulerian coordinates, cf. [17, 41]. The mapping
φ(·, t) maps the initial configuration Ω0 ⊂ Rd to the current configuration Ω(t) at
time t, i.e.

Ω(t) :=
{
y = φ(x, t) ∈ Rd| x ∈ Ω0

}
⊂ Rd,

and need to satisfy the following natural assumptions, see [17, 41].

Assumption 3.1. The motion, or deformation, φ : Ω0 × [0, T ] → Rd of a domain Ω0
in initial state fulfills the following assumptions.

(A1) φ(Ω0, 0) = Ω0, i.e. φ(x, 0) = x for all x ∈ Ω0.

(A2) The motion φ is continuously differentiable.

(A3) For every t ∈ [0, T ] the mapping φ(·, t) : Ω0 → Ω(t) is invertible.

(A4) The Jacobian determinant Jφ(x, t) := det (∇xφ(x, t)) > 0 for all x ∈ Ω0 and
t ∈ [0, T ].

From Assumption (A3) we deduce, that for a fixed t, we can follow back the mo-
tion of a point y ∈ Ω(t) in the current configuration to arrive at its starting point
x = φ−1(y) ∈ Ω0. Furthermore, we describe the velocity field w(x, t) : Ω0×(0, T ) →
Rd at which the body moves by

w(x, t) = ∂

∂t
φ(x, t),

and we assume that the velocity field is continuously differentiable. The velocity field
in terms of the spatial, or Eulerian, coordinates, i.e. v(y, t) : Ω(t) × (0, T ) → Rd, is
hence defined as, see [41],

v(y, t) = v(φ(x, t), t) = ∂

∂t
φ(φ−1(y), t) = w(x, t). (3.2)
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Moreover, the trajectory of a material point is given as the solution of
∂
∂t
φ(x, t) = v(φ(x, t), t),

φ(x, 0) = x,
for x ∈ Ω0. (3.3)

For a physical quantity u(y, t), e.g. the temperature or the last coordinate of the
magnetic vector potential (2.18), that is described in Eulerian coordinates, the time
derivative plays a crucial role and when using the chain rule and (3.2), we obtain

∂

∂t

(
u(φ(x, t), t)

)
= ∂

∂t
u(φ(x, t), t) + ∇yu(y, t)

∣∣∣∣
y=φ(x,t)

· ∂
∂t
φ(x, t)

= ∂

∂t
u(y, t) + ∇yu(y, t) · v(y, t).

This leads to the definition of the material or total time derivative, which was already
mentioned in Section 2.2.3 in context of moving domains.

Definition 3.2 ([17, 41]). The material or total time derivative of u : Ω(t)×(0, T ) →
R is given as

d

dt
u(y, t) = ∂

∂t
u(y, t) + v(y, t) · ∇yu(y, t).

An associated important result, which will be essential in Section 4.3 in order to
make a statement about a unique solution for equation (2.21), is Reynolds’ transport
theorem.

Theorem 3.3 (Reynolds’s transport theorem). Let the motion φ : Ω0 × [0, T ] → Rd

fulfills Assumption 3.1, and let the velocity field v(y, t) and the function u(y, t) be
continuously differentiable. Then,

d

dt

∫
Ω(t)

u(y, t)dy =
∫

Ω(t)

[
∂

∂t
u(y, t) + divy (u(y, t)v(y, t))

]
dy

=
∫

Ω(t)

[
∂

∂t
u(y, t) + v(y, t) · ∇yu(y, t) + u(y, t)divyv(y, t)

]
dy

=
∫

Ω(t)

[
d

dt
u(y, t) + u(y, t)divyv(y, t)

]
dy.

(3.4)

Proof. The proof is given in [17, Section 3.5.3] and [41, Theorem 5.4].

Now, we are able to define the (open) space-time cylinder Q for a moving domain
starting from the bounded Lipschitz domain Ω0, whose movement is described by
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the motion φ, where Ω(t) is also bounded and Lipschitz for every t ∈ (0, T ), in the
following way,

Q :=
{
(y, t) ∈ Rd+1| y = φ(x, t) ∈ Ω(t), x ∈ Ω0, t ∈ (0, T )

}
. (3.5)

The bottom and the top of Q are denoted by Σ0 := Ω(0) × {0} = Ω0 × {0} and
ΣT := Ω(T ) × {T}, respectively, whereas the lateral boundary is defined as

Σ :=
{
(y, t) ∈ Rd+1| y = φ(x, t), x ∈ ∂Ω0, t ∈ (0, T )

}
, (3.6)

giving all together the whole boundary ∂Q of the space-time cylinder.

Remark 3.4. In the case of a non-moving body, the deformation is simply the iden-
tity in space, i.e.

y = Idx(x, t) = x, (3.7)

hence, the velocity field v = ∂
∂t

Idx = 0 and consequently the total time derivative d
dt

reduces to the partial time derivative ∂
∂t

.

3.2 Domains with moving and non-moving regions

In association with electric motors, the entire domain is composed of moving and
non-moving parts. Therefore, a motion φ needs to be defined, that satisfies Assump-
tion 3.1 for every part of the device. Particularly this means considering the electric
motor of Figure 2.2, that the moving parts of the electric motor undergo a rotational
movement, whereas the fixed parts can be simply described by the identity (3.7).
However, the motion of the air gap Ωgap, which have on one side an interface with
the rotor and on the other side an interface with the stator, needs to be chosen in
such a way that φ is continuously differentiable and φ(Ωgap) = Ωgap.

The two-dimensional rotation

We now consider the two-dimensional cross-section Ω0 ⊂ R2 of the electric motor
from Figure 2.2, which has its center in the origin. The rotor, the magnets as well as
the air pockets at the magnet poles experience a counter-clockwise constant rotational
motion about the origin, that is described by

φRα(x, t) = Rα(t)

(
x1
x2

)
for x = (x1, x2)⊤ ∈ Ω0, (3.8)
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with

Rα =
(

cosα(t) − sinα(t)
sinα(t) cosα(t)

)
and α(t) = ϕ

t

T
for ϕ ∈ [0, 2π],

where α(t) represents the angle through which the rotating parts have turned at
time t, and ϕ denotes the angle at the final rotated position at time T , cf. [17].
The stator and the coils are fixed, therefore the motion in these domains is simply
represented by the identity (3.7). In order to describe the motion jointly in all parts of
the motor, we use polar coordinates (x1, x2)⊤ = r(cosψ, sinψ)⊤ ∈ Ω0 for ψ ∈ [0, 2π)
and r ∈ (0, R), where R is the exterior radius of the motor as visualized in Figure 3.1.
Similar to [60], when using

Ψ(r) =



r

r1
for r ∈ (0, r1),

1 for r ∈ (r1, r2),
r3 − r

r3 − r2
for r ∈ (r2, r3),

0 for r ∈ (r3, R),

and (3.8) with α(t) = ϕ Ψ(r) t
T

, where r1, r2 and r3 are the different radii of the
motor as outlined in Figure 3.1, we can introduce the continuous motion

y = φ(x, t) =
(
y1
y2

)
= Rα r

(
cosψ
sinψ

)
=
(
r (cosα(t) cosψ − sinα(t) sinψ)
r (sinα(t) cosψ + cosα(t) sinψ)

)
.

With the help of the well known trigonometric identities

sin(α± β) = sinα cos β ± cosα sin β,
cos(α± β) = cosα cos β ∓ sinα sin β,

we finally obtain

y = φ(x, t) =
(
y1
y2

)
= r

(
cos(ψ + α(t))
sin(ψ + α(t))

)
∈ Ω(t) for t ∈ (0, T ). (3.9)

Thus, the velocity field of this motion is given as

ṽ(y, t) =
(
ṽ1(y, t)
ṽ2(y, t)

)
= ∂α(t)

∂t
r

(
− sin(ψ + α(t))
cos(ψ + α(t))

)
= ϕ Ψ(r)

T

(
−y2
y1

)
,

where ∂tα(t) is usually known as the angular velocity [17]. Moreover, when using the
chain rule, recall r =

√
y2

1 + y2
2, we obtain

∂

∂y1
ṽ1(y, t) = −ϕ Ψ ′(r)y2

T

y1√
y2

1 + y2
2

and ∂

∂y2
ṽ2(y, t) = ϕ Ψ ′(r)y1

T

y2√
y2

1 + y2
2

,
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which yields, that the velocity field ṽ is divergence free, i.e.

divy ṽ(y, t) = 0. (3.10)

As a result, using (3.10) and the total time derivative (2.20), Reynolds transport
theorem (3.4) becomes to

d

dt

∫
Ω(t)

u(y, t)dy =
∫

Ω(t)

[
∂

∂t
u(y, t) + ṽ(y, t) · ∇yu(y, t) + u(y, t)divyṽ(y, t)

]
dy

=
∫

Ω(t)

d

dt
u(y, t)dy, (3.11)

which will be an essential ingredient, when it comes to prove the existence of a unique
solution for IBVPs in Section 4.3. In order to verify whether Jφ(x, t) > 0, we write

φ(x, t) =
(
r cosα(t) cosψ − r sinα(t) sinψ
r sinα(t) cosψ + r cosα(t) sinψ

)
=
(

cosα(t)x1 − sinα(t)x2
sinα(t)x1 + cosα(t)x2

)

=
cos

(
ϕ Ψ(r) t

T

)
x1 − sin

(
ϕ Ψ(r) t

T

)
x2

sin
(
ϕ Ψ(r) t

T

)
x1 + cos

(
ϕ Ψ(r) t

T

)
x2

 ,
and use r =

√
x2

1 + x2
2 and the chain rule to obtain

∂

∂x1
φ1(x, t) = − sin

(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x2
1√

x2
1 + x2

2

+ cos
(
ϕ Ψ(r) t

T

)

− cos
(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x1x2√
x2

1 + x2
2

,

∂

∂x2
φ1(x, t) = − sin

(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x1x2√
x2

1 + x2
2

− sin
(
ϕ Ψ(r) t

T

)

− cos
(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x2
2√

x2
1 + x2

2

,

∂

∂x1
φ2(x, t) = cos

(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x2
1√

x2
1 + x2

2

+ sin
(
ϕ Ψ(r) t

T

)

− sin
(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x1x2√
x2

1 + x2
2

,

∂

∂x2
φ2(x, t) = cos

(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x1x2√
x2

1 + x2
2

+ cos
(
ϕ Ψ(r) t

T

)

− sin
(
ϕ Ψ(r) t

T

)
ϕ Ψ ′(r) t

T

x2
2√

x2
1 + x2

2

.
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r3

r1

r2

R

Figure 3.1: An enlarged section of the geometry of the interior PMSM from Fig-
ure 2.2. The motor has its center in the origin, from which the dif-
ferent radii are measured. The interior and exterior radii of the motor
are denoted by r1 = 26.5 [mm] and R = 116 [mm], respectively. The
respective inner and outer radii of the air gap are r2 = 78.632 [mm]
and r3 = 79.242 [mm].

The result after a slightly longer but simple calculation is

Jφ(x, t) = det (∇xφ(x, t)) = cos2
(
ϕ Ψ(r) t

T

)
+ sin2

(
ϕ Ψ(r) t

T

)
= 1.

Finally, the space-time cylinder Q and its boundary for the specific motion (3.9) are
defined in the exact same way as in (3.5).

Remark 3.5. Even though we have discussed the particular case of a two-dimen-
sional rotation (3.9), that only describes rotational movement in combination with
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no movement, more general uniform motions φ, e.g. rotations and translations, sat-
isfying Assumption 3.1 and φ(Ωgap) = Ωgap with the associated velocity field v(y, t) =
∂tφ(φ−1(y), t), shall not create additional difficulties in further analysis.

3.3 Function spaces

In order to introduce Bochner spaces, which form the basis of our mathematical
analysis in the remainder of this thesis, we first need to briefly recall some important
function spaces in the real space. The theory presented in this section is mainly
based on the work of [1, 39], however other extensive contributions may be found
e.g. in [45, 67, 99]. We denote the space of continuous functions on Ω ⊂ Rd, whose
derivatives up to order k are also continuous in Ω, by Ck(Ω). For the case k = 0,
we shortly write C(Ω). In addition, the space of infinitely differentiable functions is
defined as C∞(Ω) = ⋂∞

k=0 C
k(Ω). The spaces of functions in Ck(Ω) and C∞(Ω) with

compact support, i.e.

supp(u) := {y ∈ Ω : u(y) ̸= 0} for u : Ω → R,

is compact, are denoted by Ck
0 (Ω) and C∞

0 (Ω), respectively. Since Ω is an open set,
the spaces Ck(Ω) contain unbounded functions. Hence, we describe the space of
bounded and uniformly continuous functions on Ω, whose derivatives up to order k
are bounded and uniformly continuous on Ω, as Ck(Ω). Note that both, Ck

0 (Ω)
and Ck(Ω), are subspaces of Ck(Ω). Moreover, when we define the norm

∥u∥Ck(Ω) := max
|β|≤k

sup
y∈Ω

|Dβu(y)|,

where β = (β1, . . . , βd) is the multi-index with βi ≥ 0 for i = 1, . . . , d,

|β| :=
d∑

i=1
βi and Dβu(y) := ∂|β|

∂yβ1
1 · · · ∂yβd

d

u(y),

then the space Ck(Ω) equipped with this norm is a Banach space, see [39, Theo-
rem 2.41].

3.3.1 Lebesgue- and Sobolev spaces

Now, let 1 ≤ p < ∞ and let us define the space of Lebesgue measurable and
p−integrable functions on Ω as

Lp(Ω) :=
{
u : Ω → R | ∥u∥Lp(Ω) < ∞

}
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with the corresponding norm

∥u∥Lp(Ω) :=
∫

Ω

|u(y)|p dy
1/p

.

For the case p = ∞, the norm is defined for essential bounded functions, cf. [39,
Definition 4.15], which is denoted by ∥ ·∥L∞(Ω). Note that the Lebesgue spaces Lp(Ω)
equipped with the corresponding norm ∥ · ∥Lp(Ω) for 1 ≤ p ≤ ∞ are Banach spaces,
see e.g. [39, Theorem 4.17]. For our purpose, the particular case p = 2, i.e. the
space of square-integrable functions L2(Ω), is of special interest, which even defines
a Hilbert space endowed with the inner product [39, Corollary 4.18]

(u, v)L2(Ω) :=
∫
Ω

u(y)v(y) dy for all u, v ∈ L2(Ω).

As a matter of fact, the space of infinitely differentiable functions with compact
support C∞

0 (Ω) is dense in Lp(Ω) for 1 ≤ p < ∞, see [39, Theorem 4.23], which allows
an equivalent definition of the Lebesgue spaces, Lp(Ω) = C∞

0 (Ω)∥·∥Lp(Ω) . Moreover,
we say a function u : Ω → R is locally integrable on Ω, if u ∈ L1(U) for every open
set U that is compactly embedded in Ω, i.e. U ⊂ Rd is a compact subset and U ⊂ Ω,
cf. [1, Definition 1.58]. The space of locally integrable functions on Ω is denoted
by L1

loc(Ω).

Now, let us consider the concept of weak derivatives in order to formulate the IBVPs
in a suitable way for the mathematical analysis.
Definition 3.6 ([1], [39, Definition 5.3]). Let u ∈ L1

loc(Ω) and β be a multi-index.
We say that u has a βth-weak partial derivative in Ω, if there exists a uβ ∈ L1

loc(Ω),
such that ∫

Ω

u(y)Dβϕ(y) dy = (−1)|β|
∫
Ω

uβ(y)ϕ(y) dy

for all test functions ϕ ∈ C∞
0 (Ω).

A function that is differentiable in the classical sense, is also weakly differentiable,
cf. [39, Lemma 5.4], and, since the weak partial derivative is unique if it exists, we
do not distinguish between classical and weak partial derivative anymore and write
Dβu instead of uβ. This leads us to the introduction of Sobolev spaces.
Definition 3.7 ([1], [39, Definition 5.9]). Let m ≥ 0 and 1 ≤ p ≤ ∞. The Sobolev
space Wm,p(Ω) consists of all functions u ∈ Lp(Ω), whose weak partial derivatives up
to order m are also in Lp(Ω), i.e.

Wm,p(Ω) :=
{
u ∈ Lp(Ω) : Dβu ∈ Lp(Ω) for 0 ≤ |β| ≤ m

}
=
{
u ∈ Lp(Ω) : ∥u∥W m,p(Ω) < ∞

}
,
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with the Sobolev norm

∥u∥W m,p(Ω) =
 ∑

0≤|β|≤m

∥Dβu∥p
Lp(Ω)

1/p

.

For the special case p = ∞, we refer to [39, Definition 5.9].

Particularly, every Sobolev space Wm,p(Ω) for 1 ≤ p ≤ ∞ and m ≥ 0 is a Banach
space, [39, Theorem 5.10], and the famous result of Meyers and Serrin [107] in 1964
holds for 1 ≤ p < ∞, which states that C∞(Ω) ∩ Wm,p(Ω) is dense in Wm,p(Ω),
allowing the alternative definition

Wm,p(Ω) := C∞(Ω)∥·∥W m,p(Ω) and Wm,p
0 (Ω) := C∞

0 (Ω)∥·∥W m,p(Ω)
,

see also [1, Theorem 3.17, Definition 6.9] or [39, Theorem 5.16]. This result yields the
validity of the chain and product rule for functions in Sobolev spaces, cf. [39, Section
5.4]. Under stronger assumptions, when the domain Ω has a continuous boundary,
it is even possible to prove that C∞

0 (Rd) is dense in Wm,p(Ω), [1, Theorem 3.22] and
[39, Theorem 6.7].

In order to handle the boundary conditions of IBVPs we need to introduce the rather
important boundary traces, since function evaluations of functions in Sobolev spaces
are in general not well-defined. The next theorem offers a remedy with the help of
the so-called trace operator.

Theorem 3.8 (Trace theorem). Let Ω be bounded and Lipschitz, and 1 ≤ p < ∞.
Then there exists a bounded linear operator γ0 : W 1,p(Ω) → Lp(∂Ω) such that

(i) γ0u = u|∂Ω for u ∈ C∞(Ω), and

(ii) ∥γ0u∥Lp(∂Ω) ≤ c∥u∥W 1,p(Ω), with a constant c depending on p and Ω.

Proof. The proof is given in [1, Chapter 5] and [39, Theorem 6.15].

Remark 3.9. Note that from now on we always mean by u = 0 on ∂Ω that the trace
γ0u = 0 on ∂Ω. In terms of the boundary traces it is possible to characterize the
space W 1,p

0 (Ω) in the following way, cf. [1, Theorem 5.37],

W 1,p
0 (Ω) :=

{
u ∈ W 1,p(Ω) : u = 0 on ∂Ω

}
.

As mentioned before, the main interest in this thesis lies in the special case of p = 2
for which we use the notation

Hm(Ω) := Wm,2(Ω) and H1
0 (Ω) := W 1,2

0 (Ω).
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Moreover, the spaces Hm(Ω) endowed with the inner product

(u, v)Hm(Ω) :=
∑

0≤|β|≤m

(Dβu,Dβv)L2(Ω)

form Hilbert spaces, see [39, Corollary 5.11] and [1, Theorem 3.6]. In particular, for
m = 1 the inner product can be written as

(u, v)H1(Ω) =
∫
Ω

(u(y)v(y) + ∇yu(y) · ∇yv(y)) dy,

and the subspace H1
0 (Ω) ⊂ H1(Ω) incorporates homogenous boundary conditions,

i.e.

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.

Particularly,

|u|2H1(Ω) :=
∫
Ω

|∇yu(y)|2 dy and (u, v)H1
0 (Ω) :=

∫
Ω

∇yu(y) · ∇yv(y) dy,

define an equivalent norm and inner product on H1
0 (Ω), respectively, which follow

from Friedrichs’s inequality, often called as Friedrichs-Poincaré inequality,

∥u∥L2(Ω) ≤ cF (Ω)∥∇yu∥L2(Ω) for all u ∈ H1
0 (Ω), (3.12)

see [1, Theorem 6.30] and [1, Corollary 6.31]. Furthermore, the boundary traces γ0u
belong to the space H1/2(∂Ω) ⊂ L2(∂Ω) and can be categorized as fractional order
or broken Sobolev spaces, cf. [1, Chapter 7] and [39, Section 6.11].

The dual space of H1
0 (Ω), denoted by H−1(Ω), is characterized as the completion of

L2(Ω) with respect to the norm

∥f∥H−1(Ω) := sup
0̸=v∈H1

0 (Ω)

|⟨f, v⟩Ω|
∥v∥H1

0 (Ω)
, (3.13)

where ⟨·, ·⟩Ω is the duality pairing as extension of the inner product in L2(Ω), see [1].

Remark 3.10. Note that for moving domains as described in Section 3.2 the domain
Ω(t) is considered to be time-dependent. Since the deformation φ does not change the
shape or topology of the domain, and for a specific time point t ∈ (0, T ), Ω(t) can be
identified as a fixed domain, i.e. Ω(t) = Ω, with respect to its variable in the current
configuration, i.e. y = φ(x, t), the definitions and results of this section apply also
for the domain Ω(t).
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3.3.2 Bochner spaces

We are now in the stage to introduce the Bochner spaces in order to pose IBVPs in
the weak sense on the full space-time cylinder Q. We refer to [1, Chapter 7], [35,
Chapter XVIII], [45, Section 5.9.2], [67, Section 5.1.1], [100], [165, Section 2.4 and
Section 2.6] and [166, Chapter 23] for a detailed description of Bochner spaces. Now,
let 0 < T < ∞, and Q be the open space-time cylinder as defined in (3.5). Also, let V
be a real Banach space with norm ∥ · ∥V , then we can define the space of measurable
and integrable functions on (0, T ) with values in V and finite norm as

Lp(0, T ;V ) :=
{
v : (0, T ) → V | ∥v∥Lp(0,T ;V ) < ∞

}
, (3.14)

where

∥v∥Lp(0,T ;V ) :=
 T∫

0

∥v(t)∥p
V dt

1/p

for 1 ≤ p < ∞.

In the case of p = 2 and when V is a separable real Hilbert space, then the Bochner
space L2(0, T ;V ) becomes also a Hilbert space with respect to the inner product

(u, v)L2(0,T ;V ) :=
T∫

0

(u(t), v(t))V dt for u, v ∈ L2(0, T ;V ),

see [100]. Additionally, the dual space [L2(0, T ;V )]⋆ and the space L2(0, T ;V ⋆) are
isometric [166, Section 23.3, Convention 23.8] with respect to the duality pairing

⟨f, v⟩L2(0,T ;V ⋆),L2(0,T ;V ) =
T∫

0

⟨f(t), v(t)⟩V ⋆,V dt,

where V ⋆ denotes the dual space of V and ⟨·, ·⟩V ⋆,V the usual duality pairing in V .
In general, the Bochner-Sobolev space for m ∈ N0 is defined as

Hm(0, T ;V ) := {v ∈ L2(0, T ;V ) : (∂t)kv ∈ L2(0, T ;V ) for 0 ≤ k ≤ m},

where v = (∂t)ku denotes the kth-weak derivative of u ∈ Hm(0, T ;V ) with respect to
time, i.e.

T∫
0

∂k

∂tk
ϕ(t)u(t) dt = (−1)k

T∫
0

ϕ(t)v(t) dt for all ϕ ∈ C∞
0 (0, T ), (3.15)

cf. [165, Section 2.4], which is again a Hilbert space, when equipped with the corre-
sponding inner product

(u, v)Hm(0,T ;V ) :=
∑

0≤k≤m

T∫
0

(
(∂t)ku(t), (∂t)kv(t)

)
V
dt.
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For the specific case m = 1, it can be shown that H1(0, T ;V ) is embedded in
C([0, T ];V ), where C([0, T ];V ) comprises all continuous functions v : [0, T ] → V
with

∥v∥C([0,T ];V ) = max
0≤t≤T

∥v(t)∥V < ∞,

see [45, Section 5.9.2, Theorem 2]. In particular, this embedding yields, that the
expression u(·, 0) = 0 has a precise meaning, hence the spaces

H1
0,(0, T ;V ) :=

{
v ∈ H1(0, T ;V ) : v(0) = 0

}
,

H1
,0(0, T ;V ) :=

{
v ∈ H1(0, T ;V ) : v(T ) = 0

}
,

are well-defined and closed subspaces of H1(0, T ;V ). Finally, in view of the upcoming
analysis we will need the Bochner-Sobolev space

W (0, T ;V, V ⋆) :=
{
v ∈ L2(0, T ;V ) : ∂tv ∈ L2(0, T ;V ⋆)

}
= L2(0, T ;V ) ∩H1(0, T ;V ⋆),

which is a Hilbert space equipped with the norm

∥u∥2
W (0,T ;V,V ⋆) = ∥u∥2

L2(0,T ;V ) + ∥∂tu∥2
L2(0,T ;V ⋆) =

T∫
0

[
∥u(t)∥2

V + ∥∂tu(t)∥2
V ⋆

]
dt

see [35, Chapter XVIII, Paragraph 1, Sec. 2, Prop. 6]. For the case V = H1
0 (Ω), we

introduce the notation

W (Q) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), (3.16)

where W (Q) forms a Hilbert space with respect to the inner product

(u, v)W (Q) :=
T∫

0

∫
Ω

∇yu(y, t) · ∇yv(y, t) dy dt+
T∫

0

(∂tu(·, t), ∂tv(·, t))H−1(Ω) dt,

(3.17)

see [161, Theorem 25.4], and the norm defined as

∥v∥W (Q) :=
 T∫

0

∫
Ω

|∇yu(y, t)|2 dy dt+
T∫

0

∥∂tu(·, t)∥2
H−1(Ω) dt

1/2

,

where the norm in the dual space H−1(Ω) is given as in (3.13) by

∥∂tu(·, t)∥H−1(Ω) = sup
0̸=v∈H1

0 (Ω)

|⟨∂tu(·, t), v⟩Ω|
|v|H1(Ω)

,
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and the abstract inner product (·, ·)H−1(Ω) induces the norm ∥·∥H−1(Ω) =
√

(·, ·)H−1(Ω).
Moreover, the space W (Q) is continuously embedded in C([0, T ];L2(Ω)), i.e. there
exists a constant cem such that for every u ∈ W (Q)

max
t∈[0,T ]

∥u(·, t)∥L2(Ω) = max
t∈[0,T ]

∫
Ω

|u(y, t)|2 dy
1/2

≤ cem∥u∥W (Q),

cf. [166, Proposition 23.23]. Due to this continuous embedding, the initial condi-
tion

u(·, 0) = u0 in L2(Ω)

has a precise meaning, which leads to the fact that the subspace

W0,(Q) := {v ∈ W (Q) : v(·, 0) = 0} ⊂ W (Q) (3.18)

incorporating the initial condition, is again a Hilbert space with respect to the inner
product (3.17) of W (Q).

Remark 3.11. We want to point out, that the continuous embedding of W (Q) into
C([0, T ];L2(Ω)) is related to the so-called evolution triple

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω),

or, in general, if H and V are real separable Hilbert spaces, then V ⊂ H ⊂ V ⋆, where
V is dense in H and H is identified by its dual H⋆, which is used in most literature,
e.g. [35, 44, 166].

Remark 3.12. Note that in the definition of the space W (Q) in (3.16), the Hilbert
space V does not depend on time as desired for our applications. In order to adjust
the space for our purpose, we need to define

W (Q) :=
{
v ∈ L2(0, T ;H1

0 (Ω(t))) : d
dt
v ∈ L2(0, T ;H1

0 (Ω(t))⋆)
}

= L2(0, T ;H1
0 (Ω(t))) ∩H1(0, T ;H−1(Ω(t))),

(3.19)

where now d
dt

denotes the weak total derivative as in (3.15), i.e. d
dt
u = v for

T∫
0

d

dt
ϕ(t)u(t) dt = −

T∫
0

ϕ(t)v(t) dt for all ϕ ∈ C∞
0 (0, T ).

To the best of our knowledge, no analysis has been carried out for the spaces in (3.19)
using time dependent spaces V = H1

0 (Ω(t)) so far. The first considerations of such
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spaces are given in [59] and [60], assuming W (Q) is a Hilbert space with respect to
the inner product

(u, v)W (Q) :=
∫
Q

∇yu(y, t) · ∇yv(y, t) dy dt+
T∫

0

(
d

dt
u(·, t), d

dt
v(·, t)

)
H−1(Ω(t))

dt,

and norm

∥v∥W (Q) :=

∫
Q

|∇yu(y, t)|2 dy dt+
T∫

0

∥ d
dt
u(·, t)∥2

H−1(Ω(t)) dt


1/2

,

where

∥ d
dt
u(·, t)∥H−1(Ω(t)) = sup

0̸=z∈H1
0 (Ω(t))

|⟨ d
dt
u(·, t), z⟩Ω(t)|
|z|H1(Ω(t))

,

and ∥·∥H−1(Ω(t)) =
√

(·, ·)H−1(Ω(t)) is induced by the abstract inner product (·, ·)H−1(Ω(t)).
We want to highlight, that the proofs of these statements are very technical, however
they are assumed to be similarly transferable from [45], [100] or [166]. Another
treatment of the space W (Q) for moving domains Ω(t) has been recently considered
in [26], where a transformation to the initial state enables the usual definition of the
space W (Q).

3.4 Space-time approximation spaces by simplicial finite
elements

In general, in the field of computational mathematics we approximate the solution
of partial differential equations by numerical schemes, so also of IBVPs. A widely
popular scheme is the Finite Element Method (FEM), which will be used for all nu-
merical examples throughout this thesis. In this section, we recall the basic notations
of the finite element discretization and refer to [22, 24, 44, 143] for further details.

Let Ω(t) ⊂ Rd be bounded and Lipschitz for every t ∈ [0, T ]. For simplicity, we
assume that Ω(t) is an interval for d = 1, or polygonal for d = 2, or polyhedral for
d = 3. Then, the space-time cylinder Q ⊂ Rd+1 as defined in (3.5) is polygonal for
d = 1, or polyhedral for d = 2, or polychoral for d = 3. Further, let {Th}h>0 be a
sequence of decompositions (triangulations or meshes) with

Q = Th =
N⋃

ℓ=1
τℓ, (3.20)
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where Th = {τℓ}N
ℓ=1 is a decomposition of Q into non-overlapping, simplicial space-

time elements τℓ ⊂ Rd+1, ℓ = 1, . . . , N , i.e. τℓ ∩ τk = ∅ for all ℓ ̸= k. A simpli-
cial element, or simplex, is defined as the convex hull of {(ỹ0, t̃0), . . . , (ỹd+1, t̃d+1)},
where {(ỹi, t̃i)}d+1

i=0 is a family of points in Rd+1, also called vertices of the simplex,
for which the vectors {(ỹ1, t̃1) − (ỹ0, t̃0), . . . , (ỹd+1, t̃d+1) − (ỹ0, t̃0)} are linearly inde-
pendent, see [44, Section 1.2.3]. The set of all vertices, denoted by {(yk, tk)}M

k=1,
generates the nodes of the decomposition Th and h = hmax = maxℓ=1,...,N hℓ is the
global mesh size, where the local mesh sizes hℓ are defined by the volumes ∆ℓ of the
finite elements τℓ as

hℓ = ∆1/(d+1)
ℓ =

∫
τℓ

dydt

1/(d+1)

for ℓ = 1, . . . , N, (3.21)

while hmin = minℓ=1,...,N hℓ is the minimal local mesh size, cf. [143, Section 9.1]. We
will always assume that the decomposition (3.20) is

• admissible, i.e. two neighboring elements join either an edge (d = 1, 2, 3), a
face (d = 2, 3), or a tetrahedron (d = 3), or equivalently speaking, we avoid
hanging nodes, cf. [115]; and

• shape regular, i.e. there exists a constant cF independent of the decomposi-
tion Th, such that

dℓ ≤ cF rℓ for all ℓ = 1, . . . , N, (3.22)

where

dℓ = sup
(y1,t1),(y2,t2)∈τℓ

|(y1, t1) − (y2, t2)|

is the diameter of the element τℓ and

rℓ = arg max{r > 0 : Br((y, t)) ⊂ τℓ, for any (y, t) ∈ τℓ}

is the radius of the largest ball that can be inscribed in τℓ, see [143, Section
9.1].

We say the family of decompositions {Th}h>0 consists of shape regular simplicial finite
elements, if there is a constant cF > 0 independent of every Th, such that (3.22) holds
for all Th. Moreover, {Th}h>0 is called locally quasi-uniform, if

hℓ

hk

≤ cL
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for all neighboring elements τℓ ∩ τk ̸= ∅ and a constant cL > 0 independent of h.
Furthermore, any simplicial finite element τℓ can be transformed to the reference
element

τ =
{
ξ = (ξ1, . . . , ξd, ξd+1 = t̂ )⊤ ∈ Rd+1 : ξi > 0 for i = 1, . . . , d+ 1,

d+1∑
i=1

ξi < 1
}
,

which is a simplex with one vertex at the origin and one vertex at each axis, by using
the bijective affine linear mapping (local parametrization) yτ : τ → τℓ,

yτ (ξ) =
(
ỹ0
t̃0

)
+

d+1∑
i=1

ξi

((
ỹi

t̃i

)
−
(
ỹ0
t̃0

))
=
(
ỹ0
t̃0

)
+ Jτξ,

where (ỹ0, t̃0) is the vertex of τℓ to which the origin is mapped, and Jτ = ∂yτ

∂ξ
∈

Rd+1 × Rd+1 is the Jacobian of the map. Specifically, when using (3.21), we obtain
that

hd+1
ℓ =

∫
τℓ

dydt =
∫
τ

|detJτ | dξ = |detJτ |
∫
τ

dξ = |detJτ ||τ |, (3.23)

cf. [143, Section 9.1] or [144], with

|τ | =


1
2 for d = 1,
1
6 for d = 2,
1
24 for d = 3.

Now, let us define the approximation space of piecewise linear and globally continuous
functions as

S1
h(Th) := span{ϕk}M

k=1 ⊂ H1(Q), (3.24)

where {ϕk}M
k=1 denotes the nodal basis given by

ϕk(y, t) :=


1 for (y, t) = (yk, tk),
0 for (y, t) = (yj, tj), j ̸= k,

linear elsewhere.

Those functions, which are associated to the global degrees of freedom (dofs), are
defined locally by using suitable form functions. In our case, using Lagrangian finite
elements of first order, the global dofs are equal to the number of vertices of the space-
time mesh (3.20). Hence, any function vh ∈ S1

h(Th) admits the representation

vh(y, t) =
M∑

k=1
vkϕk(y, t) for (y, t) ∈ Q,
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where the coefficient vector vh ∈ RM with vh[k] = vk gives an alternative rep-
resentation of vh, see [143, Section 9.3]. The space-time interpolation operator
Ih : C(Q) → S1

h(Th) is given by

Ihv(y, t) =
M∑

k=1
v(yk, tk)ϕk(y, t) for (y, t) ∈ Q.

Note that with the help of the Sobolev embedding theorem [24, Theorem 1.4.6], i.e.
the Sobolev space Hm(Q) is embedded into C(Q) for 2m > (d + 1), the following
local interpolation error estimate holds true for d = 1, 2 assuming smooth solutions
in H2(Q).

Theorem 3.13. Let Th = {τℓ}N
ℓ=1 be a locally quasi-uniform decomposition of the

space-time cylinder Q ⊂ Rd+1 for d = 1, 2 and let v|τℓ
∈ H2(τℓ) for l = 1, . . . , N .

Then, the local error estimate

∥v − Ihv∥L2(τℓ) ≤ ch2
ℓ |v|H2(τℓ)

holds for Ih : H2(τℓ) → S1
h(Th) with a constant c > 0 independent of the mesh size h.

Proof. The proof is given in [143, Theorem 9.9].

As a direct consequence, the global interpolation error estimate

∥v − Ihv∥L2(Th) ≤ ch2|v|H2(Th) for v ∈ H2(Th), (3.25)

applies for Ih : H2(Th) → S1
h(Th), and, in the same way as in Theorem 3.13, the

following error estimates are valid,

∥∇(y,t)(v − Ihv)∥L2(τℓ) ≤ ∥v − Ihv∥H1(τℓ) ≤ chℓ|v|H2(τℓ) for v|τℓ
∈ H2(τℓ),

∥∇(y,t)(v − Ihv)∥L2(Th) ≤ ∥v − Ihv∥H1(Th) ≤ ch|v|H2(Th) for v ∈ H2(Th).
(3.26)

For d = 3, the Sobolev embedding theorem does not hold for functions in H2(Q),
indicating that the nodal interpolation is not well-defined for those functions. A
remedy offers the so-called quasi-interpolation operator, see e.g. [29] introduced by
Clément or [139] by Scott and Zhang, or, in context of space-time discretization
methods, e.g. [101] and [134]. However, we only consider problems of dimension
d = 1, 2 in this work and refer to the mentioned references as well as [143, Section
9.4] for an extensive analysis of other interpolation operators.

Furthermore, we briefly introduce projection operators which allow us to weaken
the global continuity assumption required for the application of the interpolation
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operator. The global space-time L2-projection Qh : L2(Th) → S1
h(Th) is defined as

the unique solution of the variational problem

(Qhu, vh)L2(Th) :=
N∑

ℓ=1

∫
τℓ

Qhu(y, t)vh(y, t) dydt = (u, vh)L2(Th) (3.27)

for all vh ∈ S1
h(Th), and the global H1-projection Ph : H1(Th) → S1

h(Th) is defined as
the unique solution of

(Phu, vh)H1(Th) :=(Qhu, vh)L2(Th) + (∇(y,t)Qhu,∇(y,t)vh)L2(Th)

=(u, vh)L2(Th) + (∇(y,t)u,∇(y,t)vh)L2(Th)
(3.28)

for all vh ∈ S1
h(Th). When choosing vh = Qhu and vh = Phu in (3.27) and (3.28),

respectively, we deduce the stability estimates

∥Qhu∥L2(Th) ≤ ∥u∥L2(Th) for all u ∈ L2(Th),
∥Phu∥H1(Th) ≤ ∥u∥H1(Th) for all u ∈ H1(Th),

see [143, Section 9.3]. Additionally, making use of the Galerkin orthogonalities

(u−Qhu, vh)L2(Th) = 0 for all vh ∈ L2(Th),
(u− Phu, vh)H1(Th) = 0 for all vh ∈ H1(Th),

the error of the L2-projection (3.27) and the H1-projection (3.28), respectively, can be
estimated by the interpolation errors (3.25) and (3.26) considering enough regularity,
i.e. for u ∈ H2(Th) we have

∥u−Qhu∥L2(Th) ≤ ∥u− Ihu∥L2(Th) ≤ ch2|u|H2(Th),

∥u− Phu∥H1(Th) ≤ ∥u− Ihu∥H1(Th) ≤ ch|u|H2(Th).

We can summarize the latter to obtain the approximation property of the space-time
approximation space S1

h(Th) of piecewise linear and continuous functions.

Theorem 3.14. Let Th = {τℓ}N
ℓ=1 be a locally quasi-uniform decomposition of the

space-time cylinder Q ⊂ Rd+1 for d = 1, 2, and let u ∈ Hm(Th) for m = σ, . . . , 2 and
σ = 0, 1. Then,

inf
vh∈S1

h
(Th)

∥u− vh∥Hσ(Th) ≤ chm−σ|u|Hm(Th),

with a constant c > 0 independent of the mesh size h.

Proof. Cf. [143, Theorem 9.10]. For the case d = 3 a similar estimate in terms of the
quasi-interpolation operator is given, see e.g. [101, Theorem 2.35].
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Finally, we introduce the rather important inverse inequalities, which play an im-
portant role in the finite element error analysis and are based on the equivalence of
norms in finite-dimensional spaces.

Theorem 3.15. Let Th = {τℓ}N
ℓ=1 be a decomposition and vh ∈ S1

h(Th). Then, there
holds the local inverse inequality

∥∇(y,t)vh∥L2(τℓ) ≤ cIh
−1
ℓ ∥vh∥L2(τℓ)

for a positive constant cI . Moreover, it holds true that

∥∇(y,t)vh∥2
L2(Th) ≤ cI

N∑
ℓ=1

h−2
ℓ ∥vh∥2

L2(τℓ).

Proof. The proof is given in [143, Lemma 9.6 and Lemma 9.8].

Remark 3.16. At this point we want to highlight, that the triangulation (3.20) al-
ready considers the moving domain, since the motion is known in advance. However,
although the domain Ω(t) is moving, i.e. it analytically depends on time, and so also
the space-time cylinder Q, the decomposition is fixed but completely unstructured cap-
turing the motion, hence the used elements are the standard simplicial finite elements
in space. For more details about different finite elements, e.g. higher order elements,
curved elements or prismatic elements, we refer for instance to the classical books by
Braess [22] or Ern and Guermond [44].

3.5 Space-time variational methods in Bochner spaces

3.5.1 Solvability analysis

In this section we recall the theory about the existence of a unique solution and
the finite element discretization for IBVPs in the setting of Bochner spaces. We
summarize the method proposed by Steinbach [144], considering a Petrov-Galerkin
variational formulation of IBVPs. Pioneered by this work, the goal is to extend the
analysis in [144] to linear and nonlinear elliptic-parabolic interface problems posed
on stationary and moving domains, which will be the aim of Chapter 4. The eddy
current equation (2.24) is a special form of the more general parabolic evolution
equation (heat equation) considered in [144],

cH
∂

∂t
u(x, t) − divx [A(x, t)∇xu(x, t)] = f(x, t) for (x, t) ∈ Q := Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ), (3.29)
u(x, 0) = u0(x) for x ∈ Ω,
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where Ω ⊂ Rd for d = 1, 2, 3, is bounded and Lipschitz, cH > 0 is the positive heat
capacity constant and A(x, t) ∈ Rd×d is a symmetric and uniformly positive definite
coefficient matrix in Q, i.e. there exist constants cA, cA > 0, such that

0 < cA∥ξ∥2 ≤ ξ⊤A(x, t)ξ ≤ cA∥ξ∥2 for all ξ = {ξ1, . . . , ξd+1} ∈ Rd+1\{0}.

In many cases and for all of our applications, the coefficient matrix A(x, t) is constant
in time, hence we can write A(x, t) = A(x). Furthermore, f ∈ L2(0, T ;H−1(Ω)) is
a given source term, and we assume that u0 ∈ L2(Ω). We start with the case of
homogeneous initial conditions, i.e. u0 = 0. Recalling the Bochner spaces (3.14),
(3.16) and (3.18), the Petrov-Galerkin space-time variational formulation of (3.29)
with homogenous initial conditions is to find u ∈ W0,(Q), such that

a(u, v) = l(v) for all v ∈ L2(0, T ;H1
0 (Ω)), (3.30)

where

a(u, v) =
T∫

0

∫
Ω

[
cH

∂

∂t
u(x, t)v(x, t) + [A(x)∇xu(x, t)] · ∇xv(x, t)

]
dxdt

l(v) =
T∫

0

∫
Ω

f(x, t)v(x, t) dxdt.

The following central theorem guarantees the existence of a unique solution of space-
time variational formulations with different trial and test spaces.

Theorem 3.17 (Banach-Nečas-Babuška). Let X be a real Banach space and Y a
real, reflexive Banach space. Further, let a : X × Y → R be a bilinear form and
l ∈ Y ⋆ a continuous linear form. Then the variational problem: Find u ∈ X, such
that

a(u, v) = l(v) for all v ∈ Y,

has a unique solution if and only if the following conditions hold.

(BNB1) (Continuity). ∃ca
2 > 0 : |a(u, v)| ≤ ca

2∥u∥X∥v∥Y ∀u ∈ X, v ∈ Y .

(BNB2) (Inf-sup condition). ∃ca
1 > 0 : inf

0 ̸=u∈X
sup

0̸=v∈Y

a(u,v)
∥u∥X∥v∥Y

≥ ca
1.

(BNB3) (Surjectivity). ∀v ∈ Y \{0} : ∃u ∈ X : a(u, v) ̸= 0.

In addition, the following a priori estimate is satisfied,

∥u∥X ≤ 1
ca

1
∥l∥Y ⋆ .
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Proof. The proof is given in [22, Theorem 3.6] and [44, Theorem 2.6].

Remark 3.18. The continuous, linear operator A : X → Y ⋆, associated with the
bilinear form a : X×Y → R, is bijective and its inverse A−1 : Y ⋆ → X is continuous,
i.e. A is an isomorphism, which is equivalent to the conditions (BNB1) - (BNB3).
In particular, the surjectivity in (BNB3) is equivalent to the injectivity of the inverse
operator A−1.

As in [144], we first consider for given u(x, t) the elliptic Dirichlet boundary value
problem

−divx [A(x)∇xwu(x, t)] = cH
∂

∂t
u(x, t) for (x, t) ∈ Q,

wu(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),
(3.31)

whose related variational formulation is to find wu ∈ Y = L2(0, T ;H1
0 (Ω)), such

that
T∫

0

∫
Ω

[A(x)∇xwu(x, t)] · ∇xv(x, t) dxdt =
T∫

0

∫
Ω

cH
∂

∂t
u(x, t)v(x, t) dxdt (3.32)

for all v ∈ Y , where ∂tu ∈ Y ⋆ = L2(0, T ;H−1(Ω)). Since the coefficient matrix is
uniformly positive definite, the norm

∥v∥Y :=

√√√√√ T∫
0

∫
Ω

[A(x)∇xv(x, t)] · ∇xv(x, t) dxdt

is an equivalent norm in L2(0, T ;H1
0 (Ω)). Hence, the unique solvability of (3.32)

follows due to the lemma of Lax-Milgram [22, Theorem 2.5], and we conclude that

∥wu∥Y = ∥cH∂tu∥Y ⋆ ,

where the dual norm is defined in terms of the duality pairing,

∥cH∂tu∥Y ⋆ := sup
0 ̸=v∈Y

|⟨cH∂tu, v⟩Q|
∥v∥Y

.

The related energy norm (graph norm) in X = W0,(Q) ⊂ Y is defined as

∥u∥X :=
√

∥u∥Y + ∥cH∂tu∥Y ⋆ =
√

∥u∥Y + ∥wu∥Y ,

where wu ∈ Y is the unique solution of (3.32).
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Note that the variational formulation (3.30) and the related elliptic Dirichlet bound-
ary value problem (3.32) require homogenous initial data. In order to incorporate an
inhomogeneous initial condition as given in (3.29), we need to apply homogenization,
i.e. u = ũ + ũ0, where u, ũ0 ∈ W (Q), ũ ∈ W0,(Q) and ũ0 = Eu0 is a continuous
and linear extension of u0 ∈ L2(Ω). Thus, we are in position to state the solvability
result of the homogenized variational formulation of (3.29), which is to find ũ ∈ X,
such that

a(ũ, v) = l(v) − a(ũ0, v) for all v ∈ Y. (3.33)

Now, applying Theorem 3.17 we are able to derive the unique solvability of (3.33).
Theorem 3.19. Let f ∈ L2(0, T ;H−1(Ω)) be a given right-hand side. Further, let
ũ0 ∈ W (Q) be some extension of the given initial datum u0 ∈ H1

0 (Ω). Then there
exists a unique solution ũ ∈ X of (3.33) satisfying

∥ũ∥X ≤ ∥f∥L2(0,T ;H−1(Ω)) +
√

2∥ũ0∥X .

Proof. The three properties (BNB1) - (BNB3) of Theorem 3.17 have to be verified in
order to conclude unique solvability of the variational problem (3.33). Note that the
inclusion X ⊂ Y is essential for the verification of (BNB2) and (BNB3), however this
is naturally given due to the definition of the spaces. A general proof is given in [44,
Theorem 6.6], the proof with the specific constants in [144, Corollary 2.3] and [165,
Theorem 3.2.4]. In particular, it holds the continuity (BNB1)

|a(ũ, v)| ≤
√

2∥ũ∥X∥v∥Y for all ũ ∈ X and v ∈ Y,

and the inf-sup condition (BNB2) [144, Theorem 2.1], [91]

inf
0̸=ũ∈X

sup
0 ̸=v∈Y

a(ũ, v)
∥ũ∥X∥v∥Y

≥ 1,

from which the above stability estimate follows. The surjectivity (BNB3) can be
obtained for 0 ̸= v ∈ Y by choosing

û(x, t) =
t∫

0

v(x, τ) dτ, ∂

∂t
û(x, t) = v(x, t) for x ∈ Ω, t ∈ [0, T ].

By definition, we have û ∈ X, cf. [97], and we deduce that

a(û, v) =
T∫

0

∫
Ω

[
cH

∂

∂t
û(x, t)v(x, t) + [A(x)∇xû(x, t)] · ∇xv(x, t)

]
dxdt

=
T∫

0

∫
Ω

[
cH [ ∂

∂t
û(x, t)]2 + [A(x)∇xû(x, t)] · ∇x

∂

∂t
û(x, t)

]
dxdt

≥ cH∥∂tû∥2
L(Q) + 1

2 cA∥∇xû(T )∥2
L2(Ω) > 0,
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where the last estimate follows from the chain rule
T∫

0

∫
Ω

[A(x)∇xû(x, t)]·∇x
∂

∂t
û(x, t) dxdt

=
T∫

0

∫
Ω

1
2
∂

∂t

(
[A(x)∇xû(x, t)] · ∇xû(x, t)

)
dxdt

≥ 1
2 cA

T∫
0

∫
Ω

∂

∂t
[∇xû(x, t)]2 dxdt

= 1
2 cA

∫
Ω

[∇xû(x, T )]2 dx > 0,

(3.34)

with û(x, 0) = 0 for x ∈ Ω.

When using the triangle inequality for u ∈ W (Q), another similar stability estimate

∥u∥X ≤
[
∥f∥L2(0,T ;H−1(Ω)) +

√
2∥ũ0∥X

]
+ ∥ũ0∥X ,

can be obtained, see [165, Theorem 3.2.4].

Remark 3.20. Note that, the inf-sup constant ca
1 = 1 [91] is an improvement of the

constant ca
1 = 1

2
√

2 given in [144] and ca
1 = 1√

2 given in [148]. In Section 4.1 we will
investigate these conditions (BNB1) - (BNB3) in more detail.

3.5.2 Space-time finite element discretization

Let Xh ⊂ X and Yh ⊂ Y be finite-dimensional spaces assuming Xh ⊂ Yh as in
the continuous case X ⊂ Y . The discretization of the Petrov-Galerkin space-time
variational formulation (3.33) reads as, find ũh ∈ Xh, such that

a(ũh, vh) = l(vh) − a(ũ0, vh) for all vh ∈ Yh. (3.35)

Similar to the continuous case, we first consider for ũ ∈ X the unique solution
wu,h ∈ Yh to the discrete variational problem of (3.32), which is to find wu,h ∈ Yh,
such that

T∫
0

∫
Ω

[A(x)∇xwu,h(x, t)] · ∇xvh(x, t) dxdt =
T∫

0

∫
Ω

cH
∂

∂t
ũ(x, t)vh(x, t) dxdt, (3.36)

for all vh ∈ Yh. For a conformal discretization Yh ⊂ Y , it is convenient to use (3.36)
and (3.32) as in [144], in order to obtain

∥wu,h∥Y ≤ ∥wu∥Y ,
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and hence, we can define the mesh dependent energy norm

∥ũ∥2
Xh

:= ∥ũ∥2
Y + ∥wu,h∥2

Y ≤ ∥ũ∥2
Y + ∥wu∥2

Y = ∥ũ∥2
X for all ũ ∈ X.

Correspondingly, for ũh ∈ Xh we define wuh,h ∈ Yh as the unique solution of (3.36)
in order to prove the discrete inf-sup condition

∥ũh∥Xh
≤ sup

0̸=vh∈Yh

a(ũh, vh)
∥vh∥Y

for all ũh ∈ Xh, (3.37)

when repeating the same steps as in the continuous case with the particular choice
vh = ũh + wuh,h ∈ Yh due to Xh ⊂ Yh. As a result, the unique solvability of the
discrete space-time variational problem (3.35) follows from (3.37), and, due to the
Galerkin orthogonality

a(ũ− ũh, vh) = 0 for all vh ∈ Yh,

where ũ ∈ X and ũh ∈ Xh are the unique solutions of (3.33) and (3.35), respectively,
we obtain for arbitrary vh ∈ Yh, that

∥ũh − vh∥Xh
≤ sup

0̸=zh∈Yh

a(ũh − vh, zh)
∥zh∥Y

= sup
0̸=zh∈Yh

a(ũh − ũ, zh) + a(ũ− vh, zh)
∥zh∥Y

= sup
0̸=zh∈Yh

a(ũ− vh, zh)
∥zh∥Y

≤
√

2∥ũ− vh∥X .

Hence, we deduce the a priori error estimate

∥ũ− ũh∥Xh
≤ ∥ũ− vh∥Xh

+ ∥vh − ũh∥Xh
≤
(
1 +

√
2
)

∥ũ− vh∥X

for all vh ∈ Yh, i.e. we derived Céa’s lemma

∥ũ− ũh∥Xh
≤
(
1 +

√
2
)

inf
vh∈Yh

∥ũ− vh∥X .

Remark 3.21. For finite-dimensional spaces Xh and Yh, where dim(Xh) = dim(Yh),
it is sufficient to prove only the continuity (BNB1) and the discrete inf-sup condi-
tion (3.37) for ũh ∈ Xh and vh ∈ Yh in order to conclude a unique solution of the
discrete variational formulation (3.35), see [36, Theorem 4.1.2].

For our specific purpose, we consider the conforming space-time discretization

Xh = Yh = S1
h(Qh) ∩X
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of piecewise linear and globally continuous basis functions as defined in (3.24) with
respect to some admissible and locally quasi-uniform decomposition Qh = ⋃N

ℓ=1 τ ℓ of
the space-time cylinder Q into shape regular simplicial finite elements τℓ. Obviously,
the discrete inf-sup condition (3.37) holds for this particular choice of the finite
element spaces Xh and Yh, and we conclude the following a priori estimate.

Theorem 3.22. Let ũ ∈ X and ũh ∈ Xh be the unique solutions of the variational
problems (3.33) and (3.35), respectively, and assume ũ ∈ H2(Q). Then, the following
energy error estimate holds with a constant c > 0 independent of the mesh size h,

∥ũ− ũh∥Y ≤ ch|ũ|H2(Q).

Proof. The proof is given in [144, Theorem 3.3].

Remark 3.23. The finite element spaces Xh ⊂ Yh may also be spanned by continuous
form functions of higher order p > 1. In this case, assuming ũ ∈ Hs(Q) for some
s = 2, . . . , p+ 1, the energy error estimate becomes

∥ũ− ũh∥Y ≤ chs−1|ũ|Hs(Q).

For numerical examples and the validation of the estimates we refer to [144, 145, 146,
147].

3.6 Parallelization

In this section, we will describe the space-time parallel computing, which is used in
this work to solve all occurring linear systems. At the beginning of this chapter we
already mentioned, that we treat the time t for parabolic partial differential equations
as an additional spatial variable xd+1 = t, when the spatial domain is in Rd. This
has the effect that we need to construct a (d + 1)-dimensional mesh and to deal
with the computation of higher dimensional linear systems. However, using space-
time methods result in the solving of only one single linear system, for which parallel
computing techniques can be applied. Particularly this means, that parallel solving of
these systems is associated to the parallelization of space and time at once, whereas
for classical time-stepping methods [149] the right balance of parallelism between
the spatial and temporal semi-discretization must be chosen. Due to the inherently
sequential behavior of time-stepping, so-called parallel-in-time (PinT) methods have
been developed in order to overcome the challenge of the time parallelization. For
a comprehensive overview of the history of PinT methods we refer to the work of
Gander [55].
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Another capability that space-time methods offer is the convenient treatment of
(partly) moving domains, since the movement can be easily captured by the space-
time mesh. The moving boundaries and interfaces are handled more naturally, as
they can seamlessly accommodate shifts in the domain over time without requiring
complex remeshing or adjustments, e.g. as arbitrary Lagrangian Eulerian (ALE)
schemes [40], mortaring methods [18] or unfitted finite element methods [12]. As
before, we end up with a single linear system, that we want to solve by space-time
parallel computing.

In terms of space-time finite element methods, parallelization means to split the large
problem into smaller ones and solve each reduced problem parallel at the same time.
On the one hand, the shared memory model allow the concurrent tasks to interact by
reading and writing shared objects in the memory, e.g. OpenMP [32]. On the other
hand, the distributed memory model distribute the work load on different nodes,
where every single node has its own local memory. However, all nodes are connected
to an interconnection network in order to interact with each other by message passing
(MP). Different implementations of the Message Passing Interface (MPI) provide
different realizations of the communication between the nodes, e.g. OpenMPI [54] or
MPICH [66]. Hybrid parallelization techniques combine both models, such that the
problem is distributed on several nodes, but on each node a shared memory model
is used.

For our purpose, it is convenient to use the distributed memory model, since the
resulting system to solve may get extremely large, which is very likely to happen
with three- or four-dimensional meshes. The expensive parts of the finite element
scheme are the assembling of the linear system and the solving of the linear system
to obtain the solution. However, before assembling, the initial decomposition of the
mesh need to be distributed to the chosen amount of nodes in a suitable way. A graph
partitioning algorithm assigns each node a part of the mesh, in which the information
of the shared vertices needs to be restored for further communication between the
nodes. Hence, the element-wise assembly of the linear system and the right-hand
side can be done independently on each node taking into account the information
about the shared degrees of freedom. Nowadays, many finite element libraries have
implemented the parallel assembly. However, only a bunch of them can deal with
four-dimensional meshes. In the scope of this work we only obtain two- or three-
dimensional space-time meshes and refer to [115] and [134] for the treatment of next
higher dimensional meshes.

The other expensive part of finite element methods is the solving of the linear system.
We distinguish between sparse direct solvers and iterative solvers. In many cases the
system matrix of the finite element discretization is sparse, hence efficient parallel di-
rect solvers can be implemented, see for instance the fast parallel sparse direct solvers
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Figure 3.2: A mesh of the PMSM divided into 4 parts by METIS.

PARDISO [135] or MUMPS [4, 5]. The main drawback of such solvers is their enor-
mous memory demand that strongly depend on the sparsity pattern of the system
matrix. A remedy to the high memory consumption offers iterative solvers, e.g. the
Conjugate Gradient (CG) method [76] or the Generalized Minimal Residual (GM-
RES) method [131], which usually can be easily parallelized, since they rely mostly
on matrix-vector and vector-vector products. Speaking about iterative solvers, also
(parallel) preconditioners need to be chosen wisely in order to effectively reduce the
number of iterations. Many parallel linear algebra libraries provide a huge set of
different direct and iterative solvers, as well as a great variety of preconditioners. For
a detailed overview we refer to the book of Saad [130] and the work of Langer and
Neumüller [95], as well as the references therein.

3.6.1 Software libraries

For all of our numerical experiments we have used the high performance multiphysics
finite element software Netgen/NGSolve [137]. It is a C++ software implementation
with a user-friendly Python interface and provides many functionalities including
mesh generation, a set of (parallel) solvers and preconditioners, and a visualization
tool. We use the Python interface mpi4py [127, 33] to issue OpenMPI [54] calls from
Python, which causes a parallel distributed memory execution of Netgen/NGSolve.
The master process distributes the mesh within the group of processes by the graph
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partitioning algorithm METIS [86] and assigns each process a part of the mesh.
Then, the finite element space, the bilinear form and the right-hand side are defined
in Netgen/NGSolve considering the distributed degrees of freedom, which follow the
distribution of the mesh. An example of how the mesh distribution by METIS may
look like for the permanent magnet synchronous motor from Figure 2.2 is visualized
in Figure 3.2. For the mesh generation we have used the open source 3D finite mesh
generator GMSH [64]. Finally, the solving of the resulting linear systems is done
by the parallel numerical software library PETSc [14, 34]. The Netgen/NGSolve
data structures are converted into the PETSc data structures, for which we use the
provided direct solver MUMPS or the iterative solver GMRES with the BoomerAMG
preconditioner [129] from the hypre library [46] to obtain the solution to the linear
system. We use the default settings for the BoomerAMG1 preconditioner, that is
an ℓ1-Gauss-Seidel smoother [13] using a forward solve on the down cycle and a
backward solve on the up-cycle.

3.6.2 Hardware specification

At the Institute of Applied Mathematics at TU Graz, Austria, there is a local work-
station called Babbage, on which we execute all numerical examples in this thesis.
It has a 384 GiB RAM and two 16-core Intel Xeon Gold 5218 processors.

1https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html

https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html




4 Space-time eddy current problem

This chapter forms the main part of this work and focuses mainly on the analysis of
the space-time variational formulation in the setting of Bochner spaces and its con-
forming discretization for parabolic evolution problems considering fixed domains as
well as uniformly and slowly moving domains, i.e. the movement is much slower
than the speed of light c0. The model problem of interest is the eddy current prob-
lem (2.21) with homogenous Dirichlet boundary and initial conditions defined on a
(partly) moving domain,

σ(y) d
dt
u(y, t) − divy(ν(y)∇yu(y, t)) = J3(y, t) − divy(M⊥(y, t)) for (y, t) ∈ Q,

u(y, t) = 0 for (y, t) ∈ Σ, (4.1)
u(x, 0) = 0 for φ(x, 0) = x ∈ Ω0,

where the open space-time cylinder Q is defined as in (3.5), the lateral boundary Σ
ofQ as in (3.6), and Ω0 ∈ Rd, d = 1, 2, 3, is bounded and Lipschitz and the initial state
of the domain at time t = 0[s]. Furthermore, the electric conductivity σ and the mag-
netic reluctivity ν are material dependent constant coefficients, and J3 and M⊥ are
given source terms denoting the current density and the magnetization, respectively.
Note that the partial differential equation (4.1) is posed on both conducting (σ > 0)
and non-conducting (σ = 0) materials, making it to an elliptic-parabolic type, and
considers fixed parts of the domain (ṽ = 0) and moving regions. Hence, the occurring
time derivative is the total time derivative as defined in (2.20). Additionally, we also
consider realistic applications, where the magnetic reluctivity ν(y, |∇yu|) is nonlinear
for ferromagnetic material. The IBVP (4.1) usually takes interface conditions into
account, if the domain consists of multiple materials, i.e. the material coefficients
jump across the interfaces. Although the interface conditions

JuK = 0 on ΓI(t) × (0, T ),
Jν∇xu · nΓI

K = 0 on ΓI(t) × (0, T ),

are not explicitly stated in (4.1), they always hold true as a result of Theorem 4.17.

First, we extend the evolution problem (3.29) to a coupled elliptic-parabolic interface
problem for non-moving domains and analyze the unique solvability of its space-time
variational formulation in Bochner spaces in Section 4.1. Here, the linear as well
as the nonlinear case will be investigated. In Section 4.2, we address a specific

53



54 4 Space-time eddy current problem

material law that accounts for hysteresis, resulting in a modified equation, for which
the proposed method is still applicable. Furthermore, we obtain the eddy current
problem (4.1) for moving domains as an extension to the problem in Section 4.1,
for which we also examine the unique solvability of the corresponding variational
formulation for the linear and nonlinear case in Section 4.3. Numerical results will
be given for each problem in order to verify either the related error estimate of
Section 3.5.2, or to illustrate the applicability of the proposed method to an electric
motor. We refer the reader to the pioneering work of Steinbach [144], which serves as
the essentials for this chapter. Other related contributions considering the space-time
variational formulation of evolution problems in Bochner spaces are for instance [6,
138, 153].

4.1 Eddy current problem for conducting and
non-conducting regions

This section starts with the formulation of a Bochner-type space-time variational
problem for the elliptic-parabolic interface eddy current equation posed on non-
moving domains. We first address the unique solvability of the linear case using
Theorem 3.17 and introduce a space-time finite element discretization, accompanied
by corresponding numerical examples. For the nonlinear case, unique solvability is
established using results from monotone operator theory [167], with numerical ex-
amples presented at the end of this section.

4.1.1 Linear eddy current problem

Space-time variational formulation

Recalling the evolution equation (3.29), for which we now assume that the coefficient
matrix A(x, t) is a diagonal matrix with the same diagonal entry ν(x) ∈ L∞(Ω),
such that 0 < ν ≤ ν(x) ≤ ν0 as in Lemma 2.7, and σ(x) ≥ 0 is piecewise constant,
we deduce the following elliptic-parabolic evolution problem, also referred as the
two-dimensional eddy current problem.

σ(x) ∂
∂t
u(x, t) − divx(ν(x)∇xu(x, t)) = J3(x, t) − divx(M⊥(x, t)) for (x, t) ∈ Q,

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = 0 for x ∈ Ω\Ωnon,

where Q = Ω × (0, T ) is the space-time cylinder for a terminal time T > 0, the fixed
domain Ω (ṽ = 0) is composed of conducting regions Ωcon (σ > 0) and non-conducting
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regions Ωnon (σ = 0), and the current density J3 as well as the magnetization M⊥ are
given sources. As in Section 3.5, we use the notation Y := L2(0, T ;H1

0 (Ω)) for the
Bochner space covering homogenous Dirichlet boundary conditions, equipped with
the equivalent norm

∥v∥Y :=
 T∫

0

∫
Ω

ν(x)|∇xv(x, t)|2 dxdt
1/2

,

and

X := {u ∈ Y : σ ∂
∂t
u ∈ Y ⋆, u(x, 0) = 0 ∈ Ωcon} ⊂ Y (4.2)

for the trial space with the corresponding graph norm

∥u∥2
X := ∥u∥2

Y + ∥σ ∂
∂t
u∥2

Y ⋆ = ∥u∥2
Y + ∥wu∥2

Y ,

where wu ∈ Y is the unique solution of the variational problem
T∫

0

∫
Ω

ν(x)∇xwu(x, t) · ∇xv(x, t) dxdt =
T∫

0

∫
Ω

σ(x) ∂
∂t
u(x, t)v(x, t) dxdt (4.3)

for all v ∈ Y . Indeed, the variational problem (4.3) admits a unique solution due to
the lemma of Lax-Milgram. The related space-time variational formulation is to find
u ∈ X, such that

a(u, v) = l(v) for all v ∈ Y, (4.4)

where

a(u, v) =
T∫

0

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x, t) + ν(x)∇xu(x, t) · ∇xv(x, t)

]
dxdt,

l(v) =
T∫

0

∫
Ω

[
J3(x, t)v(x, t) +M⊥(x, t) · ∇xv(x, t)

]
dxdt.

In order to prove the unique solvability of (4.4), we need to verify the conditions
(BNB1) - (BNB3) of Theorem 3.17. The continuity follows immediately from the
duality, the Cauchy-Schwarz and the Hölder inequality, i.e.

|a(u, v)| ≤ ∥σ ∂
∂t
u∥Y ⋆∥v∥Y + ∥u∥Y ∥v∥Y =

[
∥σ ∂
∂t
u∥Y ⋆ + ∥u∥Y

]
∥v∥Y

≤
√

2
√

∥σ ∂
∂t
u∥2

Y ⋆ + ∥u∥2
Y ∥v∥Y =

√
2∥u∥X∥v∥Y ,
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for all u ∈ X and v ∈ Y . Similar to Section 3.5, we want to derive an inf-sup stability
condition for the bilinear form in (4.4). For this purpose, let wu ∈ Y be the unique
solution of the variational formulation (4.3) for a given u ∈ X. Since X ⊂ Y , we can
consider vu = u+ wu ∈ Y and (4.3) in order to obtain

a(u, vu) = a(u, u+ wu)

=
T∫

0

∫
Ω

σ
∂

∂t
u(u+ wu) dxdt+

T∫
0

∫
Ω

ν∇xu · ∇x(u+ wu) dxdt

=
T∫

0

∫
Ω

ν∇xwu · ∇x(u+ wu) dxdt+
T∫

0

∫
Ω

ν∇xu · ∇x(u+ wu) dxdt

=
T∫

0

∫
Ω

ν∇x(u+ wu) · ∇x(u+ wu) dxdt

= ∥u+ wu∥2
Y = ∥vu∥2

Y .

On the other hand, we obtain that
∥vu∥2

Y = ∥u+ wu∥2
Y

=
T∫

0

∫
Ω

ν|∇xu|2 dxdt+
T∫

0

∫
Ω

ν|∇xwu|2 dxdt+ 2
T∫

0

∫
Ω

ν∇xu · ∇xwu dxdt

= ∥u∥2
Y + ∥wu∥2

Y + 2
T∫

0

∫
Ω

σ
∂

∂t
u u dxdt

≥ ∥u∥2
Y + ∥wu∥2

Y = ∥u∥2
X

where we have used the chain rule
T∫

0

∫
Ω

2σ ∂
∂t
u u dxdt =

T∫
0

∫
Ω

σ
∂

∂t
[u]2 dxdt =

T∫
0

∂

∂t

∫
Ω

σ[u]2 dxdt

=
∫
Ω

σ(x)[u(x, t)]2 dx
∣∣∣∣T
0

=
∫

Ωcon

σ(x)[u(x, T )]2 dx > 0

with u(x, 0) = 0 for x ∈ Ω\Ωnon. Therefore, the inf-sup stability condition reads as

∥u∥X ≤ sup
0̸=v∈Y

a(u, v)
∥v∥Y

for all u ∈ X. (4.5)

Lastly, we want to prove the surjectivity (BNB3) of the bilinear form a(·, ·) in (4.4).
However, since we deal with an elliptic-parabolic interface problem, the verification of
the surjectivity is more involved compared to the parabolic case (3.33) and needs the
application of the so-called Steklov-Poincaré operator, see e.g. [125] or [143, Section
6.6.3]. The proof is given in the following lemma, cf. [60].
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Lemma 4.1. For all v ∈ Y \{0} there exists a û ∈ X such that

a(û, v) ̸= 0.

Proof. For a given v ∈ Y \{0} we first define

û(x, t) =
t∫

0

v(x, τ) dτ, ∂

∂t
û(x, t) = v(x, t) for x ∈ Ωcon, t ∈ [0, T ].

By definition, we have û ∈ X satisfying the initial condition u(x, 0) = 0 for x ∈ Ωcon

and

a(û, v) =
T∫

0

∫
Ω

[
σ(x) ∂

∂t
û(x, t)v(x, t) + ν(x)∇xû(x, t) · ∇xv(x, t)

]
dxdt

=
T∫

0

∫
Ωcon

σ(x)[v(x, t)]2 dxdt+
T∫

0

∫
Ω

ν(x)∇xû(x, t) · ∇x
∂

∂t
û(x, t) dxdt

=
T∫

0

∫
Ωcon

σ(x)[v(x, t)]2 dxdt+
T∫

0

∫
Ωcon∪Ωnon

ν(x)∇xû(x, t) · ∇x
∂

∂t
û(x, t) dxdt.

Obviously, the first expression is positive as well as the second expression when using
the chain rule (3.34) in the conducting regions. Hence, it follows that

a(û, v) ≥
T∫

0

∫
Ωcon

σ(x)[v(x, t)]2 dxdt+
T∫

0

∫
Ωnon

ν(x)∇xû(x, t) · ∇x
∂

∂t
û(x, t) dxdt.

It remains to define û ∈ X for the non-conducting regions in a suitable way. In any
non-conducting subregion we can use Gauss’s divergence theorem to write

T∫
0

∫
Ωnon

ν(x)∇xû(x, t) · ∇xv(x, t) dxdt =
T∫

0

∫
Ωnon

−div[ν(x)∇xû(x, t)]v(x, t) dxdt

+
T∫

0

∫
∂Ωnon

γ0[ν(x)∇xû(x, t)] · nx γ0v(x, t) dsxdt

=
T∫

0

∫
Ωnon

[v(x, t)]2 dxdt+
T∫

0

∫
∂Ωnon

γ0[ν(x)∇xû(x, t)] · nx γ0v(x, t) dsxdt,

where γ0 is the trace operator as defined in Theorem 3.8, nx is the spatial unit
outward normal vector and û is a solution of the elliptic Dirichlet boundary value
problem

−div[ν(x)∇xû(x, t)] = v(x, t) for x ∈ Ωnon, t ∈ (0, T ). (4.6)
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To ensure û ∈ Y , we formulate the boundary conditions

û|Ωnon = û|Ωcon on ∂Ωnon ∩ ∂Ωcon,

û|Ωnon = 0 on ∂Ωnon ∩ ∂Ω.

The solution of the elliptic Dirichlet boundary value problem (4.6) implies the Dirich-
let to Neumann map

γ0 [ν(x)∇xû(x, t)] · nx = (Sγ0û)(x, t) for x ∈ ∂Ωnon, t ∈ [0, T ],

with the Steklov-Poincaré operator S : H1/2(∂Ω) → H−1/2(∂Ω). Since S is self-
adjoint and positive semi-definite, we can factorize S and use the chain rule in order
to write

T∫
0

∫
∂Ωnon

(Sγ0û)(x, t) γ0v(x, t) dsxdt =
T∫

0

∫
∂Ωnon

(S1/2γ0û)(x, t)(S1/2γ0v)(x, t) dsxdt

=
T∫

0

∫
∂Ωnon

(S1/2γ0û)(x, t) ∂
∂t

(S1/2γ0û)(x, t) dsxdt

= 1
2

T∫
0

∂

∂t

∫
∂Ωnon

[
(S1/2γ0û)(x, t)

]2
dsxdt

= 1
2

∫
∂Ωnon

[
(S1/2γ0û)(x, T )

]2
dsx ≥ 0.

Therefore, we deduce that
T∫

0

∫
Ωnon

ν(x)∇xû(x, t) · ∇xv(x, t) ≥
T∫

0

∫
Ωnon

[v(x, t)]2 dxdt,

which finally gives

a(û, v) ≥
T∫

0

∫
Ωcon

σ(x)[v(x, t)]2 dxdt+
T∫

0

∫
Ωnon

[v(x, t)]2 dxdt > 0.

This concludes the proof.

Summarizing the latest results yield the following theorem.

Theorem 4.2. Let J3 ∈ L2(0, T ;H−1(Ω)) and M⊥ ∈ [L2(Q)]d be given. Then there
exists a unique solution u ∈ X of (4.4) satisfying

∥u∥X ≤ ∥J3∥L2(0,T ;H−1(Ω)) + c∥M⊥∥L2(Q).
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Proof. The unique solvability of (4.4) follows from the Banach-Nečas-Babuška The-
orem 3.17. The stability estimate is deduced from the inf-sup condition, i.e.

∥u∥X ≤ sup
0̸=v∈Y

a(u, v)
∥v∥Y

= sup
0̸=v∈Y

l(v)
∥v∥Y

≤ sup
0̸=v∈Y

∥J3∥L2(0,T ;H−1(Ω))∥v∥Y + ∥M⊥∥L2(Q)∥∇xv∥L2(Q)

∥v∥Y

≤ ∥J3∥L2(0,T ;H−1(Ω)) +
√
L ∥M⊥∥L2(Q),

where the last estimate follows from the fact that√
1
L

∥∇xv∥L2(Q) ≤ ∥v∥Y ≤
√
ν0∥∇xv∥L2(Q),

due to Theorem 2.7.

Remark 4.3. A more general alternative to prove the unique solvability of parabolic
linear evolution problems gives the main theorem on first-order linear evolution equa-
tions [166, Section 23.7] considering the linear, continuous and strongly monotone
operator A : Y → Y ⋆ with ⟨Au, v⟩ := ae(u, v), where

ae(u, v) :=
T∫

0

∫
Ω

ν(x)∇xu(x, t) · ∇xv(x, t) dxdt for u, v ∈ Y.

Under these assumptions and for l ∈ Y ⋆, the initial value problem

∂

∂t
u+ Au = l in Y ⋆,

u(0) = 0,

which is equivalent to (3.33), admits a unique solution u ∈ Y with the weak derivative
∂tu ∈ Y ⋆, see [166, Theorem 23.A and Corollary 23.24]. In terms of this theorem,
a statement about the existence of a unique solution for the elliptic-parabolic inter-
face problem (4.4) can be given in the following way. Suppose the solution ucon in
the conducting region Ωcon is known. Then the interface conditions together with
the boundary conditions provide the necessary boundary conditions for the elliptic
problem in the non-conducting region Ωnon. By the lemma of Lax-Milgram a unique
solution unon(ucon) depending on ucon exists, i.e. the solution in the conducting re-
gion Ωcon uniquely determines the solution in the non-conducting region Ωnon. Since
the parabolic problem in the conducting region Ωcon has a solution ucon by the above
theorem, the full eddy current problem is uniquely solvable when using the relation
unon(ucon). The authors of [11] and [87] have taken advantage of this idea in order to
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show unique solvability for the nonlinear eddy current problem as well as [90] for the
linear case. The numerical treatment of such interface problems leads to the popular
domain decomposition methods [126, 151]. Within each subdomain the corresponding
problems can be formulated, i.e.

∂

∂t
ucon + Aucon = l in Ωcon,

Aunon = l in Ωnon,

and are coupled through the subdomain interface, i.e. ucon = unon and ∂ucon

∂nA
= ∂unon

∂nA

on ∂Ωcon ∩ ∂Ωnon.

Space-time finite element discretization

For the space-time finite element scheme we introduce conforming finite dimensional
spaces Xh ⊂ X and Yh ⊂ Y , where we assume as in the continuous case that Xh ⊂ Yh.
For our specific purpose we even consider

Xh = Yh := S1
h(Th) ∩X = span{ϕk}M

k=1, (4.7)

where the space S1
h(Th) of piecewise linear and globally continuous functions ϕk is

defined as in (3.24) with respect to some admissible and locally quasi-uniform de-
composition Th = {τℓ}N

ℓ=1 of the space-time cylinder Q into shape regular simplicial
finite elements τℓ of mesh size hℓ, cf. Section 3.4. The Galerkin space-time finite
element discretization of the variational formulation (4.4) is to find uh ∈ Xh, such
that

a(uh, vh) = l(vh) for all vh ∈ Yh. (4.8)

In order to guarantee the existence of a unique solution for the discrete variational
problem (4.8), we proceed as in the continuous case. First, for any u ∈ X we define
wu,h ∈ Yh as the unique solution of the Galerkin variational formulation

T∫
0

∫
Ω

ν(x)∇xwu,h(x, t) · ∇xvh(x, t) dxdt =
T∫

0

∫
Ω

σ(x) ∂
∂t
u(x, t)vh(x, t) dxdt, (4.9)

for all vh ∈ Yh. Consequently, we define the discrete energy norm as

∥u∥2
Xh

:= ∥u∥2
Y + ∥wu,h∥2

Y ≤ ∥u∥2
Y + ∥wu∥2

Y = ∥u∥2
X for all u ∈ X, (4.10)

where wu ∈ Y is the unique solution of the variational formulation (4.3), and due to
the conformal discretization Yh ⊂ Y we have ∥wu,h∥Y ≤ ∥wu∥Y , cf. [144]. Similarly,
we define wuh,h ∈ Yh as the unique solution of (4.9) for uh ∈ Xh in the right-hand
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side. Hence, we can consider the particular test function vuh,h = uh + wuh,h due to
Xh ⊂ Yh, in order to conclude

a(uh, vuh,h) = a(uh, uh + wuh,h) = ∥uh + wuh,h∥2
Y = ∥vuh,h∥2

Y

and

∥vuh,h∥2
Y = ∥uh + wuh,h∥2

Y ≥ ∥uh∥2
Y + ∥wuh,h∥2

Y = ∥uh∥2
Xh

as in the continuous case, which finally gives the discrete inf-sup stability condition

∥uh∥Xh
≤ sup

0 ̸=vh∈Yh

a(uh, vh)
∥vh∥Y

for all uh ∈ Xh. (4.11)

From (4.11) we deduce unique solvability of the Galerkin space-time variational for-
mulation (4.8). Furthermore, if u ∈ X and uh ∈ Xh are the unique solutions of
the variational problems (4.4) and (4.8), respectively, we obtain with the help of the
Galerkin orthogonality

a(u− uh, vh) = 0 for all vh ∈ Yh,

and due to

∥uh∥Xh
≤ sup

0̸=vh∈Yh

a(uh, vh)
∥vh∥Y

= sup
0̸=vh∈Yh

a(u, vh)
∥vh∥Y

≤
√

2∥u∥X ,

the boundedness of the Galerkin projection uh = Ghu, i.e.

∥Ghu∥Xh
= ∥uh∥Xh

≤
√

2∥u∥X for u ∈ X.

In the same way as in Section 3.5.2, we can derive Céa’s lemma

∥u− uh∥Xh
≤
(
1 +

√
2
)

inf
vh∈Yh

∥u− vh∥X ,

and the a priori error estimate in the energy norm as given in Theorem 3.22,

∥u− uh∥Y ≤ ch|u|H2(Q),

if u ∈ H2(Q).

4.1.2 Numerical examples

In this section we provide some numerical results in order to illustrate the applica-
bility and accuracy of the proposed approach. We define the finite element spaces Yh
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and Xh as in (4.7), which are spanned by piecewise linear and globally continuous
functions ϕk, cf. (3.24). Hence, for all vh ∈ Yh we can find the representation

vh(x, t) =
M∑

k=1
vkϕk(x, t), with vk = vh(xk, tk), (4.12)

that defines the finite element isomorphism vh ↔ vh ∈ RM , where vh[k] = vk, for
k = 1, . . . ,M . The discrete space-time variational formulation (4.8) is then equivalent
to the linear system

(Ah +Kh)uh = lh, (4.13)

where Ah ∈ RM×M and the stiffness matrix Kh ∈ RM×M are given as

Ah[i, j] =
T∫

0

∫
Ω

σ(x) ∂
∂t
ϕj(x, t)ϕi(x, t) dxdt,

Kh[i, j] =
T∫

0

∫
Ω

ν(x)∇xϕj(x, t) · ∇xϕi(x, t) dxdt,

for i, j = 1, . . . ,M , and the load vector lh has the entries

lh[i] =
T∫

0

∫
Ω

[J3(x, t)ϕi(x, t) +M⊥(x, t) · ∇xϕi(x, t)] dxdt,

for i = 1, . . . ,M . We solve the resulting non-symmetric linear system (4.13) in
parallel with the methods described in Section 3.6.1. On the one hand we use the
parallel direct solver MUMPS, and on the other hand we use the parallel iterative
solver GMRES with the BoomerAMG preconditioner. Both solvers are provided
by PETSc, where we use the preconditioner from the hypre library for the iterative
solver. The following examples will show the computational times of these two solvers
and the expected convergence rate as stated in Theorem 3.22.

We start with an example for d = 1, for which we consider an interval Ω = (0, 1),
such that Ω = Ωcon ∪ Ωnon with Ωcon = (0, 0.5) and Ωnon = (0.5, 1), where each
half is made of a different material, i.e. the electric conductivity σ and magnetic
reluctivity ν have different values on each half of the interval and jump across the
interface. Furthermore, the interval Ω is extruded in time with T = 1, which defines
the space-time cylinder Q = (0, 1)2 ∈ R2 as depicted in Figure 4.1. Considering the
manufactured solution

u(x, t) = x(1 − x)t,
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Figure 4.1: Left: An unstructured mesh of the space-time cylinder Q = (0, 1)2, con-
sisting of the conducting region Ωcon (red) and the non-conducting re-
gion Ωnon (blue). The visualized mesh has 549 nodes (degrees of free-
dom) and 1015 elements. Right: The approximate solution uh of (4.8)
computed on this mesh.

L dofs ∥u− uh∥Y EOC

1 13 0.13582
2 41 0.06868 0.983
3 145 0.03468 0.986
4 545 0.01745 0.991
5 2,113 0.00875 0.996
6 8,321 0.00438 0.999
7 33,025 0.00219 0.999
8 131,585 0.00109 1
9 525,313 0.00055 1
10 2,099,201 0.00027 1
11 8,392,705 0.00014 1

Table 4.1: The discretization error in the energy norm, which indicates linear conver-
gence when using the parallel direct solver as well as the iterative solver
on 16 cores for a uniform mesh refinement. The number of GMRES it-
erations increases in each refinement step, ending up with a maximum of
3000 iterations.
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Number of cores 1 2 4 8 16

MUMPS 9.09 8.30 7.67 7.33 7.26
GMRES 147.16 99.15 36.92 19.59 10.12
iterations 215 192 160 176 171

Table 4.2: Computational times in seconds for solving the linear system (4.13) with
MUMPS and preconditioned GMRES with the BoomerAMG precondi-
tioner on a mesh with 525,313 nodes (dofs) and 262,144 elements.

that satisfies the homogenous boundary and initial condition, and the material pa-
rameters

σ(x) =
1 for x ∈ Ωcon,

0 for x ∈ Ωnon,
and ν(x) =

2 for x ∈ Ωcon,

1 for x ∈ Ωnon,

we deduce the right-hand side

l(vh) =
T∫

0

∫
Ω

J3(x, t)vh(x, t) dxdt, with J3 =
x(1 − x) + 4t for x ∈ Ωcon,

2t for x ∈ Ωnon.

Figure 4.1 depicts the approximate solution uh of (4.8), and Table 4.1 shows the
expected linear convergence as stated in Theorem 3.22. Here, we used a relative
error tolerance of 10−8 for the parallel iterative solver GMRES. Hence, the errors
in Table 4.1 are almost the same as for the direct solver MUMPS. In Table 4.2 the
computational times are given with respect to the number of cores. Note that the
computational times relate purely to the time for solving the system (4.13), i.e. the
assembly and the converting of the data types between Netgen/NGSolve and PETSc
are not measured. Obviously, the parallel direct solver MUMPS is very efficient for
the spatially one-dimensional case.

Our next numerical experiment considers a spatially two-dimensional problem with
Ω = (0, 1)2, which consists of the non-conducting region Ωnon = (0.25, 0.75)2 and the
conducting region Ωcon = Ω\Ωnon. The domain is extruded in time with T = 1, hence
the space-time cylinder Q is defined as Q = (0, 1)3, see Figure 4.2. We consider the
manufactured solution

u(x1, x2, t) = sin(x1(1 − x1)π) sin(x2(1 − x2)π)t2,

and the material parameters

σ(x) =
0.1 for x ∈ Ωcon,

0 for x ∈ Ωnon,
and ν(x) =

x1x2 for x ∈ Ωcon,

x1x2 for x ∈ Ωnon.
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Figure 4.2: Left: The domain Ω showing the non-conducting region Ωnon (blue) in
the middle surrounded by the conducting region Ωcon (red). Right: An
unstructured mesh of the space-time cylinder Q = (0, 1)3, which is ex-
truded vertically in time and has 7,539 nodes (degrees of freedom) and
37,642 elements.

The right-hand side J3 is computed by using the underlying partial differential equa-
tion, i.e.

J3(x, t) = σ(x) ∂
∂t
u(x, t) − divx(ν(x)∇xu(x, t)).

The approximate solution uh is displayed for different time points in Figure 4.3 and
indicates the expected linear convergence in the energy norm in Table 4.3. As before,
we use a relative error tolerance of 10−8 for the parallel iterative solver GMRES. Fur-
thermore, the computational times for solving the linear system (4.13) with respect
to the number of cores are given in Table 4.4. Again, the measured times relate
purely to the solving of the linear systems.

4.1.3 Nonlinear eddy current problem

Space-time variational formulation

As already mentioned, in realistic applications the magnetic reluctivity ν additionally
depends on the magnitude of the magnetic flux density, which leads to the following
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Solution uh at time t = 0.0[s].

Solution uh at time t = 0.7[s].

Solution uh at time t = 0.35[s].

Solution uh at time t = 1.0[s].

Figure 4.3: The approximate solution uh of (4.8) for different time points computed
on the mesh from Figure 4.2.
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L dofs ∥u− uh∥Y EOC

1 26 0.15976
2 143 0.11193 0.513
3 941 0.06559 0.771
4 6,809 0.03541 0.889
5 51,761 0.01830 0.952
6 403,553 0.00928 0.980
7 3,186,881 0.00467 0.991

Table 4.3: The discretization error in the energy norm, which indicates linear conver-
gence when using the parallel direct solver as well as the iterative solver
on 16 cores for a uniform mesh refinement. The number of GMRES itera-
tions increases in each refinement step, ending up with a maximum of 80
iterations.

Number of cores 1 2 4 8 16

MUMPS 58.83 44.62 35.89 26.15 20.03
GMRES 67.32 46.14 24.45 15.96 9.61
iterations 34 33 34 34 32

Table 4.4: Computational times in seconds for solving the linear system (4.13) with
MUMPS and preconditioned GMRES with the BoomerAMG precondi-
tioner on a mesh with 403,553 nodes (dofs) and 2,359,296 elements.

nonlinear evolution problem,

σ
∂

∂t
u− divx(ν(x, |∇xu|)∇xu) = J3 − divx(M⊥) in Q,

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ), (4.14)
u(x, 0) = 0 for x ∈ Ω\Ωnon.

As before, the fixed domain Ω consists of conducting regions Ωcon(σ > 0) and non-
conducting regions Ωnon(σ = 0), and we keep the same notations Y = L2(0, T ;H1

0 (Ω))
and X as in (4.2). The nonlinear space-time variational formulation is to find u ∈ X,
such that

a(u, v) = l(v) for all v ∈ Y, (4.15)
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where

a(u, v) =
T∫

0

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x, t) + ν(x, |∇xu|)∇xu(x, t) · ∇xv(x, t)

]
dxdt,

l(v) =
T∫

0

∫
Ω

[
J3(x, t)v(x, t) +M⊥(x, t) · ∇xv(x, t)

]
dxdt.

In order to make a statement about the unique solvability of the variational formu-
lation (4.15), we first need to recall some general results for nonlinear problems, see
e.g. [167, Chapter 25, Chapter 30-32]. We start with the well-known Theorem of
Zarantonello [167], that yields the existence of a unique solution for nonlinear ellip-
tic problems in a Hilbert space, whose operator satisfies certain monotonicity and
continuity conditions.

Theorem 4.4 (Zarantonello [167, Theorem 25.B]). Let (H, ∥ · ∥H) be a real Hilbert
space and let the operator A : H → H⋆ be strongly monotone and Lipschitz continu-
ous, i.e. there exists a constant cM > 0, such that

⟨Au− Av, u− v⟩H⋆,H ≥ cM∥u− v∥2
H for all u, v ∈ H,

and there exists a constant L > 0, such that

∥Au− Av∥H⋆ ≤ L∥u− v∥H for all u, v ∈ H.

Then, for each b ∈ H⋆, the operator equation A(u) = b has a unique solution u ∈ H.
The solution u depends continuously on the data b. More precisely, for the solutions
u1, u2 ∈ H of Aui = bi, i = 1, 2, with respective b1, b2 ∈ H⋆, it holds

∥u1 − u2∥H ≤ c−1
M ∥b1 − b2∥H⋆ .

With this theorem, we can prove the following lemma about the unique solvability
of the rather general elliptic boundary value problem

−div
(
ν(|B⊤(x)∇u(x)|)B(x)B⊤(x)∇u(x)

)
= f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω,

whose variational formulation reads as to find u = u− g̃ ∈ H1
0 (Ω), such that

ae(u, v) =
∫
Ω

f(x)v(x) dx for all v ∈ H1
0 (Ω), (4.16)

where g̃ ∈ H1(Ω) such that g̃|∂Ω = g and

ae(u, v) :=
∫
Ω

ν(|B⊤(x)∇(u(x) + g̃(x))|)B(x)B⊤(x)∇(u(x) + g̃(x)) · ∇v(x) dx.
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Note that the product B(x)B⊤(x) is usually a decomposition of the coefficient ma-
trix A(x) = B(x)B⊤(x) as given in (3.29). Additionally, we can define the related
operator A : H1

0 (Ω) → H−1(Ω) by the relation

⟨Au, v⟩Ω = ae(u, v),

which allow rewriting (4.16) as an operator equation in the dual space, i.e.

Au = f in H−1(Ω).

Lemma 4.5. Let Ω ∈ Rd be bounded and Lipschitz and let ν : R+
0 → R+

0 be a function
satisfying (2.26). Furthermore, let B ∈ C∞(Ω;Rd×d) be a matrix-valued function,
such that B(x) is invertible for all x ∈ Ω. Then for all f ∈ H−1(Ω) and g ∈
H1/2(∂Ω), the variational problem (4.16) has a unique solution, which continuously
depends on the data f and g, i.e. for the solutions u1, u2 ∈ H1

0 (Ω) of (4.16) with
respective (f1, g1), (f2, g2) ∈ H−1(Ω) ×H1/2(∂Ω), it holds for a constant c > 0, that

∥u1 − u2∥H1
0 (Ω) ≤ c

(
∥f1 − f2∥H−1(Ω) + ∥g1 − g2∥H1/2(∂Ω)

)
. (4.17)

Proof. A related proof is given in [26, Lemma B.2]. Here we will sketch the main
idea, hence let g̃ ∈ H1(Ω), such that g̃|∂Ω = g. Further, let u1, u2 ∈ H1

0 (Ω) be
arbitrary functions and introduce Ui = B⊤(∇ui + ∇g̃) ∈ L2(Ω)d for i = 1, 2. Then,
since the reluctivity function maps to the non-negative real numbers, we obtain

⟨Au1 − Au2, u1 − u2⟩Ω =
∫
Ω

(ν(|U1|)BU1 − ν(|U2|)BU2) · ∇(u1 − u2) dx

=
∫
Ω

B (ν(|U1|)U1 − ν(|U2|)U2) · ∇(u1 − u2) dx

=
∫
Ω

(ν(|U1|)U1 − ν(|U2|)U2) ·B⊤∇(u1 − u2) dx

=
∫
Ω

(ν(|U1|)U1 − ν(|U2|)U2) (U1 − U2) dx.

= ν
∫
Ω

|U1 − U2|2 dx

+
∫
Ω

[
(ν(|U1|)U1 − ν(|U2|)U2) (U1 − U2) − ν|U1 − U2|2

]
dx

= ν
∫
Ω

|U1 − U2|2 dx

+
∫
Ω

[
(ν(|U1|) − ν)U1 − (ν(|U2|) − ν)U2

]
(U1 − U2) dx.
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In order to obtain the strong monotonicity of the operator A, we further use the
Cauchy-Schwarz inequality and (2.26) to derive

⟨Au1 − Au2, u1 − u2⟩Ω

= ν
∫
Ω

|U1 − U2|2 dx+
∫
Ω

[
(ν(|U1|) − ν)U1 − (ν(|U2|) − ν)U2

]
(U1 − U2) dx

= ν
∫
Ω

|U1 − U2|2 dx+
∫
Ω

[
(ν(|U1|) − ν)|U1|2 + (ν(|U2|) − ν)|U2|2

]
dx

−
∫
Ω

(ν(|U1|) + ν(|U2|) − 2ν)U1 · U2 dx

≥ ν
∫
Ω

|U1 − U2|2 dx+
∫
Ω

[
(ν(|U1|) − ν)|U1|2 + (ν(|U2|) − ν)|U2|2

]
dx

−
∫
Ω

(ν(|U1|) + ν(|U2|) − 2ν)|U1||U2| dx

= ν
∫
Ω

|U1 − U2|2 dx+
∫
Ω

[
ν(|U1|)|U1| − ν(|U2|)|U2|

]
(|U1| − |U2|) dx

− ν
∫
Ω

||U1| − |U2||2 dx

≥ ν
∫
Ω

|U1 − U2|2 dx+ ν
∫
Ω

||U1| − |U2||2 dx− ν
∫
Ω

||U1| − |U2||2 dx

= ν∥U1 − U2∥2
L2(Ω),

where the last estimate follows from the monotonicity of the reluctivity (2.26). By
the definition of U1 and U2, we deduce

∥U1 − U2∥2
L2(Ω) =

∫
Ω

B⊤(∇u1 − ∇u2) ·B⊤(∇u1 − ∇u2) dx

=
∫
Ω

BB⊤(∇u1 − ∇u2) · (∇u1 − ∇u2) dx

≥ γ
B

∥∇u1 − ∇u2∥2
L2(Ω) = γ

B
|u1 − u2|2H1

0 (Ω),

where the last estimate follows due to the fact that for invertible and smooth matrix-
valued functions B, the symmetric matrix BB⊤ is uniformly bounded, see e.g. [133],
i.e. there exist constants γ

B
, γB > 0, such that

γ
B

|ξ|2 < B(x)B⊤(x)ξ · ξ < γB|ξ|2 for all x ∈ Ω, ξ ∈ Rd. (4.18)

This finally gives the strong monotonicity of the operator A with constant cm = νγ
B

.
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For the Lipschitz continuity of A, we first realize that the Lipschitz constant ν0 is an
upper bound for the reluctivity function ν : R+

0 → R+
0 , since

ν(s)s = |ν(s)s− ν(0)0| ≤ ν0|s− 0| = ν0s for s ∈ R+
0 ,

when using (2.26), which yields ν(s) ≤ ν0 for all s ∈ R+
0 as given in Lemma 2.7.

Hence, with U1 and U2 as above, we have

|⟨Au1 − Au2, v⟩| ≤
∫
Ω

∣∣∣(ν(|U1|)U1 − ν(|U2|)U2
)

·B⊤∇v
∣∣∣ dx

=
∫
Ω

∣∣∣[ν(|U1|)(U1 − U2) +
(
ν(|U1|) − ν(|U2|)

)
U2
]

·B⊤∇v
∣∣∣ dx

≤
∫
Ω

∣∣∣ν(|U1|)(U1 − U2) +
(
ν(|U1|) − ν(|U2|)

)
U2

∣∣∣ ∣∣∣B⊤∇v
∣∣∣ dx

≤
∫
Ω

[
ν(|U1|)|U1 − U2| +

∣∣∣(ν(|U1|) − ν(|U2|)
)
|U2|

∣∣∣] ∣∣∣B⊤∇v
∣∣∣ dx.

We further observe with the boundedness of the reluctivity function that∣∣∣(ν(|U1|) − ν(|U2|)
)
|U2|

∣∣∣ =
∣∣∣ν(|U1|)(|U2| − |U1|) + ν(|U1|)|U1| − ν(|U2|)|U2|

∣∣∣
≤ ν(|U1|)

∣∣∣|U2| − |U1|
∣∣∣+ ∣∣∣ν(|U1|)|U1| − ν(|U2|)|U2|

∣∣∣
≤ ν(|U1|)|U1 − U2| +

∣∣∣ν(|U1|)|U1| − ν(|U2|)|U2|
∣∣∣

≤ ν0|U1 − U2| + ν0

∣∣∣|U1| − |U2|
∣∣∣

≤ 2ν0|U1 − U2|,

which yields

|⟨Au1 − Au2, v⟩| ≤
∫
Ω

[
ν(|U1|)|U1 − U2| +

∣∣∣(ν(|U1|) − ν(|U2|)
)
|U2|

∣∣∣] ∣∣∣B⊤∇v
∣∣∣ dx

≤
∫
Ω

[
ν0|U1 − U2| + 2ν0|U1 − U2|

] ∣∣∣B⊤∇v
∣∣∣ dx

≤ 3ν0∥U1 − U2∥L2(Ω)∥B⊤∇u∥L2(Ω)

≤ 3ν0γB∥u1 − u2∥H1
0 (Ω)∥v∥H1

0 (Ω),

where the last estimate follows from (4.18). Finally, we conclude that

∥Au1 − Au2∥H−1(Ω) = sup
0̸=v∈H1

0 (Ω)

|⟨Au1 − Au2, v⟩|
∥v∥H1

0 (Ω)

≤ 3ν0γB sup
0̸=v∈H1

0 (Ω)

∥u1 − u2∥H1
0 (Ω)∥v∥H1

0 (Ω)

∥v∥H1
0 (Ω)

= 3ν0γB∥u1 − u2∥H1
0 (Ω),
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with the constant L = 3ν0γB. It follows from Theorem 4.4 that the variational
formulation (4.16) has a unique solution, with a Lipschitz continuous dependence on
the data given by the constant c = 3ν0γB

νγ
B

.

After presenting the unique solvability of nonlinear elliptic problems, we now turn
our focus on the well-posedness of nonlinear evolution problems, for which we use
the principle of maximal monotone mappings, see e.g. [167, Chapter 32]. For our
purpose, we summarize the important results in the following theorem.

Theorem 4.6. Let the operator A(t) : H1
0 (Ω) → H−1(Ω) be strongly monotone and

Lipschitz continuous for each t ∈ (0, T ), whose monotonicity and Lipschitz constant
are independent of time. Then, A : Y → Y ⋆ defines a strongly monotone and
Lipschitz continuous operator, whose monotonicity and Lipschitz constant are as well
independent of time, and the space-time operator formulation

∂

∂t
u+ Au = f in Y ⋆,

u(0) = 0,

admits a unique solution u ∈ {u ∈ Y : ∂tu ∈ Y ⋆} for every f ∈ Y ⋆.

Proof. A proof for the linear and time dependent operator is given in [167, Theo-
rem 30.A]. The extension to the nonlinear time dependent case is the combination of
Theorem 32.D and Theorem 30.12 in [167]. Further investigations are done in [167,
Chapter 30-32].

Lastly, the following lemma is another important ingredient in order to prove the
unique solvability of (4.15), and it is based on Sobolev’s norm equivalence theo-
rem [143, Theorem 2.6].

Lemma 4.7. Let u ∈ H1(Ωcon), where Ωcon = Ω\Ωnon ⊂ Rd. Then, the norm

∥u∥2
H1(Ωcon),H1/2(∂Ωcon) := ∥∇xu∥2

L2(Ωcon) + ∥γ0u∥2
H1/2(∂Ωcon)

defines an equivalent norm in the space H1(Ωcon), i.e.

cP ∥u∥H1(Ωcon) ≤ ∥u∥H1(Ωcon),H1/2(∂Ωcon) ≤ cP ∥u∥H1(Ωcon),

where γ0 is the trace operator as defined in Theorem 3.8.

Proof. This lemma is a result of Sobolev’s norm equivalence theorem [143, Theorem
2.6], for which we need to prove that the mapping u → ∥γ0u∥H1/2(∂Ωcon) is bounded
and satisfies

∥αγ0u∥H1/2(∂Ωcon) = |α|∥γ0u∥H1/2(∂Ωcon) for all u ∈ H1(Ωcon), α ∈ R,
∥γ0(u+ v)∥H1/2(∂Ωcon) ≤ ∥γ0u∥H1/2(∂Ωcon) + ∥γ0v∥H1/2(∂Ωcon) for all u, v ∈ H1(Ωcon).
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Furthermore, we have to show that, if ∥α∥H1/2(∂Ωcon) = 0 for α ∈ R, then it must
hold that α = 0.

The mapping u → ∥γ0u∥H1/2(∂Ωcon) is bounded due to the trace inequality in Theo-
rem 3.8, i.e.

∥γ0u∥H1/2(∂Ωcon) ≤ ctr∥u∥H1(Ωcon).

Obviously, ∥γ0u∥H1/2(∂Ωcon) satisfies the remaining conditions, since it defines a norm
in the space H1/2(∂Ωcon).

Finally, we are now in the position to state the well-posedness of the nonlinear
elliptic-parabolic variational problem (4.15) by using Lemma 4.5, Theorem 4.6 and
Lemma 4.7.

Theorem 4.8. Let l ∈ Y ⋆, then the space-time variational formulation (4.15) has
a unique solution u ∈ X, which has a Lipschitz dependence on l, i.e. there exists a
constant c > 0, such that

∥u1 − u2∥2
L2(0,T ;H1

0 (Ω)) + ∥σ ∂
∂t

(u1 − u2)∥2
L2(0,T ;H−1(Ω)) ≤ c∥l1 − l2∥2

L2(0,T ;H−1(Ω)),

where u1, u2 ∈ X are the solutions of (4.15) associated to the respective sources
l1, l2 ∈ Y ⋆.

Proof. We will proceed in the following way. First, we assume there exists a solu-
tion u ∈ X to the space-time variational problem (4.15) and consider an equivalent
problem (4.20), for which Theorem 4.6 is applicable. Indeed, the solution is unique
if it exists. Finally, we construct a solution for (4.15) from the solution of (4.20) in
order to conclude the proof.

Assume that u ∈ X is the solution to the space-time variational problem (4.15). We
can equivalently rewrite (4.15) to the variational problem, that is to find u ∈ X, such
that for almost all t ∈ (0, T )

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x) + ν(x, |∇xu|)∇xu(x, t) · ∇xv(x)

]
dx = l̃(x, t) (4.19)

for all v ∈ H1
0 (Ω), see [167, Section 30.4 and Chapter 32], where

l̃(x, t) =
∫
Ω

[
J3(x, t)v(x) +M⊥(x, t) · ∇xv(x)

]
dx.
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Hence, the solution u ∈ X to (4.15) is also a solution to (4.19), and (4.19) is still of
elliptic-parabolic type, recalling that σ vanishes in Ωnon. When using test functions
v with compact support inside Ω\Ωcon in (4.19), we see that u satisfies the equation

−divx

(
ν(x, |∇xu|)∇xu(x, t)

)
= J3(x, t) for x ∈ Ω\Ωcon,

assuming M⊥ = 0 in Ωnon. Now, when we consider the spatial restriction of u(·, t)
to Ωcon, denoted by uc(·, t), spatial integration by parts on Ω\Ωcon reveals that uc

satisfies the variational problem

σcon

∫
Ωcon

∂

∂t
uc(x, t)v(x) dx+ νcon

∫
Ωcon

∇xuc(x, t) · ∇xv(x) dx (4.20)

−
∫

∂Ωcon

γ0
(
ν(x, |∇xLtuc|)∇xLtuc(x, t)

)
· n(x)γ0v(x) dsx = l̃(x, t)

for all v ∈ H1(Ωcon), where l̃(·, t) is defined on Ωcon, σcon and νcon are constants in
Ωcon, γ0 is the trace operator as defined in Theorem 3.8, n is the outward unit normal
vector of Ωcon, and for uc(·, t) ∈ H1(Ωcon), we define Ltuc(·, t) ∈ H1(Ω\Ωcon) as the
unique solution of the Dirichlet boundary value problem

−divx

(
ν(x, |∇xLtuc|)∇xLtuc(x, t)

)
= J3(x, t) for x ∈ Ω\Ωcon,

Ltuc(x, t) = γ0uc(x, t) for x ∈ ∂Ωcon, (4.21)
Ltuc(x, t) = 0 for x ∈ ∂Ω.

We want to prove that uc is indeed a unique solution to the variational problem (4.20).
For this purpose, we introduce the linear operator A : H1(Ωcon) → H1(Ωcon)⋆ and
the nonlinear operator B : H1(Ωcon) → H1(Ωcon)⋆, which are defined by

⟨Au, v⟩H1(Ωcon)⋆,H1(Ωcon) = νcon

∫
Ωcon

∇xu(x, t) · ∇xv(x) dx,

⟨Bu, v⟩H1(Ωcon)⋆,H1(Ωcon) = −
∫

∂Ωcon

γ0
(
ν(x, |∇xLtu|)∇xLtu(x, t)

)
· n(x)γ0v(x) dsx,

for u(·, t), v ∈ H1(Ωcon). Hence, we can write (4.20) shortly as

σcon

∫
Ωcon

∂

∂t
uc(x, t)v(x) dx+ ⟨Auc + Buc, v⟩H1(Ωcon)⋆,H1(Ωcon) = l̃(x, t)

for all v ∈ H1(Ωcon). We start to analyze the linear operator A and easily obtain



4.1 Eddy current problem for conducting and non-conducting regions 75

that A is Lipschitz continuous, i.e. for all u1, u2 ∈ H1(Ωcon) it holds

∥Au1 − Au2∥H1(Ωcon)⋆ = sup
0̸=v∈H1(Ωcon)

|⟨Au1 − Au2, v⟩H1(Ωcon)⋆,H1(Ωcon)|
∥v∥H1(Ωcon)

≤ sup
0̸=v∈H1(Ωcon)

νcon∥∇x(u1 − u2)∥L2(Ωcon)∥∇xv∥L2(Ωcon)

∥v∥H1(Ωcon)

≤ νcon∥u1 − u2∥H1(Ωcon).

Furthermore, the linear operator A is monotone, since for all u1, u2 ∈ H1(Ωcon) it
holds

⟨Au1 − Au2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) = νcon∥∇x(u1 − u2)∥2
L2(Ωcon) ≥ 0.

We now focus on the nonlinear operator B, for which we fist introduce the linear
extension operator E : H1(Ωcon) → H1(Ω), such that ∥Ev∥H1(Ω) ≤ cE∥v∥H1(Ωcon),
cf. [1], in order to obtain when using integration by parts, that

⟨Bu, v⟩H1(Ωcon)⋆,H1(Ωcon) = −
∫

∂Ωcon

γ0
(
ν(x, |∇xLtu|)∇xLtu(x, t)

)
· n(x)γ0v(x) dsx

=
∫

Ω\Ωcon

ν(x, |∇xLtu|)∇xLtu(x, t) · ∇xEv(x) dx

−
∫

Ω\Ωcon

divx(ν(x, |∇xLtu|)∇xLtu(x, t))Ev(x) dx

=
∫

Ω\Ωcon

ν(x, |∇xLtu|)∇xLtu(x, t) · ∇xEv(x) dx

+
∫

Ω\Ωcon

J3(x, t)Ev(x) dx,

for u, v ∈ H1(Ωcon), where Ltu satisfies the boundary value problem (4.21). Hence,
for u1, u2 ∈ H1(Ωcon) satisfying (4.21), we have

⟨Bu1 − Bu2, v⟩H1(Ωcon)⋆,H1(Ωcon) =
∫

Ω\Ωcon

ν(x, |∇xLtu1|)∇xLtu1(x, t) · ∇xEv(x) dx

−
∫

Ω\Ωcon

ν(x, |∇xLtu2|)∇xLtu2(x, t) · ∇xEv(x) dx,

where the application of Lemma 4.5 to the operator Lt : H1(Ωcon) → H1(Ω\Ωcon)
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with B = I gives

∥Bu1 −Bu2∥H1(Ωcon)⋆ = sup
v∈H1(Ωcon)

|⟨Bu1 − Bu2, v⟩H1(Ωcon)⋆,H1(Ωcon)|
∥v∥H1(Ωcon)

≤ 3ν0cE∥∇xLtu1 − ∇xLtu2∥L2(Ω\Ωcon)

≤ 3ν0cE∥Ltu1 − Ltu2∥H1(Ω\Ωcon).

According to Lemma 4.5, Ltu1 and Ltu2 are the unique solutions to (4.21) for the
given boundary data u1 and u2, respectively, but the same right-hand side J3, hence
the continuity estimate (4.17) holds, and we deduce

∥Bu1 −Bu2∥H1(Ωcon)⋆ ≤ 3ν0cE∥Ltu1 − Ltu2∥H1(Ω\Ωcon)

≤ 3ν0cEcLt∥γ0(u1 − u2)∥H1/2(∂Ωcon)

≤ 3ν0cEcLtctr∥u1 − u2∥H1(Ωcon),

where the last estimate follows from the trace inequality. Hence, we conclude the
Lipschitz continuity of the operator B.

Moreover, for u1, u2 ∈ H1(Ωcon) satisfying (4.21) we obtain with the same calculations
as before that

⟨Bu1−Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon)

=
∫

Ω\Ωcon

ν(x, |∇xLtu1|)∇xLtu1(x, t) · (∇xLtu1(x, t) − ∇xLtu2(x, t)) dx

−
∫

Ω\Ωcon

ν(x, |∇xLtu2|)∇xLtu2(x, t) · (∇xLtu1(x, t) − ∇xLtu2(x, t)) dx.

Using the same steps as in the proof of Lemma 4.5, we deduce

⟨Bu1−Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) ≥ ν∥∇xLtu1 − ∇xLtu2∥2
L2(Ω\Ωcon).

Due to Friedrichs’s inequality (3.12), the norms ∥∇xu∥L2(Ω\Ωcon) and ∥u∥H1(Ω\Ωcon)
are equivalent on the space H1

0,∂Ω(Ω\Ωcon) := {u ∈ H1(Ω\Ωcon) : γ0u = 0 on ∂Ω},
hence it follows that

⟨Bu1 − Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) ≥ cν∥Ltu1 − Ltu2∥2
H1(Ω\Ωcon)

≥ cc2
trν∥γ0(u1 − u2)∥2

H1/2(∂Ωcon),

where the last estimate follows from the trace inequality.

Finally, we can combine both operators A + B to conclude the Lipschitz continuity,

∥(A + B)u1 − (A + B)u2∥H1(Ωcon)⋆ ≤ L∥u1 − u2∥H1(Ωcon),
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with L = max(νcon, 3ν0cEcLtctr), and the strong monotonicity,

⟨(A + B)u1 − (A + B)u2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon)

≥ νcon∥∇x(u1 − u2)∥2
L2(Ωcon) + cc2

trν∥γ0(u1 − u2)∥2
H1/2(∂Ωcon)

≥ C∥u1 − u2∥2
H1(Ωcon),H1/2(∂Ωcon) ≥ c2

PC∥u1 − u2∥2
H1(Ωcon)

with C = min(νcon, cc
2
trν), where we have used the norm as defined in Lemma 4.7

and its application. Therefore, it follows from Theorem 4.6 that the variational prob-
lem (4.20) has a unique solution uc ∈ L2(0, T ;H1(Ωcon)), such that uc(x, 0) = 0 for
x ∈ Ωcon. This almost implies that the solution u ∈ X of the original space-time
variational formulation (4.15) is unique, when it exists. In fact, let u1, u2 ∈ X be two
solutions of (4.15) and let uc,1(·, t), uc,2(·, t) be their restrictions on H1(Ωcon), respec-
tively, then we conclude as a result from the previous steps that uc,1, uc,2 belong to
L2(0, T ;H1(Ωcon)) and satisfy the variational problem (4.20) with the homogenous
initial condition uc,1(x, 0) = uc,2(x, 0) = 0 for x ∈ Ωcon. As a consequence of Theo-
rem 4.6, uc,1(·, t) = uc,2(·, t) on Ωcon for almost all t ∈ [0, T ], hence u1(·, t) and u2(·, t)
coincide on Ωcon for almost all t ∈ [0, T ]. Moreover, since u1(·, t)|Ω\Ωcon

= Ltuc,1(·, t)
and u2(·, t)|Ω\Ωcon

= Ltuc,2(·, t) on Ω\Ωcon, it immediately follows that u1 = u2 in
L2(0, T ;H1

0 (Ω)). This means, that there exists at most one solution u ∈ X of (4.20).

In the final step, we need to construct a solution u ∈ X to (4.20), which essentially
relies on the previous steps. Let uc ∈ L2(0, T ;H1(Ωcon)) be the unique solution
of (4.20) satisfying the homogenous initial condition uc(x, t) = 0 for x ∈ Ωcon. Par-
ticularly, uc(·, t) is a function in H1(Ωcon) for almost all t ∈ [0, T ], hence we can
introduce the unique solution uc,ext(·, t) = Ltuc(·, t) ∈ H1(Ω\Ωcon) to the version
of (4.21) featuring Dirichlet data γ0uc(·, t) on ∂Ωcon. This leads to the definition of
u(·, t) ∈ H1

0 (Ω), that is

u(x, t) =
uc(x, t) for x ∈ Ωcon,

uc,ext(x, t) for x ∈ Ω\Ωcon.

By construction, u ∈ L2(0, T ;H1
0 (Ω)) is one solution of (4.19). Furthermore, it can be

seen that σ ∂
∂t
u ∈ L2(0, T ;H−1(Ω)), since ∂

∂t
uc ∈ L2(0, T ;H1(Ωcon)⋆), and for almost

all t ∈ [0, T ] and for any test function v ∈ H1
0 (Ω), we have

⟨σ ∂
∂t
u, v⟩H−1(Ω),H1

0 (Ω) = σcon⟨ ∂
∂t
uc, v⟩H1(Ωcon)⋆,H1(Ωcon).

We conclude that u ∈ X is a solution to (4.19), hence also to (4.15), for which
the Lipschitz dependence on the data follows from the Lipschitz dependence of the
solutions to the problems (4.20) and (4.21). This ends the proof.
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Space-time finite element discretization

As for the linear case, we introduce the conforming finite-dimensional spaces Xh ⊂ X
and Yh ⊂ Y , such that Xh ⊂ Yh. Particularly, we even consider Xh = Yh as in (4.7)
for our purpose. Hence, the discrete problem reads to find uh ∈ Xh, such that

a(uh, vh) = l(vh) for all vh ∈ Yh, (4.22)

where a(·, ·) and l(·) are defined as in (4.15). The existence of a unique solution
uh ∈ Xh follows from Theorem 4.8, since the properties of a(·, ·) are inherited from
the continuous problem. We apply Newton’s method [37] to solve the nonlinear
problem (4.22). Therefor, we introduce the operator Ae : Yh → Y ⋆

h , such that

⟨Ae(uh), vh⟩ =
T∫

0

∫
Ω

ν(x, |∇xuh|)∇xuh(x, t) · ∇xvh(x, t) dxdt,

hence we can rewrite (4.22) as an operator equation

⟨σ ∂
∂t
uh, vh⟩ + ⟨Ae(uh), vh⟩ = l(vh).

Furthermore, we need to compute the Fréchet derivative of the operator Ae(uh) in a
direction wh, which is

⟨Dwh
(Ae(uh)), vh⟩ = lim

δ→0

1
δ

[
⟨Ae(uh + δwh), vh⟩ − ⟨Ae(uh), vh⟩

]
=

T∫
0

∫
Ω

lim
δ→0

1
δ

[
ν(|∇xuh + δ∇xwh|)(∇xuh + δ∇xwh) − ν(|∇xuh|)∇xuh

]
· ∇xvh dxdt.

We set p = ∇xuh and q = ∇xwh in order to obtain with the Taylor expansion for
p ̸= 0 that

ν(|p+ δq|) = ν(|p|) + δν ′(|p|) p
|p|

· q + O(δ|q|).

Hence, we get

ν(|p+ δq|)(p+ δq) − ν(|p|)p = δν(|p|)q + δ
ν ′(|p|)

|p|
(p · q)p+ O(δ|q|).

For p = 0 we deduce

lim
δ→0

ν(|δq|)tq − ν(0)0
δ − 0 = lim

δ→0
ν(|δq|)tq = ν(0)q.
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Now, using p = ∇xuh and q = ∇xwh, we get the Fréchet derivative of Ae(uh) in
direction wh

⟨Dwh
(Ae(uh)), vh⟩ =

T∫
0

∫
Ω

ν(|∇xuh|)∇xwh · ∇xvh + ν ′(|∇xuh|)
|∇xuh|

(∇xuh · ∇xwh)(∇xuh · ∇xvh) dxdt,

for ∇xuh ̸= 0, and

⟨Dwh
(Ae(uh)), vh⟩ =

T∫
0

∫
Ω

ν(0)∇xwh · ∇xvh dxdt,

for ∇xuh = 0. Hence, we can define the Newton operator A′
e(uh) ∈ L(Yh, Y

⋆
h ) as

⟨A′
e(uh)wh, vh⟩ := ⟨Dwh

(Ae(uh)), vh⟩. (4.23)

In fact, Dwh
(Ae(uh)) is linear and bounded in wh. For a deeper analysis of the

Newton operator A′
e(uh), also in the continuous setting, with respect to the eddy

current problem we refer to [57, 119]. A more general approach is provided by the
book of Deuflhard [37]. Note that the above derivation of the Newton operator is
also valid in the continuous case.

We use the finite element isomorphism (4.12) in order to derive the equivalent non-
linear Galerkin system, which is to find uh ∈ RM , such that

A(uh) = l, (4.24)

where

A(uh) =
(
a(uh, ϕi)

)M

i=1
, l =

(
l(ϕi)

)M

i=1
,

cf. [44]. Note that the operator A in (4.24) considers also the time derivative of uh.
However, the time derivative is linear with respect to uh, hence we can write

⟨A′(uh)wh, vh⟩ = ⟨σ ∂
∂t
wh, vh⟩ + ⟨A′

e(uh)wh, vh⟩.

We use Newton’s method [37] with an adapted backtracking line search method in
order to solve the system (4.24). For this reason we write our problem as to find uh,
such that

A(uh) − l = 0,

for which we apply Newton’s method with damping [37]

uk+1 = uk − τ [A′(uk)]−1 (A(uk) − l) , (4.25)
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for a starting vector u0 and a damping factor τ > 0. We solve (4.25) in the following
way. First, we compute wk as the solution of the linear system

A′(uk)wk = (A(uk) − l) , (4.26)

and we use the solution wk to compute the next approximate solution via the line
search

ũk = uk − τwk for τ ∈ {1, 0.5, 0.25, . . . 2−j}.

We stop the line search if ∥A(ũk) − l∥ < ∥A(uk) − l∥ or τ > 2−j for j ∈ N, and
update

uk+1 = ũk.

The method stops when a given error tolerance is reached, i.e. (wk, A(ũk)−l) < TOL.
Note that, the described method is applied efficiently with respect to the number of
operations and the memory usage, and we refer to [37] for a detailed analysis of
Newton’s method.

4.1.4 Numerical examples

First, we again consider the space-time cylinder Q = (0, 1)2 as given in Figure 4.1
and the manufactured solution

u(x, t) = x(1 − x)t.

For the nonlinear variational formulation (4.15) we use the material parameters

σ(x) =
1 for x ∈ Ωcon,

0 for x ∈ Ωnon,
and ν(x, |∂xu|) =

2 for x ∈ Ωcon,

1 + |∂xu|2 for x ∈ Ωnon.

Hence, we obtain for the right-hand side that M⊥ = 0 and

J3(x, t) =
x(1 − x) + 4t for x ∈ Ωcon,

2t(1 + 3t2(1 − 2x)2) for x ∈ Ωnon,

We compute the solution of (4.22) by using the finite element isomorphism (4.12) in
order to deduce the system (4.24) and apply Newton’s method (4.25) with damping.
The occurring linear system (4.26) is solved by the parallel direct solver MUMPS
and iterative solver GMRES with the BoomerAMG preconditioner as described in
Section 3.6.1. We use a relative error tolerance of 10−8 for the stop criterion of
Newton’s method as well as for the parallel iterative solver GMRES. In Table 4.5 we



4.1 Eddy current problem for conducting and non-conducting regions 81

L dofs ∥∇x(u− uh)∥L2(Q) EOC

1 13 0.11216
2 41 0.05656 0.988
3 145 0.02855 0.986
4 545 0.01436 0.991
5 2,113 0.00720 0.996
6 8,321 0.00360 0.999
7 33,025 0.00180 0.999
8 131,585 0.00090 1
9 525,313 0.00045 1
10 2,099,201 0.00023 1

Table 4.5: The discretization error, which indicates linear convergence when using
the parallel direct solver as well as the iterative solver on 16 cores for a
uniform mesh refinement. The number of GMRES iterations increases in
each refinement step, ending up with a maximum of 1973 iterations.

Number of cores 1 2 4 8 16

MUMPS 109.24 79.25 62.85 53.12 49.78
GMRES 914.89 615.59 244.32 119.48 65.90
iterations 274 196 186 177 171

Table 4.6: Computational times in seconds for solving the nonlinear problem (4.24)
with MUMPS and preconditioned GMRES with the BoomerAMG precon-
ditioner on a mesh with 525,313 nodes (degrees of freedom) and 262,144
elements. The solvers required 5 Newton iterations and the number of
GMRES iterations gives the most needed iterations of all Newton steps.

obtain a linear convergence behavior of the error in the semi-norm. In each refinement
level mostly 6 Newton iterations were needed. Furthermore, the computational times
for solving the nonlinear problem (4.24) with respect to the number of cores are given
in Table 4.6. Note that the measured times include the linearization of A in order
to obtain A′ in (4.26) and the converting of the data types between the software
Netgen/NGSolve and PETSc in each Newton iteration.

As our next example we consider the realistic application of an electric motor stated
in the TEAM24 benchmark [2]. The geometry is similar to a Switched Reluctance
Motor with two poles. The rotor is rotated to a specific point but standing still at
this location. The 350-turn coils are located above the stator and excited by a step
voltage. Figure 4.5 displays the geometry of the motor, whose dimensions are given
in [2]. The stator and the rotor are made of steel and the magnetic reluctivity νfe
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Figure 4.4: Left: The current density J3 approximated by a cubic B-spline. Right:
The magnetic reluctivity νfe of steel approximated by a cubic B-spline.

of this steel is approximated by a cubic B-Spline based on measured values from [2],
see Figure 4.4 and Section 2.3. Similarly, the current density J3, calculated by

J3(x, t) = I(x, t)ω
A

,

where I is the given current excitation, ω the number of turns of the coils and A
the area of one coil, is approximated by a cubic B-Spline as displayed in Figure 4.4.
The direction of the current passing through the coils is denoted by the signs in
Figure 4.5. The material parameters are given as

σ(x) =
0 for x ∈ Ωnon,

4.54 · 106 for x ∈ Ωcon,
and ν(x, |∇xu|) =

107/(4π) for x ∈ Ωnon,

νfe(|∇xu|) for x ∈ Ωcon,

where Ωcon describes the rotor and the stator and Ωnon consists of the coils and air.
The mesh of the space-time cylinder Q is depicted in Figure 4.5, which has 21 time
slices according to the time points of measurements in [2]. This points out another
advantage of this space-time method, which is the possibility to construct desired
graded meshes in order to obtain better resolutions in time for specific time spans.
In Figure 4.5 it can be seen, that from the bottom of the mesh the time slices are very
close to each other, so the mesh is quite fine in temporal direction, whereas towards
the top of the mesh the distances between the time slices become larger. As before,
the finite element isomorphism (4.12) is used to derive the nonlinear system (4.24)
and to compute the solution of (4.22) by Newton’s method (4.25) with a relative
error tolerance of 10−10. In each Newton step, the occurring linear system (4.26) is
solved by the parallel direct solver MUMPS and the iterative solver GMRES with the
BoomerAMG preconditioner with a relative error tolerance of 10−8, cf. Section 3.6.1.
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Number of cores 1 2 4 8 16

MUMPS 267.75 177.08 126.49 97.75 81.03
GMRES 2993 1876 1033 577 355
iterations 649 637 642 596 599

Table 4.7: Computational times in seconds for solving the nonlinear problem (4.24)
with MUMPS and preconditioned GMRES with the BoomerAMG pre-
conditioner. The solvers required 4 Newton iterations and the number of
GMRES iterations gives the most needed iterations of all Newton steps.

The computational times with respect to the number of cores is given in Table 4.7,
from which we obtain the good performance of the direct solver, whereas the iterative
solver need to be improved, i.e. still a suitable preconditioner need to be found for
rather complicated problems like this example. Note that the measured times include
the linearization of A in order to obtain A′ in (4.26) and the converting of the data
types between the software Netgen/NGSolve and PETSc in each Newton iteration.
The solution of (4.22) at the bottom and the top of the space-time cylinder Q is
visualized in Figure 4.6, and the comparison of the second component of the magnetic
flux density B2 between the simulation and the measured values in the hall probe
from [2] is depicted in Figure 4.7, where we have used

B =
(
B1(x1, x2, t)
B2(x1, x2, t)

)
=
(
∂x2u(x1, x2, t)

−∂x1u(x1, x2, t)

)
. (4.27)

Furthermore, we solved (4.22) on a uniformly refined mesh of the one from Fig-
ure 4.5, for which we obtain for the magnetic flux density better correspondence to
the measurements compared to the simulation on the coarse mesh.

4.2 Eddy current problem including hysteresis

The goal of this section is to extend our investigating eddy current problem (4.14)
to an evolution equation, which takes the effects of hysteresis into account. We have
considered the constitutive law (2.5) so far, that is nonlinear for ferromagnetic ma-
terials as described in Section 2.3. However, there the considered B-H-curve neglects
hysteretic effects, cf. Remark 2.5, since hysteresis models are usually relatively com-
plex and requires a lot of computational effort. Although it is sufficient to use such
B-H-curves in many applications, hysteresis models are still of great interest and an
ongoing research topic. Basically, hysteresis in a ferromagnetic material describes the
dependence of the magnetic behavior on its magnetic past. If an external magnetic
field is applied to a ferromagnetic material, the atomic domain aligns itself with it.
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Figure 4.5: Left: A cross-section of the motor showing the non-conducting region
Ωnon consisting of air (blue) and the coils (brown), as well as the con-
ducting region Ωcon, which is made of iron (gray). Right: An unstructured
graded mesh of the space-time cylinder Q, which is extruded vertically in
time containing 21 time slices and has 451,624 nodes (degrees of freedom)
and 2,692,370 elements.

Some parts of the magnetized state retain, even when the external field is removed,
see e.g. [19, 105, 157, 160]. Hysteretic behavior becomes visible in the B-H-curve
when the so-called hysteresis loop appears, see Figure 4.8. In general, many models
have been developed in order to describe the complex behavior of hysteresis. Most
popular and widely used models are the so-called Preisach [122] or Jiles-Atherton [82]
models, which belong to the group of empirical models. Other more natural vecto-
rial approaches attempt to describe the material behavior up to the atomic structure
very accurately using suitable equations, which lead to highly complex equations, see
e.g. [50, 157, 162]. A specific approach is based on the optimization of the parameters
of parametric algebraic models in order to match measured hysteresis curves. Partic-
ularly, we consider the PAM (Pragmatic Algebraic Model) as our hysteresis model,
which uses six real parameters p0, . . . , p5 > 0 in one algebraic equation in order to
describe hysteretic effects, cf. [75, 163]. In contrast to other hysteresis models, the
efficiency of PAM lies into its formulation by one algebraic equation, which reduces
the computational effort and takes the static and the dynamic effects into account.
The main task of this model is the identification of appropriate parameters by min-
imizing the least squares approximation error with respect to the measurements as
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Solution uh at time t = 0.0[s]. Solution uh at time t = 0.3[s].

Figure 4.6: The approximate solution uh of (4.22) at the bottom and the top of the
space-time cylinder Q.
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Figure 4.7: The comparison of the second component of the magnetic flux density B
between the simulations and the measured values from [2]. The blue line
shows B2 computed from the simulation on the mesh from Figure 4.5,
whereas the orange line shows B2 computed from the simulation on the
uniformly refined mesh with 3,606,387 nodes (dofs) and 23,803,016 ele-
ments.
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described in [75, 123].

4.2.1 Hysteresis model

The PAM considers the isotropic constitutive law

H = f(|B|)B + g(|Ḃ|)Ḃ − M, (4.28)

where

f(|B|) = p0 + p1|B|2p2 ,

g(|Ḃ|) = p3 + p4√
p2

5 + |Ḃ|2
,

and Ḃ denotes the time derivative of the magnetic flux density B. The first expres-
sion f(|B|) in (4.28) describes the anhysteretic part, which is in fact similar to the
magnetic reluctivity ν, which reflects the BH-curve relation described by (2.5). The
parameters p0, p1, p2 can be fitted in order to obtain the same behavior as ν. The
second expression g(|Ḃ|) describes on the one hand the macroscopic eddy currents by
the parameter p3, and on the other hand the hysteresis effects, that are considered
by p4 and p5, cf. [163]. As before, M is the permanent magnetization of occurring
permanent magnets. Now, when using the constitutive law (4.28) instead of (2.5)
and repeating the same computations of Section 2.2.2, the underlying eddy current
equation considering hysteresis, reads as

σ
∂A
∂t

+ curl
(
f
(
|curl(A)|

)
curl(A) + g

(
| ˙curl(A)|

) ˙curl(A)
)

= Ji + curl(M). (4.29)

The reduction to the spatially two-dimensional case requires the same assumptions
as in Section 2.2.3, i.e. we can write

H(x, t) =

H1(x1, x2, t)
H2(x1, x2, t)

0

 , Ji(x, t) =

 0
0

J3(x1, x2, t)

 , M(x, t) =

M1(x1, x2, t)
M2(x1, x2, t)

0

 ,
hence the vector potential A has the same form as in (2.18), and we can rewrite (4.29)
as

σ(x) ∂
∂t
u(x, t) − divx

(
f(|∇xu|)∇xu(x, t) + g(|∂t∇xu|) ∂

∂t
∇xu(x, t)

)
= l(x, t), (4.30)

for (x, t) ∈ Ω × (0, T ), where Ω ⊂ R2 and

l(x, t) = J3(x, t) − divx(M⊥(x, t)).
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In addition to the partial differential equation (4.30) we consider homogenous Dirich-
let boundary conditions u = 0 on ∂Ω × (0, T ), which implies the induction boundary
condition B · n = 0 on ∂Ω × (0, T ) and the initial condition u(x, 0) = 0 for x ∈ Ω.

Remark 4.9. Note that the constitutive law (4.28) reflects hysteretic behavior in fer-
romagnetic materials. If the full domain Ω consists of multiple materials, the func-
tions f and g depend also on the spatial variable x, i.e. f(x, |∇xu|) and g(x, |∂t∇xu|),
like the magnetic reluctivity ν. For the sake of brevity, we often use the notations
f(|∇xu|) and g(|∂t∇xu|) in place of f(x, |∇xu|) and g(x, |∂t∇xu|), respectively.

Remark 4.10. The Pragmatic Algebraic Model can be extended to a two-dimensional
vector hysteresis model [112], so that the characterization of anisotropic materials
may be taken into account. This leads to the identification of the set of parameters
p0,i, . . . , p5,i for each axial direction i = 1, . . . , d.

In order to formulate the weak formulation of (4.30), we use the same notation for the
Bochner space Y := L2(0, T ;H1

0 (Ω)) and the corresponding norm ∥·∥Y as introduced
in Section 4.1.1. For the trial space, we define the space

Z = H1
0,(0, T ;H1

0 (Ω)) :=
{
u ∈ Y : ∂tu ∈ Y, u(x, 0) = 0 for x ∈ Ω

}
⊂ Y,

equipped with the norm

∥u∥Z := ∥∂t∇xu∥L2(Q).

In fact, this norm is equivalent to the norm ∥·∥H1(0,T ;H1
0 (Ω)) as defined in Section 3.3.2,

since

∥u∥2
H1(0,T ;H1

0 (Ω)) = ∥u∥2
Y + ∥∂tu∥2

Y ≤ (c2
F + 1)∥∂tu∥2

Y = (c2
F + 1)∥u∥2

Z ,

which follows from Friedrichs’s inequality applied to the time derivative satisfying the
homogenous initial condition. Thus, the related space-time variational formulation
reads as to find u ∈ Z, such that

b(u, v) = l(v) for all v ∈ Y, (4.31)

where

b(u, v) =
T∫

0

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x, t) + f(|∇xu|)∇xu(x, t) · ∇xv(x, t)

+ g(|∂t∇xu|) ∂
∂t

∇xu(x, t) · ∇xv(x, t)
]
dxdt

l(v) =
T∫

0

∫
Ω

[
J3(x, t)v(x, t) +M⊥(x, t) · ∇xv(x, t)

]
dxdt.
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We first consider the simplified linear version of (4.31). Usually, the material pa-
rameters are uniformly bounded, i.e. σ > σ(x) ≥ σ0 > 0, f > f(|∇xu|) ≥ f0 > 0
and g > g(|∂t∇xu|) ≥ g0 > 0. Hence, we obtain the linear space-time variational
formulation to find u ∈ Z, such that

bl(u, v) = l(v) for all v ∈ Y, (4.32)

where

bl(u, v) =
T∫

0

∫
Ω

[
σ0
∂

∂t
u(x, t)v(x, t) + f0∇xu(x, t) · ∇xv(x, t)

+ g0
∂

∂t
∇xu(x, t) · ∇xv(x, t)

]
dxdt.

As a matter of fact, the bilinear form bl(·, ·) is bounded, since

|bl(u, v)| ≤ σ0∥∂tu∥L2(Q)∥v∥L2(Q) + f0∥∇xu∥L2(Q)∥∇xv∥L2(Q)

+ g0∥∂t∇xu∥L2(Q)∥∇xv∥L2(Q)

≤ c2
Fσ0∥∇x∂tu∥L2(Q)∥∇xv∥L2(Q) + cF,tf0∥∂t∇xu∥L2(Q)∥∇xv∥L2(Q)

+ g0∥∂t∇xu∥L2(Q)∥∇xv∥L2(Q)

≤ max(c2
Fσ0, cF,tf0, g0)∥u∥Z∥v∥Y ,

which follows from Friedrichs’s inequality applied to the spatial gradient as well as
to the time derivative. Furthermore, we want to show the inf-sup stability condition,
i.e. there exists a constant cb

1 > 0, such that

cb
1∥u∥Z ≤ sup

0̸=v∈Y

bl(u, v)
∥v∥Y

for all u ∈ Z. (4.33)

For this purpose, we choose v = ∂tu for each u ∈ Z to obtain

bl(u, v) = bl(u, ∂tu) = σ0∥∂tu∥2
L2(Q) + f0⟨∇xu, ∂t∇xu⟩L2(Q) + g0∥∂t∇xu∥2

L2(Q). (4.34)

We further deduce when using the chain rule that

⟨∇xu, ∂t∇xu⟩L2(Q) =
T∫

0

∫
Ω

∇xu(x, t) · ∂
∂t

∇xu(x, t) dxdt = 1
2

T∫
0

∫
Ω

∂

∂t
[∇xu(x, t)]2 dxdt

= 1
2

∫
Ω

[∇xu(x, t)]2 dx
∣∣∣∣T
0

= 1
2

∫
Ω

[∇xu(x, T )]2 dx > 0,

where the initial condition u(x, 0) = 0 for x ∈ Ω also gives ∇xu(x, 0) = 0 for x ∈ Ω.
Together with ∥∂tu∥2

L2(Q) ≥ 0, we can estimate (4.34) by

bl(u, v) = bl(u, ∂tu) ≥ g0∥∂t∇xu∥2
L2(Q),
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which yields the inf-sup stability condition (4.33) with cb
1 = g0. Lastly, we want to

examine the surjectivity of the bilinear form bl(·, ·). Therefore, for a given v ∈ Y \{0}
we define

û(x, t) =
t∫

0

v(x, τ)dτ, ∂

∂t
û(x, t) = v(x, t) for x ∈ Ω, t ∈ [0, T ].

Hence,

bl(û, v) = σ0∥∂tû∥2
L2(Q) + f0⟨∇xû, ∂t∇xû⟩L2(Q) + g0∥∂t∇xû∥2

L2(Q),

for which we make the same calculations as for the inf-sup stability condition before
in order to obtain

bl(û, v) ̸= 0.

Thus, all three conditions (BNB1) - (BNB3) of Theorem 3.17 are verified and the
existence of a unique solution u ∈ Z for (4.32) follows.

Our goal is to use a conforming space-time finite element discretization with finite-
dimensional spaces spanned by piecewise linear and globally continuous functions
as described in Section 3.5.2. However, second order derivatives occur in the vari-
ational formulation (4.31), which usually requires conforming approximation spaces
constructed by finite elements of higher smoothness. A remedy offers the introduc-
tion of an auxiliary function p = ∂tu ∈ Y . Making use of this substitution, we can
equivalently rewrite (4.31) to the system, to find (u, p) ∈ W0,(Q) × Y , such that

b1(u, p, v) :=
T∫

0

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x, t) + f(|∇xu|)∇xu(x, t) · ∇xv(x, t)

+ g(|∇xp|)∇xp(x, t) · ∇xv(x, t)
]
dxdt = l(v), (4.35)

b2(u, p, q) :=
T∫

0

∫
Ω

∂

∂t
u(x, t)q(x, t) dxdt−

T∫
0

∫
Ω

p(x, t)q(x, t) dxdt = 0,

for all (v, q) ∈ Y × L2(Q), where the space W0,(Q) is defined as in (3.18). Although
this method requires to solve an enlarged linear system, it allows for a paralleliza-
tion [59] and adaptivity [147] for both unknowns at once in space and time simulta-
neously.

Remark 4.11. Note that, another possibility would be to choose the auxiliary func-
tion p = ∇xu, for which we deduce the equivalent system to (4.31), that is to find
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(u, p) ∈ W0,(Q) × [Y ]2, such that

T∫
0

∫
Ω

[
σ(x) ∂

∂t
u(x, t)v(x, t) + f(|∇xu|)∇xu(x, t) · ∇xv(x, t)

+ g(|∂tp|)
∂

∂t
p(x, t) · ∇xv(x, t)

]
dxdt = l(v),

T∫
0

∫
Ω

p(x, t) · q(x, t) dxdt =
T∫

0

∫
Ω

∇xu(x, t) · q(x, t) dxdt,

for all (v, q) ∈ Y × [L2(Q)]2. However, this approach forces us to set an initial
condition for the auxiliary function p and enlarges the system even more than the
variational problem (4.35). Numerical experiments have shown that the solving of the
resulting system with respect to the substitution p = ∇xu comes with computational
difficulties and unstable solutions.

For the space-time finite element discretization of (4.35) we again introduce the finite-
dimensional spaces Xh ⊂ W0,(Q) and Yh ⊂ Y , such that Xh ⊂ Yh. As usual, our
particular choice is even Xh = Yh as in (4.7), hence the discrete space-time variational
formulation is to find (uh, ph) ∈ Xh × Yh, such that

b1(uh, ph, vh) = l(vh), for all vh ∈ Yh,

b2(uh, ph, qh) = 0, for all qh ∈ Yh.
(4.36)

We apply Newton’s method [37] to solve the nonlinear system (4.36). Therefore we
introduce the operator Be : Yh × Yh → Yh, such that

⟨Be(uh, ph), vh⟩Yh
=

T∫
0

∫
Ω

[
f(|∇xuh|)∇xuh(x, t) · ∇xvh(x, t)

+ g(|∇xph|)∇xph(x, t) · ∇xvh(x, t)
]
dxdt,

hence we can rewrite (4.36) as a system of operator equations

⟨σ ∂
∂t
uh, vh⟩Yh

+ ⟨Be(uh, ph), vh⟩Yh
= l(v),

⟨ ∂
∂t
uh, qh⟩Yh

− ⟨ph, qh⟩Yh
= 0.

Similar to Section 4.1.3, we compute the Fréchet derivative of the operator Be(uh, ph)



4.2 Eddy current problem including hysteresis 91

in a direction wh, which reads as

⟨Dwh
(Be(uh, ph)), vh⟩Yh

=
T∫

0

∫
Ω

[
f(|∇xuh|)∇xwh · ∇xvh + f ′(|∇xuh|)

|∇xuh|
(∇xuh · ∇xwh)(∇xuh · ∇xvh)

+ g(|∇xph|)∇xwh · ∇xvh + g′(|∇xph|)
|∇xph|

(∇xph · ∇xwh)(∇xph · ∇xvh)
]
dxdt,

for ∇xuh ̸= 0 and ∇xph ̸= 0, and

⟨Dwh
(Be(uh, ph)), vh⟩Yh

=
T∫

0

∫
Ω

[
f(0)∇xwh · ∇xvh + g(0)∇xwh · ∇xvh

]
dxdt,

for ∇xuh = 0 and ∇xph = 0. Hence, we can define the Newton operator B′
e(uh, ph)

as

⟨B′
e(uh, ph)wh, vh⟩Yh

:= ⟨Dwh
(Be(uh, ph)), vh⟩Yh

,

and refer to [37] for an extensive analysis of Newton’s method applied to systems.

We use the finite element isomorphism (4.12) in order to derive the equivalent non-
linear Galerkin system, which is to find (uh, ph

) ∈ RM × RM , such that

B(uh, ph
) = l, (4.37)

where

B(uh, ph
) =

(
b1(uh, ph, ϕi)
b2(uh, ph, ϕj)

)M

i,j=1
, l =

(
l(ϕi)

0

)M

i=1
,

for which we obtain the Newton operator

⟨B′(uh, ph
)
(
wh,1
wh,2

)
,

(
vh

q
h

)
⟩ =

(
⟨σ ∂

∂t
wh,1, vh⟩ + ⟨B′

e(uh, ph
)wh,1, vh⟩

⟨ ∂
∂t
wh,2, qh

⟩ − ⟨wh,2, qh
⟩

)
,

for vh, qh
, wh,1, wh,2 ∈ RM . We apply Newton’s method with the backtracking line

search method as described in Section 4.1.3 in order to solve (4.37). Starting with
an arbitrary initial guess u0, p0 (in many cases the zero vector), Newton’s strategy
with damping is (

uk+1
p

k+1

)
=
(
uk

p
k

)
− τ

[
B′(uk, pk

)
]−1 (

B(uk, pk
) − l

)
, (4.38)



92 4 Space-time eddy current problem

for a damping factor τ > 0. To solve (4.38), we first compute (wk,1, wk,2)⊤ as the
solution of the linear system

B′(uk, pk
)
(
wk,1
wk,2

)
=
(
B(uk, pk

) − l
)
, (4.39)

and use this solution to determine the next approximate solution via the line search(
ũk

p̃
k

)
=
(
uk

p
k

)
− τ

(
wk,1
wk,2

)
for τ ∈ {1, 0.5, 0.25, . . . 2−j}.

We stop the line search if ∥B(ũk, p̃k
) − l∥ < ∥B(uk, pk

) − l∥ or τ > 2−j for j ∈ N, and
update (

uk+1
p

k+1

)
=
(
ũk

p̃
k

)
.

The method stops when a given error tolerance ⟨(wk,1, wk,2)⊤, B(ũk, p̃k
) − l⟩ < TOL

is reached.

4.2.2 Numerical examples

In this section we provide numerical results in order to illustrate the applicability
of the introduced space-time method for the hysteresis model (4.28). The first ex-
ample considers a two-dimensional spatial domain Ω = (0, 1)2, which consists of two
different materials Ωcu = (0.25, 0.75), through which the excitation J3 passes, and
Ωfe = Ω\Ωcu, in which the hysteresis model holds true. The terminal time is given
as T = 1.25, hence the decomposition of the space-time cylinder Q = Ω × (0, T ) is
similar to the visualized unstructured mesh in Figure 4.2. However, we consider a
mesh with 100 time slices in temporal direction, 53,530 nodes and 293,400 elements.
Furthermore, we use the following parameters,

σ(x) =
0.01 in Ωcu,

0.01 in Ωfe,
f(|∇xu|) =


107

4π
in Ωcu,

p0 + p1|∇xu|2p2 in Ωfe,

J3(x, t) =
2000 sin(2πt) in Ωcu,

0 in Ωfe,
g(|∇xp|) =

0 in Ωcu,

p3 + p4√
p2

5+|∇xp|2
in Ωfe,

where p0 = 75.6, p1 = 0.0223, p2 = 11.47, p3 = 0.0001, p4 = 65.8, p5 = 25. Note
that no permanent magnets occur, therefore M⊥ = (0, 0)⊤. We solve (4.36) by
Newton’s method (4.38) with damping. For the occurring linear system (4.39) we
use the parallel direct solver MUMPS as described in Section 3.6.1. The relative
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Figure 4.8: Left: The first component of the magnetic flux density B1 over time.
Right: The B-H-curve in the first component indicating the expected
hysteretic behavior.

Number of cores 1 2 4 8 16

MUMPS 307.72 184.22 123.44 84.28 66.83

Table 4.8: Computational times in seconds for solving the nonlinear problem (4.36)
with the parallel direct solver MUMPS. The solver required 20 Newton
iterations for 107,060 degrees of freedom.

error tolerance of Newton’s method is 10−11. Figure 4.8 displays the first component
of the magnetic flux density B1 as well as the B-H curve in the first component
indicating the hysteresis loop, both evaluated in the spatial reference point (0.5, 0.8)
in each time slice, where the magnetic flux density is computed as in (4.27). The
solver required 20 Newton iterations and Table 4.8 shows the computational times
with respect to the number of processes. Note that the measured times include the
linearization of B in order to obtain B′ in (4.39) and the converting of the data types
between the software Netgen/NGSolve and PETSc in each Newton iteration.

The second and more realistic example is the application of a Switched Reluctance
Motor of the Team24 benchmark [2]. The description of the motor is given in Sec-
tion 4.1.4. We consider a similar decomposition of the space-time cylinder Q to
Figure 4.5, which has 40 equidistant time slices in temporal direction with T = 0.1,
222,448 nodes and 1,303,241 elements. However, we denote the rotor and the stator
by Ωcon, the coils by Ωcu and air by Ωa. Furthermore, we consider the parameters

J3(x, t) =
5 · 106 sin(2πt/T ) in Ωcu,

0 in Ωcon ∪ Ωa,
σ(x) =

0.1 in Ωcon,

0 in Ωcu ∪ Ωa,
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Number of cores 1 2 4 8 16

MUMPS 633.33 421.15 304.68 210.55 171.47

Table 4.9: Computational times in seconds for solving the nonlinear problem (4.36)
with the parallel direct solver MUMPS. The solver required 8 Newton
iterations for 444,896 degrees of freedom.

and

f(|∇xu|) =


107

4π
in Ωcu ∪ Ωa,

p0 + p1|∇xu|2p2 in Ωcon,

g(|∇xp|) =
0 in Ωcu ∪ Ωa,

p3 + p4√
p2

5+|∇xp|2
in Ωcon,

with p0 = 181.88232, p1 = 0.267053, p2 = 8.999565, p3 = 0.0001, p4 = 80, p5 = 50.
Since no permanent magnets occur, M⊥ = (0, 0)⊤. We solve (4.36) by Newton’s
method (4.38) with damping. For the occurring linear system (4.39) we use the par-
allel direct solver MUMPS as described in Section 3.6.1. The relative error tolerance
of Newton’s method is 10−11. Figure 4.9 displays the second component of the mag-
netic flux density B2 as well as the B-H curve in the second component indicating the
hysteresis loop, both evaluated in the spatial reference point (0.0129906, 0.0535091)⊤

in each time slice, where the magnetic flux density is computed as in (4.27). The
solver required 8 Newton iterations and Table 4.9 shows the computational times
with respect to the number of processes. Note that the measured times include the
linearization of B in order to obtain B′ in (4.39) and the converting of the data types
between the software Netgen/NGSolve and PETSc in each Newton iteration.

4.3 Eddy current problem in moving domains

We now analyze the eddy current problem (4.1) in moving domains, where we assume
a smooth movement φ satisfying Assumption 3.1 and the corresponding velocity
field ṽ, which is considered in the total time derivative (2.20), see [60]. Hence,
the open space-time cylinder Q is given as in (3.5), which already captures the
movement of the domain within the mesh. The variational formulation is obtained
when applying integration by parts with respect to the transformed spatial variable,
and when recalling the spaces X = W (Q) from (3.19) and Y = L2(0, T ;H1

0 (Ω(t))),
it reads as to find u ∈ X, such that

a(u, v) = l(v) for all v ∈ Y, (4.40)
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Figure 4.9: Left: The second component of the magnetic flux density B2 over time.
Right: The B-H-curve in the second component indicating the expected
hysteretic behavior.

where

a(u, v) =
T∫

0

∫
Ω(t)

[
σ(y) d

dt
u(y, t)v(y, t) + ν(y, |∇yu|)∇yu(y, t) · ∇yv(y, t)

]
dydt,

l(v) =
T∫

0

∫
Ω(t)

[
J3(y, t)v(y, t) +M⊥(y, t) · ∇yv(y, t)

]
dydt.

The spatial partial integration with respect to the transformed variable y = φ(x, t)
for x ∈ Ω0 and t ∈ (0, T ) can be verified when using the integral transform to the
initial domain Ω0 according to [49, Chapter 9 and Chapter 10, Theorem 4], that is

∫
Ω(t)

u(y, t) dy =
∫

Ω0

u(φ(x, t), t)|det∇xφ(x, t)| dx,

∫
Ω(t)

∇yu(y, t) dy =
∫

Ω0

(∇xφ
−1(x, t))⊤∇xu(φ(x, t), t)|det∇xφ(x, t)| dx.

(4.41)

We define the smooth matrix valued function B : Ω0 × (0, T ) → C∞(Ω0;Rd×d) by

B(x, t) = ∇xφ
−1(x, t), (4.42)
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and obtain in terms of the integral transform (4.41) and (4.42), that the total time
derivative becomes∫

Ω(t)

d

dt
u(y, t) dy =

∫
Ω(t)

[
∂

∂t
u(y, t) + ṽ(y, t) · ∇yu(y, t)

]
dy

=
∫

Ω0

[
∂

∂t
u(φ(x, t), t) + ṽ(φ(x, t), t) ·B⊤(x, t)∇xu(φ(x, t), t)

]
|B−1| dx.

Furthermore, it holds that∫
Ω(t)

divy

(
ν(y, |∇yu|)∇yu(y, t)

)
v(x, t) dy

=
∫

Ω0

divx

(
ν(φ(x, t), |B⊤∇xu|)B(x, t)B⊤(x, t)∇xu(φ(x, t), t)

)
v(φ(x, t), t)|B−1| dy

=
∫

Ω0

ν(φ(x, t), |B⊤∇xu|)B(x, t)B⊤(x, t)∇xu(φ(x, t), t) · ∇xv(φ(x, t), t)|B−1| dy

=
∫

Ω0

ν(φ(x, t), |B⊤∇xu|)B⊤(x, t)∇xu(φ(x, t), t) ·B⊤(x, t)∇xv(φ(x, t), t)|B−1| dy

=
∫

Ω(t)

ν(y, |∇yu|)∇yu(y, t) · ∇yv(y, t) dy.

Hence, starting from the partial differential equation in (4.1) and using the above
identities due to the integral transform (4.41) as well as (4.42), we deduce the inte-
gration by parts’ formula with respect to the transformed variable y, i.e.∫

Ω(t)

[
σ(y) d

dt
u(y, t) − divy(ν(y, |∇yu|)∇yu(y, t))

]
v(y) dy

=
∫

Ω0

σ(φ(x, t)) ∂
∂t
u(φ(x, t), t)v(φ(x, t), t)|B−1| dx

+
∫

Ω0

ṽ(φ(x, t), t) ·B⊤(x, t)∇xu(φ(x, t), t)v(φ(x, t), t)|B−1| dx

+
∫

Ω0

ν(φ(x, t), |B⊤∇xu|)B⊤∇xu(x, t)) ·B⊤∇xv(φ(x, t), t)|B−1| dx

=
∫

Ω(t)

[
σ(y) d

dt
u(y, t)v(y, t) + ν(y, |∇yu|)∇yu(y, t) · ∇yv(y, t)

]
dy.

As in Section 4.1 we first consider the linear case of (4.40), hence ν(y, |∇yu|) = ν(y),
for which we state the unique solvability similar to Section 4.1.1. We proceed with the
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investigation of the nonlinear problem (4.40) and conclude this section with numerical
examples of academic and practical interest for both the linear and nonlinear case.

4.3.1 Linear eddy current problem in moving domains

Space-time variational formulation

In this section we consider the linear eddy current problem posed on a moving or
partly moving body, whose space-time variational formulation is given as in (4.40)
with ν(y, |∇yu|) = ν(y). We recall the open space-time cylinder Q as given in (3.5),
which already considers partly moving domains as well as conducting (σ > 0) and
non-conducting (σ = 0) materials denoted by Ωcon(t) and Ωnon(t), respectively.
Moreover, the Bochner space Y = L2(0, T ;H1

0 (Ω(t))) covering homogenous Dirichlet
boundary conditions on moving domains can be equipped with the norm

∥v∥2
Y =

T∫
0

∫
Ω(t)

ν(y)|∇yv(y, t)|2 dydt,

where ν ∈ L∞(Ω(t)), and the trial space

X = {u ∈ Y : σ d
dt
u ∈ Y ⋆, u(x, 0) = 0 for x ∈ Ωcon(0)} ⊂ Y, (4.43)

covering homogenous initial and boundary conditions can be equipped with the graph
norm

∥u∥2
X = ∥u∥2

Y + ∥σ d
dt
u∥2

Y ⋆ = ∥u∥2
Y + ∥wu∥2

Y ,

where wu ∈ Y is the unique solution of the variational problem

T∫
0

∫
Ω(t)

ν(y)∇ywu(y, t) · ∇yv(y, t) dydt =
T∫

0

∫
Ω(t)

σ(y) d
dt
u(y, t)v(y, t) dydt (4.44)

for all v ∈ Y , cf. [60] and [144]. As in Section 4.1.1, we conclude that the bilinear
form a(·, ·) is bounded, since

|a(u, v)| ≤ ∥σ d
dt
u∥Y ⋆∥v∥Y + ∥u∥Y ∥v∥Y =

[
∥σ d
dt
u∥Y ⋆ + ∥u∥Y

]
∥v∥Y

=
√

2
√

∥σ d
dt
u∥2

Y ⋆ + ∥u∥2
Y ∥v∥Y =

√
2∥u∥X∥v∥Y ,



98 4 Space-time eddy current problem

due to the duality, the Cauchy-Schwarz and the Hölder inequality. Furthermore, the
inf-sup stability condition holds, since for a given u ∈ X and the associated unique
solution wu ∈ Y of (4.44), we can choose vu = u+ wu ∈ Y in order to obtain

a(u, vu) = a(u, u+ wu)

=
T∫

0

∫
Ω(t)

σ
d

dt
u(u+ wu) dydt+

T∫
0

∫
Ω(t)

ν∇yu · ∇y(u+ wu) dydt

=
T∫

0

∫
Ω(t)

ν∇ywu · ∇y(u+ wu) dydt+
T∫

0

∫
Ω(t)

ν∇yu · ∇y(u+ wu) dydt

=
T∫

0

∫
Ω(t)

ν|∇y(u+ wu)|2 dydt

= ∥u+ wu∥2
Y = ∥vu∥2

Y .

On the other hand, we obtain that

∥vu∥2
Y = ∥u+ wu∥2

Y

=
T∫

0

∫
Ω(t)

ν|∇yu|2 dydt+
T∫

0

∫
Ω(t)

ν|∇ywu|2 dydt+ 2
T∫

0

∫
Ω(t)

ν∇yu · ∇ywu dydt

= ∥u∥2
Y + ∥wu∥2

Y + 2
T∫

0

∫
Ω(t)

σ
d

dt
uu dydt

≥ ∥u∥2
Y + ∥wu∥2

Y = ∥u∥2
X ,

where the last estimate follows when using the chain rule, Reynolds transport theo-
rem (3.11) with divyṽ = 0 and the fact that the electric conductivity σ is constant
in time, i.e.

2
T∫

0

∫
Ω(t)

σ(y) d
dt
u(y, t)u(y, t) dydt =

T∫
0

∫
Ω(t)

σ(y) d
dt

[u(y, t)]2 dydt

=
T∫

0

d

dt

∫
Ω(t)

σ(y)[u(y, t)]2 dydt

=
∫

Ω(t)

σ(y)[u(y, t)]2 dy
∣∣∣∣T
0

=
∫

Ωcon(T )

σ(y)[u(y, T )]2 dy > 0,
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with u(y, 0) = 0 for y ∈ Ωcon(0). Therefore, the inf-sup stability conditions reads
as

∥u∥X ≤ sup
0̸=v∈Y

a(u, v)
∥v∥Y

for all u ∈ X. (4.45)

Remark 4.12. Note that the inf-sup constant has been improved compared to the
constant ca

1 = 1√
2 recently given in [60].

More involved, and not as simple as in the case of fixed domains as in Section 4.1.1,
is the validation of the surjectivity for the bilinear form in (4.40). Again, the ap-
plication of the Steklov-Poincaré operator [143] is needed for the treatment of the
elliptic-parabolic interface problem. However, for the proof of the surjectivity we
recall that the movement of the domain is uniform, which means that for all of our
applications we consider translations and rotations in time. The following lemma
states the surjectivity of (4.40), where the underlying domains are assumed to be a
moving interval (in 1D) and an electric motor with rotating and fixed parts (in 2D)
as visualized in Figure 3.1.

Lemma 4.13. For all v ∈ Y \{0} there exists a û ∈ X such that

a(û, v) ̸= 0.

Proof. We prove this statement for the case of uniformly moving bodies in the spa-
tially one-dimensional and two-dimensional case. Uniform motion in 1D makes sense,
if it is considered to be a translation in time. For the latter, translations and rotations
are the underlying movements. We consider the domain

Ω(t) = (Ωs ∩ Ωcon) ∪ (Ωr(t) ∩ Ωcon(t)) ∪ Ωnon(t), (4.46)

that consists of the moving regions Ωr(t) and fixed regions Ωs, where both of them
may contain conducting parts Ωcon and non-conducting parts Ωnon. For a given
v ∈ Y \{0} we first define

û(y, t) = û(φ(x, t), t) :=
t∫

0

v(φ(x, s), s) ds,

such that

d

dt
û(y, t) = v(y, t) for y ∈ Ωcon(t), t ∈ (0, T ).
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By definition, we have û ∈ X satisfying the initial condition û(y, 0) = 0 for every
y ∈ Ωcon(0) and

a(û, v) =
T∫

0

∫
Ω(t)

σ(y) d
dt
û(y, t)v(y, t) dydt+

T∫
0

∫
Ω(t)

ν(y)∇yû(y, t) · ∇yv(y, t) dydt

=
T∫

0

∫
Ωcon(t)

σ(y)[v(y, t)]2 dydt+
T∫

0

∫
Ω(t)

ν(y)∇yû(y, t) · ∇y
d

dt
û(y, t) dydt.

(4.47)

The first term is obviously positive, hence it remains to consider the second term
of (4.47). For the non-moving regions Ωs of the domain, φ(x, t) = x and v(y, t) = 0,
therefore

T∫
0

∫
Ωs∩Ωcon

ν(y)∇yû(y, t) · ∇y
d

dt
û(y, t) dydt

=
T∫

0

∫
Ωs∩Ωcon

ν(x)∇xû(x, t) · ∇x
∂

∂t
û(x, t) dxdt

=
T∫

0

∫
Ωs∩Ωcon

1
2
∂

∂t

[
ν(x)|∇xû(x, t)|2

]
dxdt

= 1
2

T∫
0

∂

∂t

∫
Ωs∩Ωcon

ν(x)|∇xû(x, t)|2 dxdt

= 1
2

∫
Ωs∩Ωcon

ν(x)|∇xû(x, T )|2 dx ≥ 0. (4.48)

For the moving regions, we start with the one-dimensional case, where the motion is
a translation, i.e.

φ(x, t) = x+ α
t

T
for x ∈ Ω0 ⊂ R, α > 0,

where α denotes the constant velocity within the time span (0, T ). The velocity field
is given as

ṽ(y, t) = ∂

∂t
φ(x, t) = α

1
T
.

Furthermore, it is divergence free, i.e. divyṽ(y, t) = 0, and we obtain that

∇y
d

dt
û(y, t) = ∂

∂y1

d

dt
û(y1, t) = ∂

∂y1

[
∂

∂t
û(y1, t) + α

1
T

∂

∂y1
û(y1, t)

]
= d

dt

∂

∂y1
û(y1, t),
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which means that we can change the gradient and the total time derivative in the
second expression of (4.47). The same result is also needed for the two-dimensional
case, for which we may consider e.g. the domain of the electric motor as visualized
in Figure 3.1. The domain Ω(t) is defined as in (4.46), where Ωs denotes the stator
including the coils, and Ωr(t) denotes the rotor including the magnets. In the stator
domain Ωs, i.e. for r ∈ (r3, R), we have y(x, t) = x for all t ∈ (0, T ) and v(y, t) = 0,
hence we obtain similarly to (4.48) that

T∫
0

∫
Ωs∩Ωcon

ν(y)∇yû(y, t) · ∇y
d

dt
û(y, t) dydt = 1

2

∫
Ωs∩Ωcon

ν(x)|∇xû(x, T )|2 dx ≥ 0.

(4.49)

Next, we consider the moving regions and generally obtain for the total time deriva-
tive that

d

dt
û(y, t) = ∂

∂t
û(y, t) + ṽ(y, t) · ∇yû(y, t)

= ∂

∂t
û(y, t) + ṽ1(y, t)

∂

∂y1
û(y, t) + ṽ2(y, t)

∂

∂y2
û(y, t).

To compute the spatial gradient of the total time derivative, we now consider for
i = 1, 2,

∂

∂yi

d

dt
û(y, t) = ∂

∂yi

[
∂

∂t
û(y, t) + ṽ1(y, t)

∂

∂y1
û(y, t) + ṽ2(y, t)

∂

∂y2
û(y, t)

]

= ∂

∂yi

∂

∂t
û(y, t) + ∂

∂yi

ṽ1(y, t)
∂

∂y1
û(y, t) + ṽ1(y, t)

∂2

∂yi∂y1
û(y, t)

+ ∂

∂yi

ṽ2(y, t)
∂

∂y2
û(y, t) + ṽ2(y, t)

∂2

∂yi∂y2
û(y, t),

in order to derive

∇yû(y, t) · ∇y
d

dt
û(y, t) = ∇yû(y, t) · ∇y

(
∂

∂t
û(y, t) + ṽ(y, t) · ∇yû(y, t)

)

= ∇yû(y, t) · ∇y
∂

∂t
û(y, t) + ∇yû(y, t)∇y

(
ṽ(y, t) · ∇yû(y, t)

)
= ∇yû(y, t) · ∇y

∂

∂t
û(y, t) +

2∑
i=1

∂

∂yi

û(y, t) ∂
∂yi

(
ṽ(y, t) · ∇yû(y, t)

)

= ∇yû(y, t) ·

 ∂
∂t

∇yû(y, t) +
ṽ1

∂2

∂y2
1
û(y, t) + ṽ2

∂2

∂y1∂y2
û(y, t)

ṽ1
∂2

∂y1∂y2
û(y, t) + ṽ2

∂2

∂y2
2
û(y, t)

+R(û)

= ∇yû(y, t) · d
dt

∇yû(y, t) +R(û),
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where the rest term R(û) is given as

R(û) = ∂

∂y1
ṽ1(y, t)

∂2

∂y2
1
û(y, t) + ∂

∂y1
ṽ2(y, t)

∂2

∂y1∂y2
û(y, t)

+ ∂

∂y2
ṽ2(y, t)

∂2

∂y1∂y2
û(y, t) + ∂

∂y2
ṽ2(y, t)

∂2

∂y2
2
û(y, t).

To receive the desired result, we need to assure that R(û) = 0. When we consider
the rotor domain Ωr, i.e. r ∈ (r1, r2), which rotates according to the velocity field as
described in Section 3.2, recall Ψ(r) = 1 for r ∈ (r1, r2), hence

ṽ(y, t) = ϕ

T

(
−y2
y1

)
,

and

∂

∂y1
ṽ1(y, t) = 0, ∂

∂y2
ṽ1(y, t) = −ϕ

T
,

∂

∂y1
ṽ2(y, t) = ϕ

T
,

∂

∂y2
ṽ2(y, t) = 0.

This yields that R(û) = 0 for a uniform rotation. Summarizing, it follows for the
one-dimensional as well as for the two-dimensional case, that

T∫
0

∫
Ωr(t)∩Ωcon(t)

ν(y)∇yû(y, t) · ∇y
d

dt
û(y, t) dydt

=
T∫

0

∫
Ωr(t)∩Ωcon(t)

ν(y)∇yû(y, t) · d
dt

∇yû(y, t) dydt

=
T∫

0

∫
Ωr(t)∩Ωcon(t)

1
2ν(y) d

dt
|∇yû(y, t)|2 dydt

= 1
2

T∫
0

d

dt

∫
Ωr(t)∩Ωcon(t)

ν(y)|∇yû(y, t)|2 dydt

= 1
2

∫
Ωr(T )∩Ωcon(T )

ν(y)|∇yû(y, T )|2 dy ≥ 0. (4.50)

Using (4.48), (4.49) and (4.50), we can estimate (4.47) for both cases as follows,

a(û, v) ≥
T∫

0

∫
Ωcon(t)

σ(y)[v(y, t)]2 dydt+
T∫

0

∫
Ωnon(t)

ν(y)∇yû(y, t) · ∇yv(y, t) dydt.
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It remains to define û in the non-conduction regions in a suitable way. In any non-
conducting subregion we can write

T∫
0

∫
Ωnon(t)

ν(y)∇yû(y, t) · ∇yv(y, t) dydt

=
T∫

0

∫
Ωnon(t)

[v(y, t)]2 dydt+
T∫

0

∫
∂Ωnon(t)

ny · [ν(y)∇yû(y, t)]v(y, t) dydt,

where ny is the spatial unit outward normal vector and û is a solution of the Dirichlet
boundary value problem

−divy[ν(y)∇yû(y, t)] = v(y, t) for y ∈ Ωnon(t),
û|Ωnon(t) = û|Ωcon(t) on ∂Ωnon(t) ∩ ∂Ωcon(t),
û|Ωnon(t) = 0 on ∂Ωnon(t) ∩ ∂Ω(t),

for all t ∈ (0, T ), and, due to the choice of these boundary conditions, it follows that
û ∈ Y . The solution of this Dirichlet boundary value problem implies the Dirichlet
to Neumann map

ny · [ν(y)∇yû(y, t)] = (Sû)(y, t) for y ∈ ∂Ωnon(t), t ∈ (0, T ),

with the Steklov-Poincaré operator S : H1/2(∂Ωnon(t)) → H−1/2(∂Ωnon(t)). Since
the shape of Ωnon(t) is fixed, S does not depend on time. On the other hand, since
S is self-adjoint and positive semi-definite, we can factorize S to write

T∫
0

∫
∂Ωnon(t)

(Sû)(y, t)v(y, t) dsydt =
T∫

0

∫
∂Ωnon(t)

(S1/2û)(y, t)(S1/2v)(y, t) dsydt

=
T∫

0

∫
∂Ωnon(t)

(S1/2û)(y, t) d
dt

(S1/2û)(y, t) dsydt

= 1
2

T∫
0

d

dt

∫
∂Ωnon(t)

[
(S1/2û)(y, t)

]2
dsydt

= 1
2

∫
∂Ωnon(T )

[
(S1/2û)(y, T )

]2
dsy ≥ 0.

Hence, it follows that
T∫

0

∫
Ωnon(t)

ν(y)∇yû(y, t) · ∇yv(y, t) dydt ≥
T∫

0

∫
Ωnon(t)

[v(y, t)]2 dydt,
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which finally gives

a(û, v) ≥
T∫

0

∫
Ωcon(t)

σ(y)[v(y, t)]2 dydt+
T∫

0

∫
Ωnon(t)

[v(y, t)]2 dydt > 0.

This concludes the proof.

Remark 4.14. Note that for the spatially two-dimensional case also translations with
respect to time of the form

φ(x, t) = x+ α
t

T
∈ Ω0 ⊂ R2, t ∈ (0, T ), and ṽ(y, t) = α

T
,

fulfill the requirement of the rest term R(û) = 0. Similar results are valid for uniform
motion in the spatially three-dimensional case. Furthermore, the proof of this lemma
still holds true, if the whole body is moving. In [60] the proof has been carried out for
a periodic behavior of the solution, which is also reflected in the trial space by using
the definition

X =
{
u ∈ Y : σ d

dt
u ∈ Y ⋆, u(x, T ) = u(x, 0) for x ∈ Ωcon(0)

}
⊂ Y.

Theorem 4.15. Let J3 ∈ L2(0, T ;H−1(Ω(t))) and M⊥ ∈ [L2(Q)]d be given. Then
there exists a unique solution u ∈ X of (4.40) with ν(y, |∇yu|) = ν(y) satisfying

∥u∥X ≤ ∥J3∥L2(0,T ;H−1(Ω)) + c∥M⊥∥L2(Q).

Proof. Since the inf-sup condition (4.45) and the surjectivity due to Lemma 4.13 hold,
we deduce the unique solvability of (4.40) with ν(y, |∇yu|) = ν(y) from Theorem 3.17.
The estimate follows from the inf-sup stability condition (4.45).

Space-time finite element discretization

For the space-time finite element discretization of the linear variational formula-
tion (4.40) with ν(y, |∇yu|) = ν(y) we introduce the conforming finite-dimensional
spaces Xh ⊂ X and Yh ⊂ Y , where we assume as in the continuous case that Xh ⊂ Yh.
For our specific purpose we even consider

Xh = Yh := S1
h(Th) ∩X = span{ϕk}M

k=1, (4.51)

where the space S1
h(Th) of piecewise linear and globally continuous functions ϕk is

defined as in (3.24) with respect to some admissible and locally quasi-uniform de-
composition Th = {τℓ}N

ℓ=1 of the space-time cylinder Q into shape regular simplicial
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finite elements τℓ of mesh size hℓ, cf. Section 3.4. The Galerkin space-time finite
element discretization of the variational formulation (4.40) is to find uh ∈ Xh, such
that

a(uh, vh) = l(vh) for all vh ∈ Yh. (4.52)

In order to guarantee the existence of a unique solution for the discrete variational
problem (4.52), we proceed as in the continuous case. First, for any u ∈ X we define
wu,h ∈ Yh as the unique solution of the Galerkin variational formulation

T∫
0

∫
Ω(t)

ν(y)∇ywu,h(y, t) · ∇yvh(y, t) dydt =
T∫

0

∫
Ω(t)

σ(y) d
dt
u(y, t)vh(y, t) dydt, (4.53)

for all vh ∈ Yh. Consequently, we define the discrete energy norm as in (4.10), where
wu ∈ Y is the unique solution of the variational formulation (4.44), and due to the
conformal discretization Yh ⊂ Y we have ∥wu,h∥Y ≤ ∥wu∥Y , cf. [144]. Similarly, we
define wuh,h ∈ Yh as the unique solution of (4.53) for uh ∈ Xh in the right-hand
side. Hence, we can consider the particular test function vuh,h = uh + wuh,h due to
Xh ⊂ Yh, in order to conclude

a(uh, vuh,h) = a(uh, uh + wuh,h) = ∥uh + wuh,h∥2
Y = ∥vuh,h∥2

Y

and

∥vuh,h∥2
Y = ∥uh + wuh,h∥2

Y ≥ ∥uh∥2
Y + ∥wuh,h∥2

Y = ∥uh∥2
Xh

as in the continuous case, which finally gives the discrete inf-sup stability condition

∥uh∥Xh
≤ sup

0̸=vh∈Yh

a(uh, vh)
∥vh∥Y

for all uh ∈ Xh. (4.54)

From (4.54) we deduce the unique solvability of the Galerkin space-time variational
formulation (4.52). Similar to Section 4.1.1, we can derive Céa’s lemma

∥u− uh∥Xh
≤
(
1 +

√
2
)

inf
vh∈Yh

∥u− vh∥X ,

and the a priori error estimate in the energy norm as given in Theorem 3.22,

∥u− uh∥Y ≤ ch|u|H2(Q),

if u ∈ H2(Q), where u ∈ X and uh ∈ Xh are the solutions of the variational prob-
lems (4.40) and (4.52), respectively.
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4.3.2 Numerical examples

In this section we provide some numerical results in order to illustrate the applica-
bility and accuracy of the proposed approach. We define the finite element spaces Yh

and Xh as in (4.51), which are spanned by piecewise linear and globally continuous
functions ϕk, cf. (3.24). Hence, for all vh ∈ Yh we can find the representation

vh(y, t) =
M∑

k=1
vkϕk(y, t), with vk = vh(yk, tk), (4.55)

that defines the finite element isomorphism vh ↔ vh ∈ RM , where vh[k] = vk,
for k = 1, . . . ,M . The discrete space-time variational formulation (4.52) is then
equivalent to the linear system

(Ah +Kh)uh = lh, (4.56)

where Ah ∈ RM×M and the stiffness matrix Kh ∈ RM×M are given as

Ah[i, j] =
T∫

0

∫
Ω(t)

σ(y) d
dt
ϕj(y, t)ϕi(y, t) dydt,

Kh[i, j] =
T∫

0

∫
Ω(t)

ν(y)∇yϕj(y, t) · ∇yϕi(y, t) dydt,

for i, j = 1, . . . ,M , and the load vector lh has the entries

lh[i] =
T∫

0

∫
Ω(t)

[J3(y, t)ϕi(y, t) +M⊥(y, t) · ∇yϕi(y, t)] dydt,

for i = 1, . . . ,M . We solve the resulting non-symmetric linear system (4.56) in
parallel with the methods described in Section 3.6.1.

We start with an example that considers a moving interval Ω(t), where the initial
domain Ω(0) = (0, 1), consisting of the conducting region Ωcon(0) = (0, 0.5) and the
non-conducting region Ωnon(0) = (0.5, 1), is uniformly translated in time for T = 1
with φ(x, t) = x+t for x ∈ Ω(0), hence ṽ = 1. The space-time cylinder Q is defined as
in (3.5), which is depicted in Figure 4.10. We consider the manufactured solution

u(y, t) = (y − t)(1 − y + t)t

satisfying the homogenous boundary and initial conditions, and the material param-
eters

σ(y) =
1 for y ∈ Ωcon(t),

0 for y ∈ Ωnon(t),
and ν(y) =

2 for y ∈ Ωcon(t),
1 for y ∈ Ωnon(t),
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Figure 4.10: Left: An unstructured mesh of the space-time cylinder Q, consist-
ing of the conducting region Ωcon(t) (red) and the non-conducting re-
gion Ωnon(t) (blue). The visualized mesh has 425 nodes (degrees of free-
dom) and 768 elements. Right: The approximate solution uh of (4.52)
computed on this mesh.

L dofs ∥u− uh∥Y EOC

1 153 0.04682
2 561 0.02367 0.984
3 2,145 0.01190 0.992
4 8,385 0.00596 0.997
5 331,53 0.00298 0.999
6 131,841 0.00149 1
7 525,825 0.00075 1
8 2,100,225 0.00037 1
9 8,394,753 0.00019 1

Table 4.10: The discretization error in the energy norm, which indicates linear con-
vergence when using the parallel direct solver MUMPS on 16 cores for a
uniform mesh refinement.

Number of cores 1 2 4 8 16

MUMPS 7.11 6.62 6.13 5.81 5.32
GMRES 61.36 306.55 61.36 52.83 22.33
iterations 178 1158 513 705 526

Table 4.11: Computational times in seconds for solving the linear system (4.56) with
MUMPS and preconditioned GMRES with the BoomerAMG precondi-
tioner on a mesh with 394,497 nodes (dofs) and 786,432 elements.
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Figure 4.11: An unstructured mesh of the space-time cylinder Q, which is ex-
truded vertically in time considering a counterclockwise rotational mo-
tion of Ω(0) and has 49,928 nodes (degrees of freedom) and 274,439
elements.

hence we deduce for the right-hand side in (4.56) that

J3(y, t) =
(1 − y + t)(y − t) + 4t for y ∈ Ωcon(t),

2t for y ∈ Ωnon(t).

Figure 4.10 visualizes the approximate solution uh of (4.52), and Table 4.10 shows
the expected linear convergence as stated in Theorem 3.22. In Table 4.11 the com-
putational times are given with respect to the number of cores. Here, we used a
relative error tolerance of 10−5 for the parallel iterative solver GMRES. Note that
the computational times relate purely to the time for solving the system (4.56), i.e.
the assembly and the converting of the data types between Netgen/NGSolve and
PETSc are not measured. Obviously, the parallel direct solver MUMPS is very ef-
ficient for the spatially one-dimensional case, whereas the iterative solver seems to
have troubles depending on the number of processes, highlighting the question of a
suitable preconditioner.

For the next example, we consider a spatially two-dimensional moving domain Ω(t) ⊂
R2 made of one material, whose initial domain Ω(0) = (0, 1)2 rotates 90-degree
counterclockwise in temporal direction around the midpoint xM = (0.5, 0.5)⊤ of Ω(t)
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Solution uh at time t = 0.0[s].

Solution uh at time t = 0.7[s].

Solution uh at time t = 0.35[s].

Solution uh at time t = 1.0[s].

Figure 4.12: The approximate solution uh of (4.52) for different time points computed
on the mesh from Figure 4.11.



110 4 Space-time eddy current problem

within a time span of (0, T ) with T = 1. The rotation is given as

φ(x, t) =
(

0.5
0.5

)
+
(

cosα(t) − sinα(t)
sinα(t) cosα(t)

)(
x1 − 0.5
x2 − 0.5

)
with α(t) = πt

2 ,

for x ∈ Ω(0), for which we deduce the velocity field ṽ = π
2 (−y2 − 0.5, y1 − 0.5)⊤,

cf. Section 3.2. As before, the space-time cylinder Q is defined as in (3.5) and is
visualized in Figure 4.11. We consider the rotating manufactured solution

u(ŷ1, ŷ2, t) = ŷ1(1 − ŷ1)ŷ2(1 − ŷ2)t,

where

ŷ1 = (y1 − 0.5) cos(α(t)) + (y2 − 0.5) sin(α(t)) + 0.5,
ŷ2 = (y2 − 0.5) cos(α(t)) − (y1 − 0.5) sin(α(t)) + 0.5,

and the material parameters

σ(y) = 10 for y ∈ Ω(t), and ν(y) = y2
1 + y2

2 for y ∈ Ω(t).

The right-hand side J3 is computed by using the underlying partial differential equa-
tion, i.e.

J3(y, t) = σ(y) d
dt
u(y, t) − divy(ν(y)∇yu(y, t)).

The approximate solution uh of (4.52) is displayed for different time points in Fig-
ure 4.12 and indicates the expected linear convergence in the energy norm as given in
Table 4.12. Furthermore, the computational times for solving the linear system (4.13)
with respect to the number of cores are given in Table 4.13. Again, the measured
times relate purely to the solving of the linear systems. Here, we used a relative error
tolerance of 10−5 for the parallel iterative solver GMRES. Obviously, the iterative
solver does not scale well and a suitable preconditioner for this class of problems need
to be constructed.

4.3.3 Nonlinear eddy current problem in moving domains

Space-time variational formulation

Finally, we turn our focus to the nonlinear eddy current problem (4.40) for mov-
ing or partly moving domains. As already mentioned, in realistic applications the
magnetic reluctivity ν additionally depends on the magnitude of the magnetic flux
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L dofs ∥u− uh∥Y EOC

1 41 0.05745
2 207 0.03087 0.896
3 1,269 0.01586 0.961
4 8,777 0.00803 0.982
5 65,041 0.00403 0.992
6 500,257 0.00202 0.997
7 3,923,009 0.00101 0.999

Table 4.12: The discretization error in the energy norm, which indicates linear con-
vergence when using the parallel direct solver MUMPS on 16 cores for a
uniform mesh refinement.

Number of cores 1 2 4 8 16

MUMPS 40.66 29.72 24.54 17.94 14.66
GMRES 2127.76 1389.31 757.22 108.24 5.74
iterations 1704 1897 1818 515 10

Table 4.13: Computational times in seconds for solving the linear system (4.56) with
MUMPS and preconditioned GMRES with the BoomerAMG precondi-
tioner on a mesh with 373,063 nodes (dofs) and 2,190,940 elements.

density, which causes the evolution problem to be nonlinear. As before, we dis-
tinguish between the conducting (σ > 0) and non-conducting (σ = 0) regions de-
noted by Ωcon(t) and Ωnon(t), respectively, and recall the definition of the space-
time domain Q in (3.5). Furthermore, we keep the notations for the Bochner space
Y = L2(0, T ;H1

0 (Ω(t))) and the space X as defined in (4.43). We proceed as in Sec-
tion 4.1.3, where we make use Theorem 4.4, Lemma 4.5 and Theorem 4.6 in order to
conclude the existence of a unique solution for the nonlinear space-time variational
formulation (4.40), as summarized in the next theorem.

Theorem 4.16. Let the motion φ : Ω(0) × (0, T ) → R satisfy Assumption 3.1 and
let l ∈ Y ⋆. Then the space-time variational formulation (4.40) has a unique solution
u ∈ X, which has a Lipschitz dependence on l, i.e. there exists a constant c > 0,
such that

∥u1 − u2∥2
L2(0,T ;H1

0 (Ω(t))) + ∥σ d
dt

(u1 − u2)∥2
L2(0,T ;H−1(Ω(t))) ≤ c∥l1 − l2∥2

L2(0,T ;H−1(Ω(t))),

where u1, u2 ∈ X are the solutions of (4.40) associated to the respective sources
l1, l2 ∈ Y ⋆.



112 4 Space-time eddy current problem

Proof. This proof has been first investigated by [26]. We will proceed similar to the
proof from Theorem 4.8. First, we assume there exists a solution u ∈ X to the
space-time variational problem (4.40) and consider an equivalent problem (4.61), for
which Theorem 4.6 is applicable. The solution is unique if it exists, from which we
construct a solution for (4.40) in order to conclude the proof.

Assume that (4.40) has a solution u ∈ X. We can equivalently rewrite (4.40) to the
variational problem, to find u ∈ X, such that for almost all t ∈ (0, T )

∫
Ω(t)

[
σ(y) d

dt
u(y, t)v(y) + ν(y, |∇yu|)∇yu(y, t) · ∇yv(y)

]
dy = l̃(y, t), (4.57)

for all v ∈ H1
0 (Ω(t)), where

l̃(y, t) =
∫

Ω(t)

[
J3(y, t)v(y) +M⊥(y, t) · ∇yv(y)

]
dy.

Hence, the solution u ∈ X of (4.40) also satisfies (4.57) for all v ∈ H1
0 (Ω(t)), which

is still of elliptic-parabolic type. We use the notation Ω = Ω(0) for the initial state
of the domain, as well as Ωcon = Ωcon(0) for the conducting region and introduce the
transported function u ∈ L2(0, T ;H1

0 (Ω)) defined as

u(x, t) := u(φ(x, t), t) for t ∈ [0, T ] and x ∈ Ω.

When considering test functions of the form v = v ◦ φ, v ∈ H1
0 (Ω), the integral

transform (4.41) with respect to the transformed variable y = φ(x, t) in (4.57) yields,
for almost all t ∈ (0, T )
∫
Ω

σ(φ(x, t)) ∂
∂t
u(x, t)v(x) dx (4.58)

+
∫
Ω

ν(φ(x, t), |B⊤∇xu|)B⊤(x, t)∇xu(x, t) ·B⊤(x, t)∇xv(x) dx = l̃(φ(x, t), t),

for all v ∈ H1
0 (Ω), where B is a smooth matrix-valued function as defined in (4.42)

satisfying (4.18), and for our purpose the uniform motion fulfills

|det∇xφ(x, t)| = 1.

The material parameters σ and ν do not depend on time and are isotropic, i.e. the
orientation of the material has no effect on the parameters, which verify the identities

σ(y) = σ(x), ν(y, |∇yu|) = ν(x, |B⊤∇xu|). (4.59)
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Using the material parameter identities (4.59) in (4.58), we obtain that u ∈ X satisfies
for almost all t ∈ (0, T )∫

Ω

σ(x) ∂
∂t
u(x, t)v(x) dx (4.60)

+
∫
Ω

ν(x, |B⊤∇xu|)B(x, t)B⊤(x, t)∇xu(x, t) · ∇xv(x) dx = l̃(φ(x, t), t),

for all v ∈ H1
0 (Ω). From now on, we can proceed as in the proof of Theorem 4.8.

When using test functions v with compact support inside Ω\Ωcon in (4.60), we see
that u satisfies the equation

−divx

(
ν(x, |B⊤∇xu|)B(x, t)B⊤(x, t)∇xu(x, t)

)
= J3(φ(x, t), t) in Ω\Ωcon,

assuming M⊥ = 0 in Ωnon. Now, when we consider the spatial restriction of u(·, t)
to Ωcon, denoted by uc(·, t), spatial integration by parts on Ω\Ωcon reveals that uc

satisfies the variational problem

σcon

∫
Ωcon

∂

∂t
uc(x, t)v(x) dx+ νcon

∫
Ωcon

B(x, t)B⊤(x, t)∇xuc(x, t) · ∇xv(x) dx

−
∫

∂Ωcon

γ0
(
ν(x, |B⊤∇xLtuc|)B(x, t)B⊤(x, t)∇xLtuc(x, t)

)
· n(x)γ0v(x) dsx (4.61)

= l̃(φ(x, t), t),

for all v ∈ H1(Ωcon), where l̃(φ(·, t), t) is defined on Ωcon, σcon and νcon are constants
in Ωcon, γ0 is the trace operator as defined in Theorem 3.8, n is the outward unit
normal vector of Ωcon, and for uc(·, t) ∈ H1(Ωcon), we define Ltuc(·, t) ∈ H1(Ω\Ωcon)
as the unique solution of Dirichlet boundary problem

−divx

(
ν(x, |B⊤∇xLtuc|)B(x, t)B⊤(x, t)∇xLtuc(x, t)

)
= J3(φ(x, t), t) in Ω\Ωcon,

Ltuc(x, t) = uc(x, t) on ∂Ωcon, (4.62)
Ltuc(x, t) = 0 on ∂Ω.

We want to prove that uc is indeed a unique solution to the variational problem (4.61).
For this purpose, we introduce the linear operator A : H1(Ωcon) → H1(Ωcon)⋆ and
the nonlinear operator B : H1(Ωcon) → H1(Ωcon)⋆, which are defined by

⟨Au, v⟩H1(Ωcon)⋆,H1(Ωcon) = νcon

∫
Ωcon

B(x, t)B(x, t)⊤∇xu(x, t) · ∇xv(x) dx,

⟨Bu, v⟩H1(Ωcon)⋆,H1(Ωcon) =

−
∫

∂Ωcon

γ0
(
ν(x, |B⊤∇xLtu|)B(x, t)B(x, t)⊤∇xLtu(x, t)

)
· n(x)γ0v(x) dsx,
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for u(·, t), v ∈ H1(Ωcon). Hence, we can write (4.61) shortly as

σcon

∫
Ωcon

∂

∂t
uc(x, t)v(x) dx+ ⟨Auc + Buc, v⟩H1(Ωcon)⋆,H1(Ωcon) = l̃(φ(x, t), t)

for all v ∈ H1(Ωcon). We start to analyze the linear operator A and easily obtain
that A is Lipschitz continuous, i.e. for all u1, u2 ∈ H1(Ωcon) it holds

∥Au1 − Au2∥H1(Ωcon)⋆ = sup
0̸=v∈H1(Ωcon)

|⟨Au1 − Au2, v⟩H1(Ωcon)⋆,H1(Ωcon)|
∥v∥H1(Ωcon)

≤ sup
0̸=v∈H1(Ωcon)

νconγB∥∇x(u1 − u2)∥L2(Ωcon)∥∇xv∥L2(Ωcon)

∥v∥H1(Ωcon)

≤ νconγB∥u1 − u2∥H1(Ωcon),

where we have used (4.18) to bound B. Furthermore, the linear operator A is mono-
tone, since for all u1, u2 ∈ H1(Ωcon) it holds

⟨Au1 − Au2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) ≥ νconγB
∥∇x(u1 − u2)∥2

L2(Ωcon) ≥ 0.

We now focus on the nonlinear operator B, for which we fist introduce the linear
extension operator E : H1(Ωcon) → H1(Ω), such that ∥Ev∥H1(Ω) ≤ cE∥v∥H1(Ωcon),
cf. [1], in order to obtain when using integration by parts, that

⟨Bu, v⟩H1(Ωcon)⋆,H1(Ωcon) =∫
Ω\Ωcon

ν(x, |B⊤∇xLtu|)B(x, t)B(x, t)⊤∇xLtu(x, t) · ∇xEv(x) dsx,

−
∫

Ω\Ωcon

divx(ν(x, |B(x, t)⊤∇xLtu|)B(x, t)B(x, t)⊤∇xLtu(x, t))Ev(x) dx

=
∫

Ω\Ωcon

ν(x, |B⊤∇xLtu|)B(x, t)B(x, t)⊤∇xLtu(x, t) · ∇xEv(x) dx

+
∫

Ω\Ωcon

J3(x, t)Ev(x) dx,

for u, v ∈ H1(Ωcon), where Ltu satisfies the boundary value problem (4.62). Hence,
for u1, u2 ∈ H1(Ωcon) satisfying (4.62), we have

⟨Bu1 − Bu2,v⟩H1(Ωcon)⋆,H1(Ωcon) =∫
Ω\Ωcon

ν(x, |B⊤∇xLtu1|)B(x, t)B(x, t)⊤∇xLtu1(x, t) · ∇xEv(x) dx

−
∫

Ω\Ωcon

ν(x, |B⊤∇xLtu2|)B(x, t)B(x, t)⊤∇xLtu2(x, t) · ∇xEv(x) dx,
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where the application of Lemma 4.5 to the operator Lt : H1(Ωcon) → H1(Ω\Ωcon)
gives

∥Bu1 −Bu2∥H1(Ωcon)⋆ = sup
v∈H1(Ωcon)

|⟨Bu1 − Bu2, v⟩H1(Ωcon)⋆,H1(Ωcon)|
∥v∥H1(Ωcon)

≤ 3ν0cEγB∥∇xLtu1 − ∇xLtu2∥L2(Ω\Ωcon)

≤ 3ν0cEγB∥Ltu1 − Ltu2∥H1(Ω\Ωcon).

According to Lemma 4.5, Ltu1 and Ltu2 are the unique solutions to (4.21) for the
given boundary data u1 and u2, respectively, but the same right-hand side J3, hence
the continuity estimate (4.17) holds, and we deduce

∥Bu1 −Bu2∥H1(Ωcon)⋆ ≤ 3ν0cEγB∥Ltu1 − Ltu2∥H1(Ω\Ωcon)

≤ 3ν0cEγBcLt∥γ0(u1 − u2)∥H1/2(∂Ωcon)

≤ 3ν0cEγBcLtctr∥u1 − u2∥H1(Ωcon),

where the last estimate follows from the trace inequality, such that we conclude the
Lipschitz continuity of the operator B.

Moreover, for u1, u2 ∈ H1(Ωcon) satisfying (4.62) we obtain with the same calculations
as before that

⟨Bu1−Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon)

=
∫

Ω\Ωcon

ν(x, |U1|)U1(x, t) · (U1(x, t) − U2(x, t)) dx

−
∫

Ω\Ωcon

ν(x, |U2|)U2(x, t) · (U1(x, t) − U2(x, t)) dx,

where Ui = B⊤∇xLtui, for i = 1, 2. Using the same calculations as in the proof of
Lemma 4.5, we deduce

⟨Bu1−Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) ≥ νγ
B

∥∇xLtu1 − ∇xLtu2∥2
L2(Ω\Ωcon).

Due to Friedrichs’s inequality (3.12), the norms ∥∇xu∥L2(Ω\Ωcon) and ∥u∥H1(Ω\Ωcon)
are equivalent on the space H1

0,∂Ω(Ω\Ωcon) := {u ∈ H1(Ω\Ωcon) : γ0u = 0 on ∂Ω},
hence it follows that

⟨Bu1 − Bu2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon) ≥ cνγ
B

∥Ltu1 − Ltu2∥2
H1(Ω\Ωcon)

≥ cc2
trνγB

∥γ0(u1 − u2)∥2
H1/2(∂Ωcon),

where the last estimate follows from the trace inequality.
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Finally, the sum of both operators A + B is Lipschitz continuous, i.e.

∥(A + B)u1 − (A + B)u2∥H1(Ωcon)⋆ ≤ L∥u1 − u2∥H1(Ωcon),

where L = γB max(νcon, 3ν0cEcLtctr), and strongly monotone, i.e.

⟨(A + B)u1 − (A + B)u2, u1 − u2⟩H1(Ωcon)⋆,H1(Ωcon)

≥ νconγB
∥∇x(u1 − u2)∥2

L2(Ωcon) + cc2
trνγB

∥γ0(u1 − u2)∥2
H1/2(∂Ωcon)

≥ C∥u1 − u2∥2
H1(Ωcon),H1/2(∂Ωcon) ≥ c2

PC∥u1 − u2∥2
H1(Ωcon)

with C = γ
B

min(νcon, cc
2
trν), where we have used the norm as defined in Lemma 4.7

and its application. Thus, it follows from Theorem 4.6 that the variational prob-
lem (4.61) has a unique solution uc ∈ L2(0, T ;H1(Ωcon)).

From here on, we proceed in the same way as in the proof of Theorem 4.8 considering
the transported function uc in order to introduce the solution uc,ext(·, t) = Ltuc(·, t) ∈
H1(Ω\Ωcon) for almost all t ∈ [0, T ] and to obtain the constructed solution u ∈
L2(0, T ;H1

0 (Ω)) of (4.60) defined as

u(x, t) =
uc(x, t) for x ∈ Ωcon,

uc,ext(x, t) for x ∈ Ω\Ωcon,

such that σ ∂
∂t
u ∈ L2(0, T ;H−1(Ω)). Finally, we define u ∈ X as the transformed

back function

u(y, t) = u(φ−1(x, t), t), t ∈ [0, T ], x ∈ Ω,

which is a solution to (4.57), hence also to (4.40), for which the Lipschitz depen-
dence on the data follows from the Lipschitz dependence of the solutions to the
problems (4.61) and (4.62). This ends the proof.

The problems that we have discussed in this chapter are elliptic-parabolic interface
problems. At the interfaces the electric conductivity as well as the magnetic reluctiv-
ity are discontinuous. However, the corresponding jump conditions for the solution
at the interfaces are implicitly given by the variational problem, which is subject of
the next theorem.

Theorem 4.17. Let J3,M
⊥ ∈ L2(0, T ;L2(Ω(t))). Then the corresponding solution

u(·, t) of (4.58) is continuous across the interface ΓI(t), i.e. for all t ∈ (0, T ) and
x ∈ ΓI(0), it holds

u−(φ(x, t), t) = u+(φ(x, t), t),
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so are also its normal flux, i.e. for all t ∈ (0, T ) and x ∈ ΓI(0), it holds

(ν∇xu(φ(x, t), t))− · n(φ(x, t)) = (ν∇xu(φ(x, t), t))+ · n(φ(x, t)),

and the time derivative, i.e. t ∈ (0, T ) and x ∈ ΓI(0), it holds

d

dt
u−(φ(x, t), t) = d

dt
u+(φ(x, t), t).

Proof. The proof is given in [26, Lemma 4.2].

Remark 4.18. Note that Theorem 4.17 is also applicable for all considered problems
in this chapter, where the corresponding variational formulations can be similarly
rewritten to an equivalent problem of the form (4.58).

Space-time finite element discretization

As in the linear case, we introduce the conforming finite-dimensional spaces Xh ⊂ X
and Yh ⊂ Y , such that Xh ⊂ Yh. Particularly, we even consider Xh = Yh as in (4.7)
for our purpose. Hence, the discrete problem reads to find uh ∈ Xh, such that

a(uh, vh) = l(vh) for all vh ∈ Yh, (4.63)

where a(·, ·) and l(·) are defined as in (4.40). The existence of a unique solution
uh ∈ Xh follows from Theorem 4.16, since the properties of a(·, ·) are inherited from
the continuous problem. As in Section 4.1.3, we introduce the operator Ae : Yh → Y ⋆

h ,
from which we derive the Newton operator A′

e as defined in (4.23). Using the finite
element isomorphism (4.12), we obtain the equivalent problem (4.24), and we can
apply Newton’s method (4.25) with damping.

4.3.4 Numerical examples

In this section we provide some numerical results in order to illustrate the applica-
bility and accuracy of the proposed method.

First, we again consider the mesh of the space-time cylinder Q from Figure 4.10, the
manufactured solution

u(y, t) = (y − t)(1 − y + t)t,

and the material parameters

σ(y) =
1 for y ∈ Ωcon(t),

0 for y ∈ Ωnon(t),
and ν(y) =

2 for y ∈ Ωcon(t),
1 + |∂yu|2 for y ∈ Ωnon(t).
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L dofs ∥∇y(u− uh)∥L2(0,T,Ω(t)) EOC

1 153 0.03552
2 561 0.01792 0.987
3 2,145 0.00900 0.994
4 8,385 0.00451 0.997
5 33,153 0.00225 0.999
6 131,841 0.00113 1
7 525,825 0.00056 1
8 2,100,225 0.00028 1
9 8,394,753 0.00014 1

Table 4.14: The discretization error, which indicates linear convergence when using
the parallel direct solver MUMPS on 16 cores for a uniform mesh refine-
ment. In each refinement level, 5 Newton iterations were required.

Number of cores 1 2 4 8 16

MUMPS 115.81 84.78 67.03 54.78 50.59

Table 4.15: Computational times in seconds for solving the nonlinear problem (4.24)
with MUMPS on a mesh with 525,313 nodes (degrees of freedom) and
262,144 elements. The solver required 5 Newton iterations.

Hence, we obtain for the right-hand side that M⊥ = 0 and

J3(y, t) =
(y − t)(1 − y + t) + 4t for y ∈ Ωcon(t),

2
(
3(1 − 2y)2t3 + (12 − 24y)t4 + 12t5 + t

)
for y ∈ Ωnon(t).

We apply Newton’s method (4.25) to solve the nonlinear system (4.24), for which the
parallel direct solver MUMPS is used to solve the linearized system (4.26). The error
tolerance is 10−11 and in Table 4.14 we obtain a linear convergence behavior of the
error for the spatial gradient of the solution in the L2(0, T,Ω(t))-norm. Furthermore,
the computational times for solving the nonlinear problem (4.24) with respect to the
number of cores are given in Table 4.15. Note that the measured times include the
linearization of A in order to obtain A′ in (4.26) and the converting of the data types
between the software Netgen/NGSolve and PETSc in each Newton iteration.

The Permanent Magnet Synchronous Motor

Finally, we turn our focus to the rather complex geometry of the interior permanent
magnet synchronous motor [77] from Figure 2.2, where both rotor and stator, denoted
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Figure 4.13: An unstructured mesh of the space-time cylinder Q, which is extruded
vertically in time with 30 time slices considering a counterclockwise 90-
degree rotational motion of Ω(0), and has 332,752 nodes and 1,976,347
elements.

by Ωfe, are made of laminated steel sheets. There are 16 magnets arranged in a single
V-shape constellation within the rotor and 48 coils within the stator right above the
air gap. The thin air gap is separating the rotor and the stator, and there is an
air hole in the middle of the motor, where the shaft is used to be. Air pockets are
included around each pole of every permanent magnet. For the other domains we
use the notations Ωcu for the coils, Ωm for the magnets and Ωa for all air regions.
The initial state of the motor Ω(0) is pulled up in time, where the rotation of the
rotating parts, i.e. the rotor, the magnets and the air pockets around the magnets, is
already considered within the mesh for the time span (0, T ) with T = 0.015 [s] and a
counterclockwise 90-degree rotational motion described by φRα as in (3.8). Note that
this corresponds to a rotational speed of 1000 revolutions per minute. Moreover, 30
time slices are inserted in order to have a good temporal resolution. The space-time
mesh of the PMSM is completely unstructured within the time slices and consists of
332,752 nodes and 1,976,347 tetrahedral elements as visualized in Figure 4.13. The
space-time mesh has different spatial resolutions, which has been chosen in advance.
For instance, the mesh in the air gap and the regions around is finer than the other
parts of the motor. Furthermore, the rotor and the stator are divided into a fine and
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Material σ [ A2·s2

kg·m3 ] ν [A·m
V ·s ]

Air Ωa 0 107/(4π)
Coils Ωcu 0.0001 107/(4π)

Magnets Ωm 106 107/(4.2π)
Steel Ωfe 0 νfe(|∇xu|)

Table 4.16: The values for the electric conductivity σ and magnetic reluctivity ν in
the different material regions.

coarse part, respectively, since it is not necessary to have a fine mesh everywhere in
these regions. We refer to Figure 3.1 for the dimensions of the electric motor.

The values of the electric conductivity σ and the magnetic reluctivity ν for the differ-
ent materials are given in Table 4.16, where the magnetic reluctivity ν is nonlinear in
the ferromagnetic material, i.e. in the rotor and the stator. We describe the nonlinear
behavior of the magnetic reluctivity νfe by the quadratic B-spline from Figure 2.3b,
whose measured values are provided by Robert Bosch GmbH in Table 5.1. In order to
avoid computational difficulties, we linearly extended the reluctivity spline νfe based
on the last two measured values. Numerous thin copper wires are wounded around
the coils, through which the current excitation is passed. The coils are grouped in 3
different phases U , V and W , which are excited with the same current strength but
are shifted by 120 degrees. Each phase has another division into the regions ΩU+ ,
ΩU− , ΩV + , ΩV − and ΩW + , ΩW − , denoting the direction of the current excitations, as
depicted in Figure 4.14. In this expression, we can now define the impressed current
density as

J3(y, t) = J+
3 (y, t) + J−

3 (y, t),

where

J+
3 (y, t) =


JU(t) for y ∈ ΩU+ ,

JV (t) for y ∈ ΩV + ,

JW (t) for y ∈ ΩW + ,

and J−
3 (y, t) =


−JU(t) for y ∈ ΩU− ,

−JV (t) for y ∈ ΩV − ,

−JW (t) for y ∈ ΩW − .

The single current densities for each phase are given as

JU(t) = j sin
(
4α(t) + ψ

)
,

JV (t) = j sin
(
4α(t) + ψ + 4

3π
)
,

JW (t) = j sin
(
4α(t) + ψ + 2

3π
)
,
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Figure 4.14: A part of the PMSM showing the different phases and directions of the
current excitation, as well as the direction of the magnetic field exposed
from the permanent magnets. This is repeated for the other four parts
of the electric motor.

where α(t) = π
2

t
T

and ψ = π
18 is called the current angle. The amplitude j is given

by j = Ic/Am, where I = 1555.64 [A] is the product of the current intensity and the
number of windings per coil, c = 2.75 is the stacking factor and Am ≈ 9.027·10−5 [m2]
is the area of one coil. Furthermore, this electric motor has 16 permanent magnets,
whose magnetic field is described by M = (M1,M2)⊤, cf. Section 2.19. The direction
of M is visualized in Figure 4.14 and its magnitude equals |M | = νmBr [ A

m
], where

νm is the magnetic reluctivity for the magnets and Br = 1.216 [V ·s
m2 ] is the magnetic

remanence.

After specifying all parameters, we can solve the discrete variational formulation
(4.63) by applying Newton’s method (4.25) with damping. The derived linear sys-
tem (4.26) is solved with the parallel direct solver MUMPS and the iterative solver
GMRES with the BoomerAMG preconditioner as described in Section 3.6.1. We use
a relative error tolerance of 10−11 for the stop criterion of Newton’s method and a
relative error tolerance of 10−5 for the parallel iterative solver GMRES. The compu-
tational times for solving the nonlinear problem (4.63) with respect to the number of
cores are given in Table 4.17. Note that the measured times include the linearization
of A in order to obtain A′ in (4.26) and the converting of the data types between
the software Netgen/NGSolve and PETSc in each Newton iteration. Figure 4.15
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Number of cores 1 2 4 8 16

MUMPS 789.88 505.16 357.20 268.81 231.18
GMRES 2823.90 1469.55 791.94 425.10 251.07
iterations 321 340 315 323 318

Table 4.17: Computational times in seconds for solving the nonlinear system (4.24)
with MUMPS and preconditioned GMRES with the BoomerAMG pre-
conditioner. The solvers required 19 Newton iterations and the number of
GMRES iterations gives the most needed iterations of all Newton steps.

Number of cores 1 2 4 8 16

MUMPS 609.31 403.39 303.98 228.48 196.84
GMRES 2122.03 1060.58 578.33 310.33 177.09
iterations 296 255 262 282 269

Table 4.18: Computational times in seconds for solving the nonlinear system (4.24)
for the magnetostatic problem (σ = 0) with MUMPS and preconditioned
GMRES with the BoomerAMG preconditioner. The solvers required 17
Newton iterations and the number of GMRES iterations gives the most
needed iterations of all Newton steps.

displays the approximate solution uh for different time points, for which we obtain
correspondence between the rotation of the solution and the rotation of the rotor.

In many applications and experiments the magnetostatic problem (2.22) plays an
important role. Therefore, we want to apply our space-time finite element method
for this type of problems, for which we set the electric conductivity to zero in every
region, cf. Section 2.2.3. The approximate solution uh of the magnetostatic problem
for different time points is depicted in Figure 4.16 and the computational times with
respect to the number of cores are given in Table 4.18. Here we used the same relative
error tolerances for Newton’s method and the GMRES solver as above.

In context of electric motors, the torque is an important physical quantity that repre-
sents a valuable indicator of the motor’s performance. The torque can be computed
by the so-called Maxwell’s stress tensor, see e.g. [9, Section 2.4]. In terms of Maxwell’s
stress tensor, the torque Tc(t) at time t ∈ [0, T ] is obtained as [15, 51]

Tc(t) = Lν0

∫
Γ0

∇yu(y, t)⊤Q(y) · ∇yu(y, t) dsy, (4.64)

where L = 0.1795 [m] is the length of the three-dimensional PMSM in the third
spatial direction, ν0 is the magnetic reluctivity in air, Γ0 is a circular curve inside the
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Solution uh at time t = 0.0[s].

Solution uh at time t = 0.01[s].

Solution uh at time t = 0.005[s].

Solution uh at time t = 0.015[s].

Figure 4.15: The approximate solution uh of (4.63) for different time points computed
on the mesh from Figure 4.13.
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Solution uh at time t = 0.0[s].

Solution uh at time t = 0.01[s].

Solution uh at time t = 0.005[s].

Solution uh at time t = 0.015[s].

Figure 4.16: The approximate solution uh of the magnetostatic problem for different
time points computed on the mesh from Figure 4.13.
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Figure 4.17: Left: The torques of the eddy current problem (4.63) computed by (4.64)
and (4.65), respectively. The deviation of the curves is less than 2.3%.
Right: The torques of the magnetostatic problem computed by (4.64)
and (4.65), respectively. The deviation of the curves is less than 2.2%.

air gap and Q is a matrix defined by

Q(y) = Q(y1, y2) = 1√
y2

1 + y2
2

 y1y2
y2

2−y2
1

2
y2

2−y2
1

2 −y1y2

 .
On the other hand, as suggested by Arkkio [9, Section 2.4], Arrkio’s method is another
possibility to evaluate the torque Ts(t) with the help of a surface integral, which is
given as

Ts(t) = Lν0

rout − rin

∫
S

∇yu(y, t)⊤Q(y) · ∇yu(y, t) dy, (4.65)

where S is an annulus with inner and outer radii rin = 78.8355 [mm] and rout =
79.0387 [mm] lying in the air gap between the rotor and the stator, and the other
quantities are defined as in (4.64), see also [132]. Figure 4.17 shows the torques
Tc(t) and Ts(t) evaluated at each time slice of the PMSM for the eddy current prob-
lem (4.40) and the magnetostatic problem, respectively, where the radius rc of the
curve for the computation of the torque Tc(t) is chosen as rc = (rin +rout)/2. It turns
out that both methods produce similar and acceptable results.





5 Conclusion and outlook

In this thesis we derived conforming space-time finite element methods on completely
unstructured decompositions of space-time cylinders, considering both stationary but
also moving domains. Treating time as an additional spatial component xd+1 = t,
the movement of the body can be naturally captured by the mesh. Motivated by
the application of space-time methods to rotating electric motors, we investigated
the widely used eddy-current approximation derived from Maxwell’s equations in
the low-frequency regime. In fact, this approximation leads to an elliptic-parabolic
interface problem when electrically conducting and non-conducting materials are
involved, as is the case in electric motors. For this purpose, we began by analyzing
the linear eddy current problem, formulating a space-time variational formulation in
Bochner spaces as proposed in [144]. Using the Babuška-Nečas theory, we proved
the unique solvability for both the continuous case and its Galerkin discretization in
the space-time domain. While the proof in the continuous case requires an inf-sup
stability condition for the uniqueness and a surjectivity condition for the existence
of a solution, one of these conditions is sufficient to ensure a unique solution of the
discretized variational formulation. Numerical examples validated the theoretical
error estimates in the energy norm, using the space S1

h(Th) of piecewise linear and
globally continuous functions with respect to some admissible and locally quasi-
uniform decompositions Th into shape regular simplicial finite elements.

We then extended the analysis to the nonlinear eddy current problem to describe
the reluctivity in ferromagnetic materials. By applying Zarantonello’s theorem and
the principle of maximal monotone mappings, we established unique solvability. To
demonstrate the effectiveness of our method, we presented a benchmark problem of a
Switched Reluctance Motor. The results highlighted the accuracy of the space-time
method, showing, on the one hand, agreement between the simulation and experi-
mental measurements, and on the other hand its computational efficiency through a
parallelization in space and time simultaneously.

In practice however, ferromagnetic materials exhibit hysteresis effects, which are usu-
ally complex to model. We adopted a specific hysteresis model proposed in [163] and
derived the corresponding eddy current approximation and its variational formula-
tion, resulting in a saddle-point system. Using our space-time approach, we solved
this system, achieving results that closely matched observed hysteretic behavior. As
before, parallel computing was used to solve now the entire system at once in space
and time simultaneously.

127
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Finally, we considered the eddy current problem posed on uniformly moving domains,
for which the analysis is similar to the stationary case. The unique solvability were
proven for both the linear and the nonlinear continuous case as well as their cor-
responding Galerkin discretizations. To showcase the applicability of the proposed
method, we carried out a simulation of a rotating permanent magnet synchronous
motor. Torque evaluations confirmed the method’s accuracy, with simulation results
aligning closely with practical observations.

There remain multiple paths for closer inspection and new discoveries in this field.
A rather obvious extension involves the investigation of the eddy-current problem
posed on spatially three-dimensional domains, resulting in four-dimensional space-
time problems. However, the eddy current approximation in this spatial dimension
leads to a curl-curl-formulation on related spaces [164], requiring more sophisticated
analysis. On the other hand, the generation of four-dimensional meshes is not straight
forward and many open-source mesh generating tools do not provide such function-
alities. The authors of [115] and [134] address the methodology of generating such
meshes, even for moving domains. Nevertheless, the resulting systems are extremely
large, hence suitable parallel solvers are urgently necessary.

This highlights another area for future research. Although we have applied this
approach to examples of practical interest, it is still a challenging task to improve
parallel solvers in order to handle problems with much higher degrees of freedom,
even for one and two-dimensional spatial domains. Furthermore, it is more involved
to find suitable robust preconditioners for the iterative methods, especially when
dealing with moving domains or interfaces.

Moreover, the numerical examples presented in this thesis were computed without
incorporating any error estimators. Space-time methods, however, offer complete
control over the discretization in spatial and temporal dimensions simultaneously,
making space-time adaptivity a viable and promising approach [91]. The combination
of parallelization and adaptivity will lead to efficient methods, opening the door to
practical applications involving complex structures.

Finally, extending the eddy current problem to include hysteresis effects in moving
domains is a compelling direction for future work. Such advances would further
integrate space-time methods into practical applications, including the simulation of
rotating electric motors like the PMSM. These developments have the potential to
significantly enhance the applicability and performance of space-time finite element
methods in complex, real-world scenarios.
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Appendix

Number H := |H| B := |B| Number H := |H| B := |B|
[A/m] [T ] [A/m] [T ]

1 0 0 21 2000 1.35628106
2 10 0.07636101 22 2000 1.40054159
3 20 0.15180201 23 4000 1.43652212
4 30 0.22448302 24 5000 1.46790265
5 40 0.29440402 25 6000 1.49744319
6 50 0.36064503 26 7000 1.52514372
7 60 0.42228603 27 8000 1.55100425
8 70 0.47932704 28 9000 1.57594478
9 80 0.53268804 29 10000 1.59904531
10 90 0.58144905 30 20000 1.76197062
11 100 0.62653005 31 30000 1.83657593
12 200 0.91358011 32 40000 1.87070124
13 300 1.04791016 33 50000 1.89102655
14 400 1.12336021 34 60000 1.90583186
15 500 1.17213027 35 70000 1.91971717
16 600 1.20526032 36 80000 1.93268248
17 700 1.23103037 37 90000 1.94564779
18 800 1.25036042 38 100000 1.95861310
19 900 1.26601048 39 200000 2.08458619
20 1000 1.27982053 40 500000 2.46158548

Table 5.1: Measured values of the B-H-curve of a ferromagnetic material provided by
Robert Bosch GmbH used to manufacture a PMSM.
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Space-time Finite Element Methods  
for the Eddy Current Problem and Applications

We formulate and analyze space-time finite element methods for the numeri-
cal simulation of the eddy current approximation in Bochner spaces. First, we 
examine the resulting elliptic-parabolic interface problem posed on electrically 
conducting and non-conducting stationary regions, providing the analysis of 
the unique solvability for the linear and nonlinear case. Furthermore, we ad-
dress hysteresis effects in ferromagnetic materials by proposing a space-time 
finite element method tailored to a specific hysteretic material law. The investi-
gation extends to moving bodies, analyzing the corresponding elliptic-parabolic 
interface problem. The Petrov-Galerkin space-time finite element discretization 
is formulated on completely unstructured decompositions of the space-time 
cylinder into simplicial elements, which allows for an adaptive resolution of the 
solution both in space and time. However, it requires the solution of the overall 
system of algebraic equations. While the use of parallel solution algorithms 
seems to be mandatory, this method also allows for a parallelization in space 
and time simultaneously. The numerical experiments confirm related a priori 
error estimates and demonstrate the applicability and accuracy of the proposed 
approach applied to realistic problems.
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