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Introduction: This study explores the relationship between brain activity (measured via fMRI from 
eight participants [5]) and the internal representations of language models like USE [1] and MPNet 
[4]. A deep neural network decoded text embeddings from fMRI voxel representations, leveraging a 
reading-out-loud task for alignment. 

Materials, Methods, and Results: We analyzed the publicly available fMRI dataset [5], where nine 
right-handed adults read Chapter 9 of Harry Potter and 
the Sorcerer’s Stone [3], one word at a time (0.5 s/word). 
Imaging volumes were acquired every 2 s using a 3T 
scanner, yielding voxel-wise time series of approximately 
25,000–31,000 voxels per participant. The final data 
encompassed 1211 time samples per subject. Two 
pre-trained embedding models were considered: 
paraphrase-MiniLM-L6-v2 (USE) [1], which produces 
384-dimensional embeddings, and all-mpnet-base-v2 
(MPNet) [4], which produces 768-dimensional 
embeddings. Each embedding was synchronized with the 
fMRI time series by grouping four consecutive words into 
one embedding per 2 s interval, introducing a lag of eight words to account for delayed hemodynamic 
response [2]. Longer sequences (eight or twelve words) were also examined to assess the effect of 
additional context. A DNN mapped voxel intensities to text embeddings, and performance was 
evaluated via the cosine similarity index between predicted and actual embeddings using 5-fold 
cross-validation. USE and MPNet embeddings were decoded at the above-chance levels for all 
participants and at word-sequence lengths. USE consistently outperformed MPNet (F(2, 70)=132.75, 
p<10-17), and longer sequence lengths improved decoding accuracy (F(4, 70)=281.78, p<10-39), though 
there was no interaction between model type and sequence length (F(4, 70)=0.07, p>0.9). 

Conclusion: This study validates the ability to decode text embeddings from fMRI data, providing a 
significant step toward mapping the internal representations of large language models (LLMs) to 
human cortical activity. Both USE and MPNet embeddings were successfully decoded, with the 
former showing more substantial alignment with brain representations. These findings underscore the 
potential for integrating human neural data with LLMs, advancing our understanding of AI-human 
cognitive alignment and paving the way for future cross-disciplinary research to refine and interpret 
these models. 
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