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ABSTRACT: This paper presents a vision for next-generation Artificial Intelligence (AI) based structural health monitoring 

(SHM) systems through the lens of DREAM-SHM: a framework comprising Dynamic, Real-time, Evaluative, Adaptive (AI-

based), Modular, Self-diagnostic, Holistic, and Multi-sensory principles. The aim is to enable smart infrastructure that can sense, 

and evolve corresponding to structural behaviour, material degradation, environmental effects, and changing operational or 

economic constraints. The paper reviews current SHM technologies, highlighting the strengths and limitations of contact-based 

sensors, such as accelerometers, strain gauges, fibre optic sensors, and non-contact approaches including vision-based systems, 

infrared thermography, radar, and ultrasonic techniques. Emphasis is placed on their integration with wireless sensor networks, 

Internet of Things (IoT) platforms, and Artificial Intelligence (AI) for advanced data fusion, anomaly detection, and predictive 

analytics. The computational aspects underpinning SHM systems, such as cloud-edge processing, machine learning, and multi-

modal sensor data integration, are described to enable timely and informed decision-making. In addition, the paper situates 

DREAM-SHM within the context of sustainability, demonstrating how adaptive and intelligent SHM systems support the goals 

of circular economy and net-zero carbon by prolonging asset life, reducing maintenance burdens, and improving environmental 

responsiveness. This work outlines a pathway toward structurally intelligent and resource-efficient infrastructure. 

KEYWORDS: Structural Health Monitoring (SHM), Intelligent infrastructure, Sustainable infrastructure, Multi-modal sensing, 

Contact-based sensing, Non-contact sensing, Internet of Things (IoT). 

1 INTRODUCTION 

The infrastructure of the future should be smart, adaptive, and 

capable of responding to both operational and environmental 

challenges in real-time. As urbanisation continues to accelerate 

and infrastructure ages, ensuring safety, efficiency, and 

longevity of our built environment has never been more crucial. 

Traditional methods of structural inspection and maintenance, 

though important, are often time-consuming, costly, and prone 

to human error. The Structural Health Monitoring (SHM) 

paradigm offers an innovative solution to these challenges, 

enabling continuous, non-destructive assessment of structural 

integrity and performance [1-3]. SHM aims to detect and 

diagnose faults early, ensuring that any issues are addressed 

before they escalate into catastrophic failures. It involves 

assessing factors such as structural loads, damage status, defect 

localisation and quantification, growth rate estimation, future 

performance prediction, and remaining life estimation [1, 4, 5]. 

In an ideal SHM system, these evaluations are performed in 

real-time, providing global insights into the health of a structure 

as it operates [3]. 

At its core, SHM involves several essential components, 

including sensing, load identification, damage detection, 

damage characterisation, and future performance prediction[1, 

6]. SHM systems incorporate continuous or periodic sensing 

and data collection, allowing for the real-time monitoring of 

structures under various operational and environmental loads. 

Sensors, whether passive or active [7], are integrated into the 

structure during manufacturing or retrofitted for ongoing 

monitoring. These sensors can be classified as contact-based 

(e.g., accelerometers, strain gauges, fibre optic sensors, Linear 

Variable Differential Transformers (LVDT), and 

thermometers) or non-contact-based (e.g., vision-based 

systems, infrared thermography, and radar). Both types of 

sensors capture critical data about the structure's behaviour, 

environmental conditions, and operational status, transmitting 

this information to storage systems or cloud-based servers for 

analysis and decision-making [8, 9]. 

Contact-based sensors offer high accuracy but often require 

direct attachment to the structure, periodic maintenance, and 

replacement, resulting in increased operational costs. 

Moreover, critical measurement points may be difficult or 

impossible to access, leading to incomplete or inaccurate 

data[10, 11]. To address these challenges, non-contact sensors 

provide an alternative by enabling wide-area and mobile 

sensing. These sensors operate without requiring direct 

attachment to structures and are typically positioned at a 

distance. They capture optical images and videos using 

technologies such as digital cameras, high-speed cameras, and 

synthetic aperture radar from satellite sensors. Smartphone-

based sensing technologies are also increasingly integrated into 

SHM systems, expanding their capabilities [9]. By utilising 

mobile platforms such as unmanned aerial vehicles (UAVs), 

automobiles, trains, and boats, fly-by, drive-by, tram-by, or 

sail-by monitoring systems can be deployed, enhancing spatial 

coverage and reducing data gaps. This more efficient approach 

enables broader monitoring capabilities across large 

infrastructure networks, offering a more comprehensive 

assessment of structural health over time. 

As infrastructure becomes more interconnected and 

intelligent, the need for adaptive, dynamic systems that respond 
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in real time to changing conditions is greater than ever. This is 

where DREAM-SHM as a novel Structural Health Monitoring 

framework offers a transformative solution. By integrating 

contact-based and non-contact sensors, Internet of Things (IoT) 

platforms, and Artificial Intelligence (AI), DREAM-SHM 

enables structures to not only monitor their health but also 

adapt dynamically to both environmental and operational 

changes. The system continuously collects data from sensors 

and uses AI-driven algorithms to analyse this information, 

allowing the structure to respond in real time to conditions such 

as temperature fluctuations, humidity, material stress, and even 

operational demands. By optimising these factors, DREAM-

SHM can maintain both the structural integrity of the building 

and the comfort of its occupants, while also reducing energy 

consumption and lowering carbon emissions. Moreover, this 

integration can help address issues such as overcrowding or 

traffic congestion by adjusting building operations based on 

real-time data. 

This paper explores the concept of DREAM-SHM, detailing 

how its combination of advanced sensors, IoT networks, and 

AI technologies unlocks the next generation of intelligent 

infrastructure. It reviews the different sensor technologies used 

in SHM, both contact-based and non-contact, and presents a 

discussion of the computational aspects that enable DREAM-

SHM to adapt to changing conditions. This paper explores the 

potential of these technologies to revolutionise infrastructure 

monitoring and maintenance, highlighting their ability to 

optimise not just structural health but also the environment 

within and around the infrastructure. 

2 SENSOR TECHNOLOGIES FOR STRUCTURAL 

HEALTH MONITORING 

SHM systems depend on sensor technologies to collect 

continuous or periodic data from infrastructures under 

operational and environmental conditions. These sensors are 

typically classified into contact-based and non-contact types, 

each with unique advantages and limitations [12]. A thorough 

understanding of both categories is essential for developing a 

more adaptive and intelligent SHM framework. 

 Contact-Based Sensors 

Contact-based sensors are physically attached to the structure 

to capture direct measurements of parameters such as strain, 

stress, acceleration, displacement, and temperature. These 

sensors have traditionally formed the backbone of SHM 

systems, especially in critical and high-risk infrastructure. 

2.1.1 Strain Gauges 

Strain gauges are widely used to measure strain resulting 

from applied loads. They are typically bonded to the surface of 

structural elements and detect minute changes in length as 

electrical resistance variations. Despite their accuracy, they are 

susceptible to environmental degradation and require careful 

installation and protection[13-15]. 

2.1.2 Accelerometers 

Accelerometers are essential in dynamic monitoring, 

capturing vibrations, modal properties, and transient responses 

during events such as traffic loading or seismic activity. They 

can be deployed in arrays across a structure to identify changes 

in stiffness or detect anomalies associated with damage [10, 16-

18]. 

2.1.3  Fibre Optic Sensors 

Fibre optic sensors, including Fibre Bragg Gratings (FBGs), 

are capable of long-range, high-resolution measurements of 

strain and temperature. Their immunity to electromagnetic 

interference and ability to multiplex multiple sensing points 

along a single fibre make them highly suitable for harsh 

environments and large-scale infrastructures[19-21]. 

2.1.4 Linear Variable Differential Transformers (LVDTs) 

LVDTs are used to measure displacement and deformation 

with high precision. These sensors are commonly applied in 

laboratory tests and long-term monitoring of joints, cracks, and 

bearing movements in bridges and buildings [22]. 

2.1.5 Thermocouples and Thermistors 

These sensors measure temperature variations, essential for 

understanding thermal loading effects on structural behaviour. 

They are often used in combination with other sensors to 

decouple environmental influences from structural responses. 

2.1.6 Limitations of contact-based sensors 

Despite their reliability and accuracy, contact-based sensors 

have several drawbacks, such as installation and maintenance 

can be labour-intensive and costly. Sensor failure due to 

environmental exposure requires frequent inspection and 

replacement. Coverage is often limited to selected points, 

leading to sparse spatial resolution [23]. 

 Non-Contact Sensors 

Non-contact sensors offer remote sensing capabilities and are 

particularly valuable for large-scale structures where full-field 

contact-based monitoring is impractical[24]. These sensors can 

be deployed on stationary platforms or mobile carriers such as 

UAVs, vehicles, or boats to conduct “fly-by”, “drive-by”, or 

“sail-by” inspections. 

2.2.1 Vision-Based Methods 

Vision-based SHM systems use digital or high-speed 

cameras to capture visual data from structures[25]. Techniques 

such as Digital Image Correlation (DIC) [26] and 

photogrammetry allow for the measurement of displacement, 

deformation, and surface cracking [27, 28]. These methods are 

enhanced through artificial intelligence (AI), particularly deep 

learning algorithms that automate defect detection and 

characterisation [29]. 

2.2.2 Infrared Thermography (IRT) 

IRT detects subsurface anomalies such as delamination and 

voids by capturing thermal patterns on a structure’s surface. It 

is non-invasive and efficient for inspecting large areas. 

However, it is sensitive to environmental conditions and often 

requires post-processing with deep learning models to reduce 

false positives[30-38]. 

2.2.3 Ultrasound-Based Techniques 

Air-coupled ultrasound techniques use high-frequency waves 

to detect micro-cracks and internal flaws. These are particularly 

useful in metallic and composite materials where internal 
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defects may not be visible externally. Non-contact ultrasound 

methods allow remote application, reducing the need for 

physical access[24]. 

2.2.4 Radar Vibration-Based Methods 

Microwave and millimetre-wave radar systems can remotely 

monitor structural vibrations and dynamic responses with sub-

millimetre accuracy. These non-contact methods are 

particularly effective for tall, slender, or otherwise inaccessible 

structures such as towers, bridges, and wind turbines. They 

offer robust performance in challenging environmental 

conditions, as they are less affected by lighting, fog, or 

moderate precipitation compared to optical techniques. Radar-

based monitoring enables real-time displacement and modal 

analysis without requiring physical sensor installation on the 

structure[24]. 

2.2.5 Magnetic-Based Techniques 

Magnetic-based methods such as Magnetic Flux Leakage 

(MFL) and magnetostrictive sensors are used to detect stress 

concentrations, cracks, corrosion, and other anomalies in 

ferromagnetic materials. These techniques work by measuring 

disturbances in the magnetic field when it encounters defects or 

discontinuities within the material. They are particularly 

valuable for monitoring pipelines, prestressed cables, steel-

reinforced concrete, and metallic bridge components, offering 

a non-destructive means of assessing structural integrity in 

inaccessible or high-risk environments [24]. 

2.2.6 Wireless Sensor Networks (WSNs) 

WSNs use embedded or surface-mounted sensors that 

wirelessly transmit structural data to remote data acquisition 

systems. This reduces installation complexity and allows for 

scalable deployment across large infrastructures. Integration 

with energy harvesting solutions enhances their long-term 

viability [24, 39]. 

2.2.7 Hybrid and Mobile Monitoring Approaches 

Combining multiple non-contact methods or integrating them 

with mobile platforms (e.g., UAVs or autonomous ground 

vehicles) provides comprehensive spatial and temporal data. 

These systems are especially useful for structures with limited 

accessibility or under high traffic loads [9]. 

2.2.8 Advantages of Non-Contact Sensors 

These sensors enable full-field and remote monitoring, reduce 

maintenance and installation costs, improve safety for 

inspectors and increase spatial coverage and flexibility. 

2.2.9 Challenges of Non-contact Sensors 

Environmental conditions (e.g., lighting, humidity, wind) can 

affect the accuracy of these sensors. Data processing 

complexity increases with large-scale visual or radar datasets. 

These sensors are high dependent on robust algorithms for data 

interpretation. 

 Summary and Considerations 

The combined application of contact and non-contact sensor 

technologies can provide complementary insights into 

structural integrity. While contact sensors offer high accuracy 

for localised measurements, non-contact sensors excel in wide-

area and remote assessments. The integration of AI and the 

Internet of Things (IoT) further enhances data acquisition, 

fusion, and interpretation capabilities [40, 41]. 

A future-forward SHM system, such as DREAM-SHM, 

should not only integrate these sensors intelligently but also 

enable self-reflection and prediction, adapting its sensing 

strategies based on structural performance, environmental 

changes, and user demands. This vision sets the stage for the 

next generation of intelligent, adaptive, and sustainable 

infrastructures. 

3 DREAM-SHM: TOWARDS INTELLIGENT, AND 

ADAPTIVE STRUCTURES 

The future of civil infrastructure depends on its capacity to 

sense, adapt, and evolve, and attributes central to the next 

generation of intelligent systems. In this context, this paper 

suggests the DREAM-SHM framework: a novel approach to 

Structural Health Monitoring that is Dynamic, Real-time, 

Evaluative, Adaptive (AI-based), Modular, Self-diagnostic, 

Holistic, and Multi-sensory (Figure 1).  

 

 

Figure 1. Elements of DREAM-SHM framework 

Dynamic

• Utilises mobile platforms (e.g., drones, vehicles) for flexible 
and wide-area structural monitoring.

Real-time

• Enables instantaneous data capture, processing, and 
response to changing structural and environmental 
conditions.   

Evaluative

• Continiously assesses structural performance, damage 
progression, and maintenance priorities. 

Adaptive 
(AI-based)

• Learns from data to refine monitoring strategies and improve 
predictive accuracy through AI techniques.

Modular

• Allows easy integration and reconfiguration of sensors and 
components for scalable deployment. 

Self-
diagnostic

• Detects fault or anomalies in its own sensing, 
communication or analysis function. 

Holistic

• Considers structural, environmental, operational and human 
factors in health assessment. 

Multi-
sensory

• Integrates diverse sensing modalities, including contact and 
non-contact technologies, for richer data insight. 
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Rather than functioning as static systems for passive data 

collection, DREAM-SHM envisions infrastructure as active 

learning, self-reflective, and responsive entities, capable of 

anticipating change, optimising performance, and supporting 

lifecycle decisions with unprecedented insight and autonomy. 

The DREAM-SHM system is inherently computational, 

relying on advanced data processing, predictive algorithms, 

machine learning, and cloud computing to support its highly 

adaptive and intelligent functionality. It operates through a 

robust digital backbone that enables the processing of vast 

amounts of real-time data, the prediction of future conditions, 

the optimisation of structural health, and the dynamic 

adjustment of environmental parameters. 

 

 From Traditional to Dreaming Structures 

Conventional SHM systems provide snapshots of structural 

conditions based on sensor data. In contrast, DREAM-SHM 

envisions a system that continuously "dreams." That is, it 

reflects on past data, analyses current performance, and 

simulates future outcomes. Much like human brain 

consolidates information during sleep [42, 43], DREAM-SHM 

uses advanced analytics, AI, and IoT integration [44] to 

consolidate multisource data and learn structural behaviour 

patterns over time. This cognitive leap transforms 

infrastructure into living digital twins, constantly updating their 

condition, adapting to changes in the environment, and 

providing valuable feedback to engineers and designers. 

 Integrating Contact and Non-Contact Sensors with IoT 

and Data Processing Fusion 

In a DREAM-SHM framework, both contact and non-contact 

sensors are integrated into a broader Internet of Things (IoT) 

ecosystem. IoT enables sensor networks to communicate, 

synchronise, and share real-time data through cloud computing 

or edge processing devices. Contact-based sensors (e.g., strain 

gauges, accelerometers) provide high-fidelity, localised data 

critical for detecting internal stress, fatigue, or localised 

failures, while non-contact sensors (e.g., vision systems, 

thermography, radar) expand coverage, capture surface 

conditions, and enable remote inspections. 

 

These sensors generate large, multidimensional datasets that 

require careful processing and alignment to create a coherent 

and reliable model of the structure’s condition. Advanced data 

fusion algorithms are applied to integrate multimodal data from 

multiple sources, resolving discrepancies caused by noise, 

sensor faults, or varying environmental conditions[39]. 

Techniques such as Kalman filtering, Bayesian inference, and 

decision tree models [45] enhance the accuracy of the fused 

data by accounting for uncertainties and interdependencies 

across sensor inputs. 

 

IoT platforms facilitate seamless connectivity between 

sensors, edge devices, data storage, and decision-making 

systems, enabling real-time alerts, remote diagnostics, 

distributed data storage, cloud analytics, and cross-sensor data 

fusion and redundancy to reduce uncertainty. The fusion of 

contact and non-contact sensor data within this infrastructure 

supports a comprehensive, context-aware SHM system capable 

of interpreting data as part of a broader ecosystem influenced 

by environmental, operational, and human factors [44]. 

 The Role of AI in Creating Self-Adaptive Structures 

 

AI lies at the core of the DREAM-SHM system, functioning as 

the central engine that empowers intelligent data interpretation, 

autonomous decision-making, and adaptive system behaviour. 

By leveraging machine learning (ML) and deep learning (DL) 

techniques, the system can extract meaningful patterns, detect 

anomalies, and respond dynamically to evolving structural and 

environmental conditions [46]. 

 

Deep learning models, particularly Convolutional Neural 

Networks (CNNs) [12, 46-48], are instrumental in analysing 

visual inputs from vision-based sensors or thermal imagery 

from infrared cam eras. These networks can automatically 

classify and detect structural anomalies such as cracks, 

deformations, corrosion, or delamination, significantly 

reducing the reliance on manual inspections. This automation 

increases the speed and accuracy of damage detection while 

minimising human error. 

 

AI algorithms are trained on historical and real-time sensor data 

to enable predictive maintenance, allowing the system to 

forecast when and where damage is likely to occur. In addition 

to supervised learning, unsupervised learning approaches are 

used to uncover previously unseen patterns or emerging failure 

modes, enhancing the system’s adaptability and sensitivity over 

time. 

 

AI also plays a critical role in fusing data from multiple sensor 

modalities, including thermal, acoustic, visual, and vibration 

sources. By integrating these diverse inputs, AI improves fault 

detection accuracy and reduces false positives. Furthermore, AI 

enables the autonomous operation of robotic inspection 

platforms, such as UAVs, which can plan flight paths, adjust 

actions in real time, and focus on areas of concern based on live 

feedback. 

 

Reinforcement learning techniques further enhance the self-

adaptive capabilities of the DREAM-SHM system. Through 

continuous learning, the system can optimise its monitoring 

strategies, improving how it prioritises sensor data, allocates 

resources, and adapts to changing structural and environmental 

conditions. 

 

 Dynamic, Self-Reflective, and Adaptable Systems 

The DREAM-SHM system represents a significant evolution 

in how infrastructure is designed, operated, and maintained. At 

its core, it enables dynamic, self-reflective, and adaptable 

behaviour through the seamless integration of cloud 

computing, the IoT, and AI. By combining real-time sensor 

data with intelligent analytics, the system continuously 

monitors, analyses, and responds to both internal structural 

health and external environmental conditions. 

 

IoT-enabled sensor networks form the backbone of this 

intelligent infrastructure. These networks connect contact and 

non-contact sensors, environmental monitoring devices, and 
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operational systems, allowing continuous data transmission to 

cloud-based platforms. Cloud computing provides the scalable 

computational resources needed to handle large volumes of 

sensor data across wide geographic areas, making it possible 

for engineers, facility managers, and maintenance teams to 

access up-to-date structural health reports, plan maintenance, 

and respond to safety concerns in real time. Edge computing 

ensures that critical decisions can be made locally and rapidly, 

particularly when immediate intervention is required. For 

example, structural anomalies detected by sensors, such as 

sudden changes in strain or temperature, can trigger instant 

responses without needing to wait for centralised cloud 

processing. 

 

This intelligent system also extends to the optimisation of 

internal environments. By monitoring temperature, humidity, 

and occupancy levels, DREAM-SHM can automatically adjust 

heating, ventilation, air conditioning (HVAC), or 

dehumidification systems. These adjustments not only enhance 

occupant comfort but also protect structural materials from 

accelerated degradation, such as corrosion in steel or cracking 

in concrete, caused by unfavourable environmental conditions. 

 

Moreover, the system adapts to changing operational 

demands. If a room becomes highly occupied, ventilation can 

be increased, or air conditioning fine-tuned to maintain air 

quality and comfort. By learning usage patterns, tracking 

external weather forecasts, and recognising early signs of 

material fatigue, AI within the system can anticipate and 

prepare for future operational needs. This may include 

adjusting HVAC schedules ahead of temperature drops, 

deploying shading systems in response to sunlight exposure, or 

activating safety protocols in anticipation of extreme weather 

or seismic activity. 

 

Ultimately, DREAM-SHM goes far beyond traditional 

monitoring. It creates an intelligent feedback loop where data, 

environment, and structural health are interwoven, enabling 

buildings and infrastructure to adapt in real time. This not only 

preserves structural integrity and enhances user wellbeing, but 

also significantly reduces energy consumption and carbon 

emissions, contributing to more sustainable and resilient built 

environments. 

 Designing for Longevity Through Predictive 

Intelligence 

 

One of the transformative aspects of the DREAM-SHM 

system is its ability to influence future design practices, 

material selection, and lifecycle strategies through predictive 

insight. By collecting and analysing long-term structural health 

monitoring data, the system enables the refinement of design 

codes based on actual performance under diverse 

environmental and loading conditions. This data-driven 

feedback loop allows engineers to make informed decisions, 

enhancing structural reliability and efficiency over time. 

Machine learning algorithms are central to this predictive 

capability. Trained on historical and real-time data from contact 

and non-contact sensors, such as accelerometers, infrared 

thermography, and ultrasound, the system detects early signs of 

damage and estimates future deterioration, fatigue, and failure. 

Time-series forecasting models, including autoregressive 

integrated moving averages (ARIMA) and recurrent neural 

networks (RNNs) [49, 50], leverage trends in sensor data to 

guide proactive interventions that extend the service life of the 

structure. 

Supervised learning techniques, including decision trees and 

support vector machines (SVM), classify structural conditions 

into actionable states, while reinforcement learning enables 

continuous model improvement as new data is acquired. By 

integrating predictive models with real-time monitoring, the 

system enhances structural safety, minimises operational costs, 

and maintains optimal performance. 

This fusion of predictive analytics with adaptive control 

transforms infrastructure into self-reflective and intelligent 

systems. DREAM-SHM further supports generative design 

processes, where artificial intelligence proposes optimised 

structural forms and materials tailored to specific 

environmental and operational conditions. Such insight enables 

the design of modular, reconfigurable structures that can evolve 

over time in response to predictive indicators. In doing so, 

DREAM-SHM contributes to a new generation of 

infrastructure that is sustainable, resilient, and energy-efficient, 

with a significantly reduced carbon footprint. 

 

 Unlocking the Next Generation of Intelligent 

Infrastructure 

The implementation of DREAM-SHM signifies a 

fundamental shift from static to living structures. These 

infrastructures think through artificial intelligence and 

predictive modelling, feel through extensive and multimodal 

sensor networks, communicate through Internet of Things 

platforms and edge computing, and adapt based on 

environmental conditions, user demands, and system health. By 

integrating advanced sensing, communication, and 

intelligence, future infrastructures will no longer be passive 

assets, but active participants in their maintenance and 

evolution. 

In doing so, they offer immense societal benefits, including 

enhanced safety and reliability, reduced maintenance costs and 

downtime, improved energy efficiency and user comfort, and a 

deeper understanding of structural behaviour over time. The 

DREAM-SHM paradigm represents not merely a technological 

upgrade, but a philosophical reimagining of what infrastructure 

can be, structures that not only endure but evolve, guided by 

the very data they produce. 

4 DREAM-SHM, CIRCULAR ECONOMY AND NET 

ZERO GOALS 

The transition towards smarter infrastructure must be 

harmonised with global imperatives such as the circular 

economy and the pursuit of net zero carbon emissions. The 

DREAM-SHM framework, defined as Dynamic, Reflective, 

Evaluative, Adaptive, Modular, Self-diagnostic, Holistic, and 

Multi-sensory naturally aligns with these objectives by 

enabling more efficient, resilient, and sustainable infrastructure 

systems throughout their entire lifecycle. 

  Enabling Resource Efficiency and Longevity 

One of the primary pillars of the circular economy is resource 

optimisation through prolonged material use, reusability, and 
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reduced waste [51]. DREAM-SHM contributes to this by 

allowing structures to continuously evaluate their health, detect 

minor degradations before they escalate, and schedule 

maintenance proactively. Such real-time diagnostics reduce the 

need for premature demolition or over-conservative 

replacement strategies. The modular and adaptive attributes of 

DREAM-SHM also support retrofitting and component-based 

upgrades, enabling structures to evolve without complete 

reconstruction, an essential strategy in circular design. 

 Data-Driven Lifecycle Decision-Making 

DREAM-SHM’s use of AI and IoT technologies facilitates 

whole-life performance monitoring. This continuous data 

stream allows engineers, asset managers, and policymakers to 

make informed decisions that extend beyond first costs, 

incorporating embodied energy, operational efficiency, and 

end-of-life recyclability. For example, the system can inform 

decisions about optimal repair versus reuse, estimate embodied 

carbon for design alternatives, or determine the feasibility of 

adaptive reuse of ageing infrastructure. 

 Supporting Carbon Emission Reduction 

Smart structures equipped with DREAM-SHM do not only 

monitor their mechanical performance, they also track 

environmental parameters such as energy use, indoor 

temperature, humidity, and CO₂ levels. These insights enable 

buildings and infrastructures to dynamically adjust internal 

conditions to optimise comfort and reduce energy 

consumption, especially under varying occupancy patterns or 

extreme climate conditions. Integration with renewable energy 

sources and smart energy grids can further reduce reliance on 

fossil fuels, directly supporting net zero building operations. 

Moreover, DREAM-SHM facilitates operational carbon 

tracking, where the carbon cost of maintenance activities and 

material replacements can be quantified in real-time. This 

capability encourages low-carbon interventions, the use of 

environmentally friendly materials, and the minimisation of 

transport or logistical carbon footprints. 

 Designing for a Regenerative Future 

The holistic nature of DREAM-SHM, combined with its 

dynamic and evaluative features, can help shift the 

infrastructure sector from a linear to a regenerative model[52]. 

Rather than just sustaining performance, future structures can 

be designed to learn, evolve, and regenerate over time. By 

treating structures almost like living systems, ones that sense, 

learn, and adapt, DREAM-SHM lays the foundation for self-

regulating and self-improving built environments. 

This continuous evolution aligns with the vision of net 

positive design, where buildings not only minimise harm but 

actively contribute to ecological and social value. For instance, 

a bridge equipped with DREAM-SHM could dynamically 

coordinate traffic to reduce congestion-related emissions or 

monitor its own runoff water quality and feed data back into 

environmental management systems. 

 Digital Twin Synergies 

Another key synergy lies in the integration of DREAM-SHM 

with digital twins[53, 54], creating a real-time, data-enriched 

virtual model of the structure. These twins can simulate 

environmental impacts, forecast degradation under climate 

stressors, and test low-carbon renovation scenarios before 

implementation. This predictive capability enhances resilience 

planning and supports sustainability certification and reporting 

frameworks. 

 Energy Efficiency and Sustainable Power Supply 

For DREAM-SHM to be deployed at scale and operate 

autonomously, it must also be energy-conscious. The system 

leverages low-power wireless sensor networks (WSNs)[55], 

which minimise energy usage through efficient communication 

protocols and duty cycling. Where possible, sensors and edge 

computing units are powered by renewable sources, including 

solar panels mounted on structures and wind energy 

microgenerators integrated into exposed components. 

Additionally, the framework supports energy harvesting, 

converting ambient vibrations, thermal gradients, or even 

electromagnetic noise into small but continuous power sources 

for embedded sensors. This self-sufficiency allows long-term 

deployment without frequent battery replacements, reducing 

both maintenance burdens and electronic waste. By embedding 

energy-awareness into its architecture, DREAM-SHM aligns 

itself with net-zero goals not only in terms of what it monitors 

but how it functions, enabling smarter, cleaner, and more self-

reliant infrastructures. 

 Example of potential performance of a DREAM-SHM 

system 

To demonstrate the potential of the DREAM-SHM 

framework, imagine a long-span bridge operating under 

extreme weather conditions and subject to cyclical loading. 

During a sudden windstorm, real-time data from 

accelerometers, fibre optic strain sensors, and vision-based 

surface monitoring systems are synchronised through the IoT 

layer and processed at the edge. The AI engine identifies 

anomalous vibration patterns that signal early-stage fatigue in 

a critical joint. At the same time, thermal imaging highlights 

abnormal heat signatures associated with bearing friction. The 

digital twin continuously simulates the structural state and 

projects the need for a targeted inspection as conditions 

stabilise. In response to predictive outputs, the system 

autonomously modifies traffic flow and delivers a real-time 

alert to maintenance teams. Concurrently, environmental 

control systems within nearby infrastructure are adjusted to 

reduce energy use due to temporary low occupancy. This 

scenario illustrates how the DREAM-SHM framework 

functions as an adaptive, multi-sensory, and context-aware 

system, supporting decision-making under dynamic 

operational demands. 

 

5 CONCLUSION 

This paper presents a conceptual perspective for a future 

SHM system: DREAM-SHM as summarised in Figure 2.  
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Figure 2. Schematic of the layers of FREAM-SHM 

framework 

 

This system represents a significant leap forward in structural 

health monitoring and management. By combining advanced 

sensor technologies, AI, IoT, and predictive analytics, it 

provides a comprehensive solution for real-time, adaptive, and 

sustainable infrastructure management. The computational 

framework driving the system ensures it can process vast 

amounts of data, predict future structural performance, and 

optimise operational conditions dynamically. 

While the DREAM-SHM framework offers transformative 

potential, its implementation at scale presents several 

challenges primarily rooted in interdisciplinary coordination. 

Successful deployment requires the integration of diverse 

expertise across structural engineering, data science, sensor 

technologies, and artificial intelligence, which demands not 

only cross-disciplinary collaboration but also specialised 

training to bridge gaps in knowledge and practice. From an 

ethical standpoint, careful consideration must be given to the 

types of human and operational information shared with the 

system, particularly in contexts involving surveillance, usage 

patterns, or sensitive infrastructure behaviour. In addition, 

maintaining cybersecurity and the resilience of communication 

networks becomes critical, as the framework relies on 

distributed sensing, edge processing, and cloud-based 

integration. Despite these challenges, the practical realisation 

of DREAM-SHM remains promising. The system unlocks the 

next generation of intelligent infrastructure, where structures 

are not only monitored but also able to self-adapt and self-

maintain. By doing so, DREAM-SHM promotes safety, 

efficiency, and sustainability in the built environment, while 

also providing a unifying platform that encourages 

collaboration between academia and industry. It serves as a 

compelling motivation for advancing research, developing 

standards, and forging partnerships that can help turn this 

vision into reality. 
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