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1 Introduction 

Robot arms are designed primarily for repetitive tasks such as handling, welding and spraying. 
Therefore, the most important specification for robot arms is repeatability. However, robot arms 
also have great potential for other machining tasks, such as drilling, milling and grinding (Wang 
et al., 2023). These are high-precision robot manufacturing processes which also require 
absolute pose accuracy. Traditionally, these tasks are performed using CNC machining. 
Nevertheless, the lower cost, greater flexibility and better adaptability of robot arms make them 
an attractive alternative. Specific applications of robot machining include drilling in the 
production of automotive (Ferreras-Higuero et al., 2020) and aerospace (Frommknecht et al., 
2017; Diaz Posada et al., 2016) components, as well as milling tasks (Schneider et al., 2015). 
The main limitations of robot machining identified so far are weak stiffness, instability, and 
low accuracy in robot arm position (Wang et al., 2023). Schneider et al. (2013) point out that 
many more applications could be addressed if the accuracy of robot arms were increased. 
Achieving accuracies in determining the position of a workpiece in the robot frame of 
approximately 0.1 mm is challenging due to errors accumulating throughout the process, from 
referencing and imperfections in the robot arm to calibrating tool center points (lever arm) and 
process-specific deviations (Díaz Posada et al., 2016). This article focuses on referencing and 
determining the lever arm component. Thus, contributing to the above mentioned challenging 
aspects of robot machining. 

According to Frommknecht et al. (2017), there are three types of referencing: global, semi-local 
and local. Global referencing requires precise knowledge of the absolute pose of the robot arm 
and the workpiece in relation to a common coordinate frame. Semi-local referencing also uses 
a precise global reference, as well as an additional measurement system mounted on the robot 
arm. Thereby, any discrepancies in the global referencing and in the robot arm positioning are 
compensated. Local referencing mainly relies on an measurement system mounted on the robot 
arm. Only a rough global reference is needed. The main difference between the methods is the 
level of precision of the global reference and whether an internal measurement device is used. 
This article focuses on global referencing. The position of the robot arm and the 
workpiece/object must refer to the same reference frame, which is realised by an external 
measurement device. To achieve this, the object is measured, and the transformation between 
the measurement coordinate frame and that of the robot arm must be determined. Some 
literature deals with estimation methods for these parameters (Dornaika and Horaud, 1998, 
Strobl and Hirzinger, 2006, Tabb and Ahmad Yousef, 2017, Ulrich and Hillemann, 2021). 
These methods originated in hand-eye calibration (Tsai and Lenz, 1989), where the hand 
represents the robot arm and the eye corresponds to the camera. Zhuang et al. (1994) extended 
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this method to the simultaneous determination of the robot-world and tool-flange calibration. 
Further publications on this topic are Ernst et al. (2012) and Wu et al. (2016). Dornaika and 
Horaud (1998) were the first to perform a simultaneous robot-world and hand-eye calibration 
based on a non-linear least squares estimation. However, these approaches do not take 
stochastic information into account. Ulrich and Hillemann (2021) provide a hand-eye 
calibration of uncertain robots. They consider data uncertainties in their estimation procedures 
and additionally estimate the accuracy level of the robot arm poses. The accuracy of global 
referencing or robot-world transformation depends on the pose accuracy of the robot arm. Due 
to an insufficiently determined robot arm model, the positional accuracy of robot arms is usually 
only a few millimeters. In this contribution the simultaneous estimation of the robot-world and 
tool-flange transformation according to Horvath and Neuner (2019) is used.  

This contribution aims to quantify the limitations of the global referencing process and its 
effects on a machining task. The impact of an insufficiently determined robot arm on the 
transformation, and consequently on the achievable robot position in the global reference frame 
is analysed. For this purpose, the transformation poses and the position of the measurement 
device are varied. These investigations are based on exemplary measurements on a 
collaborative robot arm. 

2 System design 

To process a workpiece with a robot arm, the object must be measured by an external measuring 
device and referenced in the robot arm system by means of a transformation. Consequently, the 
present system consists of the robot arm, the measuring device, the control system for both, the 
transformation method and the environment. The important methodical components of this 
system and the concept for the evaluation are described in the following. 

2.1 Robot arm 

A robot arm consists of a series of rigid bodies connected by rotary joints. Based on six variable 
rotary joints 𝜃𝜃𝑖𝑖 and further constant geometric robot parameters (𝑎𝑎𝑖𝑖,𝛼𝛼𝑖𝑖 ,𝑑𝑑𝑖𝑖) any pose 𝑻𝑻𝑅𝑅𝑅𝑅𝑅𝑅  can 
be reached within the robot arm’s working area. The robot pose (𝒕𝒕𝑅𝑅𝑅𝑅𝑅𝑅 , [𝜔𝜔,𝜙𝜙, 𝜅𝜅]) is expressed as 
a homogeneous transformation matrix 𝑻𝑻𝑅𝑅𝑅𝑅𝑅𝑅 , consisting of the position 𝒕𝒕𝑅𝑅𝑅𝑅𝑅𝑅  and the orientation 
𝑹𝑹𝑅𝑅𝑅𝑅𝑅𝑅 . The geometric robot parameters originate from the Denavit-Hartenberg model (Denavit 
and Hartenberg, 1955). This model concatenates six single transformations 𝑻𝑻 and each 
transformation is based on four parameters (𝑎𝑎,𝛼𝛼,𝑑𝑑, 𝜃𝜃), as indicated in Eq. 1.  

� 𝑹𝑹𝑅𝑅𝑅𝑅
𝑅𝑅  𝒕𝒕𝑅𝑅𝑅𝑅𝑅𝑅
𝟎𝟎 1

� =  𝑻𝑻1𝑅𝑅𝑻𝑻21𝑻𝑻32𝑻𝑻43𝑻𝑻54𝑻𝑻𝑅𝑅𝑅𝑅5 = 𝑓𝑓(𝒂𝒂,𝜶𝜶,𝒅𝒅,𝜽𝜽) (1) 

Insufficiently determined robot parameters result in deviations in the pose of the robot arm. 
These deviations can be categorised as either geometric or non-geometric. Geometric 
deviations include all those that can be attributed to insufficiently determined geometric 
parameters. The latter category includes all time-dependent dynamic influences that change in 
magnitude during manipulator operation (Schneider et al., 2013). These include joint 
compliance, gear backlash, gear friction, deflection of the arms, and component heating 
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(Mooring et al., 1991). Additionally, to robot-dependent deviations Schneider et al. (2013) 
distinguish between system-dependent and process-dependent deviations. System deviations 
arise from insufficiently defined robot-dependent parameters, sensor measurement imprecision 
and deviations in control implementation. Process-dependent deviations are mainly caused by 
machining forces. The system-dependent deviations are in the focus for further evaluation. 

2.2 Transformation 

For referencing the robot arm for machining applications (see Sec. 1), two components need to 
be determined - the reference frame transformation between the measurement device (LT) and 
the robot arm 𝑻𝑻𝐿𝐿𝐿𝐿𝑅𝑅  as well as the estimation of lever arm components between the end-effector 
(P) and the robot flange (RF) 𝒕𝒕𝑅𝑅𝑅𝑅𝑃𝑃 . A possible approach to this task is treated in Horvath & 
Neuner (2019) and is used herein. To determine these two transformations, the functional 
relationship given in Eq. 2 is established. The position of the robot arm 𝒕𝒕𝑅𝑅𝑅𝑅𝑅𝑅  can also be 
expressed based on the measured pose (𝒕𝒕𝑃𝑃𝐿𝐿𝐿𝐿 , [𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧]). Therefore, the lever arm 𝒕𝒕𝑅𝑅𝑅𝑅𝑃𝑃  is added 
to the measured pose 𝑻𝑻𝑃𝑃𝐿𝐿𝐿𝐿 and then transformed to the robot arm frame 𝑻𝑻𝐿𝐿𝐿𝐿𝑅𝑅 . The functional 
model (Eq. 2) is adjusted in the Gauss-Helmert model. The lower left part in Figure 1 illustrates 
the transformation chain. The approach formulated in Horvath & Neuner (2019) is built on a 
measured orientation of the robot arm. If the orientation is not measurable or not available, it is 
also possible to formulate the functional relation on basis of the robot arm. The robot arm 
provides orientation information. It is also possible to reach the measured probe position 𝒕𝒕𝑃𝑃𝐿𝐿𝐿𝐿 by 
adding the lever arm 𝒕𝒕𝑃𝑃𝑅𝑅𝑅𝑅 to the robot pose 𝑻𝑻𝑅𝑅𝑅𝑅𝑅𝑅  and then transform it to the measurement device 
frame 𝑻𝑻𝑅𝑅𝐿𝐿𝐿𝐿 (Eq. 3). 
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The two transformations 𝑻𝑻𝐿𝐿𝐿𝐿𝑅𝑅  (Eq. 2) and 𝑻𝑻𝑅𝑅𝐿𝐿𝐿𝐿 (Eq. 3) are connected by its inverse: 𝑻𝑻𝐿𝐿𝐿𝐿𝑅𝑅 = 𝑻𝑻𝑅𝑅𝐿𝐿𝐿𝐿
−1. 

2.3 Concept of evaluation 

The evaluation of robot referencing is accomplished on the one hand by direct comparison of 
different transformation results. On the other hand, additional independent measurements are 
realised by the external measurement device. In Figure 1, a sketch of the evaluation setup is 
presented. In the left part of the figure, the transformation routine out of Section 2.2 is included. 
To evaluate these results, additional measurements 𝒕𝒕𝑃𝑃

𝐿𝐿𝐿𝐿,2 taken by a second station are required. 
The transformation between the two laser tracker stations 𝑻𝑻𝐿𝐿𝐿𝐿1𝐿𝐿𝐿𝐿2 is established using permanent 
net point measurements. Equation 4 shows how the evaluation is set up. The net measurements 
used to derive 𝑻𝑻𝐿𝐿𝐿𝐿1𝐿𝐿𝐿𝐿2 are added to the transformation in Eq. 3. This closes the loop, making it 
possible to compute the deviations Δ𝒕𝒕𝑃𝑃𝐿𝐿𝐿𝐿2 from the measured position 𝒕𝒕𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿2 . 

�𝛥𝛥𝒕𝒕𝑃𝑃
𝐿𝐿𝐿𝐿2

1
� =  �𝒕𝒕𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿2

1
� − �𝒕𝒕𝑃𝑃

𝐿𝐿𝐿𝐿2

1
� = �𝒕𝒕𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿2

1
� −  𝑻𝑻𝐿𝐿𝐿𝐿1𝐿𝐿𝐿𝐿2 ⋅ 𝑻𝑻𝑅𝑅𝐿𝐿𝐿𝐿1 ⋅ 𝑻𝑻𝑅𝑅𝑅𝑅𝑅𝑅 ⋅ �𝒕𝒕𝑃𝑃

𝑅𝑅𝑅𝑅

1
� (4) 



Limitations in global referencing for robot arms  85 

a) b) 

Fig. 1:  a) Evaluation setup for the referencing of the robot arm. It includes the transformation as 
defined in Eq. 2 (solid lines) and complements it by an additional measurement station LT2 
(dashed lines). b) The robot arm with the T-Probe mounted on the robot flange is shown in the 
4D measurement laboratory while measuring with the laser tracker AT960-MR. 

3 Evaluation 

Before presenting the initial findings, the measurement setup is described, comprising the robot 
arm, the measuring device and the associated equipment. The first practical step is to test the 
robot arm on repeatability and accuracy according to ISO 9283. This is followed by the initial 
referencing results. 

3.1 Measurement setup 

The measurements are carried out in the 4D measurement laboratory of the Department of 
Geodesy and Geoinformation at the TU Wien. The laboratory offers stable atmospheric 
conditions and a highly precise measurement net comprising consoles and ground points with 
magnetic adapters for 1.5-inch reflectors. The universal robot UR5e is exemplary used for the 
investigations. Due to its collaborative nature, it does not fulfill the stiffness criteria for robot 
machining. It is designed for use alongside people and therefore meets different criteria. The 
external measurement device is a Leica Absolute Tracker AT960-MR. It exhibits an accuracy 
in position of 0.02 mm (Hexagon, 2021) It is used in combination with 1.5-inch corner cube 
reflectors (CCR), 1.5-inch super cateye (SCE), which enables ultra-wide acceptance angle of 
±75° from vertical around a full 360-degree field of view, and a probing device Leica T-Probe 
(P), which uses a 0.5 inch tooling ball reflector (TBR). Important specifications are the 
centering of optics for the various reflector types (<±0.003 mm, <±0.005 mm, <±0.01 mm – 
CCR, SCE, TBR) and the standard deviations of the ADM constant (±0.003 mm, ±0.005mm, 
±0.03mm). The probing device also provides orientation information. The standard deviation 



86 Horvath & Neuner 

is defined as 0.01°. The corner cube reflector (CCR) is used for the measurements to the net 
points. The Super Cateye (SCE) is used to measure the position of the robot arm because it 
enables larger possible incident angles than the CCR (acceptance angle ±30°). The whole robot 
pose can only be derived by the probing device. 

3.2 Robot arm testing 

To determine the quality of the UR5e robot arm, we follow the procedure outlined in ISO 9283. 
We compute the relative pose error or repeatability (RP) and the absolute pose error or accuracy 
(AP). It is derived for the SCE and the probe. As the ISO 9283 proposes, the robot arm 
approaches five cube poses 30 times and the laser tracker measures them. By this generated 
data set, a statistical evaluation is applied and the repeatability is derived. In order to determine 
the absolute pose error, the transformation between the measurement system and the robot arm 
must be established. These results are included in Table 3 and will be discussed in detail in the 
next sections. The results of RP and AP are summarised in Table 1. The table includes the 
average repeatability in position 𝑹𝑹𝑷𝑷𝒍𝒍 and in the three orientation axes 𝑹𝑹𝑷𝑷𝒂𝒂,𝑹𝑹𝑷𝑷𝒃𝒃,𝑹𝑹𝑷𝑷𝒄𝒄 as well 
as the accuracy 𝑨𝑨𝑨𝑨 averaged over five cube points. Figure 2 provides detailed information about 
AP in the different coordinate components. The z component is the direction with the least 
accurate determination. The UR5e's position repeatability according to ISO 9283 amounts to 
±25 µm. The manufacturer specifies it as 30 µm. The repeatability in orientation is computed 
to 0.004°. The orientation standard deviation of the probing device is specified with 0.01°. 
Consequently, the determined repeatability in orientation cannot be considered statistically 
proven. 

Table 1: Reached average RP and AP by the evaluation of the UR5e according to ISO 9283 
(v=10% and 100% and m=600g (SCE)/1.1 kg (Probe)). 

 

 

 

 

 

Fig. 2:  AP of the UR5e computed on basis of probe measurements. It shows the accuracy (AP) in the 
single coordinate components (x, y, z) as well as its magnitude (p) for the five cube points. 

 

 

 𝑹𝑹𝑹𝑹����𝒍𝒍 𝑹𝑹𝑹𝑹����𝒂𝒂 𝑹𝑹𝑹𝑹����𝒃𝒃 𝑹𝑹𝑹𝑹����𝒄𝒄 𝑨𝑨𝑨𝑨����𝒑𝒑 

SCE 0.025 mm    0.4 mm 

Probe 0.023 mm 0.0044° 0.0031° 0.0038° 0.4 mm 
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3.3 Referencing results 

This section presents the first results of the global referencing process. The transformations are 
computed based on the methodology described in Section 2.2. The aim is to demonstrate the 
effects of different transformations on the absolute positioning of robot arms. 

To illustrate a realistic scenario, we begin with two transformation settings that differ 
considerably. Thus, two different reflectors (SCE/probe), different transformation poses (see 
Fig. 3), and a different number of poses (17/38 poses) are used. While the SCE data set (Fig. 3, 
left) has only a few transformation poses with good spatial distribution, the probe data set (Fig. 
3, right) offers many poses, mainly on the side aligned with the laser tracker. Compared to the 
probing device, the SCE does not provide orientation information. Therefore, we use the robot 
arm's orientation information and compute the transformation chain according to Eq. 3. For 
comparing the results of Eq. 2 (𝒙𝒙�𝑷𝑷𝑷𝑷) and Eq. 3 (𝒙𝒙�𝑆𝑆𝐶𝐶𝐶𝐶), the results of Eq. 3 are inverted (𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡𝑡𝑡), 
as described in Section 2.2. Table 2 presents the results of the rotational (𝜔𝜔,𝜙𝜙, 𝜅𝜅) and the 
translational (𝑡𝑡𝐿𝐿𝐿𝐿,𝑥𝑥

𝑅𝑅 , 𝑡𝑡𝐿𝐿𝐿𝐿,𝑦𝑦
𝑅𝑅 , 𝑡𝑡𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅 ) component of 𝑻𝑻𝐿𝐿𝐿𝐿𝑅𝑅  and the lever arm components 
(𝑡𝑡𝑅𝑅𝑅𝑅,𝑥𝑥
𝑃𝑃 , 𝑡𝑡𝑅𝑅𝑅𝑅,𝑦𝑦

𝑃𝑃 , 𝑡𝑡𝑅𝑅𝑅𝑅,𝑧𝑧
𝑃𝑃 ). 

  

Fig. 3:  Transformation poses of the first two data sets – SCE (left), P1 (right). While the SCE data set 
has few transformation poses with good spatial distribution, the probe data set offers many 
poses, mainly on the side aligned with the laser tracker.  

The transformation parameters determined on basis of the measurements on the super cateye 
(SCE) are more precise in the translational component (𝜎𝜎�𝒕𝒕𝐿𝐿𝐿𝐿𝑅𝑅 ) despite the small number of 
transformation poses (17 poses) compared to the measurements to the probe (P1). The rotation 
component (𝜔𝜔,𝜙𝜙, 𝜅𝜅) and the lever arm 𝒕𝒕𝑅𝑅𝑅𝑅𝑃𝑃  are determined more precisely by the probe data set, 
which is probably due to the large number of poses. Comparing the transformation parameters 
𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡𝑡𝑡 and 𝒙𝒙�𝑃𝑃1  reveals large differences 𝚫𝚫𝒙𝒙�1 in the rotation angles 𝜔𝜔,𝜙𝜙 and in 𝒕𝒕𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅 , which cannot 
be explained by the standard deviations of the parameters 𝜎𝜎𝜔𝜔 , 𝜎𝜎𝜙𝜙,𝜎𝜎�𝒕𝒕𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅 . The deviation of 0.035° 
over an average measurement distance of 5 m results in 3 mm, which corresponds to the value 
of 𝑡𝑡𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅  . The derived angle 𝜅𝜅 differs due to a stationing insufficiency in the software used. The 
computed lever arms of the SCE and probe are not comparable. The spatial distribution of the 
points may be one reason for the deviations. It appears that the deviations between the two 
transformations are mainly caused by the probe data set.  
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Table 2: Various transformation results belonging to laser tracker station 1. One transformation 
result consists of the parameters 𝒙𝒙�, the standard deviations 𝝈𝝈� as well as deviations 𝚫𝚫 to 
𝒙𝒙�𝑺𝑺𝑺𝑺𝑺𝑺,𝒕𝒕𝒕𝒕. The dark grey cells are not comparable because of no direct relation. The first 
two transformations are discussed in Section 3.3, the last two in 4.1.  

 
𝝎𝝎 
[°] 
[′′] 

𝝓𝝓 
[°] 
[′′] 

𝜿𝜿 
[°] 
[′′] 

𝒕𝒕𝑳𝑳𝑳𝑳,𝒙𝒙
𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑳𝑳𝑳𝑳,𝒚𝒚
𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑳𝑳𝑳𝑳,𝒛𝒛
𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑹𝑹𝑹𝑹,𝒙𝒙
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 
𝒕𝒕𝑹𝑹𝑹𝑹,𝒚𝒚
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 
𝒕𝒕𝑹𝑹𝑹𝑹,𝒛𝒛
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 

𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡𝑡𝑡 -0.5508 0.4389 37.9550 -5.0764 -0.3488 0.6309 -1.1 65.3 86.9 

𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆  0.1627 -0.6859 -37.9518 4.2247 -2.8453 -0.5886 1.1 -65.3 86.9 

𝝈𝝈�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆 22 26 21 0.12 0.09 0.06 0.06 0.06 0.12 

𝒙𝒙�𝑃𝑃1 -0.5139 0.4730 234.4406 -5.0764 -0.3481 0.6337 -0.7 -16.2 -113.1 
𝝈𝝈�𝑥𝑥𝑃𝑃1  18 18 18 0.09 0.41 0.41 0.03 0.03 0.08 

𝛥𝛥𝒙𝒙1 -0.0369 0.0341  - 0.0007 -0.0028    

𝒙𝒙�𝑃𝑃2 -0.5471 0.4633 234.4483 -5.0761 -0.3488 0.6333 -0.7 -16.1 -113.1 

𝝈𝝈�𝑥𝑥𝑃𝑃2  34 38 23 0.29 0.58 0.97 0.09 0.1 0.31 

𝛥𝛥𝒙𝒙2 -0.0037 -0.0244  -0.0003 - -0.0024    

𝒙𝒙�𝑃𝑃1𝑏𝑏 -0.4509 0.3893 234.5386 -5.0754 -0.3563 0.6261 -0.9 -16.3 -113.2 

𝜎𝜎�𝑥𝑥𝑃𝑃1𝑏𝑏 368 355 388 2.0 8.9 8.3 0.6 0.5 2.1 

𝛥𝛥𝒙𝒙1𝑏𝑏 -0.0999 0.0496  -0.002 0.0075 0.0048    
 

For independent control of the derived robot base frame, robot poses are measured from a 
second laser tracker station, as suggested in Sec. 2.3. The second laser tracker station has been 
transformed into the first laser tracker station based on measurements to net points offered by 
the measurement lab. The laser tracker station was chosen quite opposite to the first station. 
Closing the transformation chain and comparing to the additional measured pose from laser 
tracker station 2 (Eq. 4), shows the difference vector of [0.1 -0.3 2.6] mm. It corresponds to the 
differences in the transformation Δ𝒙𝒙1 according to Table 2. The largest difference exhibits in 
the z-component 𝑡𝑡𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅  by approximately 3mm. 

With this example, we demonstrate quite considerable differences between transformations and 
wish to emphasise the necessity of a well-considered approach to planning the poses and the 
transformation setup. For this reason, the individual effects will be discussed in the next section. 

4 Inference on the global referencing performance 

The performance of the referencing depends on the following influences: the number and 
distribution of poses, the stationing of the measurement device, the reflector type and its 
mounting. So far, the reflector, the number and distribution of poses are considered in this study. 
In this section, some of the influences will now be separated in order to better understand their 
effects. 
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4.1 Variations in geometry 

If a data set of probe observations with a small number of poses but good spatial distribution is 
available (P2 - Fig. 4, left), the result 𝒙𝒙�𝑃𝑃2 in Table 2 is reached. The data set contains only 9 
poses. This increases the standard deviations, especially in the translational z-component 𝜎𝜎𝑡𝑡𝐿𝐿𝐿𝐿,𝑧𝑧

𝑅𝑅 . 
The deviations change only slightly in most parameters (in comparison to Δ𝒙𝒙1) despite the small 
number of poses (see Tab. 2). The improved configuration of transformation poses has a strong 
impact on the discrepances of omega, which decrease by one order of magnitude. 

By reducing the data set P1 from 37 poses to 9 poses, the data set P1b is achieved (Fig. 4, right). 
The aim here is to see the effect of poor spatial distribution in combination with a small number 
of poses and to compare this with 𝒙𝒙�𝑃𝑃2 (small sample size, but good spatial distribution). The 
results are also presented in Table 2. They show a poor transformation – the deviations of the 
translation parameters increase dramatically, especially for the translation components in y- and 
z-direction, which increase to around 7 and 5 mm respectively. There are two possible reasons 
for the poor performance of the 𝒙𝒙�𝑃𝑃1𝑏𝑏 data set: firstly, the spatial distribution of the poses in the 
working space of the robot arm (see Fig. 4, right) and secondly, the lower variation in the 
orientation of the robot pose. These two results (𝒙𝒙�𝑃𝑃2 and 𝒙𝒙�𝑃𝑃1𝑏𝑏) show that the combination of 
few transformation poses and an insufficient spatial distribution of the poses leads to poor 
precision and most probably also to poor accuracy of the parameters. The poorer the spatial 
distribution of the poses in the working space of the robot arm, the more important it is to use 
more transformation poses. 

  

Fig. 4:  Transformation poses of one further chosen dataset of probe observations 𝒙𝒙�𝑷𝑷𝑷𝑷 and the 
subsampled one 𝒙𝒙�𝑃𝑃1𝑏𝑏 from Table 2 – 𝒙𝒙�𝑃𝑃2 (left), 𝒙𝒙�𝑃𝑃1𝑏𝑏 (right). Both exhibit only 9 transformation 
poses. Clearly, the 𝒙𝒙�𝑃𝑃2 data set has a much better spatial distribution than 𝒙𝒙�𝑃𝑃1𝑏𝑏.  

4.2 Influence of reflector type 

When comparing the standard deviations of the SCE and P1 transformation results (Table 2), 
despite the additional 20 poses measured, the values for the probe are quite large. To separate 
the two influences on that, by configuration and by the employed reflector, subsequently a 
particular focus of the evaluation is set on the reflector type. 

Therefore, the same distribution of poses from the P1 data set is measured by the second laser 
tracker station with SCE and probe. The distribution of the 37 poses is presented in Fig. 3 
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(right). This builds our third data set and is denoted as e.g. SCE3. To determine the role of the 
applied model (Eq. 2 or Eq. 3), the probe is treated as reflector (TBR) and the orientation 
information is neglected. The obtained data set is denoted as P3,TBR. The results of the three 
different transformations (SCE3; P3; P3,TBR) are included in Table 3.  

The smallest standard deviations are achieved by the SCE. Again, the probe with Eq. 2 achieves 
poorer translational precision 𝝈𝝈𝑡𝑡𝐿𝐿𝐿𝐿

𝑅𝑅 , the rotational standard deviations 𝝈𝝈𝜔𝜔,𝜙𝜙,𝜅𝜅 are only slightly 
worse and the lever arm components 𝝈𝝈𝑡𝑡𝑅𝑅𝑅𝑅

𝑃𝑃  are estimated similarly well. Using only the position 
measurement to the tooling ball reflector of the probe delivers slightly higher standard 
deviations for the rotation and the lever arm. However, the translation is estimated much more 
precise in case of 𝒙𝒙�𝑃𝑃3,𝑇𝑇𝑇𝑇𝑇𝑇 (without considering the measured orientation). In comparison to the 
SCE results, the less precise manufactured, less accurate determined ADM constant as well as 
a lower allowable incidence angle may be reasons for the worse performance of the TBR. 

Table 3: Various transformation results belonging to laser tracker station 2. One transformation 
result consists of the parameters 𝒙𝒙�, the standard deviations 𝝈𝝈� as well as deviations 𝚫𝚫 to 
𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆3,𝑡𝑡𝑡𝑡. All three transformations are based on the same pose distribution as presented 
for P1 measured on laser tracker station 1 (Fig. 3, right). Hence, 37 poses are considered. 
The dark grey cells are not comparable. 
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𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑳𝑳𝑳𝑳,𝒚𝒚
𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑳𝑳𝑳𝑳,𝒛𝒛
𝑹𝑹  

[𝒎𝒎] 
[𝒎𝒎𝒎𝒎] 

𝒕𝒕𝑹𝑹𝑹𝑹,𝒙𝒙
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 
𝒕𝒕𝑹𝑹𝑹𝑹,𝒚𝒚
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 
𝒕𝒕𝑹𝑹𝑹𝑹,𝒛𝒛
𝑷𝑷  

[𝒎𝒎𝒎𝒎] 

𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆3,𝑡𝑡𝑡𝑡 -0.1307 0.1261 30.4662 3.2733 -2.1783 0.6266 -1.4 63.7 -86.9 

𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆3 0.0487 -0.1750 -30.4660 -1.7150 3.5378 -0.6288 1.4 -63.7 86.9 

𝝈𝝈�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆3  15 15 15 0.06 0.07 0.04 0.02 0.02 0.07 

𝒙𝒙�𝑃𝑃3 -0.1300 0.1271 30.4662 3.2734 -2.1783 0.6265 -0.5 -16.2 -113.1 

𝝈𝝈�𝑥𝑥𝑃𝑃3  16 17 17 0.18 0.25 0.29 0.02 0.02 0.07 

𝛥𝛥𝒙𝒙3 0.0007 -0.0010 - -0.0001 - 0.0001    

𝒙𝒙�𝑃𝑃3,𝑇𝑇𝑇𝑇𝑇𝑇 0.0520 -0.1743 -30.4617 -1.7150 3.5378 -0.6289 0.0 -16.7 113.0 

𝝈𝝈�𝑥𝑥𝑃𝑃3,𝑇𝑇𝑇𝑇𝑇𝑇 19 19 20 0.08 0.09 0.05 0.03 0.03 0.09 

𝛥𝛥𝒙𝒙3,𝑇𝑇𝑇𝑇𝑇𝑇 -0.0043 -0.0007 -0.0043 - - 0.0001    

 

These effects have not yet been fully clarified. For these investigations, a priori standard 
deviations of 0.01° are assumed for the robot arm orientation and the probe. The only varying 
a priori standard deviation is the translational component of the robot arm, which compensates 
for inconsistencies of the measurement data with respect to the transformation model. For most 
transformations, the average a priori standard deviation of the robot arm position is 
approximately 0.18 mm in order to pass the global test of adjustment. Further investigations 
will include a variance component estimation in order to obtain reasonable results for the 
orientations as well. 

Regarding the influence of the pose distribution discussed in 4.1, one notices for this 
configuration that only small differences between the estimated transformation parameters 
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occur for the three cases shown in Table 3. The differences in the translational components 
reduce from several mm (see Table 2) to few hundredths of mm (see Table 3). Similarly, the 
differences in the rotational components reduce by two orders of magnitude. Thus, it can be 
concluded that the high differences between the SCE and probe-based estimations encountered 
in Table 2 are mainly driven by the extremely different configuration of the measured poses. 
Beyond the geometric configuration aspect this difference leads also to different influences on 
the actual pose of the robot arm of non-geometric parameters (see Sec. 2.1). 

4.3 Define limitations of global referencing 

This section consolidates the results and aims to identify the limitations of global referencing 
for robot arms. It shows so far, that the greatest influence comes from the pose distribution. As 
presented in Section 3.3, deviations of up to 3 mm arise between the SCE- and probe-based 
transformations due to the selected pose distribution (see Table 2). Pursuing this insight further, 
we created an extended data set with 24 poses (SCE4) which is measured using both, the probe 
as well as the SCE. This data set should reflect a best case scenario for the global referencing. 
The distribution of the poses is given in Figure 5. The obtained results for the best-case 
transformation (Tab. 4) confirm the conclusions of the previous sections: using the SCE instead 
of the probe leads to lower standard deviations of the estimated transformation parameters (see 
also Sec. 4.2, 𝝈𝝈�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆3 vs. 𝝈𝝈�𝑥𝑥𝑃𝑃3). This applies especially to the translation. When observing the 
same poses with both reflector types the estimated parameters are almost similar with 
discrepancies Δ𝒙𝒙3 for the translational components in the range of one tenths of a mm. Also the 
discrepancies Δ𝒙𝒙3 and Δ𝒙𝒙4 behave similarly. The results are presented in Table 4 and relate to 
Table 3 due to the same laser tracker station. Comparing the translation results 𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆3,𝑡𝑡𝑡𝑡 (Table 
3) and 𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆4,𝑡𝑡𝑡𝑡 (Table 4), results in a deviation of 1.7 mm. Opposing this deviation (𝛥𝛥𝒙𝒙3,4, Table 
4) with 𝛥𝛥𝒙𝒙1 in Table 2, a decrease of the discrepancies can be noted. Thus, by increasing the 
number of transformation poses, the deviations between independent transformation results 
decrease. Further measurements and investigations are required to prove the limit of the 
discrepancies in global referencing, which will be probably limited by the accuracy of the robot 
arm. 

 

 

Fig. 5:  Transformation poses for the SCE4 and P4 transformation. It bases on the pose distribution of 
data set SCE (Fig. 3, 16 Poses) and is extended by 8 poses. 
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All investigations so far have been accomplished for one specific collaborative robot arm and 
need to be derived for different ones. While the aforementioned magnitudes of the results will 
not apply to other robot arms, this is likely to be true with regard to the classification of 
influences according to their importance. 

Table 4: Transformation results of spatial well distributed poses belonging to laser tracker 
station 2. One transformation result consists of the parameters 𝒙𝒙�, the standard deviations 
𝝈𝝈� as well as deviations 𝚫𝚫 to 𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆4,𝑡𝑡𝑡𝑡. The transformations are based on the extended data 
set of SCE (Fig. 5). Hence, 24 poses are considered. The dark grey cells are not 
comparable. 𝛥𝛥𝒙𝒙3,4 relates to 𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆3,𝑡𝑡𝑡𝑡 out of Table 3. 
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𝒕𝒕𝑳𝑳𝑳𝑳,𝒛𝒛
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𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆4,𝑡𝑡𝑡𝑡 -0.1071 0.1464 30.4783 3.2737 -2.1776 0.6251 -1.4 63.5 -86.9 

𝒙𝒙�𝑆𝑆𝑆𝑆𝑆𝑆4 0.1348 0.1214 -30.4785 -1.8358 -3.4761 -0.6294 1.4 -63.5 86.9 

𝝈𝝈�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆4  18 18 15 0.07 0.11 0.05 0.05 0.05 0.12 

𝒙𝒙�𝑃𝑃4 -0.1078 0.1456 30.4790 3.2736 -2.1776 0.6251 -0.1 -16.0 -112.8 

𝝈𝝈�𝑥𝑥𝑃𝑃4  19 21 17 0.21 0.26 0.35 0.05 0.05 0.14 

𝛥𝛥𝒙𝒙4 0.0007 0.0008 -0.0007 0.0001 - -    

𝛥𝛥𝒙𝒙3,4 -0.0236 -0.0203 -0.0121 -0.0004 -0.0007 0.0015    

 

The biggest limitation in global referencing for robot arms is the distribution of the 
transformation poses. As shown in Table 2 (P2 vs P1), nearly nine well-distributed poses 
determined by probe measurements deliver the same result as 37 poorly distributed poses. This 
demonstrates the importance of geometry. A sufficient number of transformation poses ranges 
between 17 to 24. This depends on the distribution of poses and on the reflector type. Starting 
with 15 poses achieves a precision of up to 0.1 mm for a robot arm with positional accuracy of 
0.4 mm, ensuring good spatial distribution and a super cat eye reflector. Due to the larger 
standard deviations reached by probe measurements (see Tab. 3), more poses are needed to 
achieve a precision of 0.1 mm for the translational parameter. 

Applying these investigations to another (type) robot arm will demonstrate how dependent the 
transformation results are on the accuracy of the robot arm. For the used UR5e, we derived an 
average positional accuracy expressed as deviation from the nominal position of 0.4 mm 
according to ISO 9283 (see Tab. 1). During the adjustment process to estimate the 
transformation parameters, the a priori standard deviation in the position of the robot arm is in 
average 0.2 mm. Passing the global test indicates that chosen functional and stochastic models 
are in accordance with the data set. As the deviations obtained from the ISO lie within the 2-
sigma interval of the standard deviation resulting from the adjustment, the two results are 
consistent, and it is feasible to claim a standard deviation of the robot arm of 0.2 mm. To 
calculate the standard deviation based on a defined procedure and in accordance with all 
measurement types, the variance component estimation proposed in Section 4.2 can be used. 
The standard deviation for the transformation parameters lies in the same order of magnitude. 
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However, the deviation between independent transformation sets ranges from 3 to1.5 mm. 
There is still a fairly large difference, which we need to take into account. This can be mainly 
attributed to influences due to the geometric distribution of the poses as well as systematic 
deviations of the robot arm coming from both geometric and non-geometric components. 

5 Conclusion and outlook 

Accurate referencing of workpieces to robot arms enables robot manufacturing processes such 
as drilling, milling and grinding. This article deals with quantifying the influences on 
determining transformation parameters through global referencing using laser tracker 
measurements. The influences discussed in detail are the distribution and number of poses, and 
the reflector type. The distribution of the poses was identified as the most limiting influence. It 
was found that the Super Cateye performs better than the probe, achieving lower standard 
deviations, particularly when translating the laser tracker frame to the robot arm frame. An 
appropriate number of poses is between 17 and 24. This depends on the pose distribution, 
reflector type, and targeted precision. Future research will investigate the differences in 
transformation performance when using the probe or the SCE, subsequently focusing on the 
SCE. Variance component estimation can contribute to our understanding of these differences. 
Additionally, it can be beneficial for adequately quantifying the precision of the robot arm. 
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