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Introduction: The use of artificial neural networks for decoding movement from neural signals has led 
to recent improvements in closed-loop brain-computer interface (BCI) control [1, 2]. Since neural 

signals typically have low signal-to-noise ratio (SNR) for task relevant information, the decoder must 

find the optimal balance between relying on noisy inputs versus prior knowledge of movement patterns. 
However, open-loop accuracy does not directly predict closed-loop performance [3, 4] making it 

challenging to design neural network decoders that optimize this balance. Here we investigated a novel 

decoder loss function, which allows for tuning the degree of decoder memorization, on closed-loop 

performance. 

Materials, Methods and Results: We trained recurrent neural network (RNN) decoders to predict finger 
kinematics from spiking-band power features. RNNs were trained using a loss function that combined 

mean-squared error (MSE) with additional, tunable weight penalties that varied the decoder’s reliance 

on learned task dynamics versus neural inputs. By tuning the penalties, we trained decoders with 
reduced reliance on neural inputs (“strong dynamics”) or with increased reliance on inputs (“weak 

dynamics”). Additionally, we created a “dynamics strength” metric that quantifies the ratio of the current 

hidden state’s sensitivity to its previous hidden state (derivative with respect to the prior hidden state) 

versus its sensitivity to neural inputs (derivative with respect to neural inputs), averaged over time. 
Using simulated data from an open-loop 3-target task with log-linear tuned channels, weak and strong 

dynamics decoders had similar kinematic decoding accuracies (correlations of 0.94 and 0.97, 

respectively) despite having largely different dynamics strengths (1.01 versus 5.75, respectively), 
suggesting different internal decoding mechanisms (Figure 1). We tested both decoders in closed-loop 

trials across three sessions with one rhesus macaque who was 

implanted with Utah arrays in motor cortex and trained to 

perform a 1-degree-of-freedom (DoF) continuous target-
acquisition task. Both weak and strong dynamics decoders 

had 100% success rate, however, the smoothness of decoder 

movements increased as dynamics strength increased. When 
dynamics strength was increased further by training with a 

100x instead of 10x weight penalty, the decoder failed to 

generalize to produce corrective movements resulting in a 

decreased success rate of 83%. 

Conclusion: These results suggest that decoder generalization can be tuned using the loss function, 
which may be an important tool as BCIs expand to more complex tasks. Future work may investigate 

the optimal decoder dynamics strength for closed-loop control with varied SNR neural signals, and how 

this impacts the choice of decoder architecture. 
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Figure 1: PCA of the hidden state of GRU decoders 

trained with strong vs weak dynamics, on a 3-target 

task. Each dot is one time-point, and color represents 

the output position. Both decoders have similar 

accuracy but have visually different state trajectories. 
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