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ABSTRACT: Aging bridges were not designed for today’s higher traffic loads and often fail to meet current requirements. 

However, complete demolition or reconstruction is rarely feasible due to resource limitations, sustainability concerns and 

economic factors. A key issue lies in conservative assumptions regarding loads and resistance. Structural health monitoring (SHM) 

addresses this by providing real measurement data for a more accurate assessment.  

Monitoring produces large volumes of data that must be well-structured and stored for reliable assessments. This requires 

collaboration between civil engineers, measurement specialists, IT experts, and data analysts. As Building Information Modeling 

(BIM) adoption grows, standardized monitoring methods must ensure consistency and comply with the Single Source of Truth 

(SSoT) principle, enabling an integration of monitoring data in a BIM environment.  

The ANYTWIN research project aims to develop a framework for structured data storage and processing. It examines how 

measurement data relates to time and location, defines metadata and information for evaluation criteria and assigns responsibilities 

for data provision. A processing method ensures data preparation, analysis, and data mining, while quality indicators enhance 

reliability. These findings contribute to a tendering template, helping to structure monitoring tasks and improve maintenance 

strategies. 

KEY WORDS: Structural health monitoring (SHM); Standardization; Monitoring data; Data Quality; Quality Indicator; Tendering 

template.  

1 INTRODUCTION 

Existing bridges age over time and were not designed for 

today’s significantly higher traffic loads. Many of these 

structures no longer meet the current verification requirements 

of the Eurocode. However, complete demolition or new 

construction is not a practical solution—on one hand, the 

necessary resources for demolition and reconstruction are 

lacking; on the other hand, such an approach would be neither 

sustainable nor economically viable. 

A primary shortcoming in meeting verification requirements 

arises from the conservative assumptions made regarding both 

loads and resistance. This is where structural health monitoring 

becomes crucial: by collecting measurement data, a more 

precise and realistic assessment of the bridge’s condition can 

be made [1][2]. SHM allows for the adjustment of both load 

assumptions and structural resistance based on actual 

measurements, thereby enabling more accurate verification. 

The monitoring process generates vast amounts of data, 

which must be well-organized and properly stored to ensure a 

clear understanding of the bridge’s condition. This requires 

close collaboration among civil engineers, measurement 

experts, IT specialists and data analysts. As part of the ongoing 

digitalization effort and the adoption of Building Information 

Modeling (BIM), this collaboration should be enhanced while 

adhering to the Single Source of Truth (SSoT) principle. In a 

digital environment, such as a digital twin, various datasets and 

information sources converge, interconnect, and depend on 

each other. A structured representation of these relationships is 

essential for seamless integration. While the IFC model 

primarily serves as a static representation, it provides key 

information for monitoring, including the positions of 

individual measurement points, cable routing and other 

infrastructure details. 

However, the digital twin extends beyond this by 

dynamically reflecting the current sensor status, generating 

meaningful analyses of physical parameters at these points, and 

integrating diagnostic method data for a more comprehensive 

assessment. This approach enables a real-time, data-driven 

understanding of structural conditions. All of this should be 

guided by the principle that the digital twin serves as the SSoT, 

ensuring that all information is consistently structured, linked, 

and accessible within a unified system. 

To achieve this, monitoring methods should be standardized 

and incorporated into data-based load-bearing safety checks in 

civil engineering [3]. 

This is precisely the aim of the ANYTWIN research project 

[4], [5], [6]. The goal of the project is to establish a clear 

structure for collecting, storing and processing monitoring data. 

Different types of measurement data are analyzed and 

classified to ensure systematic storage. The project investigates 

how measurement data is connected over time and space, 

identifies key details necessary for evaluation, and defines 

responsibilities for data provision. A processing method is also 

developed to ensure that the data is transformed into clean and 

usable time series. Finally, the project establishes the quality 

requirements that the data must meet for specific verification 

purposes and defines quality indicators for assessment.  
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All these findings will contribute to the standardization of 

tendering processes, providing project owners with a 

comprehensive overview of monitoring tasks and the respective 

responsibilities of all involved experts. The objective is to 

generate significant value for the future maintenance and 

management of bridges [7]. 

2 IMPLEMENTATION OF MONITORING IN BRIDGE 

CONSTRUCTION 

The implementation of monitoring in bridge construction is still 

not a standardized procedure and is typically conducted on a 

case- by-case basis [8], [9], [10]. However, a structured 

approach has been established, based on the recommendations 

of the DBV guidelines [11]. According to these guidelines, the 

monitoring process consists of six phases, ranging from 

defining the objective, planning, installation, and operation of 

the monitoring system to the evaluation and assessment of 

measurement results (see Figure 1). In practice, these phases 

have not yet been fully standardized. 

Regardless of the specific task, certain measurement 

parameters and objectives have been identified as crucial for 

the effective implementation of monitoring.  

Specifically, for damage detection and computational 

verification in structural monitoring, the following 

measurement objectives are relevant: 

Temperature & Environment: Measures temperature 

differences and climatic effects (e.g., temperature sensors, 

humidity sensors, thermocouples, resistance thermometers, 

infrared detectors). These parameters are crucial for assessing 

thermal loads on structures. 

Moisture Measurements: Detects humidity levels and 

influences such as corrosion or mineral formation that can lead 

to durability issues (e.g., humidity sensors, multi-ring 

electrodes). 

Fatigue & Cracks: Identifies stress, strain, and early cracks 

(e.g., strain gauges, DFOS [12], Acoustic Emission Sensors 

(AE Sensors) [13]), which are strong indicators of structural 

load-bearing capacity. 

Deformation & Movement: Monitors settlements, 

vibrations and inclinations (e.g., displacement sensors, tilt 

sensors, acceleration sensors, distance sensors). By analyzing 

geometric changes at micro, meso and macro levels, insights 

into bearing movements, expansion behavior, creep & 

shrinkage, and crack formation can be derived. 

Load & Traffic: Detects overloads and load distribution 

(e.g., pressure sensors, laser measurement systems), which are 

critical for understanding structural performance under varying 

traffic loads. 

Figure 1. Representation of the individual phases of a monitoring process based on the DBV guideline [11], © MKP GmbH 
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Vibration Monitoring: Assesses dynamic structural 

properties, such as natural frequencies and damping values, 

which provide insights into fatigue behavior and potential 

damage (e.g., accelerometers, vibration velocity sensors). 

Acoustic Monitoring: Captures sound events to track 

damage progression caused by localized failure events (e.g., 

AE Sensors [13]). 

The selection of sensors depends on the measurement 

objective, type of structure, and environmental conditions and 

is adapted to specific requirements. Figure 2 illustrates some 

examples of sensors and measurement systems used for bridge 

monitoring. 

3 TYPES OF MONITORING DATA AND SENSORS 

The efforts to standardize the handling of monitoring data 

obtained in the context of SHM require a comprehensive 

examination and description of the characteristics and typical 

features of such data. This foundational understanding enables 

subsequent classification and the formulation of universally 

applicable procedures for processing, evaluation, data 

manipulation, and establishment of quality requirements. 

The term 'monitoring data' refers to the entirety of data 

generated in the context of SHM. In typical monitoring 

processes, sensor measurement data constitute the predominant 

volume of data. However, for effective information extraction, 

it is crucial to link these data with metadata, defined as all data 

describing the measurement. 

In the initial phase of this study, the measurement data are 

examined. Measurement data include all data that originate 

directly from sensing devices on the structure. To account for 

the increasing technological capabilities of system-on-a-chip 

(SoC) solutions and edge computing, the term is also applied to 

data generated through automated process steps close to the 

sensor or hardware level, provided that their characteristics 

allow them to be treated as measurement data. 

To illustrate the range of potential measurement data sources, 

typical measurement methods and their use cases briefly 

presented in Section 2, serves as a reference. The list focuses 

on recognized and proven methods without claiming to be 

exhaustive.  

The classification of measurement data can be based on 

various criteria and is generally necessary to address both 

software-related aspects in the creation of a storage and 

processing infrastructure, as well as content-related aspects for 

the metadata to be collected. 

One fundamental property describes the data in relation to a 

measurement location. Three main variants can be 

distinguished: point measurement methods, line measurement 

methods, and field measurement methods. 

• Point measurement methods (e.g., strain gauges) provide 

information about a discrete measurement point with a 

very small spatial extent relative to the structure being 

monitored. 

• Line measurement methods (e.g., distributed fiber optic 

sensing (DFOS) [12]) generate measurement data along a 

line with high spatial resolution. 

• Field measurement methods (e.g., photogrammetry) can 

be used for measurements over a larger (surface) area. 

A second classification criterion characterizes the temporal 

structure of the measurement data. Continuous and 

discontinuous data can be distinguished: 

• Continuous data are stored throughout the entire 

monitoring period with equidistant time intervals between 

consecutive data samples, typically with a low sampling 

rate (ranging from several minutes to hours). 

• Discontinuous data are recorded over a typically short 

period of time at a high sampling rate. The recording time 

can be determined either by a predefined time pattern or by 

data-dependent trigger conditions. 

Another classification option concerns the temporal 

reference of the measurement data. The simplest case is a direct 

assignment between the individual instantaneous value of the 

measurement signal and the timestamp. A further possibility is 

that the measurement data refer to a time-extended 

measurement interval, such as in the case of averaging. Even 

more complex time reference descriptions arise with methods 

like Rainflow counting or Fast Fourier Transform analysis 

(FFT). 

A fundamental category of properties for the storage 

structure of measurement data is the dimension of the index 

required to address a measurement value. Besides storage, this 

also determines the programmatic interfaces to processing 

algorithms. The most common attributes in this category are: 

• 1 index value per single measurement value, 

• 1 index value per n measurement values, and 

• 2 index values per 1 measurement value. 

Figure 2. Example of Sensor Technology in Structural 

Monitoring in Use, © MKP GmbH 
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For time series, the index always includes at least the 

timestamp. Additional index values may be required, for 

example, to identify a location or direction. 

Finally, a classification can be made based on the underlying 

measurement instrument(s) of the data. This is mainly used 

when assigning technical metadata. A key distinction is 

whether the data originate from a single, clearly identifiable 

sensor (element) or whether a sensor combination, a sensor 

array, or an automated/autonomous processing algorithm (e.g., 

a Weigh-In-Motion (WIM) system) should be considered as the 

data source. 

Table 1 provides an overview of the key characteristics of the 

measurement data (measurement location, temporal structure, 

temporal reference, index dimension, and technical data 

source) and categorizes them into subgroups (a to c). Each 

subgroup was formed by identifying up to three distinct 

properties for each feature. This classification facilitates the 

systematic organization and comparison of different types of 

measurement data and supports further analysis and processing. 

Table 2 provides an evaluation of the characteristics 

describing the generated measurement data based on the 

established classification system for specific measurement 

methods and sensor technologies. It categorizes different 

sensors according to common characteristics and highlights 

potential groupings. 

To facilitate abstraction, a '1' is assigned to applicable feature 

variants and a '0' to non-applicable ones. Gray shading is used 

to highlight transitions within a category. A gray mark appears 

in the feature column 1 to 5 whenever the assignment within a 

feature category changes from 0 to 1 or 1 to 0. 

Through this visual grouping, at least seven sensor groups 

can be identified. Sensors sharing the same color pattern are 

classified into the same category. In this case, temperature 

sensors up to acceleration sensors (Table 2) are grouped 

together, as they exhibit identical feature combinations across 

the evaluated categories. In contrast, the multi-sensor system 

differs from these sensors, which typically measure a single 

physical quantity. Instead, a multi-sensor system can generate 

multiple independent measurement variables. As a result, its 

classification varies, particularly in Feature 5 (technical data 

source). 

 

Table 1. Presentation and classification of characteristics for describing the generated measurement data 

Classification option 
Property 1  

(a) 

Property 2  

(b) 
Property 3 

(c) 

Feature 1: measurement location Point measurement method Line measurement method Field measurement method 

Feature 2: temporal structure Continuous time-series-data Discontinuous time-series-

data, segments with fixed 

time interval 

Discontinuous time-series-

data with event-driven time 

interval 

Feature 3: temporal reference Single instantaneous value (statistical) value derived 

from a time span 

Indirect value based of 

underlying data 

Feature 4: index dimension 1 index per 1 measurement 

sample 

1 index per n measurement 

samples 

2 indices per 1 

measurement sample 

Feature 5: technical data source Direct data - sensor 

alignment 

Indirect data-sensor 

alignment 

- 

Table 2. Evaluation of characteristics for describing the generated measurement data from various measurement systems 

Examples of 

measurement systems 

Feature 1  Feature 2 Feature 3 Feature 4 Feature 5 

a b c a b c a b c a b c a b 

Temperature sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Strain gauges 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Displacement sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Acceleration sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Multi-sensor 1 0 0 1 1 0 1 1 0 0 1 0 0 1 

Corrosion sensor 1 0 0 1 0 0 1 0 1 0 1 0 1 0 

Weigh-in-Motion (WIM) 1 0 0 0 0 1 1 0 1 0 1 0 1 0 

AE Sensors 1 0 0 0 0 1 0 1 1 0 1 0 1 0 

DFOS 0 1 0 0 1 0 1 0 0 0 0 1 1 0 

Laser scan 0 0 1 1 0 1 0 0 1 0 0 1 1 0 

Tachymeter-total station 0 0 1 1 0 1 0 0 1 0 0 1 1 0 
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Considering the goal of this grouping, it is crucial for data 

structuring to determine how measurement values should be 

assigned to their respective IDs or timestamps. Only Feature 1 

and Feature 4, which are marked with bold borders in the table, 

are representative in this context.  

These groupings reflect common classification features, 

allowing them to be treated as uniform types when assigning 

descriptive metadata, organizing data storage, and designing 

input and output interfaces for data processing. 

For Feature 1, continuity on the spatial scale does not impact 

data structuring, thereby reducing the number of groups to two. 

For Feature 4, the key question is whether data should be 

structured as an array or a matrix. This decision is essential for 

grouping, as both Features (1 and 4) can be combined. The 

result is a definite grouping of sensors, which simplifies data 

structuring and enhances the readability of the stored datae. 

4 RELEVANT METADATA AND ADDITIONAL 

INFORMATION IN BRIDGE MONITORING 

In addition to the actual measurement data, another essential 

category of data exists: metadata and metainformation. For 

evaluations and measurement-based verifications, obtaining 

specific data and information from the measuring point on the 

structure and metadata from the installed measurement system 

or sensors is of great importance. This data is needed to apply 

the calculation method in data processing and evaluation while 

ensuring traceability of time-based trends, providing a 

comprehensive understanding of the structure’s behavior over 

time and at specific locations. 

According to the definition in the ANYTWIN research 

project, metadata refers to numerical, machine-readable values 

that can be assigned to sensors or measurement systems. In 

contrast, metainformation consists of structured, interpreted 

content and descriptions provided by actors, such as textual 

explanations. Both types of data are characterized by their 

stability, as they are generally static and determined once. An 

exception is when a sensor is replaced, which necessitates an 

update of the metadata and metainformation. 

Metadata is defined either during the development of the 

measurement concept or determined after sensor installation. It 

can be divided into two main categories: 

1. General metadata for sensor types – Cross-sensor 

information, such as the measurement method, the unit of 

the electrical signal, and the function used to convert the 

electrical signal into physical values. 

2. Specific metadata for installed sensors and 

measurement points – These are unique to each installed 

sensor, its measurement system, and the respective 

measuring location. They include: 

• Sensor characteristics: such as conversion factors and 

calibration parameters 

• Measurement parameters: such as sampling rate, 

measurement ranges and spatial resolution 

• Measurement point characteristics: such as material 

properties like modulus of elasticity or thermal 

expansion coefficient 

• Technical properties of the measurement system: such 

as frequency range and filtering methods 

• Additional evaluation parameters like installation 

values, calibration data and sensor orientation 

In addition to metadata, additional informative 

metainformation is available, providing details about the 

installed sensors and measurement techniques. This data is not 

necessarily included in the metadata and is not directly relevant 

for data evaluation. However, it is important for traceability, 

quality assurance, and functional verification of the sensors, for 

example, in assessing their lifespan. 

Unlike metadata, metainformation does not have to be stored 

in a machine-readable format. While it may include similar 

categories as metadata, it provides additional details that do not 

directly contribute to data analysis, such as: 

• Measurement parameters: Additional metrics, such as the 

maximum measurement range or sensor frequency range 

• Influencing factors: Environmental conditions, 

temperature compensation, background noise 

• Technical properties of the measurement system: 

Connection type, measurement amplifier specifications 

• Structural properties of the measurement points: Sensor 

protection mechanisms, material characteristics, 

installation date, expected lifespan 

Table 3. Overview of metadata and metainformation 

categories and actors responsibilities 

 Monitoring 

specialist 

planner 

Structural 

monitoring 

service 

provider 

General metadata for 

sensor type 

  

Measurement method 

(relative/absolute) 

- ✓ 

Unit of the electrical 

signal 

- ✓ 

Function model - ✓ 

Specific metadata from 

installed sensors and 

measurement points 

  

Sensor characteristics - ✓ 

Measurement parameters - ✓ 

Measurement point 

characteristics 
✓ - 

Properties of the 

measurement system 

- ✓ 

Additional parameters 

for evaluation 
✓ - 

Informative data for 

documentation and 

traceability 

  

Measurement parameters - ✓ 

Influencing factors ✓ ✓ 

Technical properties of 

the measurement system 

- ✓ 

Structural properties of 

measurement points 
✓ ✓ 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-066 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 436 

Metadata and metainformation are provided and documented 

by different actors involved in various phases of the monitoring 

process. The monitoring specialist planner defines general 

sensor metadata and metainformation during the planning 

phase and in the creation of the measurement concept. This 

includes key parameters of the measurement point, such as 

surface area or modulus of elasticity. The specialized service 

provider for structural measurements is responsible for 

recording and providing specific sensor metadata and 

metainformation during installation. Additionally, they handle 

sensor calibration and update metadata and metainformation 

during maintenance or sensor replacement to ensure 

measurement accuracy and data consistency. 

Table 3 provides an overview of common metadata types and 

the corresponding roles of actors. 

5 DATA PROCESSING MODEL  

Structural monitoring encompasses the processes of data 

acquisition, including data transmission and management, as 

well as data analysis, which involves evaluation, validation, 

and plausibility checks. Based on this, an assessment of the 

current structural condition or a forecast of future structural 

behavior can be conducted. This sequential process can also 

occur cyclically, with the system continuously receiving new 

data. Prior to this cyclical process, the preparation of the 

monitoring measures can be implemented. The success of a 

monitoring project largely depends on a structured workflow, 

where the monitoring objective remains the central focus [11]. 

This section introduces the data processing model developed 

in the ANYTWIN research project for monitoring data. This 

model aims to combine various sensor types, short-term, long-

term, and continuous measurements, as well as different data 

processing methods, including machine learning, into a single 

process. 

The model is based on well-known data processing models 

(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and 

consists of eight main steps [11], [14], [15], [16], [17], [18]. 

These steps are highlighted in orange in Figure 3. Additionally, 

the feedback loop, highlighted in blue, ensures that the 

collected data meets the required quality standards and that the 

resulting maintenance recommendations are well-founded and 

reliable. All process steps are iterative. This means that it may 

be necessary to go back and repeat previous steps to refine the 

analysis and improve the results. 

Quality management is an ongoing process that spans the 

entire monitoring workflow – from defining the research 

objective to planning and installing the system, and finally to 

analyzing the collected data. 

In the first step, the objective of the monitoring measures is 

defined, specifying which aspects of the collected data should 

be analyzed and evaluated. This includes determining which 

parameters need to be monitored, what results are expected, and 

what resources are available for the monitoring process. This 

step involves developing the monitoring concept and preparing 

a tender. Additionally, success criteria for achieving the 

monitoring goals must be established, and suitable quality 

assurance methods (such as quality indicators, threshold values, 

and compensation methods) must be selected. 

In the second step, the measurement system is installed on 

the structure. This step may also include retrofitting an existing 

measurement system. It is essential to conduct quality checks 

immediately after installation, such as function tests and 

plausibility checks, to ensure proper system performance. 

In the third step, data collection is conducted to acquire the 

necessary information for subsequent analysis, which captures 

the impacts and/or responses of the structure. This step marks 

the beginning of the cyclical process of data collection, 

processing, and evaluation. At this stage, quantifiable quality 

measures are applied for the first time to ensure an objective 

assessment of data quality, independent of the specific task 

(these measures are detailed in Section 6). These quality 

indicators are also used in the next steps of data processing as 

they serve to monitor changes in data quality. 

The fourth step, data selection, involves choosing the 

necessary and relevant data to answer the formulated question. 

This selection can be spatial (e.g., sensors in specific structural 

areas) or temporal (e.g., data from summer months). When 

applying machine learning methods, this step also includes 

Figure 3. Data Processing Model in ANYTWIN project: Orange arrows represent the data processing workflow, while blue 

arrows illustrate the feedback loop, © Maria Walker, TUD. 
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selecting the data that will be used in the feature engineering 

process.  

Data preprocessing follows (step five), which includes data 

preparation tasks such as converting electrical signals into 

physical measurements, temperature compensation, time 

synchronization, signal cleaning, and data normalization. After 

each preprocessing step, a new data quality assessment is 

performed. The goal of data preprocessing is to enhance the 

inherent (task-related) data quality [19]. 

In the sixth step, system-dependent data quality is addressed. 

Data from various sources and measurement systems are 

standardized into a common structure and enriched with 

metadata. This standardization ensures that the data can be 

automatically processed by data mining algorithms in the 

subsequent step. 

The seventh step involves the actual data analysis or data 

mining, during which information is extracted from the data. 

This process may involve simple calculations, such as 

determination of mean values, maximum and minimum values, 

or counting algorithms, as well as the training and application 

of complex machine learning models to identify patterns in the 

dataset and to detect characteristic sequences in the data. 

The final step involves the evaluation and interpretation of 

the data mining results in relation to the initial question and 

predefined success criteria. The findings are assessed based on 

their validity, novelty, usefulness, and understandability. Based 

on these insights, necessary actions are determined, such as 

rehabilitation, load reduction, maintenance, reconstruction, or 

further monitoring measures. Additionally, this step includes a 

final assessment of the entire monitoring process and of the 

installed monitoring system to ensure its overall effectiveness. 

6 QUALITY ASSESSMENT OF DATA USING 

QUALITY INDICATORS 

To ensure reliable analysis and evaluation of structural 

behavior, the quality of measurement data must be guaranteed. 

It is crucial to eliminate anomalies in measurement data and 

deviations in time signals to achieve precise data evaluation of 

the structure’s performance. However, measurement anomalies 

and deviations are inevitable and can be caused by various 

factors, including: 

• Electromagnetic interference, leading to signal noise or 

data distortion 

• Direct interventions on-site, such as maintenance work or 

sensor replacements 

• Transmission errors, resulting in incomplete or faulty data 

• Malfunctions in the measurement system, caused by 

calibration errors or hardware defects 

In monitoring systems, which encompass interconnected and 

complex structures of measurement technology, data 

transmission, and IT aspects, anomalies in measurement data 

can occur. Therefore, it is essential to implement appropriate 

quality assessment methods to detect measurement anomalies 

early, correct or remove them if necessary, and optimize the 

monitoring system to ensure the reliability of the measured 

values. 

As part of the ANYTWIN project, the requirements from 

measurement-based verifications are considered to 

systematically assess data quality. For this purpose, quality 

indicators have been developed to enable a structured and 

objective evaluation of monitoring data in terms of its quality. 

The development of these indicators takes various use cases 

into account, including: 

• Measurement-based verifications, allowing for a precise 

assessment of structural safety, 

• Continuous monitoring with an integrated alarm system 

for early detection of deviations, 

• Digital twins, enabling detailed modeling and data-driven 

evaluation of structural behavior. 

For this purpose, both the status of the measurement system 

and the quality of individual time signals at the sensor level are 

analyzed. At the dataset level, key questions include: 

• Are the data available, complete, and up to date? 

Figure 4. Overview of quality indicators and the addressed 

questions 
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• Are the measurements time-synchronized, ensuring that 

dependencies between two measured variables are reliably 

considered? 

From these questions, the quality indicators availability, 

completeness, timeliness, and synchronization can be identified 

(see Figure 4). 

Availability: Checks whether the expected measurement 

data has been received within a certain time window. 

Completeness: Checks whether the received data contains all 

the required fields and sensor data records. 

Timeliness: Checks if the measurement data arrives within 

an acceptable delay period. 

Synchronization: Checks whether the multi-channel sensor 

data s synchronized in time. 

The indicators that assess the condition of the measurement 

system – availability, completeness, and timeliness – can be 

quantified by calculating the percentage of available and non-

missing data points within a defined time-period. To evaluate 

synchronization, the timestamps of individually generated time 

series (each measurement system) are analyzed. 

The second aspect, the sensor level, focuses on detecting 

potential measurement anomalies, such as outliers, jumps, 

unusual temporal trends, drift, or signal noise. Based on these 

possible signal anomalies, the following quality indicators can 

be identified: 

Plausibility: Checks whether the received values fall within 

physically plausible limits, allowing the identification of 

measurement anomalies such as outliers or jumps that are 

visibly apparent. 

To assess the plausibility of the data and determine whether 

it falls within a physically realistic range, initial filtering or 

thresholding can be used to define permissible limit values. 

Plausibility calculation involves verifying whether the 

measurement value lie within these physically plausible limit. 

In a second step, advanced regression methods can be applied 

to detect further apparent measurement anomalies in the signal. 

Consistency: Evaluates whether the change in sensor values 

is consistent with respect to environmental changes. This 

enables the detection of drift and noticeable patterns in 

temporal trends, such as step-like changes. While plausibility 

checks whether the data falls into a certain range, consistency 

compares current data with historical values and determines if 

the change in value is consistent with environmental changes 

(see Figure 5). 

Consistency calculation is based on analyzing the differences 

between consecutive measurements. The standard deviation of 

these differences is determined and normalized by their mean 

value. A low standard deviation indicates high consistency, 

while a high standard deviation suggests irregular changes and, 

consequently, potential inconsistency. With consistency 

calculation, smaller or less apparent anomalies such as start of 

drift, step-formation can be detected. 

Precision: Refers to the repeatability of measurements under 

identical conditions, ensuring the stability and reliability of 

sensor data. This helps to identify noise in the signal.  

The precision of a measurement signal indicates the extent of 

value dispersion in repeated measurements. High precision 

means that the measured values are closely clustered, while low 

precision suggests random fluctuations and an increased level 

of noise. Mathematically, the precision assessment is based on 

the standard deviation of the measured values within a defined 

time window, relative to an acceptable variation range. 

To quantitatively represent the indicators, the percentage of 

measured values that fall outside a defined tolerance range can 

be determined. Table 4 provides a comprehensive overview of 

the mathematical formulas used for detecting measurement 

anomalies, quantifying the indicators, and describing the 

relevant parameters. 

The results of the quality indicators are also time series, but 

with a lower frequency than the actual measurement data, as 

they are based on aggregated time windows. Storing these 

indicators as time series allows for better integration into digital 

twins and facilitates the analysis of relationships between 

indicators, leading to a better understanding of the 

measurement data and its quality. 

These indicators can be integrated into the partial safety 

factors of structural assessments as part of measurement-based 

verifications. This allows systematic consideration of 

Figure 5. Example of temperature data containing implausible and inconsistent values 
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uncertainties related to measurement technology, data 

transmission, IT, and numerical aspects and quantification in 

the form of modified partial safety factors. However, further 

research and development is needed to optimize these 

approaches and ensure their practical applicability. 

 

Table 4. Overview of mathematical formulas for quantifying quality indicators 

Indicator 

Mathematical Formula 

for measurement errors 

detection 

Quantification of the 

indicators 
Description of the parameters 

Availability --- 𝑁𝑟𝑒𝑐

𝑁𝑒𝑥𝑝
∙ 100 % 

Nrec – Number of received data points 

Nexp – Total number of expected data points 

Completeness --- 𝑁𝑐𝑜𝑚𝑝

𝑁𝑒𝑥𝑝 
∙ 100 % Ncomp – Number of complete data points (without 

missing fields) 

Nexp – Total number of expected data points 

Timeliness ∆T = 𝑇𝑛𝑜𝑤 −  𝑇𝑙𝑎𝑠𝑡 𝑁𝑡

𝑁𝑒𝑥𝑝
∙ 100 % 

Nt – Number of data points received within the 

acceptable delay interval, Tmax with respect to current 

timestamp (∆T ≤ Tmax)  

Nexp – Total number of expected data points 

Tnow – Current time 

Tlast – Time of last received data 

Synchronization ∆T = Tsync 

Tsync = |𝑇𝑆1,𝑖 −  𝑇𝑆2,𝑖| 
𝑁𝑠𝑦𝑛𝑐

𝑁𝑒𝑥𝑝
∙ 100 % 

Nsync – Number of synchronized data points 

Nexp – Total number of expected data points 

S1 & S2 – Measurements from Sensor1 and Sensor2 

TS1,i & TS2,i – Timestamp of Sensor1 and Sensor2 at 

row i. 

Tsync = |TS1,i – TS2,i| 

Plausibility Level 1: Filtering and thresholding 

Level 2: with/without ML-model 

𝑁𝑝𝑙

𝑁𝑒𝑥𝑝
∙ 100 % 

Npl – Number of plausible data points  

Nexp – Total number of received data points 

Consistency 1 −
𝜎∆𝑥

𝜇∆𝑥 + 𝜖
 

 

(or) 

 

with/without ML-model 

𝑁𝑐𝑜𝑛

𝑁𝑒𝑥𝑝
∙ 100 % 

𝜎∆𝑥– Standard deviation of consecutive differences 

(Δxi=xi−xi−1) 

𝜇∆𝑥 – Mean of consecutive differences 

𝜖 – Small constant (to avoid division by 0, 

e.g. 10-6) 

Ncon – Number of consistent data points  

Nexp – Total number of expected data points 

Precision 1 −
𝜎

𝑅
 

𝑁𝑝𝑟

𝑁𝑒𝑥𝑝
∙ 100 % 

Npr – Number of data points without noise 
Nexp – Total number of expected data points 
σ – Standard deviation of the measurements 

R – Acceptable variation range 

 

7 SUMMARY 

Bridge monitoring is a key component of structural assessment 

to ensure safety and longevity. Despite its growing importance, 

monitoring is not yet a standardized procedure and is mostly 

implemented on a case-by-case basis. A structured approach 

can follow the recommendations of the DBV guidelines. 

The sensor market is expanding rapidly, with increasingly 

intelligent and complex technologies for measuring 

temperature, material fatigue, deformation, and traffic loads. 

Innovations such as System-on-a-Chip (SoC) and edge 

computing, including Weigh-in-Motion (WIM) systems, 

enable greater automation of data collection but require 

systematic storage and analysis. 

A precise data classification and standardization are essential 

for efficiently processing monitoring data and making it usable 

for digital twins or measurement-based verifications. 

Classification is based on positional reference (point, line or 

field measurements), time-based structure (continuous or 

discontinuous data), and time reference (instantaneous values, 

averaging or advanced methods such as Rainflow counting or 

FFT analysis). 

Beyond the actual measurement values, metadata and 

additional information play an essential role in correctly 

interpreting the collected data. Metadata consists of machine-

readable values assigned to sensors and measurement systems, 

while metainformation includes structured documentation 

details. A clear assignment of responsibilities for collecting and 

managing this data is necessary to maintain a consistent data 

foundation. 

The ANYTWIN data processing model integrates various 

sensor types, measurement durations, and data processing 

methods, including machine learning, into a structured eight-

step process. It follows established data processing frameworks 

(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and 

ensures data quality through an iterative feedback loop. 

The process begins with defining the monitoring objective, 

followed by system installation and data collection. Next, data 
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selection, preprocessing, and standardization ensure structured 

and high-quality input for data mining and analysis. Finally, the 

results are evaluated and interpreted to support structural 

assessments and maintenance decisions. This structured 

workflow enables continuous monitoring and reliable decision-

making in structural health management. 

A key aspect of data analysis is the evaluation of data quality 

using quality indicators, which are categorized into system 

level (availability, completeness, timeliness, synchronization) 

and sensor level (plausibility, consistency, precision). At the 

system level, data is assessed for availability, completeness, 

timeliness, and synchronization. At the sensor level, the focus 

is on evaluating the quality of individual measurement series, 

particularly in identifying measurement deviations and 

anomalies. To detect and quantify measurement anomalies and 

uncertainties, statistical methods such as filter functions, 

regression analyses, and standard deviations are applied. These 

methods enable a precise assessment of measurement data, 

contributing to improved data evaluation. 

By storing these indicators as time series, they can be 

integrated into digital twins. Furthermore, they could be 

incorporated into measurement-based verifications by serving 

as a foundation for modified partial safety factors, considering 

uncertainties in measurement technology and data processing. 

While these approaches are promising, further research is 

required to enable their practical implementation in structural 

monitoring. 
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