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Introduction: Intracortical brain-computer interfaces (iBCIs) offer paralyzed individuals the ability to generate 
movement. While effective for guiding a computer cursor [1] or a robotic arm [2], [3], current systems lack 
the ability to control applied forces and adjust limb compliance—critical limitations for grasping and 
interacting with objects. To address this, we propose developing an iBCI that decodes intended muscle 
activity (EMG) from primary motor cortex (M1) recordings. This system would then control joint kinematics 
and impedance, as well as contact forces via a forward musculoskeletal model of the hand [4], more closely 
mimicking the natural function of M1 than do existing iBCI decoders. We hypothesize that this biomimetic 
iBCI will be easier to learn and outperform existing decoders for hand function tasks. 

Material, Methods and Results: Data to train kinematic iBCIs is obtained as users observe and attempt to 
replicate a certain movement trajectory; the decoders are built by correlating the recorded neural activity 
with the observed kinematics. To create a muscle-based equivalent, we first needed to determine the 
muscle activity patterns that a paralyzed individual might use when observing and attempting to mimic hand 
actions. For this, we collected data from an able-bodied individual performing a series of multi-degree-of-
freedom hand posture-matching movements. We recorded intrinsic hand muscle activity using high-density 
surface electrode grids (LISiN, Torino, Italy) placed on the dorsal and palmar side of the hand, along with 
intramuscular leads also targeting the dorsal interossei. We recorded extrinsic hand muscles using standard 
surface bipolar electrodes (Delsys Inc., Boston, USA) on the forearm. We were able to accurately classify 
hand postures using only data from the surface recordings. Intramuscular leads offered only minor 
improvements in accuracy. This suggests that high-density grids alone provide sufficient information about 
intrinsic muscle activity, potentially eliminating the need for intramuscular leads in the hand. We next used 
these EMG signals as decoding templates together with M1 data recorded from a spinal cord-injured 
participant, implanted with two microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT) in the 
arm and hand representations of M1, who attempted the same posture-matching task. To ensure 
consistency between the able-bodied participant's actual movements and the paralyzed participant's 
attempted movements, we recreated the actual hand kinematics in virtual reality through an avatar hand, 
which the participant observed. They were prompted to attempt to replicate the motion using their own 
hand. Posture classification accuracy using the M1 signals was well above significance, but below that 
achieved in the able-bodied participant using EMG signals. We also used the M1 signals in combination 
with the EMG templates to compute EMG decoders. The predicted EMG activity from left-out M1 data had 
R² values (computed with respect to the separately recorded EMG templates) ranging from 0.2 to 0.4.  

Conclusion: Our findings demonstrate that hand muscle activation can be effectively decoded from the M1 
signals of a paralyzed participant attempting to imitate various hand postures. Although our experiments 
were limited to posture-matching movements, we intend to extend them to object manipulation and force 
generation. Our results represent a critical step towards using decoded EMGs to drive a musculoskeletal 
model of the hand for improved performance compared to standard kinematic decoders. 
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