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ABSTRACT: Aging bridges were not designed for today’s higher traffic loads and often fail to meet current requirements.
However, complete demolition or reconstruction is rarely feasible due to resource limitations, sustainability concerns and
economic factors. A key issue lies in conservative assumptions regarding loads and resistance. Structural health monitoring (SHM)
addresses this by providing real measurement data for a more accurate assessment.

Monitoring produces large volumes of data that must be well-structured and stored for reliable assessments. This requires
collaboration between civil engineers, measurement specialists, IT experts, and data analysts. As Building Information Modeling
(BIM) adoption grows, standardized monitoring methods must ensure consistency and comply with the Single Source of Truth
(SSoT) principle, enabling an integration of monitoring data in a BIM environment.

The ANYTWIN research project aims to develop a framework for structured data storage and processing. It examines how
measurement data relates to time and location, defines metadata and information for evaluation criteria and assigns responsibilities
for data provision. A processing method ensures data preparation, analysis, and data mining, while quality indicators enhance
reliability. These findings contribute to a tendering template, helping to structure monitoring tasks and improve maintenance
strategies.
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template.

1 INTRODUCTION

Existing bridges age over time and were not designed for
today’s significantly higher traffic loads. Many of these
structures no longer meet the current verification requirements
of the Eurocode. However, complete demolition or new
construction is not a practical solution—on one hand, the
necessary resources for demolition and reconstruction are
lacking; on the other hand, such an approach would be neither
sustainable nor economically viable.

A primary shortcoming in meeting verification requirements
arises from the conservative assumptions made regarding both
loads and resistance. This is where structural health monitoring
becomes crucial: by collecting measurement data, a more
precise and realistic assessment of the bridge’s condition can
be made [1][2]. SHM allows for the adjustment of both load
assumptions and structural resistance based on actual
measurements, thereby enabling more accurate verification.

The monitoring process generates vast amounts of data,
which must be well-organized and properly stored to ensure a
clear understanding of the bridge’s condition. This requires
close collaboration among civil engineers, measurement
experts, IT specialists and data analysts. As part of the ongoing
digitalization effort and the adoption of Building Information
Modeling (BIM), this collaboration should be enhanced while
adhering to the Single Source of Truth (SSoT) principle. In a
digital environment, such as a digital twin, various datasets and
information sources converge, interconnect, and depend on
each other. A structured representation of these relationships is
essential for seamless integration. While the IFC model
primarily serves as a static representation, it provides key
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information for monitoring, including the positions of
individual measurement points, cable routing and other
infrastructure details.

However, the digital twin extends beyond this by
dynamically reflecting the current sensor status, generating
meaningful analyses of physical parameters at these points, and
integrating diagnostic method data for a more comprehensive
assessment. This approach enables a real-time, data-driven
understanding of structural conditions. All of this should be
guided by the principle that the digital twin serves as the SSoT,
ensuring that all information is consistently structured, linked,
and accessible within a unified system.

To achieve this, monitoring methods should be standardized
and incorporated into data-based load-bearing safety checks in
civil engineering [3].

This is precisely the aim of the ANYTWIN research project
[4], [5], [6]- The goal of the project is to establish a clear
structure for collecting, storing and processing monitoring data.
Different types of measurement data are analyzed and
classified to ensure systematic storage. The project investigates
how measurement data is connected over time and space,
identifies key details necessary for evaluation, and defines
responsibilities for data provision. A processing method is also
developed to ensure that the data is transformed into clean and
usable time series. Finally, the project establishes the quality
requirements that the data must meet for specific verification
purposes and defines quality indicators for assessment.
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Figure 1. Representation of the individual phases of a monitoring process based on the DBV guideline [11], © MKP GmbH

All these findings will contribute to the standardization of
tendering processes, providing project owners with a
comprehensive overview of monitoring tasks and the respective
responsibilities of all involved experts. The objective is to
generate significant value for the future maintenance and
management of bridges [7].

2  IMPLEMENTATION OF MONITORING IN BRIDGE
CONSTRUCTION

The implementation of monitoring in bridge construction is still
not a standardized procedure and is typically conducted on a
case- by-case basis [8], [9], [10]. However, a structured
approach has been established, based on the recommendations
of the DBV guidelines [11]. According to these guidelines, the
monitoring process consists of six phases, ranging from
defining the objective, planning, installation, and operation of
the monitoring system to the evaluation and assessment of
measurement results (see Figure 1). In practice, these phases
have not yet been fully standardized.

Regardless of the specific task, certain measurement
parameters and objectives have been identified as crucial for
the effective implementation of monitoring.

Specifically, for damage detection and computational
verification in structural ~monitoring, the following
measurement objectives are relevant:
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Temperature & Environment: Measures temperature
differences and climatic effects (e.g., temperature sensors,
humidity sensors, thermocouples, resistance thermometers,
infrared detectors). These parameters are crucial for assessing
thermal loads on structures.

Moisture Measurements: Detects humidity levels and
influences such as corrosion or mineral formation that can lead
to durability issues (e.g., humidity sensors, multi-ring
electrodes).

Fatigue & Cracks: ldentifies stress, strain, and early cracks
(e.g., strain gauges, DFOS [12], Acoustic Emission Sensors
(AE Sensors) [13]), which are strong indicators of structural
load-bearing capacity.

Deformation & Movement: Monitors settlements,
vibrations and inclinations (e.g., displacement sensors, tilt
sensors, acceleration sensors, distance sensors). By analyzing
geometric changes at micro, meso and macro levels, insights
into bearing movements, expansion behavior, creep &
shrinkage, and crack formation can be derived.

Load & Traffic: Detects overloads and load distribution
(e.g., pressure sensors, laser measurement systems), which are
critical for understanding structural performance under varying
traffic loads.
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Vibration Monitoring: Assesses dynamic structural
properties, such as natural frequencies and damping values,
which provide insights into fatigue behavior and potential
damage (e.g., accelerometers, vibration velocity sensors).

Acoustic Monitoring: Captures sound events to track
damage progression caused by localized failure events (e.g.,
AE Sensors [13]).

The selection of sensors depends on the measurement
objective, type of structure, and environmental conditions and
is adapted to specific requirements. Figure 2 illustrates some
examples of sensors and measurement systems used for bridge
monitoring.

3 TYPES OF MONITORING DATA AND SENSORS

The efforts to standardize the handling of monitoring data
obtained in the context of SHM require a comprehensive
examination and description of the characteristics and typical
features of such data. This foundational understanding enables
subsequent classification and the formulation of universally
applicable procedures for processing, evaluation, data
manipulation, and establishment of quality requirements.

The term 'monitoring data’ refers to the entirety of data
generated in the context of SHM. In typical monitoring
processes, sensor measurement data constitute the predominant
volume of data. However, for effective information extraction,
it is crucial to link these data with metadata, defined as all data
describing the measurement.

In the initial phase of this study, the measurement data are
examined. Measurement data include all data that originate
directly from sensing devices on the structure. To account for
the increasing technological capabilities of system-on-a-chip
(SoC) solutions and edge computing, the term is also applied to
data generated through automated process steps close to the
sensor or hardware level, provided that their characteristics
allow them to be treated as measurement data.

To illustrate the range of potential measurement data sources,
typical measurement methods and their use cases briefly
presented in Section 2, serves as a reference. The list focuses
on recognized and proven methods without claiming to be
exhaustive.

The classification of measurement data can be based on
various criteria and is generally necessary to address both
software-related aspects in the creation of a storage and
processing infrastructure, as well as content-related aspects for
the metadata to be collected.

One fundamental property describes the data in relation to a
measurement location. Three main variants can be
distinguished: point measurement methods, line measurement
methods, and field measurement methods.

e Point measurement methods (e.g., strain gauges) provide
information about a discrete measurement point with a
very small spatial extent relative to the structure being
monitored.

e Line measurement methods (e.g., distributed fiber optic
sensing (DFOS) [12]) generate measurement data along a
line with high spatial resolution.

e Field measurement methods (e.g., photogrammetry) can
be used for measurements over a larger (surface) area.
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Figure 2. Example of Sensor Technology in Structural
Monitoring in Use, © MKP GmbH

A second classification criterion characterizes the temporal
structure of the measurement data. Continuous and
discontinuous data can be distinguished:

e Continuous data are stored throughout the entire
monitoring period with equidistant time intervals between
consecutive data samples, typically with a low sampling
rate (ranging from several minutes to hours).

e Discontinuous data are recorded over a typically short
period of time at a high sampling rate. The recording time
can be determined either by a predefined time pattern or by
data-dependent trigger conditions.

Another classification option concerns the temporal
reference of the measurement data. The simplest case is a direct
assignment between the individual instantaneous value of the
measurement signal and the timestamp. A further possibility is
that the measurement data refer to a time-extended
measurement interval, such as in the case of averaging. Even
more complex time reference descriptions arise with methods
like Rainflow counting or Fast Fourier Transform analysis
(FFT).

A fundamental category of properties for the storage
structure of measurement data is the dimension of the index
required to address a measurement value. Besides storage, this
also determines the programmatic interfaces to processing
algorithms. The most common attributes in this category are:

e 1index value per single measurement value,

e 1index value per n measurement values, and

e 2 index values per 1 measurement value.
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For time series, the index always includes at least the
timestamp. Additional index values may be required, for
example, to identify a location or direction.

Finally, a classification can be made based on the underlying
measurement instrument(s) of the data. This is mainly used
when assigning technical metadata. A key distinction is
whether the data originate from a single, clearly identifiable
sensor (element) or whether a sensor combination, a sensor
array, or an automated/autonomous processing algorithm (e.g.,
a Weigh-In-Motion (WIM) system) should be considered as the
data source.

Table 1 provides an overview of the key characteristics of the
measurement data (measurement location, temporal structure,
temporal reference, index dimension, and technical data
source) and categorizes them into subgroups (a to c). Each
subgroup was formed by identifying up to three distinct
properties for each feature. This classification facilitates the
systematic organization and comparison of different types of
measurement data and supports further analysis and processing.

Table 2 provides an evaluation of the characteristics
describing the generated measurement data based on the
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established classification system for specific measurement
methods and sensor technologies. It categorizes different
sensors according to common characteristics and highlights
potential groupings.

To facilitate abstraction, a '1' is assigned to applicable feature
variants and a '0' to non-applicable ones. Gray shading is used
to highlight transitions within a category. A gray mark appears
in the feature column 1 to 5 whenever the assignment within a
feature category changes from0to 1 or 1to 0.

Through this visual grouping, at least seven sensor groups
can be identified. Sensors sharing the same color pattern are
classified into the same category. In this case, temperature
sensors up to acceleration sensors (Table 2) are grouped
together, as they exhibit identical feature combinations across
the evaluated categories. In contrast, the multi-sensor system
differs from these sensors, which typically measure a single
physical quantity. Instead, a multi-sensor system can generate
multiple independent measurement variables. As a result, its
classification varies, particularly in Feature 5 (technical data
source).

Table 1. Presentation and classification of characteristics for describing the generated measurement data

Property 1
(a)

Classification option

Property 2
(b)

Property 3
(©

Feature 1: measurement location  Point measurement method

Feature 2: temporal structure Continuous time-series-data

Feature 3: temporal reference Single instantaneous value

Feature 4: index dimension 1 index per 1 measurement

sample

Direct data - sensor
alignment

Feature 5: technical data source

Line measurement method

Discontinuous time-series-
data, segments with fixed
time interval

(statistical) value derived
from a time span

1 index per n measurement
samples

Indirect data-sensor
alignment

Field measurement method

Discontinuous time-series-
data with event-driven time
interval

Indirect value based of
underlying data

2 indices per 1
measurement sample

Table 2. Evaluation of characteristics for describing the generated measurement data from various measurement systems

Examples of Feature 1

Feature 2

Feature 3

Feature 4 Feature 5
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Considering the goal of this grouping, it is crucial for data
structuring to determine how measurement values should be
assigned to their respective IDs or timestamps. Only Feature 1
and Feature 4, which are marked with bold borders in the table,
are representative in this context.

These groupings reflect common classification features,
allowing them to be treated as uniform types when assigning
descriptive metadata, organizing data storage, and designing
input and output interfaces for data processing.

For Feature 1, continuity on the spatial scale does not impact
data structuring, thereby reducing the number of groups to two.
For Feature 4, the key question is whether data should be
structured as an array or a matrix. This decision is essential for
grouping, as both Features (1 and 4) can be combined. The
result is a definite grouping of sensors, which simplifies data
structuring and enhances the readability of the stored datae.

4 RELEVANT METADATA AND ADDITIONAL
INFORMATION IN BRIDGE MONITORING

In addition to the actual measurement data, another essential
category of data exists: metadata and metainformation. For
evaluations and measurement-based verifications, obtaining
specific data and information from the measuring point on the
structure and metadata from the installed measurement system
or sensors is of great importance. This data is needed to apply
the calculation method in data processing and evaluation while
ensuring traceability of time-based trends, providing a
comprehensive understanding of the structure’s behavior over
time and at specific locations.

According to the definition in the ANYTWIN research
project, metadata refers to numerical, machine-readable values
that can be assigned to sensors or measurement systems. In
contrast, metainformation consists of structured, interpreted
content and descriptions provided by actors, such as textual
explanations. Both types of data are characterized by their
stability, as they are generally static and determined once. An
exception is when a sensor is replaced, which necessitates an
update of the metadata and metainformation.

Metadata is defined either during the development of the
measurement concept or determined after sensor installation. It
can be divided into two main categories:

1. General metadata for sensor types — Cross-sensor
information, such as the measurement method, the unit of
the electrical signal, and the function used to convert the
electrical signal into physical values.

2. Specific metadata for installed sensors and
measurement points — These are unique to each installed
sensor, its measurement system, and the respective
measuring location. They include:

e Sensor characteristics: such as conversion factors and
calibration parameters

e Measurement parameters: such as sampling rate,
measurement ranges and spatial resolution

e Measurement point characteristics: such as material
properties like modulus of elasticity or thermal
expansion coefficient

e Technical properties of the measurement system: such
as frequency range and filtering methods
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e Additional evaluation parameters like installation
values, calibration data and sensor orientation

In addition to metadata, additional informative
metainformation is available, providing details about the
installed sensors and measurement techniques. This data is not
necessarily included in the metadata and is not directly relevant
for data evaluation. However, it is important for traceability,
quality assurance, and functional verification of the sensors, for
example, in assessing their lifespan.

Unlike metadata, metainformation does not have to be stored
in a machine-readable format. While it may include similar
categories as metadata, it provides additional details that do not
directly contribute to data analysis, such as:

e  Measurement parameters: Additional metrics, such as the
maximum measurement range or sensor frequency range

e Influencing  factors:  Environmental  conditions,
temperature compensation, background noise

e Technical properties of the measurement system:
Connection type, measurement amplifier specifications

e Structural properties of the measurement points: Sensor
protection  mechanisms,  material  characteristics,
installation date, expected lifespan

Table 3. Overview of metadata and metainformation
categories and actors responsibilities

Monitoring Structural
specialist monitoring
planner service
provider
General metadata for
sensor type
Measurement method - V4
(relative/absolute)
Unit of the electrical - V4
signal
Function model - N4
Specific metadata from
installed sensors and
measurement points
Sensor characteristics - V4
Measurement parameters - v
Measurement point N4 -

characteristics
Properties of the - v
measurement system
Additional parameters
for evaluation
Informative data for
documentation and
traceability
Measurement parameters -
Influencing factors N4

Technical properties of -
the measurement system

Structural properties of v
measurement points

AN NN
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Metadata and metainformation are provided and documented
by different actors involved in various phases of the monitoring
process. The monitoring specialist planner defines general
sensor metadata and metainformation during the planning
phase and in the creation of the measurement concept. This
includes key parameters of the measurement point, such as
surface area or modulus of elasticity. The specialized service
provider for structural measurements is responsible for
recording and providing specific sensor metadata and
metainformation during installation. Additionally, they handle
sensor calibration and update metadata and metainformation
during maintenance or sensor replacement to ensure
measurement accuracy and data consistency.

Table 3 provides an overview of common metadata types and
the corresponding roles of actors.

5 DATA PROCESSING MODEL

Structural monitoring encompasses the processes of data
acquisition, including data transmission and management, as
well as data analysis, which involves evaluation, validation,
and plausibility checks. Based on this, an assessment of the
current structural condition or a forecast of future structural
behavior can be conducted. This sequential process can also
occur cyclically, with the system continuously receiving new
data. Prior to this cyclical process, the preparation of the
monitoring measures can be implemented. The success of a
monitoring project largely depends on a structured workflow,
where the monitoring objective remains the central focus [11].

This section introduces the data processing model developed
in the ANYTWIN research project for monitoring data. This
model aims to combine various sensor types, short-term, long-
term, and continuous measurements, as well as different data
processing methods, including machine learning, into a single
process.

The model is based on well-known data processing models
(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and
consists of eight main steps [11], [14], [15], [16], [17], [18].
These steps are highlighted in orange in Figure 3. Additionally,
the feedback loop, highlighted in blue, ensures that the
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collected data meets the required quality standards and that the
resulting maintenance recommendations are well-founded and
reliable. All process steps are iterative. This means that it may
be necessary to go back and repeat previous steps to refine the
analysis and improve the results.

Quality management is an ongoing process that spans the
entire monitoring workflow — from defining the research
objective to planning and installing the system, and finally to
analyzing the collected data.

In the first step, the objective of the monitoring measures is
defined, specifying which aspects of the collected data should
be analyzed and evaluated. This includes determining which
parameters need to be monitored, what results are expected, and
what resources are available for the monitoring process. This
step involves developing the monitoring concept and preparing
a tender. Additionally, success criteria for achieving the
monitoring goals must be established, and suitable quality
assurance methods (such as quality indicators, threshold values,
and compensation methods) must be selected.

In the second step, the measurement system is installed on
the structure. This step may also include retrofitting an existing
measurement system. It is essential to conduct quality checks
immediately after installation, such as function tests and
plausibility checks, to ensure proper system performance.

In the third step, data collection is conducted to acquire the
necessary information for subsequent analysis, which captures
the impacts and/or responses of the structure. This step marks
the beginning of the cyclical process of data collection,
processing, and evaluation. At this stage, quantifiable quality
measures are applied for the first time to ensure an objective
assessment of data quality, independent of the specific task
(these measures are detailed in Section 6). These quality
indicators are also used in the next steps of data processing as
they serve to monitor changes in data quality.

The fourth step, data selection, involves choosing the
necessary and relevant data to answer the formulated question.
This selection can be spatial (e.g., sensors in specific structural
areas) or temporal (e.g., data from summer months). When
applying machine learning methods, this step also includes

F a

V. Data preprocessing

IV. Data selection

VI. Data transformation

! !

[I. Installation / modification

|. Objective definition = e
of the monitoring system

lll. Data collection

Quality

. . Vll. Data mining
indicators

A F 3

Is more data needed? ll-Bvaltauonand ,J

interpretation of results

Is a modification of the
system needed?

Is a modification of the |, T

A *

Was the objective met?

1 | VIlII. Decision-making

objective needed?

NO YES {(end of the process)

Figure 3. Data Processing Model in ANYTW!IN project: Orange arrows represent the data processing workflow, while blue
arrows illustrate the feedback loop, © Maria Walker, TUD.
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selecting the data that will be used in the feature engineering
process.

Data preprocessing follows (step five), which includes data
preparation tasks such as converting electrical signals into
physical measurements, temperature compensation, time
synchronization, signal cleaning, and data normalization. After
each preprocessing step, a new data quality assessment is
performed. The goal of data preprocessing is to enhance the
inherent (task-related) data quality [19].

In the sixth step, system-dependent data quality is addressed.
Data from various sources and measurement systems are
standardized into a common structure and enriched with
metadata. This standardization ensures that the data can be
automatically processed by data mining algorithms in the
subsequent step.

The seventh step involves the actual data analysis or data
mining, during which information is extracted from the data.
This process may involve simple calculations, such as
determination of mean values, maximum and minimum values,
or counting algorithms, as well as the training and application
of complex machine learning models to identify patterns in the
dataset and to detect characteristic sequences in the data.

The final step involves the evaluation and interpretation of
the data mining results in relation to the initial question and
predefined success criteria. The findings are assessed based on
their validity, novelty, usefulness, and understandability. Based
on these insights, necessary actions are determined, such as
rehabilitation, load reduction, maintenance, reconstruction, or
further monitoring measures. Additionally, this step includes a
final assessment of the entire monitoring process and of the
installed monitoring system to ensure its overall effectiveness.

6 QUALITY ASSESSMENT OF DATA USING
QUALITY INDICATORS

To ensure reliable analysis and evaluation of structural
behavior, the quality of measurement data must be guaranteed.
It is crucial to eliminate anomalies in measurement data and
deviations in time signals to achieve precise data evaluation of
the structure’s performance. However, measurement anomalies
and deviations are inevitable and can be caused by various
factors, including:
e Electromagnetic interference, leading to signal noise or
data distortion
e Direct interventions on-site, such as maintenance work or
sensor replacements
e Transmission errors, resulting in incomplete or faulty data
e Malfunctions in the measurement system, caused by
calibration errors or hardware defects
In monitoring systems, which encompass interconnected and
complex structures of measurement technology, data
transmission, and IT aspects, anomalies in measurement data
can occur. Therefore, it is essential to implement appropriate
quality assessment methods to detect measurement anomalies
early, correct or remove them if necessary, and optimize the
monitoring system to ensure the reliability of the measured
values.
As part of the ANYTWIN project, the requirements from
measurement-based  verifications are  considered to
systematically assess data quality. For this purpose, quality
indicators have been developed to enable a structured and
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objective evaluation of monitoring data in terms of its quality.

The development of these indicators takes various use cases

into account, including:

e Measurement-based verifications, allowing for a precise
assessment of structural safety,

e Continuous monitoring with an integrated alarm system
for early detection of deviations,

¢ Digital twins, enabling detailed modeling and data-driven
evaluation of structural behavior.

For this purpose, both the status of the measurement system
and the quality of individual time signals at the sensor level are
analyzed. At the dataset level, key questions include:

e Are the data available, complete, and up to date?
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e Are the measurements time-synchronized, ensuring that
dependencies between two measured variables are reliably
considered?

From these questions, the quality indicators availability,
completeness, timeliness, and synchronization can be identified
(see Figure 4).

Availability: Checks whether the expected measurement
data has been received within a certain time window.

Completeness: Checks whether the received data contains all
the required fields and sensor data records.

Timeliness: Checks if the measurement data arrives within
an acceptable delay period.

Synchronization: Checks whether the multi-channel sensor
data s synchronized in time.

The indicators that assess the condition of the measurement
system — availability, completeness, and timeliness — can be
quantified by calculating the percentage of available and non-
missing data points within a defined time-period. To evaluate
synchronization, the timestamps of individually generated time
series (each measurement system) are analyzed.

The second aspect, the sensor level, focuses on detecting
potential measurement anomalies, such as outliers, jumps,
unusual temporal trends, drift, or signal noise. Based on these
possible signal anomalies, the following quality indicators can
be identified:

Plausibility: Checks whether the received values fall within
physically plausible limits, allowing the identification of
measurement anomalies such as outliers or jumps that are
visibly apparent.

To assess the plausibility of the data and determine whether
it falls within a physically realistic range, initial filtering or
thresholding can be used to define permissible limit values.
Plausibility calculation involves verifying whether the
measurement value lie within these physically plausible limit.
In a second step, advanced regression methods can be applied
to detect further apparent measurement anomalies in the signal.

Consistency: Evaluates whether the change in sensor values
is consistent with respect to environmental changes. This
enables the detection of drift and noticeable patterns in
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temporal trends, such as step-like changes. While plausibility
checks whether the data falls into a certain range, consistency
compares current data with historical values and determines if
the change in value is consistent with environmental changes
(see Figure 5).

Consistency calculation is based on analyzing the differences
between consecutive measurements. The standard deviation of
these differences is determined and normalized by their mean
value. A low standard deviation indicates high consistency,
while a high standard deviation suggests irregular changes and,
consequently, potential inconsistency. With consistency
calculation, smaller or less apparent anomalies such as start of
drift, step-formation can be detected.

Precision: Refers to the repeatability of measurements under
identical conditions, ensuring the stability and reliability of
sensor data. This helps to identify noise in the signal.

The precision of a measurement signal indicates the extent of
value dispersion in repeated measurements. High precision
means that the measured values are closely clustered, while low
precision suggests random fluctuations and an increased level
of noise. Mathematically, the precision assessment is based on
the standard deviation of the measured values within a defined
time window, relative to an acceptable variation range.

To quantitatively represent the indicators, the percentage of
measured values that fall outside a defined tolerance range can
be determined. Table 4 provides a comprehensive overview of
the mathematical formulas used for detecting measurement
anomalies, quantifying the indicators, and describing the
relevant parameters.

The results of the quality indicators are also time series, but
with a lower frequency than the actual measurement data, as
they are based on aggregated time windows. Storing these
indicators as time series allows for better integration into digital
twins and facilitates the analysis of relationships between
indicators, leading to a better understanding of the
measurement data and its quality.

These indicators can be integrated into the partial safety
factors of structural assessments as part of measurement-based
verifications. This allows systematic consideration of
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uncertainties related to measurement technology, data
transmission, IT, and numerical aspects and quantification in
the form of modified partial safety factors. However, further
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research and development is needed to optimize these
approaches and ensure their practical applicability.

Table 4. Overview of mathematical formulas for quantifying quality indicators

Mathematical Formula

Quantification of the

Indicator for measurement errors indicators Description of the parameters
detection
Availability --- Nrec 100 % Nrec— Number of received data points
Nexp ° Nexp — Total number of expected data points
Completeness --- Neomp . 100 % Neomp — Number of complete data points (without
Nexp missing fields)
Nexp — Total number of expected data points
Timeliness AT =Thow — Tiast Ne 100 % Nt — Number of data points received within the
Nexp 0 acceptable delay interval, Tmax with respect to current
timestamp (AT < Trmax)
Nexp — Total number of expected data points
Tnow — Current time
Tiast — Time of last received data
Synchronization AT = Tsync Nsync — Number of synchronized data points
Toyne = |Ts1 — Tsa Nexp— Total number of expected data points
Nsyne 100 % S1 & Sz — Measurements from Sensorl and Sensor2
Nexp TS1i & TSz — Timestamp of Sensorl and Sensor2 at
row i.
Tsync = |TSl,i - TSz,i|
Plausibility Level 1: Filtering and thresholding Nt 100 % Npi — Number of plausible data points
Level 2: with/without ML-model Nexp 0 Nexp — Total number of received data points
Consistency _ O Neon 100 % oa— Standard deviation of consecutive differences
Upy + € Nexp 0 (AXi=Xi—Xi-1)
Uax — Mean of consecutive differences
(or) € — Small constant (to avoid division by 0,
e.g. 10%)
with/without ML-model
Neon — Number of consistent data points
Nexp — Total number of expected data points
Precision 1-2 Nopr 100 % Npr — Number of data points without noise
R Nexp ° Nexp — Total number of expected data points
o — Standard deviation of the measurements
R — Acceptable variation range
discontinuous data), and time reference (instantaneous values,
7  SUMMARY

Bridge monitoring is a key component of structural assessment
to ensure safety and longevity. Despite its growing importance,
monitoring is not yet a standardized procedure and is mostly
implemented on a case-by-case basis. A structured approach
can follow the recommendations of the DBV guidelines.

The sensor market is expanding rapidly, with increasingly
intelligent and complex technologies for measuring
temperature, material fatigue, deformation, and traffic loads.
Innovations such as System-on-a-Chip (SoC) and edge
computing, including Weigh-in-Motion (WIM) systems,
enable greater automation of data collection but require
systematic storage and analysis.

A precise data classification and standardization are essential
for efficiently processing monitoring data and making it usable
for digital twins or measurement-based verifications.
Classification is based on positional reference (point, line or
field measurements), time-based structure (continuous or
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averaging or advanced methods such as Rainflow counting or
FFT analysis).

Beyond the actual measurement values, metadata and
additional information play an essential role in correctly
interpreting the collected data. Metadata consists of machine-
readable values assigned to sensors and measurement systems,
while metainformation includes structured documentation
details. A clear assignment of responsibilities for collecting and
managing this data is necessary to maintain a consistent data
foundation.

The ANYTWIN data processing model integrates various
sensor types, measurement durations, and data processing
methods, including machine learning, into a structured eight-
step process. It follows established data processing frameworks
(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and
ensures data quality through an iterative feedback loop.

The process begins with defining the monitoring objective,
followed by system installation and data collection. Next, data
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selection, preprocessing, and standardization ensure structured
and high-quality input for data mining and analysis. Finally, the
results are evaluated and interpreted to support structural
assessments and maintenance decisions. This structured
workflow enables continuous monitoring and reliable decision-
making in structural health management.

A key aspect of data analysis is the evaluation of data quality
using quality indicators, which are categorized into system
level (availability, completeness, timeliness, synchronization)
and sensor level (plausibility, consistency, precision). At the
system level, data is assessed for availability, completeness,
timeliness, and synchronization. At the sensor level, the focus
is on evaluating the quality of individual measurement series,
particularly in identifying measurement deviations and
anomalies. To detect and quantify measurement anomalies and
uncertainties, statistical methods such as filter functions,
regression analyses, and standard deviations are applied. These
methods enable a precise assessment of measurement data,
contributing to improved data evaluation.

By storing these indicators as time series, they can be
integrated into digital twins. Furthermore, they could be
incorporated into measurement-based verifications by serving
as a foundation for modified partial safety factors, considering
uncertainties in measurement technology and data processing.
While these approaches are promising, further research is
required to enable their practical implementation in structural
monitoring.
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