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1 Einleitung 

Geodätische Überwachungsaufgaben werden durch eine Vielzahl miteinander verknüpfter 
Faktoren bestimmt. Insbesondere sind dies die messtechnischen und methodischen 
Anforderungen sowie die definierten Zielsetzungen. Wie in den grundlegenden Werken zur 
Ingenieurgeodäsie dargelegt, tragen auch die physikalischen und infrastrukturellen 
Bedingungen des jeweiligen Überwachungsobjekts maßgeblich zur Komplexität der Aufgaben 
bei [Heunecke u. a., 2013]. Somit beinhalten diese Aufgaben oft ein Multiskalenproblem, bei 
dem zeitliche und räumliche Skalen kombiniert mikroskopisch bis makroskopisch verlaufen 
können. Basierend darauf werden in diesem Beitrag moderne Methoden zur Analyse von 
Messdaten vorgestellt, die geeignet sind, diese zeitlich und räumlich hochdimensionalen 
Prozesse zu untersuchen. 

Das geodätische Monitoring hat in den vergangenen Jahrzehnten einen erheblichen 
technologischen Wandel durchlaufen. Während in der Vergangenheit überwiegend manuelle 
Punktmessungen durchgeführt wurden, sind heute durchgängig automatisierte und flächenhafte 
Messsysteme etabliert, die hochpräzise Daten in hoher zeitlicher Auflösung erfassen sowie 
annähernd in Echtzeit auswerten [Lienhart, 2019]. Die zunehmende Nutzung moderner 
Sensorkonzepte, wie GNSS, terrestrischem Laserscanning (TLS), Inklinometern oder MEMS-
basierten Sensoren hat dabei wesentlich zur Erhöhung der Messdichte, zur Verbesserung der 
Datenqualität sowie zur Integration multipler Datenquellen beigetragen [Lienhart, 2017]. 

Der Fokus des ingenieurgeodätischen Monitorings liegt dabei nicht ausschließlich auf der 
geometrischen Datenerhebung, sondern vielmehr auf der Ableitung physikalischer 
Zusammenhänge zum Verständnis der Objektdeformation. Dies umfasst die Analyse kurz- und 
langfristiger Bewegungskomponenten, die Erkennung von Merkmalen sowie die Ableitung von 
Modellen zur Beschreibung der Prozesscharakteristik [Neuner u. Foppe, 2009]. Dafür kommen 
zunehmend Methoden der Zeitreihenanalyse, der Spektralanalyse sowie moderne Verfahren der 
Multiskalenanalyse zum Einsatz, wie sie auch im Bereich des Structural Health Monitoring 
(SHM) Anwendung finden. Diese ermöglichen es, komplexe Prozesssignaturen 
aufzuschlüsseln, äußere Einflüsse zu quantifizieren und potenzielle Risiken frühzeitig zu 
erkennen. 

2 Grundlagen der Zeitreihenanalyse im geodätischen Monitoring 

Die statistische Zeitreihenanalyse stellt ein zentrales Arbeitsfeld der Datenauswertung dar, wird 
jedoch in der geodätischen Praxis trotz ihres hohen Informationsgehalts oft noch nicht 
systematisch ausgeschöpft. Häufig werden Messreihen lediglich deskriptiv betrachtet, wodurch 
das volle Potenzial zur Quantifizierung des Deformationsverhaltens ungenutzt bleibt. Dabei 
bieten etablierte Verfahren, von deskriptiven Methoden bis hin zu komplexen inferentiellen 
Ansätzen, oft die Möglichkeit, sowohl langfristige Trends als auch periodische Einflüsse, etwa 
durch Temperatur oder Lastschwankungen, zu identifizieren [Chatfield u. Xing, 2019a; 
Lienhart, 2011]. Eine Herausforderung bleibt dabei oft die fehlende Synchronisation und 
Integration räumlich verteilter Sensoren, was die Vergleichbarkeit von Datensätzen 
beeinträchtigt [Lienhart, 2007]. Dennoch bildet die Zeitreihenanalyse die Basis, um das 
Deformationsverhalten von Bauwerken quantitativ zu beschreiben, womit sie zu einem 
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integralen Bestandteil moderner geodätischer und struktureller Monitoringkonzepte wird. 
Historisch geprägt durch die Kommunikationstechnik und die mathematische Statistik, vereint 
dieses Forschungsfeld heute ingenieurwissenschaftliche spektrale Betrachtungen mit den 
korrelationsbasierten Ansätzen der Statistik [Priestley, 1981]. 

Um die in Messreihen enthaltenen periodischen oder multiskaligen Strukturen sichtbar zu 
machen, wird auf Methoden der klassischen Signalverarbeitung zurückgegriffen. Ein 
fundamentales Werkzeug zur Charakterisierung stationärer Prozesse bildet hierbei die Fourier-
Transformation. Sie erlaubt die Identifikation dominanter Frequenzen und harmonischer 
Signalkomponenten. Jedoch weißt sie durch den Verlust der zeitlichen Lokalität von 
Frequenzänderungen in der globalen Transformation entscheidende Einschränkung auf 
[Chatfield u. Xing, 2019b]. Da reale Monitoring-Daten oft nichtstationäres Verhalten zeigen, 
ist die simultane Betrachtung von Zeit- und Frequenzinformationen, wie von [Cohen, 1995] 
gefordert, essenziell. Ein erster Lösungsansatz ist die Kurzzeit-Fourier-Transformation (STFT), 
welche durch eine segmentweise Analyse eine begrenzte zeitliche Lokalisierung ermöglicht. 
Diese bleibt jedoch an dem inhärenten Kompromiss gebunden, dass die Zeit-Frequenz-
Auflösung durch die gewählte Fensterbreite fixiert ist. 

Eine deutlich flexiblere Alternative zur Analyse instationärer Signale bieten Waveletbasierte 
Methoden. Im Gegensatz zur STFT zerlegt die Wavelet-Transformation Daten in verschiedene 
Skalenkomponenten und untersucht diese mit einer an die jeweilige Frequenz angepassten 
zeitlich-räumlichen Auflösung [Daubechies, 1992]. Dies ermöglicht eine adaptive Analyse im 
Zeit-Skalen-Raum, wodurch sich insbesondere transitorische Ereignisse und multiskalige 
Prozesse präzise erfassen lassen. Während die kontinuierliche Wavelet-Transformation (CWT) 
vor allem in der explorativen Analyse stärken zeigt, erlauben die diskrete Wavelet-
Transformation (DWT) sowie die Multiskalenzerlegung nach [Mallat, 1989] effiziente 
numerische Implementierungen, etwa zur Trend-Rausch-Trennung. 

Die Wavelet-Analyse ist daher ein zentrales Instrument um lokalisierte Energieschwankungen 
und dominierende Schwankungsmodi innerhalb von Zeitreihen zu identifizieren [Torrence u. 
Compo, 1998a]. Diese Eigenschaften werden bereits erfolgreich in der Geophysik und 
Hydrologie genutzt, beispielsweise zur Untersuchung von Klimavariabilitäten oder 
Hochwasserzyklen [Weng u. Lau, 1994; Muller u. a., 2024; Sovic Krzic u. a., 2012]. Auch im 
Structural Health Monitoring (SHM) sind diese Methoden mittlerweile unverzichtbar. Studien 
belegen, dass die Wavelet-Analyse besonders sensitiv auf lokale Frequenzänderungen und 
Dämpfungseffekte reagiert, was sie für die Detektion von Schadensereignissen prädestiniert 
[Staszewski u. Robertson, 2007; Taha u. a., 2006]. Insbesondere bei komplexen, 
rauschbehafteten Schwingungsantworten im Tiefbau ermöglichen neue Algorithmen auf Basis 
der DWT eine robuste Entrauschung und somit eine zuverlässigere Zustandsbewertung [Silik 
u. a., 2024]. 

Zusammenfassend lässt sich festhalten, dass Fourier-, Wavelet- und Zeit-Frequenzbasierte 
Methoden komplementäre Informationen liefern, deren Auswahl maßgeblich von der 
Stationarität und Frequenzstruktur der untersuchten Zeitreihe abhängt. Die Verknüpfung dieser 
analytischen Verfahren mit hochpräziser geodätischer Sensorik und kostengünstigen IoT-
Lösungen (wie Low-Cost GNSS oder MEMS) leistet einen wesentlichen Beitrag zur 
Weiterentwicklung des Monitorings. 
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3 Datenanalyse 

Die Datenanalyse nimmt im Monitoring eine zentrale Rolle ein, da sie den entscheidenden 
Schritt von der bloßen Erfassung von Sensordaten hin zur Ableitung relevanter Informationen 
darstellt. Moderne Gesellschaften sind stark von komplexen technischen Systemen abhängig, 
weshalb Schäden an Bauwerken frühzeitig erkannt werden müssen, um Ausfälle mit potenziell 
gravierenden Folgen für Sicherheit und Wirtschaft zu verhindern [Farrar u. Worden, 2012]. Für 
die schadensbasierte Zustandsüberwachung über mechanische Schwingungseigenschaften sind 
zahlreiche Faktoren entscheidend. Dazu zählen die Anregung und Messung, insbesondere die 
Auswahl und Positionierung geeigneter Sensoren, sowie die anschließende Signalverarbeitung 
mittels Spektralanalyse. Während moderne Monitoring-Systeme kontinuierlich große Mengen 
heterogener Daten – etwa aus GNSS-Empfängern, MEMS-Sensoren oder faseroptischen 
Systemen – generieren können, entfaltet sich deren Mehrwert erst durch eine methodisch 
fundierte Auswertung [Doebling et al., 1998]. Nur durch eine gezielte Analyse lassen sich in 
den Messdaten verborgene Muster, Trends und Anomalien identifizieren, die Rückschlüsse auf 
den strukturellen Zustand eines Bauwerks erlauben. 

Eine zentrale Grundlage dieser Analyse bilden zeitbezogene Daten. Nahezu alle natürlichen 
und technischen Prozesse unterliegen zeitlichen Veränderungen, sodass Messgrößen erst durch 
ihre Verknüpfung mit einem eindeutigen Zeitstempel interpretierbar werden. Der Zeitbezug 
ermöglicht es, dynamische Entwicklungen systematisch zu erfassen, Veränderungen im Verlauf 
zu analysieren und zukünftige Zustände abzuleiten. Gerade im Kontext von Big Data ist eine 
konsistente zeitliche Ordnung innerhalb von Datenstrukturen unerlässlich. In der Geodäsie 
kommt der Zeitinformation dabei eine besondere Bedeutung zu, da Beobachtungen häufig erst 
durch ihre zeitliche Einordnung vergleichbar werden. Die Abbildung eines kontinuierlichen 
zeitabhängigen Prozesses durch diskrete Messwerte wird als Zeitreihe bezeichnet und stellt die 
methodische Grundlage der Zeitreihenanalyse dar, mit deren Hilfe langfristige Trends, 
periodische Signalanteile oder abrupte Strukturänderungen sichtbar gemacht werden können. 

Vor diesem Hintergrund gewinnt die datengetriebene Analyse zeitbezogener Messreihen im 
Monitoring eine Schlüsselstellung, da sie moderne Sensornetzwerke mit mathematischen und 
signalverarbeitungstechnischen Methoden verbindet und eine integrative Beurteilung 
komplexer Tragwerke ermöglicht [Engel et al., 2020]. Obwohl Geodät*innen aufgrund ihrer 
Ausbildung in Sensorik, Physik, Statistik und Programmierung grundsätzlich für die Analyse 
zeitbezogener Daten qualifiziert sind, kommt die Zeitreihenanalyse in der Praxis bislang nur 
eingeschränkt zum Einsatz. Häufig beschränkt sich die Auswertung auf spektrale Verfahren zur 
Analyse periodischer Schwingungsvorgänge, die jedoch einen Spezialfall darstellen, da valide 
Ergebnisse einen ausgeprägt periodischen Signalcharakter voraussetzen. Neben der Fourier-
Transformation zur Untersuchung spektraler Signalanteile wird insbesondere die Wavelet-
Transformation als weiterführendes Werkzeug zur Analyse nichtstationärer und zeitlich 
variierender Zeitreihen behandelt, wobei der Fokus auf einer fachlich fundierten und 
situationsspezifischen Anwendung liegt. 
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3.1 Von geodätischen Transformationen zur Fourier-Transformation 

Der Begriff der Transformation ist in den Geowissenschaften vielschichtig besetzt. In der 
Geodäsie versteht man darunter meist geometrische Transformationen, etwa die Überführung 
von Koordinaten zwischen verschiedenen Referenzsystemen oder Projektionen. Solche 
geodätischen Transformationen dienen dazu, Messgrößen in ein konsistentes Bezugssystem zu 
überführen und Vergleichbarkeit herzustellen. Im weiteren Sinne lassen sich jedoch auch 
mathematische Verfahren zur Signal- und Datenverarbeitung als Transformationen verstehen. 
Hierbei wird ein Signal aus dem Zeitbereich in einen anderen Darstellungsraum überführt, um 
verborgene Eigenschaften sichtbar zu machen. Die klassische Fouriertransformation 
beispielsweise wandelt ein zeitabhängiges Signal in seine Frequenzkomponenten um und 
erlaubt so die Analyse von Schwingungen und periodischen Anteilen. Erweiterte Verfahren wie 
die Kurzzeit-Fouriertransformation (STFT) oder Wavelet-Transformationen verallgemeinern 
dieses Prinzip, indem sie zusätzlich eine zeitliche Lokalisierung der Frequenzinformation 
ermöglichen. Damit besteht eine enge Parallele zwischen geodätischen und mathematischen 
Transformationen. In beiden Fällen werden Messgrößen in einen anderen Raum überführt, um 
neue Perspektiven auf die Daten zu gewinnen und die Grundlage für weiterführende Analysen 
zu schaffen. 

Die Rolle der Orthogonalität 

In der Geodäsie dienen Transformationen insbesondere dazu, Messpunkte aus 
unterschiedlichen Referenzsystemen, Beobachtungsgeometrien oder Epochen konsistent zu 
verknüpfen. Ein klassisches Beispiel sind Koordinatentransformationen zwischen lokalen und 
globalen Bezugssystemen, die durch Verschiebung, Rotation und Skalierung beschrieben 
werden können [Torge u. Müller, 2012]. Der Rotationsanteil dieser Transformationen wird 
dabei durch orthogonale Matrizen dargestellt, die den euklidischen Metrikraum erhalten. 
Mathematisch wird die Orthogonalität durch die Bedingung RTR = I formuliert, wodurch 
Längen und Winkel invariant bleiben. Derartige Transformationen sind in der geodätischen 
Netzberechnung und bei Helmert- Transformationen weit verbreitet [Grafarend u. Krumm, 
2006].  

Der in der Geodäsie verankerte Orthogonalitätsbegriff findet eine analoge Form in der Analyse 
zeitabhängiger Messdaten, wenn die Darstellung vom Ortsraum in den Frequenzraum überführt 
wird. Dies geschieht mittels der Fourier-Transformation, die keine geometrische Rotation des 
Koordinatenrahmens vornimmt, sondern die Darstellung eines Signals in eine orthogonale 
Basis aus komplexen Exponentialfunktionen überführt. Die Fourier-Transformation kann als 
unitäre Abbildung im Hilbertraum L2 aufgefasst werden, wobei die komplexe Orthogonalität 
die reelle Orthogonalität verallgemeinert [Oppenheim u. Schafer, 2010]. Diese Unitarität 
gewährleistet, dass das Skalarprodukt des Signals unter der Transformation erhalten bleibt. Das 
entspricht dem Parseval-Theorem, welches besagt, dass die Signalenergie sowohl im Orts- als 
auch im Frequenzraum identisch ist [Bracewell, 2000]. 

Die strukturelle Parallele ist hierbei zentral: Während in der räumlichen Geodäsie orthogonale 
Transformationen die metrikalen Eigenschaften geometrischer Objekte bewahren, sorgt die 
orthogonale Basis der Fourier-Transformation dafür, dass energetische Eigenschaften von 
Messsignalen invariant bleiben. Somit erweitert die Fourier-Transformation den 
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Transformationsgedanken der Geodäsie vom dreidimensionalen Koordinatenraum in den 
funktionalen Raum der Signalrepräsentationen. Orthogonalität bildet in beiden Fällen den 
mathematischen Kern, der Informationsverlust vermeidet, eindeutige Rücktransformationen 
ermöglicht und die physikalische Interpretation von Messdaten absichert. 

Die Fourier-Transformation als Grundwerkzeug 

Ein zentrales Grundwerkzeug der Signalanalyse ist die Fourier-Transformation, welche ein 
zeitabhängiges Signal in seine spektralen Frequenzanteile zerlegt. Sie ermöglicht eine globale 
Beschreibung des Signalinhalts und liefert insbesondere für stationäre oder schwachstationäre 
Signalanteile eine klare Identifikation dominanter periodischer Komponenten. Voraussetzung 
hierfür ist, dass die statistischen Eigenschaften des Signals über die Zeit hinweg im 
Wesentlichen konstant bleiben.  

In der praktischen Anwendung geodätischer Überwachungsmessungen stellen zeitbezogene 
Daten die Grundlage der meisten Analyseverfahren dar. Erst durch die eindeutige zeitliche 
Einordnung einzelner Messwerte werden Beobachtungen vergleichbar und dynamische 
Entwicklungen erfassbar. Die zeitliche Struktur eines Signals ist dabei entscheidend, da reale 
Messdaten häufig durch zeitlich variierende Einflüsse, transiente Effekte oder strukturelle 
Änderungen geprägt sind. 

Die klassische spektrale Analyse betrachtet das Signal jedoch über den gesamten 
Beobachtungszeitraum hinweg und verliert dadurch Informationen über die zeitliche 
Lokalisation einzelner Signalanteile. Insbesondere nichtstationäre Effekte können im 
Frequenzbereich zwar nachgewiesen, jedoch nicht eindeutig zeitlich zugeordnet werden. Vor 
diesem Hintergrund gewinnen weiterführende zeit-frequenz-basierte Analysemethoden an 
Bedeutung, da sie den expliziten Zeitbezug der Daten berücksichtigen und damit eine 
differenziertere Interpretation geodätischer Zeitreihen ermöglichen. 

4 Integraltransformationen 

Integraltransformationen sind fundamentale Werkzeuge der Signalverarbeitung und damit von 
zentraler Bedeutung im Monitoring. Sie erlauben die Überführung von Messdaten aus dem 
Zeitbereich in alternative Darstellungsräume wie Frequenzbereich oder Zeit-Frequenz-Bereich. 
Dadurch werden Schwingungen, Moden und transiente Prozesse sichtbar, die in den Rohdaten 
verborgen bleiben. Im Folgenden werden die wichtigsten Transformationen, wie 
Kontinuierliche Fourier-Transformation (CFT), Diskrete Fourier-Transformation (DFT), 
Kurzzeit-Fourier-Transformation (STFT), Kontinuierleiche Wavelet-Transformation (CWT) 
und Diskrete Wavelet-Transformation (DWT) vorgestellt. 

4.1 Kontinuierliche Fourier-Transformation (CFT) 

Die kontinuierliche Fourier-Transformation (FT) zählt zu den grundlegenden Werkzeugen der 
Signal- und Systemanalyse und dient der Zerlegung eines zeitkontinuierlichen Signals x(t) in 
seine harmonischen Frequenzanteile [Fourier, 1822]: 
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𝑋𝑋(𝜔𝜔) = � 𝑥𝑥(𝑡𝑡) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
∞

−∞
 (1) 

Das resultierende Spektrum X(ω) beschreibt die vollständige spektrale Zusammensetzung des 
Signals und ordnet jeder Kreisfrequenz ω eine komplexe Amplitude zu. Diese komplexe 
Darstellung enthält sowohl Informationen über den Betrag der jeweiligen 
Frequenzkomponente, der deren Energie- bzw. Amplitudenanteil widerspiegelt, als auch über 
die Phasenlage, welche die zeitliche Position der Schwingungsanteile bestimmt. Damit 
ermöglicht die Fourier-Transformation einen grundlegenden Perspektivwechsel vom 
Zeitbereich in den Frequenzbereich und stellt eine kompakte Beschreibung der im Signal 
enthaltenen Schwingungsanteile bereit. 

Eine zentrale Eigenschaft der Fourier-Transformation ist ihre Linearität, wodurch sich die 
Transformation einer Linearkombination von Signalen direkt aus den Transformationen der 
einzelnen Signalanteile ergibt. Dies erlaubt es, komplexe Signale als Überlagerung elementarer 
harmonischer Schwingungen zu interpretieren. Darüber hinaus gewährleistet das Parseval-
Theorem die Energieerhaltung zwischen Zeit- und Frequenzbereich, sodass die Gesamtenergie 
eines Signals unabhängig von der Darstellungsform identisch bleibt [Oppenheim et al., 1999]. 
Ein weiteres grundlegendes Konzept ist die Dualität zwischen Zeit- und Frequenzbereich, nach 
der Zeit- und Frequenzvariable formal gleichwertig sind und sich viele Eigenschaften der 
Fourier-Transformation spiegelbildlich übertragen lassen. In Verbindung mit der 
Invertierbarkeit der Transformation ist damit sichergestellt, dass ein Signal bei Kenntnis seines 
vollständigen Spektrums eindeutig rekonstruierbar ist. 

Die Anwendung der kontinuierlichen Fourier-Transformation ist insbesondere für stationäre 
Prozesse sinnvoll, bei denen sich statistische Eigenschaften wie Mittelwert, Varianz und 
Autokorrelationsfunktion zeitlich nicht ändern. Unter dieser Annahme liefert das 
Frequenzspektrum eine stabile und aussagekräftige Beschreibung der dominierenden 
Signalanteile. In der Praxis wird die Fourier-Transformation daher häufig zur Identifikation von 
Eigenfrequenzen und Resonanzen eingesetzt, etwa zur Charakterisierung dynamischer Systeme 
oder zur Analyse stationärer Schwingungsprozesse. Ebenso ermöglicht sie den Vergleich 
aktueller Frequenzspektren mit Referenzzuständen, wodurch Veränderungen im 
Systemverhalten detektiert werden können. 

Eine wesentliche Einschränkung des sog. Amplitudenspektrums besteht jedoch darin, dass sie 
keine zeitliche Lokalisierung der Frequenzanteile erlaubt. Das Spektrum beschreibt 
ausschließlich, welche Frequenzen im Signal enthalten sind, jedoch nicht, zu welchem 
Zeitpunkt diese auftreten. Bei nichtstationären Signalen, deren spektrale Eigenschaften sich 
zeitlich verändern, ist die Interpretation des Fourier-Spektrums daher nur eingeschränkt 
möglich, da zeitlich begrenzte Ereignisse oder transiente Effekte im globalen Frequenzbild 
überlagert werden [Bracewell, 1999]. Diese Einschränkung bildet die zentrale Motivation für 
die Entwicklung zeitabhängiger oder multiskaliger Analyseverfahren. 

4.2 Diskrete Fourier-Transformation (DFT) 

Für praktisch relevante Anwendungen liegt ein Signal jedoch nicht in kontinuierlicher Form 
vor, sondern als endliche, diskrete Folge von Messwerten x[n] mit der Länge N, die 
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typischerweise in äquidistanten Zeitabständen erfasst wurden. Für solche diskreten Messreihen 
wird die kontinuierliche Fourier-Transformation durch die diskrete Fourier-Transformation 
(DFT) ersetzt. Nach [Gauss, 1805] ist diese definiert als 

𝑋𝑋(𝑘𝑘) = �𝑥𝑥(𝑛𝑛) ∙ 𝑒𝑒−
𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁 ,𝑘𝑘 = 0, … ,𝑁𝑁 − 1

𝑁𝑁−1

𝑛𝑛=0

 (2) 

Die DFT überführt die endliche Zeitreihe x[n] in ein ebenfalls endliches, äquidistant 
abgetastetes Frequenzspektrum X[k]. Jedem Index k ist dabei eine diskrete Frequenz 
zugeordnet, sodass das Spektrum eine diskrete Approximation der kontinuierlichen spektralen 
Darstellung darstellt.  

Eine wesentliche Eigenschaft der DFT ist die feste Frequenzauflösung Δf = fs/N, die sich aus 
der Abtastrate fs und der Anzahl der Stützstellen ergibt. Damit ist die spektrale Auflösung 
unmittelbar an die Länge der Messreihe gekoppelt. Gleichzeitig geht die DFT implizit von einer 
periodischen Fortsetzung des betrachteten Signals aus, was insbesondere bei endlichen 
Datensätzen zu Randartefakten oder spektraler Leakage führen kann. Numerisch ist die DFT 
stabil, ihr direkter Rechenaufwand skaliert jedoch quadratisch mit der Datenlänge O(N2), 
wodurch sie für große Datensätze nur eingeschränkt praktikabel ist. 

In der Praxis findet die DFT breite Anwendung bei der Verarbeitung diskreter Sensordaten, 
etwa aus Beschleunigungsmessungen, GNSS-Zeitreihen oder anderen kontinuierlich 
aufzeichnenden Messsystemen. Insbesondere bei der Modalanalyse oder der Untersuchung 
periodischer Schwingungsanteile in endlichen Datensätzen liefert die DFT eine kompakte und 
anschauliche Beschreibung der dominanten Frequenzkomponenten. 

Um den hohen Rechenaufwand der direkten DFT zu reduzieren, wird in nahezu allen 
praktischen Anwendungen die schnelle Fourier-Transformation (FFT) eingesetzt. Die FFT ist 
kein eigenständiges Transformationsverfahren, sondern ein Algorithmus zur effizienten 
Berechnung der DFT [Cooley u. Tukey, 1965]. Durch geschickte Zerlegung der 
Summenstruktur reduziert sich die Rechenkomplexität von O(N2) auf O(N logN), was 
insbesondere für große Datenmengen einen erheblichen Effizienzgewinn darstellt [Oppenheim 
et al., 1999]. Besonders effizient ist die FFT bei Datensatzlängen der Form N = 2m, weshalb 
Messreihen in der Praxis häufig entsprechend segmentiert werden. 

Die FFT bildet damit die rechentechnische Grundlage nahezu aller modernen Spektralanalysen 
und ermöglicht auch die Echtzeit-Auswertung kontinuierlicher Messdaten, etwa in der 
Bauwerksüberwachung oder in eingebetteten Sensor- und IoT-Systemen. Trotz dieser Vorteile 
bleiben die grundlegenden Eigenschaften und Einschränkungen der DFT bestehen. Die FFT 
liefert eine global gemittelte Frequenzdarstellung mit fester Auflösung und setzt eine 
hinreichende Stationarität der betrachteten Signalanteile voraus. Zeitlich lokale Änderungen 
oder transiente Effekte können daher auch mit der FFT nur eingeschränkt abgebildet werden. 

4.3 Kurzzeit-Fourier-Transformation (STFT) 

Die Kurzzeit-Fourier-Transformation (Short-Time Fourier Transform, STFT) erweitert das 
klassische Fourier-Konzept, indem das Signal nicht mehr global, sondern lokal im Zeitbereich 
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analysiert wird. Hierzu wird das kontinuierliche Signal x(t) mit einem zeitlich begrenzten 
Fenster w(t) multipliziert, das entlang der Zeitachse verschoben wird. Für jede Fensterposition 
τ wird anschließend eine Fourier-Transformation durchgeführt, wodurch eine gemeinsame 
Zeit-Frequenz-Darstellung entsteht [Gabor, 1946] und [Allen u. Rabiner, 1977]: 

𝑋𝑋(𝜏𝜏,𝜔𝜔) = � 𝑥𝑥(𝑡𝑡) ∙ 𝜔𝜔(𝑡𝑡 − 𝜏𝜏) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
∞

−∞
 (3) 

Das Ergebnis X(τ, ω) beschreibt, welche Frequenzanteile zu welchem Zeitpunkt im Signal 
auftreten, und wird häufig in Form eines Spektrogramms visualisiert. Auf diese Weise lassen 
sich zeitlich begrenzte oder sich verändernde spektrale Eigenschaften erfassen, die in einer 
klassischen Fourier-Analyse verborgen bleiben würden.  

Die zentrale Eigenschaft der STFT ist der feste Zusammenhang zwischen Zeit- und 
Frequenzauflösung. Die Wahl der Fensterfunktion w(t) bestimmt dabei unmittelbar die Länge 
des analysierten Zeitintervalls und damit die erreichbare Auflösung in beiden Domänen. Kurze 
Fenster erlauben eine präzise zeitliche Lokalisierung schneller Signaländerungen, gehen jedoch 
mit einer reduzierten Frequenzauflösung einher. Lange Fenster verbessern hingegen die 
frequenzielle Trennschärfe, verschlechtern jedoch die zeitliche Auflösung. Dieser 
fundamentale Zielkonflikt wird als Zeit-Frequenz-Trade-off bezeichnet und ist eine direkte 
Konsequenz der Heisenbergschen Unschärferelation [Heisenberg, 1927]. 

Neben der Fensterlänge beeinflusst auch die Fensterform maßgeblich die Eigenschaften der 
STFT. Gängige Fensterfunktionen wie Hann-, Hamming- oder Gauß-Fenster unterscheiden 
sich hinsichtlich Hauptkeulenbreite und Nebenkeulenunterdrückung, was sich auf spektrale 
Leckage und Auflösung auswirkt [Cohen u. Lee, 1989]. In der Praxis wird häufig eine 
Überlappung benachbarter Fenster von etwa 50–75% gewählt, um ein glattes und stabiles 
Spektrogramm zu erhalten und Diskontinuitäten zwischen aufeinanderfolgenden 
Zeitabschnitten zu vermeiden. Die Fensterparameter sollten dabei stets an die erwarteten 
Modalfrequenzen sowie an das Ausmaß der zeitlichen Nichtstationarität des Signals angepasst 
werden. Aufgrund ihrer Fähigkeit zur zeitlich aufgelösten Spektralanalyse eignet sich die STFT 
insbesondere zur Untersuchung transienter Ereignisse wie Lastwechsel, Schläge oder 
kurzzeitiger Störungen. Darüber hinaus kann sie zur Verfolgung zeitlich variierender 
Frequenzen, etwa bei Frequenzdrift oder Modulationsphänomenen, eingesetzt werden. Auch in 
der schadensbasierten Zustandsüberwachung nichtstationärer Signale liefert die STFT 
wertvolle Hinweise, da Veränderungen im Zeit-Frequenz-Verhalten als potenzielle 
Schadensindikatoren interpretiert werden können. Gleichzeitig bleibt die feste Auflösung der 
STFT jedoch eine grundlegende Einschränkung, die bei komplexen Signalen mit gleichzeitig 
kurz- und langzeitigen Strukturen zu Kompromissen in der Analyse führt. 

4.4 Kontinuierliche-Wavelet-Transformation (CWT) 

Die kontinuierliche Wavelet-Transformation (CWT) basiert auf der Projektion eines Signals 
auf eine skalierbare und verschiebbare Basisfunktion, das sogenannte Mutter-Wavelet ψ(t), und 
ermöglicht dadurch eine zeit- und skalenabhängige Analyse der Signalstruktur, siehe [Mallat, 
1989] und [Grossmann u. Morlet, 1984]. Für ein zeitkontinuierliches Signal x(t) ist die CWT 
definiert als 
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𝑊𝑊(𝑎𝑎, 𝑏𝑏) =
1
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wobei der Skalenparameter a die zeitliche Ausdehnung des Wavelets steuert und damit indirekt 
den betrachteten Frequenzbereich bestimmt, während der Translationsparameter b die zeitliche 
Position des Wavelets entlang des Signals beschreibt. Durch die kontinuierliche Variation 
beider Parameter entsteht eine hochaufgelöste Zeit-Skalen-Darstellung, in der sowohl 
kurzzeitige hochfrequente Ereignisse als auch langperiodische Signalanteile simultan erfasst 
werden können.  

Ein zentrales Merkmal der CWT ist ihre multiskalige Struktur mit adaptiver Zeit-Frequenz-
Auflösung. Hohe Frequenzen werden mit guter zeitlicher Auflösung, niedrige Frequenzen 
hingegen mit erhöhter frequenzieller Auflösung dargestellt. Diese Eigenschaft unterscheidet die 
CWT grundlegend von klassischen Fourier-basierten Verfahren und macht sie besonders 
geeignet für die Analyse nichtstationärer Signale. Die Wahl des Mutter-Wavelets hat dabei 
einen maßgeblichen Einfluss auf die resultierende Darstellung.Während beispielsweise das 
Morlet-Wavelet aufgrund seiner sinusähnlichen Struktur für die Analyse 
schwingungsdominierter Signale prädestiniert ist, eignen sich kompakt unterstützte Wavelets 
wie Haar- oder Daubechies-Wavelets besser zur Detektion sprunghafter Änderungen oder 
lokaler Diskontinuitäten, siehe [Torrence u. Compo, 1998b]. 

In der ingenieurwissenschaftlichen und geodätischen Anwendung wird die CWT insbesondere 
zur Detektion transienter Ereignisse wie Rissbildungen, impulsartiger Störungen oder lokaler 
Steifigkeitsänderungen eingesetzt. Darüber hinaus erlaubt sie die Analyse der 
Schwingungsenergie über verschiedene Skalen hinweg, wodurch zeitlich veränderliche 
Dynamiken sichtbar gemacht werden können. In Kombination mit der Modalanalyse, welche 
die Eigenfrequenzen, Dämpfungen und Modenformen eines Tragwerks beschreibt, lassen sich 
robuste Merkmale zur Zustandsbewertung und Schadensdiagnose extrahieren. Die CWT 
ergänzt hierbei klassische modalbasierte Ansätze, indem sie eine zeitlich lokalisierte 
Betrachtung modal relevanter Energieanteile ermöglicht. 

Für die praktische Anwendung ist eine sorgfältige Wahl des Mutter-Wavelets erforderlich, die 
sich an der Signalcharakteristik orientieren sollte. Zudem ist bei endlichen Datensätzen eine 
geeignete Randbehandlung, etwa durch Padding oder Spiegelung, notwendig, um 
Randartefakte im Skalogramm zu reduzieren [Torrence u. Compo, 1998b]. Aufgrund der 
kontinuierlichen Parametrisierung ist die CWT jedoch mit einem vergleichsweise hohen 
Rechenaufwand verbunden und liefert eine redundante Darstellung. Für recheneffiziente 
Anwendungen, Kompression oder rekonstruktive Aufgaben wird daher häufig auf die diskrete 
Wavelet-Transformation zurückgegriffen. Dennoch bleibt die CWT ein leistungsfähiges 
Analysewerkzeug, dessen interpretative Stärke insbesondere in der explorativen Untersuchung 
komplexer, zeitlich variierender Prozesse liegt. 

4.5 Diskrete Wavelet-Transformation (DWT) 

Die diskrete Wavelet-Transformation (DWT) stellt eine effiziente und praxisnahe Realisierung 
der Wavelet-Analyse dar und basiert konzeptionell auf der Multiresolution Analysis (MRA), 
wie sie von Mallat [1989] eingeführt wurde. Im Gegensatz zur kontinuierlichen Wavelet-
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Transformation arbeitet die DWT mit diskreten Skalenund Translationsparametern und 
ermöglicht dadurch eine nicht-redundante, exakt rekonstruierbare Darstellung eines Signals. 
Grundlage der DWT ist eine iterative Zerlegung des diskreten Signals x[n] in grobe und feine 
Anteile, welche durch die sukzessive Anwendung eines Tiefpass- und eines Hochpassfilters 
sowie einer anschließenden Unterabtastung um den Faktor zwei realisiert wird. Mathematisch 
ergibt sich für die Approximations- und Detailkoeffizienten der nächsthöheren Skala j + 1 die 
Beziehung 

𝑎𝑎𝑗𝑗+1(𝑘𝑘) =  �ℎ(𝑛𝑛 − 2𝑘𝑘)𝑎𝑎𝑗𝑗(𝑛𝑛)
𝑛𝑛

 (5) 

 

𝑑𝑑𝑗𝑗+1(𝑘𝑘) =  �𝑔𝑔(𝑛𝑛 − 2𝑘𝑘)𝑎𝑎𝑗𝑗(𝑛𝑛)
𝑛𝑛

 (6) 

 

wobei aj[n] die Approximationskoeffizienten der Skala j, dj[n] die zugehörigen 
Detailkoeffizienten sowie h[n] und g[n] die Skalierungs- bzw. Waveletfilter des gewählten 
Mutter-Wavelets bezeichnen.  

Die Approximationskoeffizienten aj+1 beschreiben dabei ein geglättetes, niederfrequentes 
Abbild des Signals auf einer gröberen Skala, während die Detailkoeffizienten dj+1 jene 
Signalanteile erfassen, die beim Übergang auf diese gröbere Darstellung verloren gehen 
würden. Insbesondere reagieren die Hochpassfilter empfindlich auf lokale Gradienten, 
sprunghafte Änderungen und hochfrequente Signalanteile, während konstante oder langsam 
variierende Komponenten weitgehend unterdrückt werden. Datensprünge oder impulsartige 
Störungen manifestieren sich daher als lokal konzentrierte, betragsmäßig große 
Detailkoeffizienten, häufig über mehrere aufeinanderfolgende feine Skalen hinweg. Diese 
Eigenschaft macht die DWT besonders geeignet für die Detektion und Lokalisierung lokaler 
Diskontinuitäten in Messreihen. 

Durch die dyadische Skalenstruktur wird eine multiskalige Analyse mit sehr hoher numerischer 
Effizienz ermöglicht. Die Rechenkomplexität der schnellen Wavelet-Transformation liegt bei 
O(N) und ist damit deutlich geringer als bei klassischen spektralen Verfahren, was ihren Einsatz 
für große Datenmengen und Echtzeitanwendungen prädestiniert. Abhängig von der Filterwahl 
können orthogonale oder biorthogonale Wavelet-Basen, etwa Haar-, Daubechies- oder Symlet-
Wavelets, verwendet werden [Daubechies, 1988]. Bei geeigneter Wahl der Filter ist eine exakte 
Rekonstruktion des Ursprungssignals aus den Approximations- und Detailkoeffizienten 
gewährleistet. 

Im Vergleich zur kontinuierlichen Wavelet-Transformation liefert die DWT keine 
kontinuierliche Zeit-Skalen-Darstellung, sondern eine diskrete, skalenabhängige 
Repräsentation. Die feste dyadische Skalenstruktur kann bei sehr komplexen oder nicht 
dyadisch skalierten Prozessen in speziellen Anwendungen zu Informationsverlust führen, was 
jedoch in den meisten ingenieurgeodätischen Fragestellungen von untergeordneter Bedeutung 
ist. Die Wahl des Mutter-Wavelets sowie der Zerlegungstiefe beeinflusst die Analyseergebnisse 
maßgeblich und erfordert fachliche Erfahrung sowie eine Anpassung an die jeweilige 
Signalcharakteristik [Mallat, 1999]. 
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4.6 Wavelet-Transformation in der Geodäsie 

Die vorgestellten Transformationen bilden ein abgestuftes Methodenspektrum zur Analyse 
zeitabhängiger Messdaten, wie sie insbesondere in der Geodäsie und im Bauwerksmonitoring 
auftreten. Klassische Fourier-basierte Verfahren wie die FT, DFT und FFT stellen dabei 
grundlegende Werkzeuge zur frequenzbasierten Auswertung dar und eignen sich vor allem für 
stationäre oder nahezu stationäre Schwingungsprozesse. Sie werden in der Praxis häufig zur 
Identifikation globaler Eigenfrequenzen, Resonanzen oder langfristig stabiler Dynamiken 
eingesetzt, liefern jedoch keine Information über die zeitliche Entwicklung dieser 
Frequenzanteile.  

Zeit-Frequenz-Verfahren wie die Kurzzeit-Fourier-Transformation erweitern diese Analyse, 
indem sie eine zeitliche Lokalisierung spektraler Inhalte ermöglichen. Für geodätische 
Monitoringanwendungen, bei denen Messdaten häufig durch zeitlich begrenzte Ereignisse, 
wechselnde Umweltbedingungen oder veränderliche Anregungen beeinflusst werden, ist diese 
Eigenschaft grundsätzlich von Vorteil. Der feste Auflösungs-Trade-off zwischen Zeit und 
Frequenz schränkt die Aussagekraft jedoch bei stark nichtstationären, multiskaligen oder 
transienten Signalanteilen ein, wie sie etwa bei Rissbildung, Lastumlagerungen oder 
sprunghaften Strukturänderungen auftreten können. 

Die Wavelet-Transformation adressiert diese Einschränkungen gezielt und bietet insbesondere 
für das Bauwerksmonitoring in der Geodäsie einen hohen Mehrwert. Durch ihre multiskalige 
Struktur ermöglicht sie eine adaptive Zeit-Frequenz-Auflösung, bei der hochfrequente, 
kurzzeitige Effekte mit hoher zeitlicher Genauigkeit und niederfrequente, langfristige Prozesse 
mit hoher spektraler Präzision erfasst werden. Damit eignet sich die Wavelet-Transformation 
besonders für die Analyse komplexer Strukturantworten, die durch eine Überlagerung 
unterschiedlicher Zeitskalen gekennzeichnet sind. 

Während die kontinuierliche Wavelet-Transformation vor allem der detaillierten Analyse und 
Interpretation zeitlich variierender Schwingungsenergie dient, erlaubt die diskrete Wavelet-
Transformation eine recheneffiziente, nicht-redundante Zerlegung der Messdaten. Dies 
prädestiniert sie für die Detektion lokaler Anomalien, Datensprünge und transienter Effekte 
sowie für automatisierte Auswerteverfahren im Rahmen langfristiger Monitoringkonzepte. In 
der ingenieurgeodätischen Praxis ergibt sich somit ein methodischer Baukasten, in dem 
Wavelet-basierte Verfahren eine zentrale Rolle bei der Auswertung zeitabhängiger Sensordaten 
einnehmen und klassische frequenzbasierte Ansätze sinnvoll ergänzen. 

5 Anwendungen der Integraltransformationen im Monitoring 

Anwendungsbeispiele kommen aus dem ingenieurgeodätischen Monitoring an der 
Marienkirche in Neubrandenburg und der St.-Petri-Kirche in Altentreptow. In Neubrandenburg 
wurde ein Langzeitmonitoring durchgeführt, das verschiedene Sensortypen wie GNSS, 
Tachymeter und MEMS-Sensoren kombinierte [Engel et al., 2017]. Mittels Fourier-Analysen 
konnten Eigenfrequenzen und Schwingungsmoden des Kirchturms bestimmt werden.  
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5.1 Analyse von GNSS-Messungen an der Marienkirche 

Die Erfassung der Turmschwingungen mittels GNSS erfolgte über einen Rover, welcher am 
Kirchturm befestigt ist und einer Referenzstation, welche auf dem Messdach der Hochschule 
Neubrandenburg angebracht war. Die Empfänger arbeiteten mit einer Abtastfrequenz von 20 
Hz. Das Ergebnis der Schwingungsanalyse ergab mehrere Schwingfrequenzen. Der größte 
Auslenkung lag bei einer Frequenz von 1,14 Hz mit einer Amplitude von knapp unter einem 
Millimeter, siehe Abb. 1. 

 

Abb. 1:  Amplitudenspektrum und Spektrogramm der GNSS-Messung 

Im Spektrogramm ist deutlich das Abschalten der Glockenläuteanlage bei 900 Sekunden und 
1200 Sekunden zu sehen. Dies wird im einfachen Amplitudenspektrum nicht sichtbar und war 
bis zur Auswertung mittels Kurzzeitfourieranalyse auch nicht bekannt gewesen. 
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5.2 Analyse von NIVEL210-Messungen an der St.-Petri-Kirche 

Die St. Peter Kirche in Altentreptow ist in den letzten Jahrzehnten umfassend restauriert 
worden. Nachdem zuletzt der Dachstuhl des Kirchenschiffes erneuert wurde, beginnt jetzt die 
Sanierung des Kirchturms. Dabei sollen vor allem die Holzverkleidungen des Turmes 
ausgetauscht werden. Bei Arbeiten am Kirchturm sind auch hier Schwingungen bedingt durch 
das Glockengeläut aufgefallen. Eine Bestimmung von Amplitude und Frequenz dieser 
Schwingungen wird von Seite der Kirchengemeinde begrüßt. Bei der St. Peter Kirche 
Altentreptow ist das Verhalten des Turmes und der Läuteplan vorab nicht bekannt gewesen. 
Hier erweist sich der neuentwickelte Sensor in Verbindung mit der 
Kurzzeitfouriertransformation als besonders effektiv. Nach nur einer Messung mit einer Dauer 
von ca. 30 Minuten kann ein Schwingverhalten sowohl zeitlich als auch in der Amplitude 
bestimmt werden, siehe Abb. 2. 

 

Abb. 2:  Amplitudenspektrum und Spektrogramm der NIVEL-Messung an der St.-Petri-Kirche 

Bei der Kurzzeitfouriertransformation ist immer ein Kompromiss zwischen der Zeitauslösung 
und der Frequenzauflösung erforderlich, da beide Auflösungen können nicht beliebig gesteigert 
werden können. 
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