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Introduction: Externally mounted pedestals of invasive brain-computer interfaces (BCIs) risk infection,

requiring fully implanted systems. These systems must meet strict latency and energy limits with reliable

decoding. While recurrent spiking neural networks (RSNNs) are well-suited for low-power neuromor-

phic hardware, it is unclear if they can provide both high decoding performance and low energy use.

Material, Methods and Results: To evaluate this, we trained a tinyRSNN to decode finger velocity from

cortical spike trains (CSTs) of two monkeys (Fig. 1A-C). Our tinyRSNN outperformed classical Kalman

Filter (KF) and max coefficient of determination (R2) baselines in NeuroBench [1] (ANN3d, SNN3),

though it fell behind AEGRU, the top R2 achiever in the IEEE BioCAS 2024 neural decoding challenge

[2]. However, we can achieve comparable R2 by scaling up our model to bigRSNN (Fig. 1D). The

tinyRSNN, notably, consumed less energy in synaptic operations than the baselines for balancing high

R2 with low energy need in NeuroBench (ANN2d, SNN2) [1], while achieving much higher R2. In par-

ticular, tinyRSNN consumed only around 1/2557 AEGRU’s effective energy (Fig. 1E). To determine what

contributes to this good trade-off, we show in ablation studies that dynamic synapses, recurrent connec-

tions, learnable heterogeneous time constants, and pretraining improved R2, while synaptic pruning and

activity regularization reduced energy use (Fig. 1F). Finally, tinyRSNN was deployed on an FPGA

(VCU118), achieving low power (around 12mW) and similar R2 to GPU-based results (Fig. 1G).

Conclusion: Our results thus show that tinyRSNN offers competitive CST decoding performance under

tight resource constraints and can be deployed on low-power FPGAs without a loss in decoding accuracy.
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Figure 1: A. RSNN model: one input layer, one recurrent hidden layer (leaky integrate-and-fire neurons), and one output layer (leaky integrator

neurons). B. Two monkeys (L & I) perform a random dot reaching task [3]. C. RSNN activities: Bottom: recorded CSTs (input layer); middle:

hidden layer spike raster; Top: output layer membrane potentials (predictions) vs. ground truth. D. Decoding performance (R2) of RSNN

models vs. baselines. * denotes statistical significance of the proposed tinyRSNN and other models, based on paired t-test: **: p < 0.01, ***:

p < 0.001. n.s.: not significant. Results are shown from six sessions (L1-L3, I1-I3) and five random initializations each. E. Comparison of

energy consumption (effective energy ratio). F. Ablation studies for decoding accuracy (purple) and energy consumption (green). Each point

(representing one session) should be interpreted according to the axis of its corresponding color. Ab. & Unab.: Ablated & Unablated results.

DynSyn: dynamical synapses, LearnHetTC: learnable heterogeneous time constants, RecCon: recurrent connections, UBReg: upper bound

neuronal activity regularization. G. tinyRSNN implementation on the FPGA (VCU118) with its decoding accuracy and energy consumption.
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