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ABSTRACT: This study presents an innovative AI-powered smart-liner system designed to enhance the safety and efficiency of 

oil and gas transportation and storage infrastructure. By integrating polymer composite liners with distributed fiber optic sensors 

(DFOS), the system enables continuous monitoring of mechanical deformations and damage formation, providing real-time 

insights into the infrastructure’s condition throughout its lifespan. Finite element analysis (FEA) is employed to simulate the 

mechanical responses of the smart-liner-protected specimen over time. Machine learning (ML) algorithms are applied to analyze 

images generated from collected DFOS data, enabling the identification and assessment of risk variations across different locations 

and time steps. This approach demonstrates the high accuracy and effectiveness of ML in automatically detecting deformations 

and crack formation under buckling loading conditions. The methods enable comprehensive structural health monitoring, allowing 

for precise localization, visualization, and quantification of mechanical changes and damage within the infrastructure. With the 

above approaches, the smart-liner system facilitates continuous data collection across the entire protected surface, supporting the 

development of a dynamic digital twin model that evolves alongside the infrastructure. The findings provide critical insights for 

the oil and gas industry, offering an advanced and efficient solution for monitoring and mitigating risks associated with 

transportation and storage infrastructure. 

KEY WORDS: Distributed fiber optic sensors; Structural health monitoring; Finite element analysis; Machine learning.

1 INTRODUCTION 

As the traditionally most energy-consuming industry in the 

United States [1], the oil and gas industry relies on an extensive 

network of pipelines, storage tanks, and processing facilities to 

transport and store hydrocarbons. The infrastructure network is 

crucial for maintaining the stability and efficiency of the energy 

supply chain, ensuring that the country can meet its growing 

energy demands and support rapid economic growth. However, 

pipeline infrastructure is subjected to various mechanical, 

environmental, and operational stresses that can lead to 

material degradation, structural deformations, and eventual 

failures. Such failures pose significant risks, including 

environmental pollution, financial losses, and safety hazards 

for personnel and surrounding communities. A notable 

example of oil and gas infrastructure failure is the Deepwater 

Horizon oil spill in the Gulf of Mexico, which occurred in 2010. 

This disaster is one of the largest and most devastating oil spills 

in history. The primary cause was the failure of the cement and 

shoe track barriers, allowing the uncontrolled surge of high-

pressure hydrocarbons to escape from the wellbore, travel up 

the riser, and ignite the oil spillage [2]. Additionally, the San 

Bruno pipeline explosion occurred in the same year due to the 

fracture in the welded seam, resulting in the eight deaths [3]. 

These catastrophic events show significant needs for protecting 

and monitoring the health conditions of the oil and gas 

infrastructure. 

Ensuring the mechanical resilience of infrastructure is 

crucial. One way to protect the oil and gas infrastructure is by 

implementing a polymer composite liner, which is made of 

fiber fabric and polymer composite. It serves as an additional 

protective layer, protecting metallic pipelines and storage tanks 

from mechanical stress, corrosion, and environmental 

degradation [4], [5]. Polymer composite liners provide 

significant advantages, including high strength-to-weight 

ratios, corrosion resistance, and enhanced durability [6]. The 

liners are engineered to withstand extreme environmental 

conditions, making them ideal for high-risk applications such 

as oil and gas transportation and storage. However, despite 

these benefits, the liner-protected infrastructure still faces 

structural challenges. One critical issue is mechanical 

deformation, which can occur due to factors such as thermal 

expansion, pressure fluctuations, external impacts, and ground 

movement. Over time, these deformations may lead to 

localized buckle or collapse, ultimately compromising the 

structural integrity [7]. Traditional monitoring techniques, such 

as periodic visual inspections and ultrasonic testing, are often 

insufficient in detecting infrastructure early-stage damage, as 

many deformations occur beneath the surface or in hard-to-

reach areas. Additionally, the liner is always installed on the 

interior surface of infrastructure, making the inspection and 

maintenance even more difficult. To address these limitations, 

a practical and efficient structural health monitoring (SHM) 

system is necessary to ensure prolonged service of liner-

protected oil and gas infrastructure. 

Distributed fiber optic sensor (DFOS) is widely used in 

monitoring structural health, for its ability of continuous 

measurement along the fiber length [8]. DFOS operates by 

transmitting light pulses through optical fibers and analyzing 

the backscattered signals to measure strain and temperature 

along the fiber length. This capability is particularly important 

for large-scale infrastructure, where traditional sensors are 

impractical or insufficient. Besides, DFOS has advantages in 
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small size, lightweight, water resistance, and suitable for harsh 

working environments such as extreme weather conditions and 

seismic-prone regions, making it applicable and reliable in the 

oil and gas industry [9]–[11]. Zhang et al. [12] attached DFOS 

on the exterior surface of the pipeline to monitor its 

compressive and tensile strain distribution. Inaudi and Glisic 

[13] monitored the conditions of gas pipelines with DFOS for 

two years. The measured strain and temperature results showed 

high accuracy. The installation method of both DFOS and liner 

involves attaching them to the interior surface of the target 

object. Therefore, the integration of DFOS and polymer 

composite liner is worth exploring, as it has the potential for 

simultaneous structural protection and real-time SHM. The 

DFOS-embedded liner system becomes “smart”, which 

facilitates continuously track of strain variations, and provides 

early warnings before critical failure occurs. For example, with 

the continuous measurement and sensitivity properties of 

DFOS, it is widely applied to detect cracks in concrete 

structures [14]. Thus, it also has the potential to detect cracks 

in liners for the development of a comprehensive SHM for oil 

and gas infrastructure. This integration marks a significant 

advancement in SHM, enabling a proactive approach to oil and 

gas infrastructure maintenance. 

With the development of smart sensor and AI technology, 

digital twin becomes an emerging technology in civil and 

infrastructure applications. DFOS is a critical component in a 

digital twin model, for its capacity of collecting and updating 

real-time data [15]. Digital twin model acts as a dynamic, real-

time, virtual representation of physical structures. It 

continuously evolves based on data and simulators for real-time 

monitoring purpose [16]. Although DFOS provides real-time 

strain monitoring data, the digital twin model has limitations in 

presenting the structural shape, for example, the deformation 

information. To address this issue, finite element analysis 

(FEA) is an alternative solution, for its capacity in simulating 

structural mechanical responses efficiently. As the 

infrastructure is monitored using DFOS, real-time strain data 

can be correlated to FEA simulation results to find the 

corresponding deformation information, which supports the 

development of the digital twin model. The correlation 

approach requires a high-efficiency method to satisfy the 

requirement of real-time monitoring purpose. Hence, the AI-

driven machine learning (ML) based method is proposed to 

automatically identify the most accurately correlated pairs. 

Then the structural deformation is reconstructed and provided 

to establish an efficient, real-time digital twin model in a rapid 

response time. Additionally, minor damages are found in the 

polymer composite liners of oil and gas pipelines [17]. The 

early detection and maintenance are vital for structural safety. 

By integrating DFOS with FEA and AI-driven correlation 

methods, an efficient and real-time digital twin model can be 

developed to enhance structural health monitoring. This 

approach not only improves real-time visualization of structural 

behavior but also facilitates early damage detection, ultimately 

contributing to the safety and longevity of critical oil and gas 

infrastructure. 

In this paper, we develop a smart-liner system with DFOS to 

protect and real-time monitor the strain responses of oil and gas 

infrastructure. FEA and AI-driven approaches are paired with 

the smart sensor data to identify the digital twin-based real-time 

SHM function. Section 2 introduces the experimental design, 

including the materials used to prepare the test sample and 

experimental instrumentation. Section 3 provides the method 

of DFOS strain field generation and interpolation function for 

damage identification and localization. Furthermore, the steps 

for the digital twin model establishment are introduced, 

including developing the finite element model for experimental 

validation and conducting AI-driven strain field correlation 

between DFOS and FEA results. Section 4 presents the strain 

field comparison results. Meanwhile, the minor damages in the 

test sample are identified and localized. Afterward, the best 

correlated strain fields are fed back to FEA for the development 

of the digital twin model. This study aims to investigate the 

feasibility of a smart-liner system with DFOS in real-time 

structural health monitoring of oil and gas infrastructure, and 

the accuracy of the digital twin model in representing the 

structural information. By inducing the buckling load, the study 

has the potential to provide valuable insights into damage 

identification, localization, and prevention, contributing to the 

enhanced safety and reliability of oil and gas infrastructure. 

2 EXPERIMENTAL DESIGN 

 Materials 

The materials prepared to develop the smart-liner protected 

metallic substrate, including metallic substrate, polymer 

composite liner, DFOS, and adhesive layer. A 152.4 mm × 

304.8 mm (W × L) steel plate is used as a substrate, which 

represents the metallic pipes and vessels that store and transport 

oil and gas. A commercial Starline® 2000 polymer composite 

liner made of woven fabric and polyurethane/polyethylene 

coating serves as a protective layer for the metallic substrate. 

The installation of DFOS is a critical step in sample 

preparation. One Luna high-definition DFOS is first firmly 

attached to the surface of the liner with a thin coating of 3M 

DP460 epoxy adhesive. After the adhesive is consolidated, the 

DFOS-installed liner is then securely attached to a metallic 

substrate through a 1 mm thick epoxy resin adhesive layer, 

which simulates the liner rehabilitation for oil and gas 

pipelines. The prepared sample is placed at room temperature 

for 24 hours to ensure it is fully cured. The installation of DFOS 

does not require specialized tools or expert personnel, making 

it suitable for practical field applications where ease of 

deployment is essential. 

The schematic of a smart-liner protected metallic substrate 

sample is shown in Figure 1. The sample contains three layers: 

polymer composite liner, adhesive layer, and metallic substrate. 

The DFOS is embedded into the interface between the liner and 

adhesive layer. The thicknesses of each layer from top to 

bottom are 1.94 mm, 1 mm, and 0.81 mm, respectively. The 

DFOS, though delicate and easily fractured, is flexible which 

allows for embedment in a semi-circular style for turning 

installation direction. It is equipped with a thin, sensitive optic 

fiber inside, and protected by a multi-layer coating. The DFOS 

used in this study relies on Rayleigh scatting of light. When a 

laser pulse travels through the fiber, a small portion of the light 

is scattered in all directions due to its natural inhomogeneities 

[18]. External loads, such as mechanical stress, thermal 

expansion, or vibrations, induce strain in the fiber, causing 

measurable changes in the backscattered Rayleigh signal. By 

analyzing these changes, the system can detect variations in 
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strain along the length of the fiber. We install a 5 m fiber length 

long DFOS, covering the strain measurement area in a zig-zag 

pattern.  

 

Figure 1. Schematic of a smart-liner protected metallic 

substrate. 

 Experimental instrumentation 

To introduce the buckling damage on the smart-liner protected 

metallic substrate, it is placed in an MTS Criterion® 

Electromechanical Test Systems, which has a force capacity up 

to 600 kN. As shown in Figure 2, the sample is clamped on the 

two edges along the longitudinal direction and subjected to an 

eccentric buckling load, simulating real-world complex 

structural deformation. The two clamped sections have same 

dimension with 25.4 mm × 30 mm (W × L). The loading 

machine is controlled by a constant displacement rate of 0.2 

mm/min, with a total vertical displacement of 5 mm. Luna 

optical distributed sensor interrogator (ODiSI) 6100 is used for 

strain data collection from DFOS. When backscattered light 

interferes with the reference signal in the interrogator, it 

generates an interference pattern containing phase and 

amplitude information, which correlates with strain variations 

along the fiber. By applying a fast Fourier transform, the 

system extracts high-resolution, spatially continuous strain 

data. This processed data is used to generate a high-resolution 

strain profile along the fiber length, providing a real-time, 

visually accessible strain plot on the ODiSI control platform.  

 

Figure 2. The smart-liner protected metallic substrate sample 

clamped in loading machine. 

3 RESEARCH METHODOLOGY  

 DFOS strain field generation 

The measurement performance of DFOS is highly reliant on its 

settings, including measurement rate and gauge pitch. If the 

measurement rate is too high, the generated strain data not only 

occupies excessive storage and computational resources but 

also contains unnecessary noise. Previous DFOS applications 

in engineering practices used measurement rates ranging from 

5 to 50 Hz [19]–[21]. In this study, the measurement rate is set 

to 10 Hz to balance the measurement accuracy and efficiency. 

Gauge pitch, also called spatial resolution, refers to the distance 

between each measurement point along the optic fiber. The 

measurement area in our case is relatively small, as shown in 

Figure 2. A large gauge pitch, for example, 5.2 mm [22], is 

inapplicable. Since this is a laboratory experiment conducted 

with a short DFOS length, the highest available spatial 

resolution of 0.65 mm is selected to achieve a dense strain 

measurement [23]. 

The illustration of the smart-liner system with DFOS is 

shown in Figure 3. The DFOS is attached to the polymer 

composite liner surface in a zig-zag pattern, forming 14 distinct 

measurement lines with a uniform spacing of 10 mm. L1 

represents the first line, and L14 is the last line close to the 

clamped edge, which is subjected to the largest buckling 

deformation. The blue stars represent the measurement point 

along the fiber. As discussed earlier, the distance between two 

contiguous measurement points equals the gauge pitch of 0.65 

mm. DFOS covers an area of 130 mm × 200 mm, for strain 

monitoring purpose.  

The generation of the DFOS strain field contains the 

conversion of the one-dimensional strain data to the two-

dimensional strain field, through the X-Y coordinate system, as 

shown in Figure 3. For example, to map the strain data point on 

L1 into the strain field, the Y-coordinate is fixed along the line, 

and the X-coordinate is uniformly increasing at the rate of 

gauge pitch. In this approach, the DFOS strain field is 

generated, enabling visualization representation of strain 

distribution for smart-liner system.  

 

Figure 3. Schematical illustration of the smart-liner system 

with DFOS. 

 

 Damage identification and localization 

To promote the application of DFOS for real-time monitoring 

of large oil and gas infrastructures, automated damage 

identification and localization are essential. When the DFOS 
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passes through a crack, a significant increase in strain rate is 

always detected, making it appliable to identify the presence 

and location of cracks [24]. To achieve the identification, 

obtaining strain values on a finer grid is the prerequisite. 

Bilinear interpolation and triangle-based interpolation are two 

widely employed planar interpolation algorithms for estimating 

unknown data based on known data in two-dimensional plane 

[25]. This study applies bilinear interpolation to estimate the 

strain on a finer grid, because DFOS has a fixed gauge pitch, 

the collected strain is uniformly distributed. Bilinear 

interpolation is a method the uses repeated linear interpolation 

to interpolate functions of two variables, which typically used 

on regular grids. Equation (1) illustrates how this method 

estimates the value for a target point using four neighboring 

lattice points.  

𝑓(𝑥, 𝑦) ≈ 𝑤11𝑓(𝑄11) + 𝑤12𝑓(𝑄12) + 𝑤21𝑓(𝑄21)
+ 𝑤22𝑓(𝑄22) 

(1) 

where (𝑥1, 𝑦1) , (𝑥1, 𝑦2) ,  (𝑥2, 𝑦1) , (𝑥2, 𝑦2)  are the 

coordinates of the four neighboring lattice points 𝑄11 , 

𝑄12, 𝑄21, 𝑄22. The weights 𝑤 are listed as follows: 

𝑤11 =
(𝑥2 − 𝑥)(𝑦2 − 𝑦)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤12 =
(𝑥2 − 𝑥)(𝑦 − 𝑦1)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤21 =
(𝑥 − 𝑥1)(𝑦2 − 𝑦)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤22 =
(𝑥 − 𝑥1)(𝑦 − 𝑦1)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

 

The gradient calculation formula, shown in Equation (2), 

represents the slope limit as the distance between two 

neighboring lattice points 𝑑  approaches zero. A denser grid 

provides a gradient closer to the true value but increases 

computational costs. Based on a convergency study, we 

determine to interpolate strain value on 0.1 mm × 0.1 mm grid, 

as further reducing the grid size has little impact on the 

gradient. 

gradient =  lim
𝑑→0

𝑓(𝑥 + 𝑑) − 𝑓(𝑥)

𝑑
 (2) 

 Establishment of digital twin model 

This study aims to develop a smart-liner system with DFOS to 

enable digital twin-based real-time monitoring of oil and gas 

infrastructure. Once the smart-liner system with DFOS collects 

the real-time, accurate strain results, we establish a digital twin 

model for virtual and real-time representation. To build the 

virtual model, we create a three-dimensional finite element 

model to replicate the experimental testing on smart-liner 

protected metallic substrate. Section 3.3.1 presents the detailed 

design, including geometry, interfacial contact, and mesh 

information, to construct the finite element model to simulate 

the smart-liner protected metallic substrate under the eccentric 

buckling load. Section 3.3.2 shows the AI-driven method to 

correlate the DFOS-measured strain field and FEA-predicted 

strain field. This method facilitates deformation reconstruction 

and the digital twin model establishment to visualize buckling 

deformed smart-liner system in the real-time. 

3.3.1 Finite element model design 

FEA is carried out to simulate the smart-liner protected metallic 

substrate under the buckling load, correlate strain results with 

the experimental study, and generate deformation information 

to establish the digital twin model. FEA is a powerful 

computational tool that enables accurate prediction of structural 

behavior under various loading conditions, which is widely 

applied in the oil and gas transportation and storage 

infrastructure [26]. By simulating experimental scenarios, it 

reduces the need for costly physical samples, saving both time 

and resources. Abaqus/CAE 2024 is employed to generate and 

analyze the finite element model in this study. The finite 

element model has same geometry and material settings as the 

test sample with three layers: metallic layer, the adhesive layer, 

and liner layer. To generate the mesh for this thin and multi-

layer object, the widely-used C3D8R (8-node linear brick 

element with reduced integration) element is not the best 

choice. Instead, we select the C3D8S (8-node linear brick 

element with improved surface stress visualization) element for 

discretization, because of its advantage in estimating surface 

strain [27]. The mesh size of this model is 2.5 mm uniformly. 

The material properties of each layer are presented in Table 1. 

The metallic substrate is made of high-ductility steel and 

simulated using a bilinear model with strain hardening. The 

adhesive layer and polymer composite line have significantly 

lower stiffness compared to the metallic substrate. Thus, elastic 

models are applied in the analysis. 

Table 1. Material properties in finite element model. 

Layer Material property 

Metallic substrate 

Young’s modulus = 210 GPa 

Poisson’s ratio = 0.3 

Yield strength = 500 MPa 

Ultimate strength = 635 MPa 

Ultimate strain = 0.2 

Adhesive layer 
Young’s modulus = 1 GPa 

Poisson’s ratio = 0.3 

Polymer composite liner 
Young’s modulus = 400 MPa 

Poisson’s ratio = 0.4 

 

 Figure 4 exhibits the finite element model of the smart-liner 

protected metallic substrate. The bottom edge areas are 

constrained to move and rotate, identical to the bottom clamped 

area in the experiment. The top edge is also constrained to 

rotation but allowed for a vertical displacement of 5 mm, 

accurately replicating the experimental buckling load setup. 

The interfacial contact between two interfaces is simplified as 

tied, given the careful curing procedures, to simulate a perfectly 

bonded condition. 
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Figure 4. Finite element model of smart-liner protected 

metallic substrate. 

Performing a buckling analysis in Abaqus involves two steps: 

linear eigenvalue analysis, and nonlinear Riks analysis. The 

linear eigenvalue analysis is the first step, which estimates the 

critical buckling load and corresponding mode shape. This 

method assumes small deformations and linear material 

behavior, making it computationally efficient. While this 

method is useful for obtaining a quick estimate of the buckling 

load, it does not account for geometric imperfections, material 

nonlinearities, or post-buckling behavior, which may lead to 

inaccurate predictions. Therefore, we also conduct nonlinear 

Riks analysis that accounts for geometric and material 

nonlinearities, as well as initial imperfections. The geometric 

and material nonlinearities are enabled by changing the setting 

and inputting material nonlinear properties. The first three 

mode shapes from linear eigenvalue analysis serve as the initial 

imperfections. The magnitudes of the first, second, and third 

buckling mode shapes are set as 1.00%, 0.50%, and 0.25% of 

the plate thickness, respectively [28]. The predicted strain 

distribution is compared with the DFOS strain field result for 

validation purpose, and then correlated with the DFOS strain 

field to generate corresponding deformation distribution to 

establish the digital twin model. 

3.3.2 AI-driven strain field correlation 

It is common for the strain data from experiments and 

simulations to exhibit slight differences, because of the 

discreteness of the experiment. To fill this gap, this research 

implements a strain field correlation method based on the 

convolution neural network (CNN) to find the most similar pair 

between DFOS and FEA results. Figure 5 illustrates the basic 

process of strain field correlation. The inputs are strain field 

images generated from DFOS and FEA, from which CNN can 

be used to extract the abstract features. Then, the cosine 

similarity between the extracted features of the DFOS and FEA 

data is compared. Through iterating over the entire FEA 

database, the best matching pair is found. In order to enhance 

the feature-extracting capability of CNN, the pre-trained 

ResNet18 model is used to process the input images. ResNet is 

a classic CNN that has shown extraordinary feature extraction 

ability in engineering fields [29], [30]. We employ ResNet18, 

one of the smallest models of ResNet, to process images, and 

its output feature maps are flattened to a one-dimensional 

vector for comparison. The best matching pair will be fed back 

into FEA for deformation generation and digital twin model 

establishment. 

 

Figure 5. The workflow of strain field correlation. 

4 RESULTS AND DISCUSSION 

 Strain field comparison between experiment and FEA 

The one-dimensional DFOS data collected on the interface 

between the adhesive layer and polymer composite liner is 

converted to a two-dimensional strain field for visualization 

and comparison, following the methodology introduced in 

Section 3.3.2. The strain results with the increasing vertical 

displacement levels are shown in Figure 6. The positive strain 

in the middle of the right edge is represented in yellow, 

indicating the tensile strain. The negative strain at the corners 

of the right edges is represented in dark blue showing the 

compressive strain. The strain fields show an approximately 

symmetric pattern with respect to the central transverse line. As 

the test sample is subjected to an eccentric load and clamped at 

the corners of the left edges symmetrically, resulting in a 

symmetric strain distribution. The slight asymmetry can be 

attributed to the instrumental limitations such as the minor 

drifts. 

Additionally, the strain distribution contours on the interface 

between the adhesive layer and liner are obtained from FEA 

results, as shown in Figure 6. To facilitate the comparison, the 

strain fields from DFOS and FEA are extracted at the same 

displacement level and share the same colormap. Due to the 

advantage of numerical analysis is free of external 

disturbances, the comparison results show that FEA has a 

symmetric strain distribution, which is highly similar to the 

results from DFOS. For further validation, we apply pixel-

based comparison to quantify the similarity between DFOS and 

FEA results, by using the parameters including structural 

similarity index measure (SSIM) and mean absolute percentage 

error (MAPE). Table 2 presents the strain field comparison 

results. The SSIM results for the three cases are approximately 

around 0.9, indicating the results from DFOS and FEA have 

high similarities. MAPE results provide the relative error 

percentage between DFOS and FEA results, which demonstrate 

that the difference is less than 0.60%. Overall, the strain 

comparison demonstrates that the FEA results have good 

agreement with the DFOS results, validating the accuracy of 

the finite element model. Building on this, FEA can help DFOS 

expand the capacity from strain monitoring to mechanical 

performance monitoring, reconstruct the structural 

deformation, and facilitate the establishment of the digital twin 

model. 
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Figure 6. Strain distribution fields with increasing vertical 

displacements collected from DFOS (left), and FEA (right). 

Table 2. Strain field comparison results. 

Displacement 

level 
SSIM MAPE 

1 mm 0.91 0.56% 

3 mm 0.91 0.22% 

5 mm 0.89 0.60% 

 Identification and localization of potential damages in 

adhesive layer 

The identification of potential damages is important, as they 

often correspond to the areas where failure initiates. The 

damages on the adhesive layer are hard to detect visually so a 

non-destructive monitoring method is necessary. As introduced 

in Section 3.2, the DFOS strain rate has a significant increase 

when it passes a crack. By converting the location of the strain 

rate surge into two-dimensional coordinates, we can localize 

the damage in the structure, which enables real-time structural 

damage monitoring. After processing the strain data from 

DFOS using interpolation and gradient calculation, we can 

visualize the region where the strain rate increases rapidly. 

Figure 7 shows the plot of strain gradient distribution. We set 

the strain gradient limit of damage as 200, any region with a 

strain gradient greater than 200 is highlighted in red circles. The 

results show that damages commonly occur close to the edge, 

near the highest strain region. It is also observed that, although 

the strain field distribution has a symmetric pattern, the 

potential damage has not. Therefore, the identification and 

localization of damage becomes more significant, as they are 

unpredictable. This method leverages the continuous 

measurement capacity of DFOS, enabling the detection and 

mapping of the potential damage. It enhances the efficiency of 

real-time structural damage monitoring, can be employed to 

identify potential damages in liner-rehabilitated oil and gas 

infrastructure, and extends the structural service life. 

 

Figure 7. The location of potential damages in adhesive layer. 

 Strain correlation and digital-twin model establishment 

of buckled liner-protected metallic substrate 

Although DFOS and FEA results demonstrated a good 

agreement, the strain field correlation is required for an 

accurate representation of deformation reconstruction. In terms 

of the strain field correlation methods as introduced in Section 

3.3.2, the DFOS strain fields at 1 mm, 3 mm, and 5 mm 

displacement levels are inputted into the AI-driven strain 

correlation model and set as ground truth. FEA strain fields are 

organized as a database, which includes all FEA strain fields at 

every 0.01 mm displacement. By extracting the features from 

DFOS strain fields and iteratively comparing the cosine 

similarities of the FEA strain field database, the most similar 

pairs are found. Table 3 shows the strain correlation results. We 

compare the corresponding displacements of the correlated 

strain field pairs. It can be seen that the correlation results have 

some differences, but the difference is not significant, 

remaining within an acceptable millimeter-level range for 

practical applications in the oil and gas industry. 

Based on strain correlation results, we reconstruct the 

deformation and establish the digital twin model of the buckled 

liner-protected metallic substrate, as illustrated in Figure 8. The 

digital twin model presents the key deformation characteristics 

and provides a predictive framework for real-time monitoring. 

The comparison and correlation between the experimental and 

numerical strain fields verify the effectiveness of the digital 

twin model. The digital twin framework enables continuous 

tracking of deformation states, which is crucial for real-time 

SHM, enabling dynamic, real-time, virtual representation of the 

liner-protected metallic substrate. This study highlights the 

potential of a smart-liner system with DFOS in combination 

with a digital twin model for structural integrity assessment. 

The findings support the feasibility of using digital twin models 

for predictive maintenance and damage prevention in oil and 

gas infrastructure. Although the implementation of the digital 

twin model faces challenges, such as high initial investment 

and potential incompatibility, experimental investigation 

demonstrates its capability for real-time monitoring of liner-

protected substrate conditions, with the potential to prevent 

even greater financial losses resulting from pipe failure. 

Additionally, the installation of CIPP liners is a mature and 
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widely adopted practice. The integration method developed in 

this study also confirms the durability of DFOS under buckling 

conditions. Therefore, the implementation of the smart-liner 

system is both feasible and promising for practical applications.  

Table 3. Strain field correlation results. 

Displacement 

level 

Correlated 

displacement 
Difference 

1 mm 0.81 mm -0.19 mm 

3 mm 3.38 mm +0.38 mm 

5 mm 4.75 mm -0.25 mm 

 

Figure 8. Digital twin model of buckled liner-protected 

metallic substrate with increasing deformation. 

5 CONCLUSION 

In this paper, we establish a digital twin-based real-time 

monitoring system for oil and gas infrastructure by integrating 

smart sensor technology, finite element analysis, and deep 

learning algorithms. Through the embedment of the distributed 

fiber optic sensor into the polymer composite liner, this study 

validates the feasibility and accuracy of the smart-liner system 

in real-time monitoring of the strain fields, without 

compensating the protective capability of the liner. Enhanced 

by finite element analysis, the smart-liner system achieves the 

capability from strain monitoring to structural mechanical 

performance monitoring. Further improved with a deep 

learning-based approach, the digital-twin model is generated 

for visualization of a three-dimensional smart-liner protected 

substrate with accurate deformation representation. In addition 

to the external visualization, some flaws inside of the structure, 

such as cracks, are be detected through the smart-liner system, 

showing the robust health monitoring capabilities. Several 

summarized conclusions are listed as follows: 

• The durability of DFOS under large deformation is 

promising. Under an extreme buckling scenario, as 

shown in this study, the DFOS can constantly 

provide accurate and continuous data, and facilitate 

strain field monitoring for oil and gas infrastructure. 

• The finite element analysis results are of high 

accuracy, with a lowest SSIM of 0.89, and highest 

MAPE of 0.60% compared to experimental results. 

This validates the reliability of developed finite 

element model in predicting structural behavior, 

supporting its use in generating digital twin model. 

• The smart-liner system has the capacity to identify 

and localize minor cracks in the adhesive layer with 

high efficiency, realizing early maintenance and 

rehabilitation. 

• The AI-driven strain correlation analysis establishes 

a foundation for developing the digital twin model. 

This model provides a real-time, three-dimensional 

representation of the structural physical conditions, 

enabling accurate structural health monitoring for 

oil and gas infrastructure. 

In summary, this study proposes a framework for 

establishing the digital twin model for real-time structural 

health monitoring of oil and gas infrastructure. This study has 

limitations in assessing the proposed framework on the smart-

liner protected metallic substrate. Scaling this study to large 

and complex oil and gas transportation and storage 

infrastructure networks introduces challenges such as data 

management, sensor deployment, and integration with existing 

large-scale infrastructure. With the advancement of high-

performance computing technologies, data analytics is 

becoming increasingly capable of handling the vast amount of 

information generated by distributed sensing systems. 

Distributed sensing technologies have already been applied in 

large-scale structures such as bridges, railways, and pipelines 

[31], [32], demonstrating their feasibility and robustness in 

extensive monitoring applications. Furthermore, the 

widespread application of polymer composite liners in the oil 

and gas industry supports the practical applicability of scaling 

up the developed smart-liner system for structural health 

monitoring across extensive networks of pipelines and storage 

facilities. Future work will be expanded to the long-term 

durability test, aiming to investigate the long-term performance 

of smart-liner system and digital-twin models. 

ACKNOWLEDGMENTS 

The authors express their gratitude to the funding provided to 

support this study from USDOT PHMSA through Grant 

Number 693JK32250009CAAP, an Early-Career Research 

Fellowship from the Gulf Research Program of the National 

Academies of Sciences, Engineering, and Medicine through 

Grant Number SCON-10000955, and the American Chemical 

Society Petroleum Research Fund through Grant Number PRF 

# 67005-DNI9. The findings and opinions expressed in this 

article are those of the authors only and do not necessarily 

reflect the views of the sponsors. 

REFERENCES 

[1] M. C. Guilford et al., ‘A new long term assessment of energy return on 
investment (EROI) for US oil and gas discovery and production’, 

Sustainability, vol. 3, no. 10, pp. 1866–1887, 2011. 

[2] M. Bly, Deepwater Horizon accident investigation report. Diane 
Publishing, 2011. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-023 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 139 

[3] R. M. Peekema, ‘Causes of Natural Gas Pipeline Explosive Ruptures’, J. 

Pipeline Syst. Eng. Pract., vol. 4, no. 1, pp. 74–80, 2013. 

[4] L. C. Hollaway, ‘Using fibre-reinforced polymer (FRP) composites to 
rehabilitate differing types of metallic infrastructure’, in Rehabilitation 

of Metallic Civil Infrastructure Using Fiber Reinforced Polymer (FRP) 

Composites, Elsevier, 2014, pp. 323–372. 
[5] V. Motaharinejad et al., ‘Enhancement of adhesion between the 

polymeric liner and the metallic connector of high-pressure hydrogen 

storage tank’, Int. J. Mater. Form., vol. 14, no. 2, pp. 249–260, 2021. 
[6] M. A. Karim et al., ‘An assessment of the processing parameters and 

application of fibre-reinforced polymers (FRPs) in the petroleum and 

natural gas industries: A review’, Results Eng., vol. 18, p. 101091, 2023. 
[7] B. Harrison et al., ‘Measurement of lined pipe liner imperfections and the 

effect on wrinkling and collapse under bending’, in International 

Conference on Offshore Mechanics and Arctic Engineering, 2016, vol. 
49965, p. V005T04A036. 

[8] T. Howiacki et al., ‘Crack shape coefficient: comparison between 

different DFOS tools embedded for crack monitoring in concrete’, 

Sensors, vol. 23, no. 2, p. 566, 2023. 

[9] I. Ashry et al., ‘A review of distributed fiber–optic sensing in the oil and 

gas industry’, J. Light. Technol., vol. 40, no. 5, pp. 1407–1431, 2022. 
[10] M. C. L. Quinn et al., ‘Distributed Fiber Optic Sensing in Cold Regions’, 

in Geo-Congress 2024, Vancouver, British Columbia, Canada, 2024, pp. 

536–544. 
[11] B. Glisic and Y. Yao, ‘Fiber optic method for health assessment of 

pipelines subjected to earthquake-induced ground movement’, Struct. 

Health Monit., vol. 11, no. 6, pp. 696–711, 2012. 
[12] S. Zhang et al., ‘Pipeline deformation monitoring using distributed fiber 

optical sensor’, Measurement, vol. 133, pp. 208–213, 2019. 

[13] D. Inaudi and B. Glisic, ‘Long-range pipeline monitoring by distributed 
fiber optic sensing’, 2010. 

[14] M. Herbers et al., ‘Crack monitoring on concrete structures: Comparison 

of various distributed fiber optic sensors with digital image correlation 
method’, Struct. Concr., vol. 24, no. 5, pp. 6123–6140, 2023. 

[15] M. F. Bado et al., ‘Digital twin for civil engineering systems: An 

exploratory review for distributed sensing updating’, Sensors, vol. 22, no. 

9, p. 3168, 2022. 

[16] A. Rasheed et al., ‘Digital twin: Values, challenges and enablers from a 

modeling perspective’, IEEE Access, vol. 8, pp. 21980–22012, 2020. 
[17] H. U. Khalid et al., ‘Permeation Damage of Polymer Liner in Oil and Gas 

Pipelines: A Review’, Polymers, vol. 12, no. 10, p. 2307, 2020. 

[18] K. Sharma et al., ‘A System Design Perspective for Measurement of 
Parameters Using Different Scatterings Associated with Fibre Optic 

Sensors’, in Proceedings of Third International Conference on 

Communication, Computing and Electronics Systems, vol. 844, 
Singapore: Springer Singapore, 2022, pp. 793–813. 

[19] L. Meng et al., ‘A research on low modulus distributed fiber optical 

sensor for pavement material strain monitoring’, Sensors, vol. 17, no. 10, 
p. 2386, 2017. 

[20] C. G. Berrocal et al., ‘Crack monitoring in reinforced concrete beams by 

distributed optical fiber sensors’, Struct. Infrastruct. Eng., vol. 17, no. 1, 
pp. 124–139, 2021. 

[21] L. Fan et al., ‘Feasibility of distributed fiber optic sensor for corrosion 
monitoring of steel bars in reinforced concrete’, Sensors, vol. 18, no. 11, 

p. 3722, 2018. 

[22] Y. Tang et al., ‘Structural and sensing performance of RC beams 
strengthened with prestressed near-surface mounted self-sensing basalt 

FRP bar’, Compos. Struct., vol. 259, p. 113474, 2021. 

[23] M. Herbers et al., ‘Rayleigh-based crack monitoring with distributed 
fiber optic sensors: experimental study on the interaction of spatial 

resolution and sensor type’, J. Civ. Struct. Health Monit., 2024. 

[24] X. Tan and Y. Bao, ‘Measuring crack width using a distributed fiber optic 
sensor based on optical frequency domain reflectometry’, Measurement, 

vol. 172, p. 108945, 2021. 

[25] I. Amidror, ‘Scattered data interpolation methods for electronic imaging 
systems: a survey’, J. Electron. Imaging, vol. 11, no. 2, pp. 157–176, 

2002. 

[26] P. Jukes et al., ‘The latest developments in the design and simulation of 
deepwater subsea oil and gas pipelines using FEA’, in ISOPE 

International Deep-Ocean Technology Symposium, 2009, p. ISOPE-D. 

[27] C. Colombo et al., ‘Numerical investigation of wire-clamp contact for a 

drawing machine’, Procedia Struct. Integr., vol. 24, pp. 225–232, 2019. 

[28] E. L. Liu and M. A. Wadee, ‘Mode interaction in perfect and imperfect 

thin-walled I-section struts susceptible to global buckling about the 
strong axis’, Thin-Walled Struct., vol. 106, pp. 228–243, 2016. 

[29] T. S. Prajwal and I. A K, ‘A Comparative Study Of RESNET-Pretrained 

Models For Computer Vision’, in Proceedings of the 2023 Fifteenth 

International Conference on Contemporary Computing, Noida India, 
2023, pp. 419–425. 

[30] W. Xu et al., ‘ResNet and its application to medical image processing: 

Research progress and challenges’, Comput. Methods Programs 
Biomed., vol. 240, p. 107660, 2023. 

[31] J. Xu et al., ‘Full scale strain monitoring of a suspension bridge using 

high performance distributed fiber optic sensors’, Meas. Sci. Technol., 
vol. 27, no. 12, p. 124017, 2016. 

[32] K. Soga and L. Luo, ‘Distributed fiber optics sensors for civil engineering 

infrastructure sensing’, J. Struct. Integr. Maint., vol. 3, no. 1, pp. 1–21, 
2018. 

 


